Pulse-Based Ultra-Wideband Transmitters for Digital Communication

Size: px
Start display at page:

Download "Pulse-Based Ultra-Wideband Transmitters for Digital Communication"

Transcription

1 Pulse-Based Ultra-Wideband Transmitters for Digital Communication Ph.D. Thesis Defense David Wentzloff Thesis Committee: Prof. Anantha Chandrakasan (Advisor) Prof. Joel Dawson Prof. Charles Sodini

2 Ultra-Wideband (UWB) Signaling Narrowband Signal Spectrum Impulse-UWB Signal Frequency FCC defines UWB as bandwidth >500MHz UWB signals are narrow in time Energy spread over wide bandwidth

3 UWB Regulations PSD [dbm/mhz] Frequency [GHz] GPS PCS GHz band Wireless Communication Mask Indoor for noise from digital electronics Handheld FCC issues notice of inquiry in 1998 First report and order in 2002 opening GHz band for wireless communication

4 Advantages and Challenges High data rate Precise locationing Low interference and probability of interception 1Gb/s 100Mb/s 10Mb/s 1Mb/s 100kb/s RFID, Locationing WPAN, Multimedia 1m 10m 100m Interference Multipath Wide bandwidth circuits PSD WiMAX a UWB Mask Frequency [GHz]

5 Outline High data rate transmitter Gaussian pulse shaping Variable low data rate transmitter All-digital architecture Conclusions and future directions

6 High Data Rate System 100Mb/s at 10m in dense multipath Minimize acquisition time, energy/bit Sub-banded frequency plan Application HD Video Dolby 5.1 PC Monitor MPEG2 Data Rate 19.2Mb/s 13.8Mb/s Mb/s Mb/s PSD [dbm/mhz] Channel Frequency Plan Frequency [GHz]

7 Transceiver Architecture Digital back-end [R. Blazquez, V. Sze] SiGe RF front-end [F. Lee, D. Wentzloff] Baseband Processing Pulse Shaping ADC ADC I/Q PA LNA UWB Antenna [J. Powell] 5-bit, 500MS/s dual ADC [B. Ginsburg]

8 Gaussian Pulse Generator Generate Gaussian pulse shape Tunable from GHz (14 channels) Matched BPSK pulses TX Architecture gain b 0 input V c b 1 input PA RF OUT A LO Integrated on chip

9 V in /2V th Tanh Approximation Exploit exponential BJT Apply empirically optimized triangle signal Output current approximates Gaussian pulse Differential Input Signal V off PW time [ns] A I c2 /I B v in Core Circuit i c1 Q 1 Q 2 Single-Ended Output Current I B i c time [ns]

10 Optimization Results V 2 V in th PW A t Normalized MSE V off V off PW 10 Minimum MSE is broad Constant-MSE Contours Optimum for σ= A

11 Optimized Pulse Normalized amplitude [V] Tanh Gauss Normalized time Normalized amplitude [db] Tanh -50 Gauss Normalized frequency 1.7% maximum in-band error between Tanh and Gaussian pulse

12 Pulse-Shaping Mixers V bias Replicated Pulse-Shaping Circuit V in0 V out +I LO V in1 V bias -I LO BPSK from opposite LO phases to each side V cm Data = 0 Data = 1 BPSK by pulsing one of two mixers Expandable to QPSK V in0 V in1 RF out

13 RF Amplifier 2 nd order high-pass filter Gain control I PA L 1 L 2 L choke From Mixer C 1 Q 1 V bias Q 2 /N NR B R B Q 2 To Antenna M 1 Class A amplifier directly drives UWB antenna

14 Measured Spectrum Channel 1 Channel 14 FCC Mask

15 BPSK Matching RF output power [dbm] Positive pulse Negative pulse Ideal Tanh Differential input voltage [V] Ideal Tanh Pulse Finite LO feedthrough Measured matching using on-chip VCO Comparison to ideal Tanh response

16 Measured Pulse 292mV 4GHz LO 50mV/div 1ns/div

17 Performance Summary 1.0mSmoot Process Modulation Pulse shape Pulse width Supply voltage Total power 0.18µm SiGe BiCMOS BPSK Gaussian ns 1.8V 31.3mW VCO PA Mixers Filter 0.8mSmoot [VCO by B. Ginsburg] Pulse-shaping and up-conversion in one circuit BPSK inversion in RF for improved matching

18 High-Rate System Summary Custom chipset and antenna solution Pulse-based, 14 channel, CDMA architecture Total power at 100Mb/s Receive mode: 227mW Transmit mode: 51mW TX (31.3mW) Digital back-end (137mW) ADC (16mW) RX (53.7mW) LO (20mW) 2.6nJ/bit

19 Outline High data rate transmitter Gaussian pulse shaping Variable low data rate transmitter All-digital architecture Conclusions and future directions

20 Motivation Low data rate, energy-constrained apps. Energy/bit [J] 1μ 0.1μ 10n 1n 0.1n 1k [ISSCC] 10k 0.1M 1M 10M 0.1G 1G Data rate [b/s] Trend: Data rate Energy/bit Impulse-UWB signaling inherently duty-cycled TX and RX on only when a pulse is present Fast (2ns) turn-on time

21 System Specifications PPM signaling with non-coherent receiver Variable frame time Data encoded in pulse position ns Three channel frequency plan PSD WiMAX Ch 1 3.1GHz FCC Mask Ch 2 Ch a 5.8GHz Center frequency: 6000ppm Relaxed RF tolerance All-Digital Transmitter

22 Energy-Detection Receiver RF front-end performs channel-selection Energy detection by square-and-integrate PPM 1 T 1 T 2 A 1-6 T 2 C 2 RF in LNA C 1 A Bits out T 1 60ns T 1 T 2 V 1 V 2 1 [F. Lee, ISSCC2007] No RF oscillator required

23 Pulse Generation Principle Use a tapped variable delay line and edge combiner to synthesize a pulse Positive Edge Combiner Equivalent to Single modulated pulse Center frequency depends on delay Width depends on number of edges combined Pulse LO Frequency selectivity without LO

