A 4-channel Time Interleaved Sampler based 3-5 GHz band CMOS Radar IC in 0.13 mm for Surveillance

Size: px
Start display at page:

Download "A 4-channel Time Interleaved Sampler based 3-5 GHz band CMOS Radar IC in 0.13 mm for Surveillance"

Transcription

1 JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.18, NO.1, FEBRUARY, 2018 ISSN(Print) ISSN(Online) A 4-channel Time Interleaved Sampler based 3-5 GHz band CMOS Radar IC in 0.13 mm for Surveillance Sang Gyun Kim 1, Yun Seong Eo 1, and Hyung Chul Park 2 Abstract This paper presents a 3-5 GHz band CMOS UWB radar IC realized in a 0.13 mm CMOS technology for surveillance. Sampling resolution and detectable range of the proposed IC are determined to be 3 cm and 15 m, respectively, to serve a surveillance function. To reduce the scan time while satisfying resolution and detection range, equivalent time sampling and a 4-channel time interleaved sampler are used. The DC offset mismatch in the 4-channel receiver is greatly reduced via a DC offset compensation and BJT-based op-amp for analog signal processing (ASP) circuits. Measurement results show that the center frequency and bandwidth of the pulse can be adjusted in the range of 3 GHz - 5 GHz and 0.5 GHz - 2 GHz, respectively. The measured range for human target is up to 11 m. The chip size is 4 mm 2.5 mm, and 81 ma (transmitter) and 38 ma (receiver) are consumed at 1.5 V supply. Index Terms CMOS single chip radar, UWB pulse radar, DC offset compensation, digitally synthesized impulse generator I. INTRODUCTION As the demand for high-resolution radar increases, ultra wideband (UWB) radar is considered a good solution for many civilian and military applications such Manuscript received Jun. 6, 2017; accepted Dec. 7, Department of Electronic Engineering, Kwang-woon University. 2 Dept. of Electronic and IT Media Engineering, Seoul National University of Science and Technology hcpark@seoultech.ac.kr (Corresponding Author : Hyung Chul Park) as localization and biometric imaging. Recent studies have presented CMOS UWB IC-based radars for sensor applications [1-4]. In [1], since an analog detection technique was used, performance improvement using digital signal processing (DSP) technique may not be much. In [2], CMOS UWB radar IC used equivalent time sampling technique and 16-channel time interleaved samplers; however, the IC has many problems such as circuit saturation due to DC offset and channel-tochannel equalization. This paper presents a 3 5 GHz band CMOS UWB radar IC for surveillance. The proposed IC is fabricated in a 0.13 mm technology. To serve a surveillance function, sampling resolution and detection range of the proposed IC are determined to be 3 cm and 15 m, respectively. To reduce the scan time while satisfying resolution and detection range, equivalent time sampling and a 4-channel time interleaved sampler are used. This paper is organized as follows: In Section II, we present the system architecture of the proposed IC. In Section III, the circuit design of the IC is presented. The measurement results are presented in section IV and conclusions are presented in Section V. II. SYSTEM ARCHITECTURE Fig. 1 and Table 1 show a block diagram and the specifications of the proposed IC, respectively. The proposed IC uses a UWB pulse as the radar signal. The bandwidth of the UWB pulse can be tuned in the range of 0.5 GHz - 2 GHz. The transmitter consists of a digital pulse generator and driver amplifier. In the transmitter, the UWB pulse is transmitted periodically with a pulse repetition time (PRT) of 100 nsec. The maximum

2 JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.18, NO.1, FEBRUARY, ASP 4 Fig. 1. Block diagram of proposed IC. Table 1. Specifications of proposed IC Parameter Specification Frequency 3 GHz - 5 GHz Bandwidth 0.5 GHz - 2 GHz Max. detectable range 15 m (PRF : 100 nsec) Sampling resolution 3 cm (0.2 nsec) PRT 100 nsec Number of bins bin acquisition time 400 nsec Total acquisition time 50 msec Fig. 2. Equivalent time sampling and time interleaved channels. transmission power is dbm/mhz. The receiver consists of a low-noise amplifier (LNA), single to differential (S2D) amplifier, RF variable gain amplifier (VGA), 4-way RF power splitter, four analog signal processing (ASP) blocks, and two delay-locked loops (DLLs). The single-ended output of the LNA is converted to differential signals using the S2D amplifier. The RF VGA output is divided using a 4-way power splitter. In each ASP block, the VGA and integrator circuit amplifies and integrates the received small signal to enhance the signal-to-noise ratio (SNR). Finally, sample-and-hold (S/H) circuit produces the stair-step waveform for the external analog-to-digital converter (ADC) and DSP. The receiver utilizes equivalent time sampling and 4- channel time interleaved sampling techniques. The use of a four-channel architecture is decided on by considering the complexity and difficulty of the equalizer and detection resolution. Since the PRT is equal to 100 nsec, the scan time and detection range are equal to 100 nsec and 15 m, respectively. Since detection range, the scan time range of 100 nsec is divided into 500 bins, which individually Fig. 3. Block diagram of the pulse generator. correspond to detection resolution of 3 cm. The bins are divided into 125 coarse bins and 4 fine bins. Two DLLs are used for the coarse bin time and fine bin time resolution. Each coarse bin corresponds to a sensing interval of 0.8 nsec and detection resolution of 12 cm, and each coarse bin is divided into 4 fine bins. Hence, each fine bin corresponds to a sensing interval of 0.2 nsec and detection resolution of 3 cm. The four fine bins are sampled simultaneously using a 4-channel ASP block. Fig. 2 shows the employed equivalent time sampling and time interleaved channels. Since four samples are integrated for each bin data, the acquisition time for 1 bin data is equal to 400 nsec, and the acquisition time for 500 bin data is equal to 50 msec.

3 86 SANG GYUN KIM et al : A 4-CHANNEL TIME INTERLEAVED SAMPLER BASED 3-5 GHz BAND CMOS RADAR IC IN 0.13 mm Fig. 4. Circuit diagram of active feedback LNA. III. CIRCUIT DESIGN Fig. 5. Circuit diagram of switched RF VGA. Fig. 3 shows a block diagram of the pulse generator. A fully digital technique is used for the wideband frequency tunability and low power consumption. As shown in Fig. 3, a unit time delay cell and pulse combiner are used. To minimize the undesired side lobe and satisfy the Federal Communications Commission (FCC) Effective Isotropic Radiated Power (EIRP) regulations, the transmitted pulse is shaped using the pulse combiner. The delay cell provides a variable time duration pulse to the D flip-flop array, and the XOR gate detects the delayed signals through D flip-flops. The carrier frequency is determined by the delay time (τ) and the number of combined pulses determines the pulse width. In the receiver, LNA uses an active feedback technique for the wideband input matching from 3 GHz to 5 GHz combined with the shunt peaking load, as shown in Fig. 4 [5]. The following single to differential amplifier (S2D) is composed of two common source amplifiers where the input of one CS amplifier is capacitor coupled to the drain of the other, resulting in differential outputs. RF VGA is a conventional differential amplifier, where the gain is controlled via digitally-controlled shunt switch connected between the differential output nodes of lower side NMOS of cascade amplifier as shown in Fig. 5. Finally, the RF power is split to 4 ASP channels equally, where the power splitter has four parallel shunt peaking inductors to distribute the power into each channel and compensate for the parasitic capacitance due to many load circuits. The simulated gain of RF front end is 20 Fig. 6. Circuit diagram of track and hold. db and NF is 8 db, respectively. Due to the gain mismatch among the power splitter outputs, each ASP channel employs VGA individually. Fig. 6 shows the proposed track-and-hold (T/H) circuit. We propose to combine the cross coupled feedback [6] and shunt peaking topology to extend the gain bandwidth product of the T/H circuit. The VGA in each ASP block employs a front-stage DC offset compensation circuit. 1 Two-fold DC offset minimization is used. First, the vertical NPN BJT transistors are used as input stage transistors for the OP-AMPs in the VGA and integrator to reduce the DC offset caused by the CMOS device mismatch. Second, the DC offset cancellation circuit is used, as shown in Fig. 7. Current mode DAC is used to inject a DC offset cancellation signal. The integrator uses a typical active RC circuit, and a tunable resistor is used for gain control. DLL uses a conventional analog DLL type using 1 Since the VGA and integrator in the ASP block have high DC gain, the DC offset must be removed either before or simultaneously with amplification.

