A 60GHz Transceiver RF Front-End

Size: px
Start display at page:

Download "A 60GHz Transceiver RF Front-End"

Transcription

1 TAMU ECEN625 FINAL PROJECT REPORT 1 A 60GHz Transceiver RF Front-End Xiangyong Zhou, UIN , Qiaochu Yang, UIN , Abstract This final report presents a 60GHz two-step conversion heterodyne RF front-end transceiver in 90nm CMOS technology. The front-end consists of a 20GHz quadrature upconversion mixer, a 40GHz up-conversion mixer and a wideband power amplifier with 4 path power amplifier with combining at the transmitter, and a wideband LNA, 40GHz down-conversion mixer, a 20GHz quadrature down-conversion mixer at the receiver. Local oscillator working at 40GHz and 20GHz dividers are included without PLL control loop to generate the transmitter and receiver LO. The LNA has a 3dB bandwidth of 9GHz with a NF of 2.2dB and consumes 26 mw power. The PA has a PEA of 10% and Power efficiency of 11%, at the DC power of 464mW and 116mW w/wo power combining. A 1dB conpression power of 6dBm and a saturated output power of 13dBm is delivered by the PA. The entire transceiver can transmit QPSK modulated signals at 3.5Gbps data rate in a 2.16GHz channel over 2m LOS. The constellation diagram gives a EVM of -20dB without digital compensation. The transmitter consumes 538mW power and the receiver consumes 153mW power with an overall NF of only 6.4dB. Index Terms 60GHz, transceiver, WPAN, high data rate, wireless, power combining, wideband, QPSK, 16QAM, heterodyne, IEEE c, RF front-end. I. INTRODUCTION GHZ wireless data transmission technique is under 60active research in recent years. The unlicensed band of 9GHz around 60GHz is available for free in many countries like USA, Europe, Japan, and can be utilized to transmit high volumes of data in wireless mode which is not comparable by lower Ghz narrow band transmission techniques like WiFi, WiMax or UWB. Some promissing applications of this technique includes WPAN, WiGig and wirelesshd. The IEEE c standard made at 2007 set the PHY frame for this technique while the RF front-end realization is still under active research. The IEEE c allocates four channels each of 2.16GHz for the band from 57.24GHz to 65.88GHz for data transmission. A complete transceiver for IEEE c needs to cover all the four channels with no significant degradation in performance between different channels in case OFDM modulation is used for full data transmission capacity. Three modes of operation are defines by IEEE c with high speed and low speed transmission by single carrier QPSK, QAM or multi-carrier OFDM format. When using QPSK, a data rate of 3.5 Gb/s is mandated by the standard over a single channel and when using 16 QAM, a data rate of 7 Gb/s is mandated. This transceiver deals with the single carrier transmission mode, enabling both QPSK and 16 QAM RF to Baseband conversion over a long distance (2m) LOS (line of sight) wireless link. This report is organized as the following. Section II discusses the architecture and system level considerations of this transceiver. Section III discusses about the slow-wave CPW transmission line design. Section IV gives circuit details of each block in the transmitter. Section V gives circuit details of each block in the receiver. Section VI gives details of the 40 GHz LO and 20 GHz IQ LO for both transmitter and receiver. Section VII shows simulation results of the blocks and also the entire transceiver. A comparison to some recently published works is also given. Section VIII concludes the report. II. ARCHITECTURE The transceiver utilized a two step heterodyne frequency conversion architecture 1 to avoid the generation and distribution of 60 GHz LO signals over long distances which adds up phase noise and IQ imbalance, and attenuates amplitude quickly at this frequency [1]. The generation and distribution of 60 GHz IQ LO signals is difficult. A 60 GHz VCO runs at much higher power and also implies high phase noise, low tuning range and also high Kvco which makes PLL design difficult. Also, the amplified RF signal at 60GHz may give frequency pulling effect to the VCO and hence make some phase offset. Then an extra VCO buffer has to be used for better isolation [2]. Two step frequency conversion is used in this transceiver to avoid the 60 GHz LO so the power for the 60 GHz LO buffer can also be saved. Other approaches like polyphase filters can also be used in the signal path to seperate the quadrature signals, but the poly-phase filter with a single input from LNA demostrate poor phase and amplitude balance. IQ seperation then is done with LO frequency division. The 40 GHz LO drives an IQ frequency divider and gives 20 GHz IQ LO signals. IQ generation is easy to get by frequency division than by multiplication. Lower frequency of operation also makes mixer design easier. However, two more mixers implies the use of two more inductors being used. But the low-q wideband feature makes even low frequency inductors compact. Lower LO frequency of 30GHz can also be used. However, the same 30GHz IF frequency then inevitablly affects the VCO by frequency pulling [3]. A. Link Budget The link budget analysis is shown in Table I. The SNR of the TX output signal is very high whose noise will be totally covered by RX noise hence doesn t need consideration. The link is budgeted for the ultimate application of 16QAM OFDM ultra-high data rate of 28Gb/s using the entire 9GHz band. The high SNR required than calls for a high PA output power of 13dBm. The power from adjacent channel interference is negligible for the 13dB SNR at the same distance which is the implied case for short distance applications.