24 Transmitter Block Diagram 32 stages, digital delay PRF PRBS Mask edges to combiner Edge Selection 30-Edge Combiner Feedback stage disabled when pulsing All full-swing static CMOS circuits

25 Digital Delay Stage in[n] 25f 50f Full-swing signals in[n+1] in[n] 25f 50f in[n+1] 6-bit current starving Overall ±30% variation in delay 2-bit cap bank 8-bit delay control PRBS R1[n] R2[n] Only selected edges are combined

26 Delay Line Calibration Configure delay line as a ring oscillator 8-bit control f RING = f RF / 32 Measure frequency by counting ring cycles C 1 C 0 I 5 I 4 I 3 I 2 I 1 I 0 Last I-starve bit? Begin Yes Choose cap bank No Choose next I-starve bit 4 banks 6 bits Measure frequency No Frequency in range? Yes Done

27 Delay Range and Accuracy 6 Simulated RF Output Frequency [GHz] FF TT SS Digital Code

28 Delay Range and Accuracy Frequency [GHz] Measured RF Output Measured RF and cal. output Digital Code MHz Calibration Accuracy Digital Code Ring output is an accurate measure of pulse center frequency

29 30-Edge Combiner Interleaved 15-edge combiners 15-Edge Combiner 1 15-Edge Combiner 2 XOR combiner outputs To pad driver x15 Masked edges Edge to pulse [Kim, JSSC 02] M2 A B M1 Q M4 M3 _ Q Q _ Q Edge[1] Edge[2] A B

30 RF Pad Driver From edge combiner Standby Weak pull-up Linear-in-dB scaling Standby Off-chip S11 27% efficiency Stacked NMOS to reduce leakage g[1] g[2] S11 [db] g[7] S11 in Idle State Frequency [GHz]

31 Spectrum Scrambling PSD [dbm/mhz] Normalized Frequency Conventional PPM+BPSK Data n pulse Data n+1 pulse Randomly modulated PPM signals have spectral lines PPM+BPSK scrambling eliminates tones Inverted pulse

32 Spectrum Scrambling PSD [dbm/mhz] Normalized Frequency Proposed PPM+DB-BPSK Data n pulse Data n+1 pulse Randomly modulated PPM signals have spectral lines PPM+Delay-Based BPSK scrambling eliminates tones in the main lobe 0.5T RF Delay DB-BPSK: Minimal Overhead

33 DB-BPSK Implementation Per-stage delay is ½ RF period PRBS bit selects register R1 R2 Mask values offset by 1 bit DB-BPSK Pulses 2.5ns 650mV PSD [dbm/mhz] PPM + DB-BPSK Spectrum PPM FCC Mask PPM + DB-BPSK Frequency [GHz]

34 DB-BPSK Modulation BER Coherent Receiver Simulations DB-BPSK BPSK E b /N 0 DB-BPSK can replace BPSK in a coherent receiver with 0.2dB loss

35 Measured Spectrum Channel Spectrum -40 CH2 Gain Settings PSD [dbm/mhz] PSD [dbm/mhz] Frequency [GHz] Frequency [GHz]

36 Transmitter Summary Technology Active Area Modulation Scrambling Supply Leakage Power Active E/pulse PRF Range Total E/bit 90nm CMOS 0.11x0.22mSmoot 2 PPM DB-BPSK 1V 96μW 37pJ/pulse 10kHz to 16.7MHz 9.6nJ/bit to 43pJ/bit 0.5mSmoot 0.5mSmoot Energy consumed in sub-v t leakage and CV 2 Digital architecture practical for non-coherent RX

37 Low-Rate System Demo Commercial UWB antenna Transmitter FPGA to implement calibration, USB interface Receiver Powered from USB bus Demonstrated wireless link at 16.7Mb/s, 1kb packets Acquisition and timing implemented on FPGA

38 Outline High data rate transmitter Gaussian pulse shaping Variable low data rate transmitter All-digital architecture Conclusions and future directions

39 Summary of Contributions Gaussian pulse approximation Spectrally efficient for dense networks All-digital pulse generation Relax spectral efficiency requirement Digitally programmable pulse spectrum Ultra-low power Proposed DB-BPSK modulation Suitable for scrambling PPM, BPSK replacement

40 Conclusions Exploit available bandwidth to reduce power in electronics UWB systems are receiver power dominated Energy/bit compares favorably to other work Dominated by leakage currents at low data rates Energy/bit [pj] UWB Transmitters Leakage Tanh All-Digital 10 10k 1M 100M 10G Data rate [b/s]

41 Future Directions UWB suitable for high and low data rates Narrowband relies on fine-tuning UWB signaling enables relaxed frequency tolerance CMOS integration Highly digital radios Use standard digital design flow Benefit from process scaling Ultra-low power and area Synthesizable transmitter for UWB

42 Acknowledgements Anantha Chandrakasan Joel Dawson and Charlie Sodini Margaret Flaherty and family MARCO/DARPA Focus Center for Circuits and Systems Solutions (C2S2), National Science Foundation (NSF), HP/MIT Alliance STMicroelectronics for chip fabrication Thank YOU for your attention

UWB Hardware Issues, Trends, Challenges, and Successes

UWB Hardware Issues, Trends, Challenges, and Successes UWB Hardware Issues, Trends, Challenges, and Successes Larry Larson larson@ece.ucsd.edu Center for Wireless Communications 1 UWB Motivation Ultra-Wideband Large bandwidth (3.1GHz-1.6GHz) Power spectrum

More information

Low-power impulse UWB architectures and circuits

Low-power impulse UWB architectures and circuits Low-power impulse UWB architectures and circuits The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Chandrakasan,

More information

An Energy Efficient 1 Gb/s, 6-to-10 GHz CMOS IR-UWB Transmitter and Receiver With Embedded On-Chip Antenna

An Energy Efficient 1 Gb/s, 6-to-10 GHz CMOS IR-UWB Transmitter and Receiver With Embedded On-Chip Antenna An Energy Efficient 1 Gb/s, 6-to-10 GHz CMOS IR-UWB Transmitter and Receiver With Embedded On-Chip Antenna Zeshan Ahmad, Khaled Al-Ashmouny, Kuo-Ken Huang EECS 522 Analog Integrated Circuits (Winter 09)