4 JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.18, NO.1, FEBRUARY, Fig. 7. Circuit diagram of DC offset cancellation. 4 ch. ASP Receiver RF front end Fig. 9. Measured spectrum of UWB pulse generator output. Pulse generator DLL Fig. 8. Photo of fabricated UWB radar IC. voltage controlled delay line (VCDL) cell. The external 10 MHz clock is used as the reference clock for the coarse bin DLL. Fine bin DLL uses one of the output clocks of coarse bin DLL as the reference clock for the fine bin DLL. (a) 500 MHz IV. MEASUREMENT RESULTS Fig. 8 shows a microphotograph of the fabricated UWB radar IC. The UWB radar IC is implemented using a 0.13 mm CMOS process, and the chip size is 4 mm 2.5 mm. Fig. 9 shows the measured spectrum of the UWB pulse generator output. In Fig. 9, we find that the center frequency is variable from 3 GHz to 5 GHz. The tunable frequency step is 0.5 GHz. In the actual operation, the useful center frequency ranges from 3.5 GHz to 4.5 GHz for satisfying the spectrum mask requirement. Fig. 10 shows the measured waveform of the UWB pulse generator output. In Fig. 10, we find that the bandwidth can be adjusted between 500 MHz and 2 GHz with 500 MHz step. To avoid the saturation of ASP circuits, DC offset should be cancelled and suppressed sufficiently. Fig. 11 shows the DC offset reduction of differential output voltages of ASP block after DC offset cancellation. The DC offset voltage after calibration is suppressed under 50 (b) 1 GHz (c) 2 GHz Fig. 10. Measured waveform of UWB pulse generator output.

5 88 SANG GYUN KIM et al : A 4-CHANNEL TIME INTERLEAVED SAMPLER BASED 3-5 GHz BAND CMOS RADAR IC IN 0.13 mm Fig. 12. Measured receiver outputs with a cable length of 2.5 m and 4.5 m. UWB Radar IC BPF Reference pulse correlator Fig. 11. DC offset outputs before/after DC cancellation. Clutter removal Likelihood calculator mv and it does not saturate the ASP circuits. In the first step to confirm the performance of UWB radar IC, the received signal is measured via the cable loopback test. 2 The impulse signal from UWB transmitter is passing through the cable and tunable RF attenuator, and finally enters into the receiver. Fig. 12 presents the measured receiver outputs with a cable length of 2.5 m and 4.5 m, respectively. Considering that cable length is 2 m long and dielectric constant of coaxial cable material is 2.1, the arrival time difference is approximately 9.6 ns. And the DC offset at the output can be mitigated under 50 mv. A digital signal processing (DSP) module is developed to measure the system-level performance of the proposed UWB radar IC. Fig. 13 presents a block diagram of the DSP module, which is implemented in an XC6SLX100 2 In [7], it was shown that the calculated path loss of radar is approximately 63 db given a distance of 3 m, the projected area of the human body is approximately 900 cm 2, and the reflection occurs primarily at the surface of the human skin. According to [7], a 60-dB attenuator is used for a total path loss of approximately db, and the gain of the directional antenna is assumed to be 10 db. Each channel is equalized using VGA in the ASP block, and it is assumed that the DC offset is not changed during the short scanning time. Fig. 13. Block diagram of DSP module. field-programmable gate array (FPGA). The resolution and sampling rate of the external analog-to-digital converter (ADC) are 8 bits and 10 ks/s, respectively. The received signal is matched filtered via cross-correlation with the reference pulse. In the clutter removal block, the CLEAN algorithm is used to suppress clutter [8]. And, the target is determined and classified using the likelihood calculator. Fig. 14 shows the ADC output signal and signal after clutter removal. Fig. 15 presents the final output of the system, which provides information about the distance and whether the target is human or animal. The radar module adds the external amplifiers both for Tx and Rx for raising the RF power and extending the detection range. As in Fig. 15, the distance and time are represented on the y-axis and x- axis, respectively, where a red circle indicates that when the target is human, the maximum measured range is 11 m. Conclusively, Table 2 summarizes the measurement results for the UWB radar IC.

6 JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.18, NO.1, FEBRUARY, (a) measurement, it was shown that a DC offset at the output can be mitigated under 50 mv using a DC offset cancellation circuit and vertical BJT-based circuits. The experiment and demonstration system showed that detection range can be achieved up to 11 m for human target. Developed IC consumed 81 ma (transmitter) and 38 ma (receiver) at 1.5 V supply. Distance (m) (b) Fig. 14. Received radar signals (a) ADC output, (b) clutter removal output. ACKNOWLEDGMENTS This work has been supported by the Research Grant of Kwangwoon University in 2016 and also supported by Technology Innovation Program ( , The Development of RF MEMS Devices Core Technology for Multi-band IoT System Applications) funded By the Ministry of Trade, industry & Energy (MI, Korea). REFERENCES Fig. 15. Measured output of demonstration system. Table 2. Measurement results for the UWB radar IC Transmitter Receiver Parameter Frequency range Bandwidth Output power PRF Power consumption RF Gain/NF (sim.) Measured range for human target Residual DC offset Power consumption V. CONCLUSIONS Measurement result GHz > 400 MHz < dbm/mhz 10 MHz V > 20 db / 8 db ~ 11 m < 50 mv V This paper presented a single-chip 3-5 GHz band CMOS UWB radar IC for surveillance applications. The scan time for detection range of 15 m can be reduced up to 50 msec by using the equivalent time sampling and time interleaved sampler architecture. The hardware measurement result was shown that the measured spectrum of transmitting signal satisfies the spectrum mask requirement. Proposed IC architecture provides the sampling resolution of 3 cm. Through hardware [1] D. Zito et al., A 90nm CMOS SoC UWB Pulse Radar for Respiratory Rate Monitoring, IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, San Francisco, USA, Feb , 2011, pp [2] T. Chu et al., A shortrange UWB impulse-radio CMOS sensor for human feature detection, IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, San Francisco, USA, Feb , 2011, pp [3] H. A. Hjortland et al., CMOS Impulse Radar, IEEE Norchip Conference, Linkoping, Sweden, Nov , 2006, pp [4] S. H. Jung et al., A 3-5 GHz fully integrated CMOS UWB radar chip, Proc. European Radar Conf., Numremberg, Germany, Oct. 9-11, 2013, pp [5] J. Borremans et al., "Low area active-feedback lownoise amplifier design in scaled digital CMOS", IEEE J. Solid-State Circuits, vol.43, no.11, pp , Nov [6] T. Sato et al., "4-Gb/s track and hold circuit using parasitic capacitance canceller", Proc. Eur. Solid- State Circuits Conf. (ESSCIRC), Leuven, Belgium, Sep , 2004, pp [7] Carlos G. Bilich, "Bio-Medical Sensing using Ultra Wideband Communications and Radar