More information

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5 ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5 20.5 A 2.4GHz CMOS Transceiver and Baseband Processor Chipset for 802.11b Wireless LAN Application George Chien, Weishi Feng, Yungping

More information

5.4: A 5GHz CMOS Transceiver for IEEE a Wireless LAN

5.4: A 5GHz CMOS Transceiver for IEEE a Wireless LAN 5.4: A 5GHz CMOS Transceiver for IEEE 802.11a Wireless LAN David Su, Masoud Zargari, Patrick Yue, Shahriar Rabii, David Weber, Brian Kaczynski, Srenik Mehta, Kalwant Singh, Sunetra Mendis, and Bruce Wooley

More information

A 1.7-to-2.2GHz Full-Duplex Transceiver System with >50dB Self-Interference Cancellation over 42MHz Bandwidth

A 1.7-to-2.2GHz Full-Duplex Transceiver System with >50dB Self-Interference Cancellation over 42MHz Bandwidth A 1.7-to-2.2GHz Full-Duplex Transceiver System with >50dB Self-Interference Cancellation Tong Zhang, Ali Najafi, Chenxin Su, Jacques C. Rudell University of Washington, Seattle Feb. 8, 2017 International

More information

An Ultra Wideband Local Positioning System for Highly Complex Indoor Environments

An Ultra Wideband Local Positioning System for Highly Complex Indoor Environments An Ultra Wideband Local Positioning System for Highly Complex Indoor Environments Benjamin Waldmann, Robert Weigel Institute for Electronics Engineering University of Erlangen Nuremberg Randolf Ebelt,

More information

Application of PC Vias to Configurable RF Circuits

Application of PC Vias to Configurable RF Circuits Application of PC Vias to Configurable RF Circuits March 24, 2008 Prof. Jeyanandh Paramesh Department of Electrical and Computer Engineering Carnegie Mellon University Pittsburgh, PA 15213 Ultimate Goal:

More information

Radio Research Directions. Behzad Razavi Communication Circuits Laboratory Electrical Engineering Department University of California, Los Angeles

Radio Research Directions. Behzad Razavi Communication Circuits Laboratory Electrical Engineering Department University of California, Los Angeles Radio Research Directions Behzad Razavi Communication Circuits Laboratory Electrical Engineering Department University of California, Los Angeles Outline Introduction Millimeter-Wave Transceivers - Applications

More information

ISSCC 2006 / SESSION 20 / WLAN/WPAN / 20.5

ISSCC 2006 / SESSION 20 / WLAN/WPAN / 20.5 20.5 An Ultra-Low Power 2.4GHz RF Transceiver for Wireless Sensor Networks in 0.13µm CMOS with 400mV Supply and an Integrated Passive RX Front-End Ben W. Cook, Axel D. Berny, Alyosha Molnar, Steven Lanzisera,

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [IMEC UWB PHY Proposal] Date Submitted: [4 May, 2009] Source: Dries Neirynck, Olivier Rousseaux (Stichting

More information

RFIC Design ELEN 351 Lecture 2: RFIC Architectures

RFIC Design ELEN 351 Lecture 2: RFIC Architectures RFIC Design ELEN 351 Lecture 2: RFIC Architectures Instructor: Dr. Allen Sweet Copy right 2003 ELEN 351 1 RFIC Architectures Modulation Choices Receiver Architectures Transmitter Architectures VCOs, Phase

More information

Receiver Architecture

Receiver Architecture Receiver Architecture Receiver basics Channel selection why not at RF? BPF first or LNA first? Direct digitization of RF signal Receiver architectures Sub-sampling receiver noise problem Heterodyne receiver

More information

A Pulse-Based CMOS Ultra-Wideband Transmitter for WPANs

A Pulse-Based CMOS Ultra-Wideband Transmitter for WPANs A Pulse-Based CMOS Ultra-Wideband Transmitter for WPANs Murat Demirkan* Solid-State Circuits Research Laboratory University of California, Davis *Now with Agilent Technologies, Santa Clara, CA 03/20/2008

More information

Pulse-Based Ultra-Wideband Transmitters for Digital Communication. David D. Wentzloff

Pulse-Based Ultra-Wideband Transmitters for Digital Communication. David D. Wentzloff Pulse-Based Ultra-Wideband Transmitters for Digital Communication by David D. Wentzloff B.S., University of Michigan (1999) S.M., Massachusetts Institute of Technology (2002) Submitted to the Department

More information

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2 ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2 20.2 A Digitally Calibrated 5.15-5.825GHz Transceiver for 802.11a Wireless LANs in 0.18µm CMOS I. Bouras 1, S. Bouras 1, T. Georgantas

More information

Session 3. CMOS RF IC Design Principles

Session 3. CMOS RF IC Design Principles Session 3 CMOS RF IC Design Principles Session Delivered by: D. Varun 1 Session Topics Standards RF wireless communications Multi standard RF transceivers RF front end architectures Frequency down conversion

More information

Research and Development Activities in RF and Analog IC Design. RFIC Building Blocks. Single-Chip Transceiver Systems (I) Howard Luong

Research and Development Activities in RF and Analog IC Design. RFIC Building Blocks. Single-Chip Transceiver Systems (I) Howard Luong Research and Development Activities in RF and Analog IC Design Howard Luong Analog Research Laboratory Department of Electrical and Electronic Engineering Hong Kong University of Science and Technology

More information

A 3-10GHz Ultra-Wideband Pulser

A 3-10GHz Ultra-Wideband Pulser A 3-10GHz Ultra-Wideband Pulser Jan M. Rabaey Simone Gambini Davide Guermandi Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2006-136 http://www.eecs.berkeley.edu/pubs/techrpts/2006/eecs-2006-136.html

More information

Prepared for the Engineers of Samsung Electronics RF transmitter & power amplifier

Prepared for the Engineers of Samsung Electronics RF transmitter & power amplifier Prepared for the Engineers of Samsung Electronics RF transmitter & power amplifier Changsik Yoo Dept. Electrical and Computer Engineering Hanyang University, Seoul, Korea 1 Wireless system market trends

More information

TestData Summary of 5.2GHz WLAN Direct Conversion RF Transceiver Board

TestData Summary of 5.2GHz WLAN Direct Conversion RF Transceiver Board Page 1 of 16 ========================================================================================= TestData Summary of 5.2GHz WLAN Direct Conversion RF Transceiver Board =========================================================================================

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.5 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [Elements of an IR-UWB PHY for Body Area Networks] Date Submitted: [0 March, 2009] Source: Olivier Rousseaux,

More information

Research Overview. Payam Heydari Nanoscale Communication IC Lab University of California, Irvine, CA

Research Overview. Payam Heydari Nanoscale Communication IC Lab University of California, Irvine, CA Research Overview Payam Heydari Nanoscale Communication IC Lab University of California, Irvine, CA NCIC Lab (Sub)-MMW measurement facility for frequencies up to 120GHz Students 11 Ph.D. students and 2

More information

A 1.9GHz Single-Chip CMOS PHS Cellphone

A 1.9GHz Single-Chip CMOS PHS Cellphone A 1.9GHz Single-Chip CMOS PHS Cellphone IEEE JSSC, Vol. 41, No.12, December 2006 William Si, Srenik Mehta, Hirad Samavati, Manolis Terrovitis, Michael Mack, Keith Onodera, Steve Jen, Susan Luschas, Justin

More information

Radio Frequency Integrated Circuits Prof. Cameron Charles

Radio Frequency Integrated Circuits Prof. Cameron Charles Radio Frequency Integrated Circuits Prof. Cameron Charles Overview Introduction to RFICs Utah RFIC Lab Research Projects Low-power radios for Wireless Sensing Ultra-Wideband radios for Bio-telemetry Cameron

More information

A 4-channel Time Interleaved Sampler based 3-5 GHz band CMOS Radar IC in 0.13 mm for Surveillance

A 4-channel Time Interleaved Sampler based 3-5 GHz band CMOS Radar IC in 0.13 mm for Surveillance JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.18, NO.1, FEBRUARY, 2018 ISSN(Print) 1598-1657 https://doi.org/10.5573/jsts.2018.18.1.084 ISSN(Online) 2233-4866 A 4-channel Time Interleaved Sampler

More information

What to do with THz? Ali M. Niknejad Berkeley Wireless Research Center University of California Berkeley. WCA Futures SIG

What to do with THz? Ali M. Niknejad Berkeley Wireless Research Center University of California Berkeley. WCA Futures SIG What to do with THz? Ali M. Niknejad Berkeley Wireless Research Center University of California Berkeley WCA Futures SIG Outline THz Overview Potential THz Applications THz Transceivers in Silicon? Application

More information

Dual-Frequency GNSS Front-End ASIC Design

Dual-Frequency GNSS Front-End ASIC Design Dual-Frequency GNSS Front-End ASIC Design Ed. 01 15/06/11 In the last years Acorde has been involved in the design of ASIC prototypes for several EU-funded projects in the fields of FM-UWB communications

More information

Single Chip CMOS Transmitter for UWB Impulse Radar Applications

Single Chip CMOS Transmitter for UWB Impulse Radar Applications A Thesis for the Degree of Master Single Chip CMOS Transmitter for UWB Impulse Radar Applications Chang Shu School of Engineering Information and Communications University 2009 Single Chip CMOS Transmitter

More information

Ultra Wideband Transceiver Design

Ultra Wideband Transceiver Design Ultra Wideband Transceiver Design By: Wafula Wanjala George For: Bachelor Of Science In Electrical & Electronic Engineering University Of Nairobi SUPERVISOR: Dr. Vitalice Oduol EXAMINER: Dr. M.K. Gakuru

More information

A Switched VCO-based CMOS UWB Transmitter for 3-5 GHz Radar and Communication Systems

A Switched VCO-based CMOS UWB Transmitter for 3-5 GHz Radar and Communication Systems JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.3, JUNE, 2017 ISSN(Print) 1598-1657 https://doi.org/10.5573/jsts.2017.17.3.326 ISSN(Online) 2233-4866 A Switched VCO-based UWB Transmitter for

More information

ISSCC 2006 / SESSION 33 / MOBILE TV / 33.4

ISSCC 2006 / SESSION 33 / MOBILE TV / 33.4 33.4 A Dual-Channel Direct-Conversion CMOS Receiver for Mobile Multimedia Broadcasting Vincenzo Peluso, Yang Xu, Peter Gazzerro, Yiwu Tang, Li Liu, Zhenbiao Li, Wei Xiong, Charles Persico Qualcomm, San

More information

Research in Ultra Wide Band(UWB) Wireless Communications

Research in Ultra Wide Band(UWB) Wireless Communications The IEEE Wireless Communications and Networking Conference (WCNC'2003) Panel session on Ultra-wideband (UWB) Technology Ernest N. Memorial Convention Center, New Orleans, LA USA 11:05 am - 12:30 pm, Wednesday,

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANS)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANS) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANS) Title: [General Atomics Call For Proposals Presentation] Date Submitted: [4 ] Source: Naiel Askar, Susan Lin, General Atomics-

More information

Ultra Wideband Amplifier Functional Description and Block Diagram

Ultra Wideband Amplifier Functional Description and Block Diagram Ultra Wideband Amplifier Functional Description and Block Diagram Saif Anwar Sarah Kief Senior Project Fall 2007 November 8, 2007 Advisor: Dr. Prasad Shastry Department of Electrical & Computer Engineering

More information

A Flexible, Low Power, DC-1GHz Impulse-UWB Transceiver Front-end

A Flexible, Low Power, DC-1GHz Impulse-UWB Transceiver Front-end A Flexible, Low Power, DC-G Impulse-UWB Transceiver Front-end Ian D. O Donnell, Robert W. Brodersen University of California, Berkeley Berkeley Wireless Research Center {ian,bwb}@eecs.berkeley.edu Abstract