7 90 SANG GYUN KIM et al : A 4-CHANNEL TIME INTERLEAVED SAMPLER BASED 3-5 GHz BAND CMOS RADAR IC IN 0.13 mm Technology : A Feasibility Study", Proc. IEEE Pervasive Health Conference and Workshops, Innsbruck, Austria, Nov. 29 Dec. 1, 2006, pp [8] S. M. Yano, Investigation the ultrawide band indoor wireless channel, Proc. IEEE Veh. Tech. Conf. (VTC) Spring, Birmingham, USA, May 6-9, 2002, pp Sang Gyun Kim received the B.S., M.S., and Ph.D degrees in electronics engineering from Kwangwoon University, Seoul, Korea, in 2012, 2014, and 2017, respectively. In 2017, he joined GRIT CIC Inc., develeoped CMOS RF/analog integrated circuit. His research is focused on RF/analog integrated circuits and systems. Hyung Chul Park received the B.S., M.S., and Ph.D. degrees in electrical engineering from the Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea, in 1996, 1998, and 2003, respectively. From 2003 to 2005, he was a SoC Design Engineer with Hynix Semiconductor, Seoul, Korea. From 2005 to 2010, he was an Assistant Professor at the Hanbat National University, Daejeon, Korea. In 2010, he joined the faculty of the Department of Electronic and IT Media Engineering, Seoul National University of Science and Technology, Seoul, where he is currently an Associate Professor. His current research interests include wireless modulation/demodulation algorithms, system design/imple-mentation, and interface study between RF/IF stages and digital signal processing. Yun Seong Eo received the B.S., M.S., and Ph.D. degrees all from Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea, in 1993, 1995, and 2001, respectively. From 2000 to 2002, he was with the LG Electronics Institute of Technology, Seoul, Korea, where he was involved in designing RF integrated circuits (RFICs) such as VCOs, LNAs, and power amplifiers (PAs) using InGaP HBT devices. In September 2002, he joined the Samsung Advanced Institute of Technology, Yongin, Korea, where he developed 5-GHz CMOS PAs and RF transceivers, and was also involved in the development of 900-MHz RF identification (RFID) and 2.4-GHz ZigBee RF transceivers. In September 2005, he joined Kwangwoon University, Seoul, Korea, where he is currently a Professor with the Electronics Engineering Department. During 13 years in Kwangwoon University, he developed so many CMOS RF transceiver ICs for the various applications such as WPAN UWB/ZigBee, DMB, DVB-H, WiFi, and Cognitive Radio. In 2009, he founded Silicon R&D inc., where he has developed a CMOSbased UWB RF transceivers and radar chips. His current interest includes UWB radar and FMCW radar ICs for various sensor applications.

A Switched VCO-based CMOS UWB Transmitter for 3-5 GHz Radar and Communication Systems

A Switched VCO-based CMOS UWB Transmitter for 3-5 GHz Radar and Communication Systems JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.3, JUNE, 2017 ISSN(Print) 1598-1657 https://doi.org/10.5573/jsts.2017.17.3.326 ISSN(Online) 2233-4866 A Switched VCO-based UWB Transmitter for

More information

A Transformer Feedback CMOS LNA for UWB Application

A Transformer Feedback CMOS LNA for UWB Application JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.6, DECEMBER, 16 ISSN(Print) 1598-1657 https://doi.org/1.5573/jsts.16.16.6.754 ISSN(Online) 33-4866 A Transformer Feedback CMOS LNA for UWB Application

More information

20 MHz-3 GHz Programmable Chirp Spread Spectrum Generator for a Wideband Radio Jamming Application

20 MHz-3 GHz Programmable Chirp Spread Spectrum Generator for a Wideband Radio Jamming Application J Electr Eng Technol Vol. 9, No.?: 742-?, 2014 http://dx.doi.org/10.5370/jeet.2014.9.?.742 ISSN(Print) 1975-0102 ISSN(Online) 2093-7423 20 MHz-3 GHz Programmable Chirp Spread Spectrum Generator for a Wideband

More information

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5 ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5 20.5 A 2.4GHz CMOS Transceiver and Baseband Processor Chipset for 802.11b Wireless LAN Application George Chien, Weishi Feng, Yungping

More information

A 10-GHz CMOS LC VCO with Wide Tuning Range Using Capacitive Degeneration

A 10-GHz CMOS LC VCO with Wide Tuning Range Using Capacitive Degeneration JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.6, NO.4, DECEMBER, 2006 281 A 10-GHz CMOS LC VCO with Wide Tuning Range Using Capacitive Degeneration Tae-Geun Yu, Seong-Ik Cho, and Hang-Geun Jeong

More information

A10-Gb/slow-power adaptive continuous-time linear equalizer using asynchronous under-sampling histogram

A10-Gb/slow-power adaptive continuous-time linear equalizer using asynchronous under-sampling histogram LETTER IEICE Electronics Express, Vol.10, No.4, 1 8 A10-Gb/slow-power adaptive continuous-time linear equalizer using asynchronous under-sampling histogram Wang-Soo Kim and Woo-Young Choi a) Department

More information

A 4b/cycle Flash-assisted SAR ADC with Comparator Speed-boosting Technique

A 4b/cycle Flash-assisted SAR ADC with Comparator Speed-boosting Technique JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.18, NO.2, APRIL, 2018 ISSN(Print) 1598-1657 https://doi.org/10.5573/jsts.2018.18.2.281 ISSN(Online) 2233-4866 A 4b/cycle Flash-assisted SAR ADC with

More information

Pulse-Based Ultra-Wideband Transmitters for Digital Communication

Pulse-Based Ultra-Wideband Transmitters for Digital Communication Pulse-Based Ultra-Wideband Transmitters for Digital Communication Ph.D. Thesis Defense David Wentzloff Thesis Committee: Prof. Anantha Chandrakasan (Advisor) Prof. Joel Dawson Prof. Charles Sodini Ultra-Wideband

More information

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2 ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2 20.2 A Digitally Calibrated 5.15-5.825GHz Transceiver for 802.11a Wireless LANs in 0.18µm CMOS I. Bouras 1, S. Bouras 1, T. Georgantas

More information

CMOS LNA Design for Ultra Wide Band - Review

CMOS LNA Design for Ultra Wide Band - Review International Journal of Innovation and Scientific Research ISSN 235-804 Vol. No. 2 Nov. 204, pp. 356-362 204 Innovative Space of Scientific Research Journals http://www.ijisr.issr-journals.org/ CMOS LNA

More information

Research and Development Activities in RF and Analog IC Design. RFIC Building Blocks. Single-Chip Transceiver Systems (I) Howard Luong

Research and Development Activities in RF and Analog IC Design. RFIC Building Blocks. Single-Chip Transceiver Systems (I) Howard Luong Research and Development Activities in RF and Analog IC Design Howard Luong Analog Research Laboratory Department of Electrical and Electronic Engineering Hong Kong University of Science and Technology

More information

NEW WIRELESS applications are emerging where

NEW WIRELESS applications are emerging where IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 39, NO. 4, APRIL 2004 709 A Multiply-by-3 Coupled-Ring Oscillator for Low-Power Frequency Synthesis Shwetabh Verma, Member, IEEE, Junfeng Xu, and Thomas H. Lee,

More information

ALTHOUGH zero-if and low-if architectures have been

ALTHOUGH zero-if and low-if architectures have been IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 40, NO. 6, JUNE 2005 1249 A 110-MHz 84-dB CMOS Programmable Gain Amplifier With Integrated RSSI Function Chun-Pang Wu and Hen-Wai Tsao Abstract This paper describes

More information

A 1.5 Gbps Transceiver Chipset in 0.13-mm CMOS for Serial Digital Interface

A 1.5 Gbps Transceiver Chipset in 0.13-mm CMOS for Serial Digital Interface JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.4, AUGUST, 2017 ISSN(Print) 1598-1657 https://doi.org/10.5573/jsts.2017.17.4.552 ISSN(Online) 2233-4866 A 1.5 Gbps Transceiver Chipset in 0.13-mm

More information

A 3-10GHz Ultra-Wideband Pulser

A 3-10GHz Ultra-Wideband Pulser A 3-10GHz Ultra-Wideband Pulser Jan M. Rabaey Simone Gambini Davide Guermandi Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2006-136 http://www.eecs.berkeley.edu/pubs/techrpts/2006/eecs-2006-136.html

More information

/$ IEEE

/$ IEEE IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 53, NO. 11, NOVEMBER 2006 1205 A Low-Phase Noise, Anti-Harmonic Programmable DLL Frequency Multiplier With Period Error Compensation for

More information

Design of low phase noise InGaP/GaAs HBT-based differential Colpitts VCOs for interference cancellation system

Design of low phase noise InGaP/GaAs HBT-based differential Colpitts VCOs for interference cancellation system Indian Journal of Engineering & Materials Sciences Vol. 17, February 2010, pp. 34-38 Design of low phase noise InGaP/GaAs HBT-based differential Colpitts VCOs for interference cancellation system Bhanu

More information

A 10-Gb/s Multiphase Clock and Data Recovery Circuit with a Rotational Bang-Bang Phase Detector

A 10-Gb/s Multiphase Clock and Data Recovery Circuit with a Rotational Bang-Bang Phase Detector JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.3, JUNE, 2016 ISSN(Print) 1598-1657 http://dx.doi.org/10.5573/jsts.2016.16.3.287 ISSN(Online) 2233-4866 A 10-Gb/s Multiphase Clock and Data Recovery

More information

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 3, MARCH

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 3, MARCH IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 3, MARCH 2008 729 A Single-Chip CMOS Transceiver for UHF Mobile RFID Reader Ickjin Kwon, Member, IEEE, Yunseong Eo, Member, IEEE, Heemun Bang, Kyudon

More information

RECENTLY, low-voltage and low-power circuit design

RECENTLY, low-voltage and low-power circuit design IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 55, NO. 4, APRIL 2008 319 A Programmable 0.8-V 10-bit 60-MS/s 19.2-mW 0.13-m CMOS ADC Operating Down to 0.5 V Hee-Cheol Choi, Young-Ju

More information

2008 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS

2008 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS 2008 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS November 30 - December 3, 2008 Venetian Macao Resort-Hotel Macao, China IEEE Catalog Number: CFP08APC-USB ISBN: 978-1-4244-2342-2 Library of Congress:

More information

A 10Gbps Analog Adaptive Equalizer and Pulse Shaping Circuit for Backplane Interface

A 10Gbps Analog Adaptive Equalizer and Pulse Shaping Circuit for Backplane Interface Proceedings of the 5th WSEAS Int. Conf. on CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, Dallas, USA, November 1-3, 2006 225 A 10Gbps Analog Adaptive Equalizer and Pulse Shaping Circuit

More information

Application of PC Vias to Configurable RF Circuits

Application of PC Vias to Configurable RF Circuits Application of PC Vias to Configurable RF Circuits March 24, 2008 Prof. Jeyanandh Paramesh Department of Electrical and Computer Engineering Carnegie Mellon University Pittsburgh, PA 15213 Ultimate Goal:

More information

A 0.18µm CMOS Gb/s Digitally Controlled Adaptive Line Equalizer with Feed-Forward Swing Control for Backplane Serial Link

A 0.18µm CMOS Gb/s Digitally Controlled Adaptive Line Equalizer with Feed-Forward Swing Control for Backplane Serial Link 1 A 0.18µm CMOS 3.125-Gb/s Digitally Controlled Adaptive Line Equalizer with Feed-Forward Swing Control for Backplane Serial Link Ki-Hyuk Lee, Jae-Wook Lee nonmembers and Woo-Young Choi regular member

More information

Bootstrapped ring oscillator with feedforward inputs for ultra-low-voltage application

Bootstrapped ring oscillator with feedforward inputs for ultra-low-voltage application This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. IEICE Electronics Express, Vol.* No.*,*-* Bootstrapped ring oscillator with feedforward

More information

WITH advancements in submicrometer CMOS technology,

WITH advancements in submicrometer CMOS technology, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 3, MARCH 2005 881 A Complementary Colpitts Oscillator in CMOS Technology Choong-Yul Cha, Member, IEEE, and Sang-Gug Lee, Member, IEEE

More information

ISSCC 2006 / SESSION 11 / RF BUILDING BLOCKS AND PLLS / 11.9

ISSCC 2006 / SESSION 11 / RF BUILDING BLOCKS AND PLLS / 11.9 ISSCC 2006 / SESSION 11 / RF BUILDING BLOCKS AND PLLS / 11.9 11.9 A Single-Chip Linear CMOS Power Amplifier for 2.4 GHz WLAN Jongchan Kang 1, Ali Hajimiri 2, Bumman Kim 1 1 Pohang University of Science

More information

Low-Power RF Integrated Circuit Design Techniques for Short-Range Wireless Connectivity

Low-Power RF Integrated Circuit Design Techniques for Short-Range Wireless Connectivity Low-Power RF Integrated Circuit Design Techniques for Short-Range Wireless Connectivity Marvin Onabajo Assistant Professor Analog and Mixed-Signal Integrated Circuits (AMSIC) Research Laboratory Dept.

More information

A UHF CMOS Variable Gain LNA with Wideband Input Impedance Matching and GSM Interoperability

A UHF CMOS Variable Gain LNA with Wideband Input Impedance Matching and GSM Interoperability JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.4, AUGUST, 2017 ISSN(Print) 1598-1657 https://doi.org/10.5573/jsts.2017.17.4.499 ISSN(Online) 2233-4866 A UHF CMOS Variable Gain LNA with Wideband

More information

A 35 fj 10b 160 MS/s Pipelined- SAR ADC with Decoupled Flip- Around MDAC and Self- Embedded Offset Cancellation

A 35 fj 10b 160 MS/s Pipelined- SAR ADC with Decoupled Flip- Around MDAC and Self- Embedded Offset Cancellation Y. Zu, C.- H. Chan, S.- W. Sin, S.- P. U, R.P. Martins, F. Maloberti: "A 35 fj 10b 160 MS/s Pipelined-SAR ADC with Decoupled Flip-Around MDAC and Self- Embedded Offset Cancellation"; IEEE Asian Solid-

More information

Fall 2017 Project Proposal

Fall 2017 Project Proposal Fall 2017 Project Proposal (Henry Thai Hoa Nguyen) Big Picture The goal of my research is to enable design automation in the field of radio frequency (RF) integrated communication circuits and systems.