More information

Differential and Single Ended Elliptical Antennas for GHz Ultra Wideband Communication

Differential and Single Ended Elliptical Antennas for GHz Ultra Wideband Communication Differential and Single Ended Elliptical Antennas for 3.1-1.6 GHz Ultra Wideband Communication Johnna Powell Anantha Chandrakasan Massachusetts Institute of Technology Microsystems Technology Laboratory

More information

mmw to THz ultra high data rate radio access technologies

mmw to THz ultra high data rate radio access technologies mmw to THz ultra high data rate radio access technologies Dr. Laurent HERAULT VP Europe, CEA LETI Pierre Vincent Head of RF IC design Lab, CEA LETI Outline mmw communication use cases and standards mmw

More information

NANOSCALE IMPULSE RADAR

NANOSCALE IMPULSE RADAR NANOSCALE IMPULSE RADAR NVA6X00 Impulse Radar Transceiver and Development Kit 2012.4.20 laon@laonuri.com 1 NVA6000 The Novelda NVA6000 is a single-die CMOS chip that delivers high performance, low power,

More information

Analog and RF circuit techniques in nanometer CMOS

Analog and RF circuit techniques in nanometer CMOS Analog and RF circuit techniques in nanometer CMOS Bram Nauta University of Twente The Netherlands http://icd.ewi.utwente.nl b.nauta@utwente.nl UNIVERSITY OF TWENTE. Outline Introduction Balun-LNA-Mixer

More information

A Novel Sine Wave Based UWB Pulse Generator Design for Single/Multi-User Systems

A Novel Sine Wave Based UWB Pulse Generator Design for Single/Multi-User Systems Research Journal of Applied Sciences, Engineering and Technology 4(23): 5243-5247, 2012 ISSN: 2040-7467 Maxwell Scientific Organization, 2012 Submitted: May 04, 2012 Accepted: May 22, 2012 Published: December

More information

Bluetooth Receiver. Ryan Rogel, Kevin Owen I. INTRODUCTION

Bluetooth Receiver. Ryan Rogel, Kevin Owen I. INTRODUCTION 1 Bluetooth Receiver Ryan Rogel, Kevin Owen Abstract A Bluetooth radio front end is developed and each block is characterized. Bits are generated in MATLAB, GFSK endcoded, and used as the input to this

More information

Radio Frequency Integrated Circuits Prof. Cameron Charles

Radio Frequency Integrated Circuits Prof. Cameron Charles Radio Frequency Integrated Circuits Prof. Cameron Charles Overview Introduction to RFICs Utah RFIC Lab Research Projects Low-power radios for Wireless Sensing Ultra-Wideband radios for Bio-telemetry Cameron

More information

A 60GHz Transceiver RF Front-End

A 60GHz Transceiver RF Front-End TAMU ECEN625 FINAL PROJECT REPORT 1 A 60GHz Transceiver RF Front-End Xiangyong Zhou, UIN 421002457, Qiaochu Yang, UIN 221007758, Abstract This final report presents a 60GHz two-step conversion heterodyne

More information

ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2012

ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2012 ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2012 Lecture 5: Termination, TX Driver, & Multiplexer Circuits Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements

More information

Transceiver Architectures (III)

Transceiver Architectures (III) Image-Reject Receivers Transceiver Architectures (III) Since the image and the signal lie on the two sides of the LO frequency, it is possible to architect the RX so that it can distinguish between the

More information

Pulsed RF Circuits for Ultra Wideband Communications and Radar Applications

Pulsed RF Circuits for Ultra Wideband Communications and Radar Applications Pulsed RF Circuits for Ultra Wideband Communications and Radar Applications by Ahmed Maher El-Gabaly A thesis submitted to the Department of Electrical and Computer Engineering in conformity with the requirements

More information

RF and Microwave Test and Design Roadshow 5 Locations across Australia and New Zealand

RF and Microwave Test and Design Roadshow 5 Locations across Australia and New Zealand RF and Microwave Test and Design Roadshow 5 Locations across Australia and New Zealand Advanced PXI Technologies Signal Recording, FPGA s, and Synchronization Outline Introduction to the PXI Architecture

More information

UWB (WPAN) Mohammad Abualreesh.

UWB (WPAN) Mohammad Abualreesh. UWB (WPAN) Mohammad Abualreesh Mohammad.Abualreesh@hut.fi Outline UWB basics UWB for WPAN UWB basics What is UWB? UWB is a radio technology that modulates impulse based waveforms instead of continuous

More information

INTRODUCTION TO TRANSCEIVER DESIGN ECE3103 ADVANCED TELECOMMUNICATION SYSTEMS

INTRODUCTION TO TRANSCEIVER DESIGN ECE3103 ADVANCED TELECOMMUNICATION SYSTEMS INTRODUCTION TO TRANSCEIVER DESIGN ECE3103 ADVANCED TELECOMMUNICATION SYSTEMS FUNCTIONS OF A TRANSMITTER The basic functions of a transmitter are: a) up-conversion: move signal to desired RF carrier frequency.

More information

Fully integrated UHF RFID mobile reader with power amplifiers using System-in-Package (SiP)

Fully integrated UHF RFID mobile reader with power amplifiers using System-in-Package (SiP) Fully integrated UHF RFID mobile reader with power amplifiers using System-in-Package (SiP) Hyemin Yang 1, Jongmoon Kim 2, Franklin Bien 3, and Jongsoo Lee 1a) 1 School of Information and Communications,

More information

ENHANCING BER PERFORMANCE FOR OFDM

ENHANCING BER PERFORMANCE FOR OFDM RESEARCH ARTICLE OPEN ACCESS ENHANCING BER PERFORMANCE FOR OFDM Amol G. Bakane, Prof. Shraddha Mohod Electronics Engineering (Communication), TGPCET Nagpur Electronics & Telecommunication Engineering,TGPCET

More information

Wavedancer A new ultra low power ISM band transceiver RFIC

Wavedancer A new ultra low power ISM band transceiver RFIC Wavedancer 400 - A new ultra low power ISM band transceiver RFIC R.W.S. Harrison, Dr. M. Hickson Roke Manor Research Ltd, Old Salisbury Lane, Romsey, Hampshire, SO51 0ZN. e-mail: roscoe.harrison@roke.co.uk