More information

A Single-Chip 2.4-GHz Direct-Conversion CMOS Receiver for Wireless Local Loop using Multiphase Reduced Frequency Conversion Technique

A Single-Chip 2.4-GHz Direct-Conversion CMOS Receiver for Wireless Local Loop using Multiphase Reduced Frequency Conversion Technique 800 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 5, MAY 2001 A Single-Chip 2.4-GHz Direct-Conversion CMOS Receiver for Wireless Local Loop using Multiphase Reduced Frequency Conversion Technique

More information

High-Performance Analog and RF Circuit Simulation using the Analog FastSPICE Platform at Columbia University. Columbia University

High-Performance Analog and RF Circuit Simulation using the Analog FastSPICE Platform at Columbia University. Columbia University High-Performance Analog and RF Circuit Simulation using the Analog FastSPICE Platform at Columbia University By: K. Tripurari, C. W. Hsu, J. Kuppambatti, B. Vigraham, P.R. Kinget Columbia University For

More information

ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.4

ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.4 ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.4 25.4 A 1.8V 14b 10MS/s Pipelined ADC in 0.18µm CMOS with 99dB SFDR Yun Chiu, Paul R. Gray, Borivoje Nikolic University of California, Berkeley,

More information

Self-injection-locked Divide-by-3 Frequency Divider with Improved Locking Range, Phase Noise, and Input Sensitivity

Self-injection-locked Divide-by-3 Frequency Divider with Improved Locking Range, Phase Noise, and Input Sensitivity JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.4, AUGUST, 2017 ISSN(Print) 1598-1657 https://doi.org/10.5573/jsts.2017.17.4.492 ISSN(Online) 2233-4866 Self-injection-locked Divide-by-3 Frequency

More information

A 82.5% Power Efficiency at 1.2 mw Buck Converter with Sleep Control

A 82.5% Power Efficiency at 1.2 mw Buck Converter with Sleep Control JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.6, DECEMBER, 2016 ISSN(Print) 1598-1657 https://doi.org/10.5573/jsts.2016.16.6.842 ISSN(Online) 2233-4866 A 82.5% Power Efficiency at 1.2 mw

More information

A Capacitor-less Low Dropout Regulator for Enhanced Power Supply Rejection

A Capacitor-less Low Dropout Regulator for Enhanced Power Supply Rejection IEIE Transactions on Smart Processing and Computing, vol. 4, no. 3, June 2015 http://dx.doi.org/10.5573/ieiespc.2015.4.3.152 152 IEIE Transactions on Smart Processing and Computing A Capacitor-less Low

More information

1-13GHz Wideband LNA utilizing a Transformer as a Compact Inter-stage Network in 65nm CMOS

1-13GHz Wideband LNA utilizing a Transformer as a Compact Inter-stage Network in 65nm CMOS -3GHz Wideband LNA utilizing a Transformer as a Compact Inter-stage Network in 65nm CMOS Hyohyun Nam and Jung-Dong Park a Division of Electronics and Electrical Engineering, Dongguk University, Seoul E-mail

More information

An Energy Efficient 1 Gb/s, 6-to-10 GHz CMOS IR-UWB Transmitter and Receiver With Embedded On-Chip Antenna

An Energy Efficient 1 Gb/s, 6-to-10 GHz CMOS IR-UWB Transmitter and Receiver With Embedded On-Chip Antenna An Energy Efficient 1 Gb/s, 6-to-10 GHz CMOS IR-UWB Transmitter and Receiver With Embedded On-Chip Antenna Zeshan Ahmad, Khaled Al-Ashmouny, Kuo-Ken Huang EECS 522 Analog Integrated Circuits (Winter 09)

More information

A 7-GHz 1.8-dB NF CMOS Low-Noise Amplifier

A 7-GHz 1.8-dB NF CMOS Low-Noise Amplifier 852 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 37, NO. 7, JULY 2002 A 7-GHz 1.8-dB NF CMOS Low-Noise Amplifier Ryuichi Fujimoto, Member, IEEE, Kenji Kojima, and Shoji Otaka Abstract A 7-GHz low-noise amplifier

More information

Session 3. CMOS RF IC Design Principles

Session 3. CMOS RF IC Design Principles Session 3 CMOS RF IC Design Principles Session Delivered by: D. Varun 1 Session Topics Standards RF wireless communications Multi standard RF transceivers RF front end architectures Frequency down conversion

More information

Low Phase Noise Series-coupled VCO using Current-reuse and Armstrong Topologies

Low Phase Noise Series-coupled VCO using Current-reuse and Armstrong Topologies JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.1, FEBRUARY, 2017 ISSN(Print) 1598-1657 https://doi.org/10.5573/jsts.2017.17.1.042 ISSN(Online) 2233-4866 Low Phase Noise Series-coupled VCO

More information

Quadrature GPS Receiver Front-End in 0.13μm CMOS: The QLMV cell

Quadrature GPS Receiver Front-End in 0.13μm CMOS: The QLMV cell 1 Quadrature GPS Receiver Front-End in 0.13μm CMOS: The QLMV cell Yee-Huan Ng, Po-Chia Lai, and Jia Ruan Abstract This paper presents a GPS receiver front end design that is based on the single-stage quadrature

More information

High-Robust Relaxation Oscillator with Frequency Synthesis Feature for FM-UWB Transmitters

High-Robust Relaxation Oscillator with Frequency Synthesis Feature for FM-UWB Transmitters JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.2, APRIL, 2015 ISSN(Print) 1598-1657 http://dx.doi.org/10.5573/jsts.2015.15.2.202 ISSN(Online) 2233-4866 High-Robust Relaxation Oscillator with

More information

Hot Topics and Cool Ideas in Scaled CMOS Analog Design

Hot Topics and Cool Ideas in Scaled CMOS Analog Design Engineering Insights 2006 Hot Topics and Cool Ideas in Scaled CMOS Analog Design C. Patrick Yue ECE, UCSB October 27, 2006 Slide 1 Our Research Focus High-speed analog and RF circuits Device modeling,

More information

Design of Wireless Transceiver in 0.18um CMOS Technology for LoRa application

Design of Wireless Transceiver in 0.18um CMOS Technology for LoRa application Design of Wireless Transceiver in 0.18um CMOS Technology for LoRa application Yoonki Lee 1, Jiyong Yoon and Youngsik Kim a Department of Information and Communication Engineering, Handong University E-mail:

More information

Continuous-Time CMOS Quantizer For Ultra-Wideband Applications

Continuous-Time CMOS Quantizer For Ultra-Wideband Applications Join UiO/FFI Workshop on UWB Implementations 2010 June 8 th 2010, Oslo, Norway Continuous-Time CMOS Quantizer For Ultra-Wideband Applications Tuan Anh Vu Nanoelectronics Group, Department of Informatics

More information

ISSCC 2006 / SESSION 33 / MOBILE TV / 33.4

ISSCC 2006 / SESSION 33 / MOBILE TV / 33.4 33.4 A Dual-Channel Direct-Conversion CMOS Receiver for Mobile Multimedia Broadcasting Vincenzo Peluso, Yang Xu, Peter Gazzerro, Yiwu Tang, Li Liu, Zhenbiao Li, Wei Xiong, Charles Persico Qualcomm, San

More information

A Low Power Integrated UWB Transceiver with Solar Energy Harvesting for Wireless Image Sensor Networks

A Low Power Integrated UWB Transceiver with Solar Energy Harvesting for Wireless Image Sensor Networks A Low Power Integrated UWB Transceiver with Solar Energy Harvesting for Wireless Image Sensor Networks Minjoo Yoo / Jaehyuk Choi / Ming hao Wang April. 13 th. 2009 Contents Introduction Circuit Description

More information

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 41, NO. 2, FEBRUARY A Regulated Charge Pump With Small Ripple Voltage and Fast Start-Up

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 41, NO. 2, FEBRUARY A Regulated Charge Pump With Small Ripple Voltage and Fast Start-Up IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 41, NO. 2, FEBRUARY 2006 425 A Regulated Charge Pump With Small Ripple Voltage and Fast Start-Up Jae-Youl Lee, Member, IEEE, Sung-Eun Kim, Student Member, IEEE,

More information

Signal Integrity Design of TSV-Based 3D IC

Signal Integrity Design of TSV-Based 3D IC Signal Integrity Design of TSV-Based 3D IC October 24, 21 Joungho Kim at KAIST joungho@ee.kaist.ac.kr http://tera.kaist.ac.kr 1 Contents 1) Driving Forces of TSV based 3D IC 2) Signal Integrity Issues

More information

Proposing. An Interpolated Pipeline ADC

Proposing. An Interpolated Pipeline ADC Proposing An Interpolated Pipeline ADC Akira Matsuzawa Tokyo Institute of Technology, Japan Matsuzawa & Okada Lab. Background 38GHz long range mm-wave system Role of long range mm-wave Current Optical

More information

INVENTION DISCLOSURE- ELECTRONICS SUBJECT MATTER IMPEDANCE MATCHING ANTENNA-INTEGRATED HIGH-EFFICIENCY ENERGY HARVESTING CIRCUIT

INVENTION DISCLOSURE- ELECTRONICS SUBJECT MATTER IMPEDANCE MATCHING ANTENNA-INTEGRATED HIGH-EFFICIENCY ENERGY HARVESTING CIRCUIT INVENTION DISCLOSURE- ELECTRONICS SUBJECT MATTER IMPEDANCE MATCHING ANTENNA-INTEGRATED HIGH-EFFICIENCY ENERGY HARVESTING CIRCUIT ABSTRACT: This paper describes the design of a high-efficiency energy harvesting

More information

A New Capacitive Sensing Circuit using Modified Charge Transfer Scheme

A New Capacitive Sensing Circuit using Modified Charge Transfer Scheme 78 Hyeopgoo eo : A NEW CAPACITIVE CIRCUIT USING MODIFIED CHARGE TRANSFER SCHEME A New Capacitive Sensing Circuit using Modified Charge Transfer Scheme Hyeopgoo eo, Member, KIMICS Abstract This paper proposes

More information

Overview: Trends and Implementation Challenges for Multi-Band/Wideband Communication

Overview: Trends and Implementation Challenges for Multi-Band/Wideband Communication Overview: Trends and Implementation Challenges for Multi-Band/Wideband Communication Mona Mostafa Hella Assistant Professor, ESCE Department Rensselaer Polytechnic Institute What is RFIC? Any integrated

More information

A CMOS UWB Transmitter for Intra/Inter-chip Wireless Communication

A CMOS UWB Transmitter for Intra/Inter-chip Wireless Communication A CMOS UWB Transmitter for Intra/Inter-chip Wireless Communication Pran Kanai Saha, Nobuo Sasaki and Takamaro Kikkawa Research Center For Nanodevices and Systems, Hiroshima University 1-4-2 Kagamiyama,

More information

A Digital Readout IC with Digital Offset Canceller for Capacitive Sensors

A Digital Readout IC with Digital Offset Canceller for Capacitive Sensors http://dx.doi.org/10.5573/jsts.2012.12.3.278 JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.12, NO.3, SEPTEMBER, 2012 A Digital Readout IC with Digital Offset Canceller for Capacitive Sensors Dong-Hyuk

More information

NANOSCALE IMPULSE RADAR

NANOSCALE IMPULSE RADAR NANOSCALE IMPULSE RADAR NVA6X00 Impulse Radar Transceiver and Development Kit 2012.4.20 laon@laonuri.com 1 NVA6000 The Novelda NVA6000 is a single-die CMOS chip that delivers high performance, low power,

More information

To learn fundamentals of high speed I/O link equalization techniques.

To learn fundamentals of high speed I/O link equalization techniques. 1 ECEN 720 High-Speed Links: Circuits and Systems Lab5 Equalization Circuits Objective To learn fundamentals of high speed I/O link equalization techniques. Introduction An ideal cable could propagate

More information

European Conference on Nanoelectronics and Embedded Systems for Electric Mobility

European Conference on Nanoelectronics and Embedded Systems for Electric Mobility European Conference on Nanoelectronics and Embedded Systems for Electric Mobility ecocity emotion 24-25 th September 2014, Erlangen, Germany Low Power Consideration in Transceiver Design for Internet of

More information

A Switched-Capacitor Band-Pass Biquad Filter Using a Simple Quasi-unity Gain Amplifier

A Switched-Capacitor Band-Pass Biquad Filter Using a Simple Quasi-unity Gain Amplifier A Switched-Capacitor Band-Pass Biquad Filter Using a Simple Quasi-unity Gain Amplifier Hugo Serra, Nuno Paulino, and João Goes Centre for Technologies and Systems (CTS) UNINOVA Dept. of Electrical Engineering

More information

An 8-Gb/s Inductorless Adaptive Passive Equalizer in µm CMOS Technology

An 8-Gb/s Inductorless Adaptive Passive Equalizer in µm CMOS Technology JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.12, NO.4, DECEMBER, 2012 http://dx.doi.org/10.5573/jsts.2012.12.4.405 An 8-Gb/s Inductorless Adaptive Passive Equalizer in 0.18- µm CMOS Technology

More information

DESIGN OF LOW POWER SAR ADC FOR ECG USING 45nm CMOS TECHNOLOGY

DESIGN OF LOW POWER SAR ADC FOR ECG USING 45nm CMOS TECHNOLOGY DESIGN OF LOW POWER SAR ADC FOR ECG USING 45nm CMOS TECHNOLOGY Silpa Kesav 1, K.S.Nayanathara 2 and B.K. Madhavi 3 1,2 (ECE, CVR College of Engineering, Hyderabad, India) 3 (ECE, Sridevi Women s Engineering

More information

Design technique of broadband CMOS LNA for DC 11 GHz SDR

Design technique of broadband CMOS LNA for DC 11 GHz SDR Design technique of broadband CMOS LNA for DC 11 GHz SDR Anh Tuan Phan a) and Ronan Farrell Institute of Microelectronics and Wireless Systems, National University of Ireland Maynooth, Maynooth,Co. Kildare,