More information

System Design Considerations for Ultra-Wideband Communication

System Design Considerations for Ultra-Wideband Communication TOPICS IN CIRCUITS FOR COMMUNICATIONS System Design Considerations for Ultra-Wideband Communication David D. Wentzloff, Raúl Blázquez, Fred S. Lee, Brian P. Ginsburg, Johnna Powell, and Anantha P. Chandrakasan,

More information

A Single-Chip 2.4-GHz Direct-Conversion CMOS Receiver for Wireless Local Loop using Multiphase Reduced Frequency Conversion Technique

A Single-Chip 2.4-GHz Direct-Conversion CMOS Receiver for Wireless Local Loop using Multiphase Reduced Frequency Conversion Technique 800 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 5, MAY 2001 A Single-Chip 2.4-GHz Direct-Conversion CMOS Receiver for Wireless Local Loop using Multiphase Reduced Frequency Conversion Technique

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [SSA UWB Implementation: an approach for global harmonization and compromise in IEEE 802.15.3a WPAN]

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P80.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [UWB Direct Chaotic Communications Technology] Date Submitted: [15 November, 004] Source: [(1) Y. Kim, C.

More information

TSEK38: Radio Frequency Transceiver Design Lecture 3: Superheterodyne TRX design

TSEK38: Radio Frequency Transceiver Design Lecture 3: Superheterodyne TRX design TSEK38: Radio Frequency Transceiver Design Lecture 3: Superheterodyne TRX design Ted Johansson, ISY ted.johansson@liu.se 2 Outline of lecture 3 Introduction RF TRX architectures (3) Superheterodyne architecture

More information

Demo board DC365A Quick Start Guide.

Demo board DC365A Quick Start Guide. August 02, 2001. Demo board DC365A Quick Start Guide. I. Introduction The DC365A demo board is intended to demonstrate the capabilities of the LT5503 RF transmitter IC. This IC incorporates a 1.2 GHz to

More information

CDMA Principle and Measurement

CDMA Principle and Measurement CDMA Principle and Measurement Concepts of CDMA CDMA Key Technologies CDMA Air Interface CDMA Measurement Basic Agilent Restricted Page 1 Cellular Access Methods Power Time Power Time FDMA Frequency Power

More information

Fall 2017 Project Proposal

Fall 2017 Project Proposal Fall 2017 Project Proposal (Henry Thai Hoa Nguyen) Big Picture The goal of my research is to enable design automation in the field of radio frequency (RF) integrated communication circuits and systems.

More information

Challenges in Designing CMOS Wireless System-on-a-chip

Challenges in Designing CMOS Wireless System-on-a-chip Challenges in Designing CMOS Wireless System-on-a-chip David Su Atheros Communications Santa Clara, California IEEE Fort Collins, March 2008 Introduction Outline Analog/RF: CMOS Transceiver Building Blocks

More information

Technology Trend of Ultra-High Data Rate Wireless CMOS Transceivers

Technology Trend of Ultra-High Data Rate Wireless CMOS Transceivers 2017.07.03 Technology Trend of Ultra-High Data Rate Wireless CMOS Transceivers Akira Matsuzawa and Kenichi Okada Tokyo Institute of Technology Contents 1 Demand for high speed data transfer Developed high

More information

A pj/pulse Highly-Flexible Impulse-Radio Ultra-Wideband Pulse-Generator

A pj/pulse Highly-Flexible Impulse-Radio Ultra-Wideband Pulse-Generator Progress In Electromagnetics Research C, Vol. 55, 39 47, 204 A 2.8 7.5 pj/pulse Highly-Flexible Impulse-Radio Ultra-Wideband Pulse-Generator Kin Keung Lee * and Tor Sverre Lande Abstract A low-power on-off-keying

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [MSK-based 60GHz PHY Proposal] Date Submitted: [7 May, 2007] Source: [Troy Beukema, Brian Floyd, Brian Gaucher,

More information

6.776 High Speed Communication Circuits and Systems Lecture 14 Voltage Controlled Oscillators

6.776 High Speed Communication Circuits and Systems Lecture 14 Voltage Controlled Oscillators 6.776 High Speed Communication Circuits and Systems Lecture 14 Voltage Controlled Oscillators Massachusetts Institute of Technology March 29, 2005 Copyright 2005 by Michael H. Perrott VCO Design for Narrowband

More information

Low Power Communication Circuits for WSN

Low Power Communication Circuits for WSN Low Power Communication Circuits for WSN Nate Pletcher, Prof. Jan Rabaey, (B. Otis, Y.H. Chee, S. Gambini, D. Guermandi) Berkeley Wireless Research Center Towards A Micropower Integrated Node power management

More information

A 12-bit Interpolated Pipeline ADC using Body Voltage Controlled Amplifier

A 12-bit Interpolated Pipeline ADC using Body Voltage Controlled Amplifier A 12-bit Interpolated Pipeline ADC using Body Voltage Controlled Amplifier Hyunui Lee, Masaya Miyahara, and Akira Matsuzawa Tokyo Institute of Technology, Japan Outline Background Body voltage controlled

More information

Project: IEEE P Study Group for Wireless Personal Area Networks (WPANs(

Project: IEEE P Study Group for Wireless Personal Area Networks (WPANs( Project: IEEE P802.15 Study Group for Wireless Personal Area Networks (WPANs( WPANs) Title: PSSS proposal Parallel reuse of 2.4 GHz PHY for the sub-1-ghz bands Date Submitted: 11 November 2004 Source:

More information

26.8: A 1.9GHz Single-Chip CMOS PHS Cellphone

26.8: A 1.9GHz Single-Chip CMOS PHS Cellphone 26.8: A 1.9GHz Single-Chip CMOS PHS Cellphone William W. Si, Srenik Mehta, Hirad Samavati, Manolis Terrovitis, Michael Mack, KeithOnodera, SteveJen, Susan Luschas, Justin Hwang, SuniMendis, DavidSu, BruceWooley