More information

Design of Low Power High Speed Fully Dynamic CMOS Latched Comparator

Design of Low Power High Speed Fully Dynamic CMOS Latched Comparator International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 10, Issue 4 (April 2014), PP.01-06 Design of Low Power High Speed Fully Dynamic

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [SSA UWB Implementation: an approach for global harmonization and compromise in IEEE 802.15.3a WPAN]

More information

A Low-Noise Programmable-Gain Amplifier for 25Gb/s Multi-Mode Fiber Receivers in 28 nm CMOS FDSOI

A Low-Noise Programmable-Gain Amplifier for 25Gb/s Multi-Mode Fiber Receivers in 28 nm CMOS FDSOI A Low-Noise Programmable-Gain Amplifier for 25Gb/s Multi-Mode Fiber Receivers in 28 nm CMOS FDSOI F. Radice 1, M. Bruccoleri 1, E. Mammei 2, M. Bassi 3, A. Mazzanti 3 1 STMicroelectronics, Cornaredo, Italy

More information

Challenges in Designing CMOS Wireless System-on-a-chip

Challenges in Designing CMOS Wireless System-on-a-chip Challenges in Designing CMOS Wireless System-on-a-chip David Su Atheros Communications Santa Clara, California IEEE Fort Collins, March 2008 Introduction Outline Analog/RF: CMOS Transceiver Building Blocks

More information

mm-wave Transceiver Challenges for the 5G and 60GHz Standards Prof. Emanuel Cohen Technion

mm-wave Transceiver Challenges for the 5G and 60GHz Standards Prof. Emanuel Cohen Technion mm-wave Transceiver Challenges for the 5G and 60GHz Standards Prof. Emanuel Cohen Technion November 11, 11, 2015 2015 1 mm-wave advantage Why is mm-wave interesting now? Available Spectrum 7 GHz of virtually

More information

Low Phase Noise Gm-Boosted Differential Gate-to-Source Feedback Colpitts CMOS VCO Jong-Phil Hong, Student Member, IEEE, and Sang-Gug Lee, Member, IEEE

Low Phase Noise Gm-Boosted Differential Gate-to-Source Feedback Colpitts CMOS VCO Jong-Phil Hong, Student Member, IEEE, and Sang-Gug Lee, Member, IEEE IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 44, NO. 11, NOVEMBER 2009 3079 Low Phase Noise Gm-Boosted Differential Gate-to-Source Feedback Colpitts CMOS VCO Jong-Phil Hong, Student Member, IEEE, and Sang-Gug

More information

A 15.5 db, Wide Signal Swing, Dynamic Amplifier Using a Common- Mode Voltage Detection Technique

A 15.5 db, Wide Signal Swing, Dynamic Amplifier Using a Common- Mode Voltage Detection Technique A 15.5 db, Wide Signal Swing, Dynamic Amplifier Using a Common- Mode Voltage Detection Technique James Lin, Masaya Miyahara and Akira Matsuzawa Tokyo Institute of Technology, Japan Matsuzawa & Okada Laḃ

More information

Fully integrated UHF RFID mobile reader with power amplifiers using System-in-Package (SiP)

Fully integrated UHF RFID mobile reader with power amplifiers using System-in-Package (SiP) Fully integrated UHF RFID mobile reader with power amplifiers using System-in-Package (SiP) Hyemin Yang 1, Jongmoon Kim 2, Franklin Bien 3, and Jongsoo Lee 1a) 1 School of Information and Communications,

More information

ISSCC 2006 / SESSION 20 / WLAN/WPAN / 20.5

ISSCC 2006 / SESSION 20 / WLAN/WPAN / 20.5 20.5 An Ultra-Low Power 2.4GHz RF Transceiver for Wireless Sensor Networks in 0.13µm CMOS with 400mV Supply and an Integrated Passive RX Front-End Ben W. Cook, Axel D. Berny, Alyosha Molnar, Steven Lanzisera,

More information

Ultra-high-speed Interconnect Technology for Processor Communication

Ultra-high-speed Interconnect Technology for Processor Communication Ultra-high-speed Interconnect Technology for Processor Communication Yoshiyasu Doi Samir Parikh Yuki Ogata Yoichi Koyanagi In order to improve the performance of storage systems and servers that make up

More information

A Flexible, Low Power, DC-1GHz Impulse-UWB Transceiver Front-end

A Flexible, Low Power, DC-1GHz Impulse-UWB Transceiver Front-end A Flexible, Low Power, DC-G Impulse-UWB Transceiver Front-end Ian D. O Donnell, Robert W. Brodersen University of California, Berkeley Berkeley Wireless Research Center {ian,bwb}@eecs.berkeley.edu Abstract

More information

A Low-Jitter Phase-Locked Loop Based on a Charge Pump Using a Current-Bypass Technique

A Low-Jitter Phase-Locked Loop Based on a Charge Pump Using a Current-Bypass Technique JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.14, NO.3, JUNE, 2014 http://dx.doi.org/10.5573/jsts.2014.14.3.331 A Low-Jitter Phase-Locked Loop Based on a Charge Pump Using a Current-Bypass Technique

More information

Technology Trend of Ultra-High Data Rate Wireless CMOS Transceivers

Technology Trend of Ultra-High Data Rate Wireless CMOS Transceivers 2017.07.03 Technology Trend of Ultra-High Data Rate Wireless CMOS Transceivers Akira Matsuzawa and Kenichi Okada Tokyo Institute of Technology Contents 1 Demand for high speed data transfer Developed high

More information

A Triple-Band Voltage-Controlled Oscillator Using Two Shunt Right-Handed 4 th -Order Resonators

A Triple-Band Voltage-Controlled Oscillator Using Two Shunt Right-Handed 4 th -Order Resonators JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.4, AUGUST, 2016 ISSN(Print) 1598-1657 http://dx.doi.org/10.5573/jsts.2016.16.4.506 ISSN(Online) 2233-4866 A Triple-Band Voltage-Controlled Oscillator

More information

A low-if 2.4 GHz Integrated RF Receiver for Bluetooth Applications Lai Jiang a, Shaohua Liu b, Hang Yu c and Yan Li d

A low-if 2.4 GHz Integrated RF Receiver for Bluetooth Applications Lai Jiang a, Shaohua Liu b, Hang Yu c and Yan Li d Applied Mechanics and Materials Online: 2013-06-27 ISSN: 1662-7482, Vol. 329, pp 416-420 doi:10.4028/www.scientific.net/amm.329.416 2013 Trans Tech Publications, Switzerland A low-if 2.4 GHz Integrated

More information

A Compact GHz Ultra-Wideband Low-Noise Amplifier in 0.13-m CMOS Po-Yu Chang and Shawn S. H. Hsu, Member, IEEE

A Compact GHz Ultra-Wideband Low-Noise Amplifier in 0.13-m CMOS Po-Yu Chang and Shawn S. H. Hsu, Member, IEEE IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 58, NO. 10, OCTOBER 2010 2575 A Compact 0.1 14-GHz Ultra-Wideband Low-Noise Amplifier in 0.13-m CMOS Po-Yu Chang and Shawn S. H. Hsu, Member,

More information

Power Reduction in RF

Power Reduction in RF Power Reduction in RF SoC Architecture using MEMS Eric Mercier 1 RF domain overview Technologies Piezoelectric materials Acoustic systems Ferroelectric materials Meta materials Magnetic materials RF MEMS

More information

A Multi-purpose Fingerprint Readout Circuit Embedding Physiological Signal Detection