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs) Title: [The Scalability of UWB PHY Proposals] Date Submitted: [July 13, 2004] Source: [Matthew Welborn] Company [Freescale

More information

Harvesting a Clock from a GSM Signal for the Wake-Up of a Wireless Sensor Network

Harvesting a Clock from a GSM Signal for the Wake-Up of a Wireless Sensor Network Harvesting a Clock from a GSM Signal for the Wake-Up of a Wireless Sensor Network Jonathan K. Brown and David D. Wentzloff University of Michigan Ann Arbor, MI, USA ISCAS 2010 Acknowledgment: This material

More information

Jurianto Joe. IDA UWB Seminar Feb. 25, 2003

Jurianto Joe. IDA UWB Seminar Feb. 25, 2003 Cellonics UWB Signal Generation and Recovery Jurianto Joe IDA UWB Seminar Feb. 25, 2003 Outline Cellonics UWB method wo schools of thought in using 3.1-10.6 GHz band for UWB Cellonics and other UWB methods

More information

Haapala, Tuomas; Pulkkinen, Mika; Salomaa, Jarno; Halonen, Kari A 180-nW static power UWB IR transmitter front-end for energy harvesting applications

Haapala, Tuomas; Pulkkinen, Mika; Salomaa, Jarno; Halonen, Kari A 180-nW static power UWB IR transmitter front-end for energy harvesting applications Powered by TCPDF (www.tcpdf.org) This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Haapala, Tuomas; Pulkkinen, Mika;

More information

Spread Spectrum (SS) is a means of transmission in which the signal occupies a

Spread Spectrum (SS) is a means of transmission in which the signal occupies a SPREAD-SPECTRUM SPECTRUM TECHNIQUES: A BRIEF OVERVIEW SS: AN OVERVIEW Spread Spectrum (SS) is a means of transmission in which the signal occupies a bandwidth in excess of the minimum necessary to send

More information

Trends in Future RF Applications

Trends in Future RF Applications Trends in Future RF Applications Neil C. Bird Philips Research Europe May 15 th, 2006 Outline Technical Trends Next Generation Wireless Communication in the Home Conclusions 2 Scope of RF Future Mobile

More information

Broadband Communications at mmwave Frequencies: An MSK system for Multi-Gb/s Wireless Communications at 60GHz. IBM Research

Broadband Communications at mmwave Frequencies: An MSK system for Multi-Gb/s Wireless Communications at 60GHz. IBM Research Broadband Communications at mmwave Frequencies: An MSK system for Multi-Gb/s Wireless Communications at 60GHz A. Valdes-Garcia, T. Beukema, S. Reynolds, Y. Katayama (TRL), B. Gaucher IBM Thomas J. Watson

More information

A 0.18µm SiGe BiCMOS Receiver and Transmitter Chipset for SONET OC-768 Transmission Systems

A 0.18µm SiGe BiCMOS Receiver and Transmitter Chipset for SONET OC-768 Transmission Systems A 0.18µm SiGe BiCMOS Receiver and Transmitter Chipset for SONET OC-768 Transmission Systems M. Meghelli 1, A. Rylyakov 1, S. J. Zier 2, M. Sorna 2, D. Friedman 1 1 IBM T. J. Watson Research Center 2 IBM

More information

FEATURES DESCRIPTION BENEFITS APPLICATIONS. Preliminary PT4501 Sub-1 GHz Wideband FSK Transceiver

FEATURES DESCRIPTION BENEFITS APPLICATIONS. Preliminary PT4501 Sub-1 GHz Wideband FSK Transceiver Preliminary PT4501 Sub-1 GHz Wideband FSK Transceiver DESCRIPTION The PT4501 is a highly integrated wideband FSK multi-channel half-duplex transceiver operating in sub-1 GHz license-free ISM bands. The

More information

ISSCC 2006 / SESSION 13 / OPTICAL COMMUNICATION / 13.2

ISSCC 2006 / SESSION 13 / OPTICAL COMMUNICATION / 13.2 13.2 An MLSE Receiver for Electronic-Dispersion Compensation of OC-192 Fiber Links Hyeon-min Bae 1, Jonathan Ashbrook 1, Jinki Park 1, Naresh Shanbhag 2, Andrew Singer 2, Sanjiv Chopra 1 1 Intersymbol

More information

Real-time FPGA realization of an UWB transceiver physical layer

Real-time FPGA realization of an UWB transceiver physical layer University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 2005 Real-time FPGA realization of an UWB transceiver physical

More information

5Gbps Serial Link Transmitter with Pre-emphasis

5Gbps Serial Link Transmitter with Pre-emphasis Gbps Serial Link Transmitter with Pre-emphasis Chih-Hsien Lin, Chung-Hong Wang and Shyh-Jye Jou Department of Electrical Engineering,National Central University,Chung-Li, Taiwan R.O.C. Abstract- High-speed

More information

Si/SiGe BiCMOS Microsystems for Microwave and Millimeter-Wave Sensing and Communications

Si/SiGe BiCMOS Microsystems for Microwave and Millimeter-Wave Sensing and Communications Wright State University CORE Scholar Physics Seminars Physics 5-19-2014 Si/SiGe BiCMOS Microsystems for Microwave and Millimeter-Wave Sensing and Communications Hermann Schumacher hschu@ieee.org Follow

More information

CMOS RFIC Design for Direct Conversion Receivers. Zhaofeng ZHANG Supervisor: Dr. Jack Lau

CMOS RFIC Design for Direct Conversion Receivers. Zhaofeng ZHANG Supervisor: Dr. Jack Lau CMOS RFIC Design for Direct Conversion Receivers Zhaofeng ZHANG Supervisor: Dr. Jack Lau Outline of Presentation Background Introduction Thesis Contributions Design Issues and Solutions A Direct Conversion

More information

Pulsed VNA Measurements:

Pulsed VNA Measurements: Pulsed VNA Measurements: The Need to Null! January 21, 2004 presented by: Loren Betts Copyright 2004 Agilent Technologies, Inc. Agenda Pulsed RF Devices Pulsed Signal Domains VNA Spectral Nulling Measurement

More information

Chapter 4 Radio Communication Basics

Chapter 4 Radio Communication Basics Chapter 4 Radio Communication Basics Chapter 4 Radio Communication Basics RF Signal Propagation and Reception Basics and Keywords Transmitter Power and Receiver Sensitivity Power - antenna gain: G TX,

More information

3. IEEE WPAN

3. IEEE WPAN LITERATURE SURVEY 1. A Single-Chip 2.4GHz Low-Power CMOS Receiver and Transmitter for WPAN Applications In this paper A single chip 2.4GHz low power CMOS receiver and transmitter for WPAN applications

More information

Overview. Measurement of Ultra-Wideband Wireless Channels

Overview. Measurement of Ultra-Wideband Wireless Channels Measurement of Ultra-Wideband Wireless Channels Wasim Malik, Ben Allen, David Edwards, UK Introduction History of UWB Modern UWB Antenna Measurements Candidate UWB elements Radiation patterns Propagation

More information

A CMOS UWB Transmitter for Intra/Inter-chip Wireless Communication

A CMOS UWB Transmitter for Intra/Inter-chip Wireless Communication A CMOS UWB Transmitter for Intra/Inter-chip Wireless Communication Pran Kanai Saha, Nobuo Sasaki and Takamaro Kikkawa Research Center For Nanodevices and Systems, Hiroshima University 1-4-2 Kagamiyama,

More information

RADIO FREQUENCY (RF) COMPLEMENTARY METAL-OXIDE SEMICONDUCTOR (CMOS) ULTRA WIDEBAND (UWB) TRANSMITTER AND RECEIVER FRONT-END DESIGN.

RADIO FREQUENCY (RF) COMPLEMENTARY METAL-OXIDE SEMICONDUCTOR (CMOS) ULTRA WIDEBAND (UWB) TRANSMITTER AND RECEIVER FRONT-END DESIGN. RADIO FREQUENCY (RF) COMPLEMENTARY METAL-OXIDE SEMICONDUCTOR (CMOS) ULTRA WIDEBAND (UWB) TRANSMITTER AND RECEIVER FRONT-END DESIGN A Dissertation by MENG MIAO Submitted to the Office of Graduate Studies

More information

/$ IEEE

/$ IEEE IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 53, NO. 11, NOVEMBER 2006 1205 A Low-Phase Noise, Anti-Harmonic Programmable DLL Frequency Multiplier With Period Error Compensation for

More information

An All CMOS, 2.4 GHz, Fully Adaptive, Scalable, Frequency Hopped Transceiver

An All CMOS, 2.4 GHz, Fully Adaptive, Scalable, Frequency Hopped Transceiver An All CMOS, 2.4 GHz, Fully Adaptive, Scalable, Frequency Hopped Transceiver Farbod Behbahani John Leete Alexandre Kral Shahrzad Tadjpour Karapet Khanoyan Paul J. Chang Hooman Darabi Maryam Rofougaran

More information

Ultra Low Power Transceiver for Wireless Body Area Networks

Ultra Low Power Transceiver for Wireless Body Area Networks Ultra Low Power Transceiver for Wireless Body Area Networks Bearbeitet von Jens Masuch, Manuel Delgado-Restituto 1. Auflage 2013. Buch. viii, 122 S. Hardcover ISBN 978 3 319 00097 8 Format (B x L): 15,5

More information

Hot Topics and Cool Ideas in Scaled CMOS Analog Design

Hot Topics and Cool Ideas in Scaled CMOS Analog Design Engineering Insights 2006 Hot Topics and Cool Ideas in Scaled CMOS Analog Design C. Patrick Yue ECE, UCSB October 27, 2006 Slide 1 Our Research Focus High-speed analog and RF circuits Device modeling,

More information

Transmitting Multiple HD Video Streams over UWB Links

Transmitting Multiple HD Video Streams over UWB Links MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Transmitting Multiple HD Video Streams over UWB Links C. Duan, G. Pekhteryev, J. Fang, Y-P Nakache, J. Zhang, K. Tajima, Y. Nishioka, H. Hirai

More information

PSSS proposal Parallel reuse of 2.4 GHz PHY for the sub-1-ghz bands. DWA Wireless GmbH, Germany Tel.: +49 (0)

PSSS proposal Parallel reuse of 2.4 GHz PHY for the sub-1-ghz bands. DWA Wireless GmbH, Germany Tel.: +49 (0) Project: IEEE P802.15 Study Group for Wireless Personal Area Networks (WPANs( WPANs) Title: Date Submitted: 14th April 2005 Source: PSSS proposal Parallel reuse of 2.4 GHz PHY for the sub-1-ghz bands GmbH

More information

NEW WIRELESS applications are emerging where

NEW WIRELESS applications are emerging where IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 39, NO. 4, APRIL 2004 709 A Multiply-by-3 Coupled-Ring Oscillator for Low-Power Frequency Synthesis Shwetabh Verma, Member, IEEE, Junfeng Xu, and Thomas H. Lee,

More information

Ultra-Wideband RF Transceiver Design in CMOS Technology

Ultra-Wideband RF Transceiver Design in CMOS Technology 6 Ultra-Wideband RF Transceiver Design in CMOS Technology Lingli Xia 1,2, Changhui Hu 1, Yumei Huang 2, Zhiliang Hong 2 and Patrick. Y. Chiang 1 1 Oregon State University, Corvallis, Oregon 2 Fudan University,

More information

Today s mobile devices

Today s mobile devices PAGE 1 NOVEMBER 2013 Highly Integrated, High Performance Microwave Radio IC Chipsets cover 6-42 GHz Bands Complete Upconversion & Downconversion Chipsets for Microwave Point-to-Point Outdoor Units (ODUs)

More information

SiNANO-NEREID Workshop:

SiNANO-NEREID Workshop: SiNANO-NEREID Workshop: Towards a new NanoElectronics Roadmap for Europe Leuven, September 11 th, 2017 WP3/Task 3.2 Connectivity RF and mmw Design Outline Connectivity, what connectivity? High data rates

More information