A Multi-purpose Fingerprint Readout Circuit Embedding Physiological Signal Detection JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.6, DECEMBER, 2016 ISSN(Print) 1598-1657 https://doi.org/10.5573/jsts.2016.16.6.793 ISSN(Online) 2233-4866 A Multi-purpose Fingerprint Readout

More information

Receiver Architecture

Receiver Architecture Receiver Architecture Receiver basics Channel selection why not at RF? BPF first or LNA first? Direct digitization of RF signal Receiver architectures Sub-sampling receiver noise problem Heterodyne receiver

More information

Tae-Kwang Jang. Electrical Engineering, University of Michigan

Tae-Kwang Jang. Electrical Engineering, University of Michigan Education Tae-Kwang Jang Electrical Engineering, University of Michigan E-Mail: tkjang@umich.edu Ph.D. in Electrical Engineering, University of Michigan September 2013 November 2017 Dissertation title:

More information

6.776 High Speed Communication Circuits and Systems Lecture 14 Voltage Controlled Oscillators

6.776 High Speed Communication Circuits and Systems Lecture 14 Voltage Controlled Oscillators 6.776 High Speed Communication Circuits and Systems Lecture 14 Voltage Controlled Oscillators Massachusetts Institute of Technology March 29, 2005 Copyright 2005 by Michael H. Perrott VCO Design for Narrowband

More information

Fully integrated CMOS transmitter design considerations

Fully integrated CMOS transmitter design considerations Semiconductor Technology Fully integrated CMOS transmitter design considerations Traditionally, multiple IC chips are needed to build transmitters (Tx) used in wireless communications. The difficulty with

More information

A 5.4-Gb/s Clock and Data Recovery Circuit Using Seamless Loop Transition Scheme With Minimal Phase Noise Degradation

A 5.4-Gb/s Clock and Data Recovery Circuit Using Seamless Loop Transition Scheme With Minimal Phase Noise Degradation 2518 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 59, NO. 11, NOVEMBER 2012 A 5.4-Gb/s Clock and Data Recovery Circuit Using Seamless Loop Transition Scheme With Minimal Phase Noise

More information

A Random and Systematic Jitter Suppressed DLL-Based Clock Generator with Effective Negative Feedback Loop

A Random and Systematic Jitter Suppressed DLL-Based Clock Generator with Effective Negative Feedback Loop A Random and Systematic Jitter Suppressed DLL-Based Clock Generator with Effective Negative Feedback Loop Seong-Jin An 1 and Young-Shig Choi 2 Department of Electronic Engineering, Pukyong National University

More information

A 2.5 V 109 db DR ADC for Audio Application

A 2.5 V 109 db DR ADC for Audio Application 276 JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.10, NO.4, DECEMBER, 2010 A 2.5 V 109 db DR ADC for Audio Application Gwangyol Noh and Gil-Cho Ahn Abstract A 2.5 V feed-forward second-order deltasigma

More information

A Low Power Single Phase Clock Distribution Multiband Network

A Low Power Single Phase Clock Distribution Multiband Network A Low Power Single Phase Clock Distribution Multiband Network A.Adinarayana Asst.prof Princeton College of Engineering and Technology. Abstract : Frequency synthesizer is one of the important elements

More information

DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY

DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY Neha Bakawale Departmentof Electronics & Instrumentation Engineering, Shri G. S. Institute of

More information

Copyright 2007 Year IEEE. Reprinted from ISCAS 2007 International Symposium on Circuits and Systems, May This material is posted here

Copyright 2007 Year IEEE. Reprinted from ISCAS 2007 International Symposium on Circuits and Systems, May This material is posted here Copyright 2007 Year IEEE. Reprinted from ISCAS 2007 International Symposium on Circuits and Systems, 27-30 May 2007. This material is posted here with permission of the IEEE. Such permission of the IEEE

More information

DESIGN OF CMOS BASED FM MODULATOR USING 90NM TECHNOLOGY ON CADENCE VIRTUOSO TOOL

DESIGN OF CMOS BASED FM MODULATOR USING 90NM TECHNOLOGY ON CADENCE VIRTUOSO TOOL DESIGN OF CMOS BASED FM MODULATOR USING 90NM TECHNOLOGY ON CADENCE VIRTUOSO TOOL 1 Parmjeet Singh, 2 Rekha Yadav, 1, 2 Electronics and Communication Engineering Department D.C.R.U.S.T. Murthal, 1, 2 Sonepat,

More information

A 1.7-to-2.2GHz Full-Duplex Transceiver System with >50dB Self-Interference Cancellation over 42MHz Bandwidth

A 1.7-to-2.2GHz Full-Duplex Transceiver System with >50dB Self-Interference Cancellation over 42MHz Bandwidth A 1.7-to-2.2GHz Full-Duplex Transceiver System with >50dB Self-Interference Cancellation Tong Zhang, Ali Najafi, Chenxin Su, Jacques C. Rudell University of Washington, Seattle Feb. 8, 2017 International

More information

Simulation of GaAs phemt Ultra-Wideband Low Noise Amplifier using Cascaded, Balanced and Feedback Amplifier Techniques

Simulation of GaAs phemt Ultra-Wideband Low Noise Amplifier using Cascaded, Balanced and Feedback Amplifier Techniques 2011 International Conference on Circuits, System and Simulation IPCSIT vol.7 (2011) (2011) IACSIT Press, Singapore Simulation of GaAs phemt Ultra-Wideband Low Noise Amplifier using Cascaded, Balanced

More information

ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.8

ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.8 ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.8 10.8 10Gb/s Limiting Amplifier and Laser/Modulator Driver in 0.18µm CMOS Technology Sherif Galal, Behzad Razavi Electrical Engineering

More information

WITH the rapid evolution of liquid crystal display (LCD)

WITH the rapid evolution of liquid crystal display (LCD) IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 2, FEBRUARY 2008 371 A 10-Bit LCD Column Driver With Piecewise Linear Digital-to-Analog Converters Chih-Wen Lu, Member, IEEE, and Lung-Chien Huang Abstract

More information

A Fully-Integrated Low Power K-band Radar Transceiver in 130nm CMOS Technology

A Fully-Integrated Low Power K-band Radar Transceiver in 130nm CMOS Technology http://dx.doi.org/1.5573/jsts.212.12.4.426 JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.12, NO.4, DECEMBER, 212 A Fully-Integrated Low Power K-band Radar Transceiver in 13nm CMOS Technology Seong-Kyun

More information

CMOS 120 GHz Phase-Locked Loops Based on Two Different VCO Topologies

CMOS 120 GHz Phase-Locked Loops Based on Two Different VCO Topologies JOURNAL OF ELECTROMAGNETIC ENGINEERING AND SCIENCE, VOL. 17, NO. 2, 98~104, APR. 2017 http://dx.doi.org/10.5515/jkiees.2017.17.2.98 ISSN 2234-8395 (Online) ISSN 2234-8409 (Print) CMOS 120 GHz Phase-Locked

More information

RF Module for High-Resolution Infrastructure Radars

RF Module for High-Resolution Infrastructure Radars FEATURED TOPIC Module for High-Resolution Infrastructure Radars Osamu ANEGAWA*, Akira OTSUKA, Takeshi KAWASAKI, Koji TSUKASHIMA, Miki KUBOTA, and Takashi NAKABAYASHI ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

More information