2 TAMU ECEN625 FINAL PROJECT REPORT 2 Component DC Power Gain Vppout Vn/NF/PN Pin_1dB TX 538mA 43dB 13dBm 20GHz Mix 17.5mA 2 11dB -15dBm 15dB 150mVpp 40GHz Mix 7.5mA 2 15dB -4dBm 12.5dB 200mVpp PA 116mA 4 17dB 13dBm 33aV 2 /Hz -17dBm RX 153mA 55dB 0dBm 6.4dB LNA 26mA 25dB -34dBm 2.4dB -27dBm 40GHz Mix 23mA 14dB -20dBm 10dB 75mVpp 20GHz Mix 40mA dB -4.3dBm 13dB 108mVpp 40GHz LO 8mA Vpp -95dBc 20GHz LO 8mA 4 1.3Vpp -100dBc Table II CIRCUIT SPEC. ASSIGNMENT Figure 1. TXRX Component Contribution Running Total Comment PA output Power 13dBm 13(Sig) OFDM Pmax Path Loss 74dB -61(Sig) 2m LOS Shadow Loss 10dB -71(Sig) Antenna Gain 6dBi -59(Sig) TX, RX each RX -59dBm - - Background Noise -174 dbm/hz -174(Vn) KT@25 C Noise BW 93dB -81(Vn) over 2GHz ch. Adj. Inf. -69dBc Interference SNRin 22 RX NF 6 16(SNR) Margin 3 13(SNR) SNRout 13 BER(16QAM) 10 3 for 4ch. OFDM B. Circuit Specifications Table I LINK BUDGET ANALYSIS The acheived specs are both listed in Table II for all active circuit blocks. The overall receiver noise figure is measure using PSS simulation. This result is different from the 50Ω noise figure formula NF RX = NF LNA + NF Mix40GHz 1 NF Mix20GHz 1 G LNA G Mix40GHz G LNA + which gives only 2.47dB. The reason for this discrepancy come from inconsistant measurement setup since measurement for single LNA and mixer uses 50Ω termination while when measuring the entire receiver the 50Ω termination between stages are removed. The measurement setup uses ideal LO due to the lack of control loop, but at this low SNR the effect of LO phase noise is negligible. Figure 2. Slow-Wave CPW as the power in the secondary winding bounces back to each primary winding. However, for heat distribution power combining has to be used after all even if not on-chip [5]. III. PASSIVE ELEMENTS DESIGN A. Slow-Wave CPW Transmission Line The CPW transmission line as in Figure 2 uses a slow-wave structure [4]. The CPW is simulated in Sonnet, the output s- parameter file is then used in cadence simulation. The total transmission line width is 80um to save area. Figure 3. Power Combining Transformer B. Power Combining Transformer The power combining scheme uses a transformer series to add voltage together as in Figure 3. Power loss is inevitable C. RF Choke Inductor The RF choke inductor uses square on chip spiral inductors to save output pin count as in Figure 4. A quality factor of

3 TAMU ECEN625 FINAL PROJECT REPORT 3 more than 2 is maintained through the 9GHz band as in Figure??. Used as RF choke to keep out RF current, this low quality factor doesn t affect the high frequency performance that much as very little RF power goes through this high impedance path. The low impedance at DC also comsumes negligible DC power. It is simulated in Sonnet and s-parameter files are used in cadence simulation. output level of the Class A PA implies higher heat generation. Power combining technique is hence mandated in this scenario to distribute heat sources to different corners of the chip. For power transistor sizing, load pull analysis is done in Agilent ADS using the 90nm BSIM4 model. Three stages are matched at the maximum power of 13dBm at 1dB gain compression. Impedance mismatch is deliberately introduced to enhance bandwidth. Figure 6. Wideband Class-A Power Amplifier Figure 4. RF Choke Inductor IV. TRANSMITTER CIRCUITS DESIGN A. Up-Conversion Mixer Two double balanced mixers are used both at 20 GHz and 40 GHz for I and Q paths. The four outputs than connects to 4 PA then combined by a transformer. Wideband feature needs to be maintained within 2GHz range for each mixer by using a low-q inductor. V. RECEIVER CIRCUITS DESIGN A. Wideband Common Source LNA A wideband common source LNA as in [6] is used to simutaneously acheive high gain and low noise figure. The last stage is a cascode stage to enhance gain at minimum NF cost and also get better isolation from the 40 GHz mixer. To ensure stability each stage is inductively degenerated to make the K stability factor just above 1. For the input stage, the input impedance is usually not the same for maximum gain and minimum noise figure. A sweep of the transistor size and also the source inductor has to be done to make the two input impedance close enough to get best performance. The sweep is done in Agilent ADS to get the optimal input impedance while keeping conjugate matched condition. Figure 5. Up Conversion Mixers Figure 7. Wideband Common Source LNA B. Wideband Class-A Power Amplifier with 4 Path Power Combining Class A Power Amplifier is used for higher linearity [6]. At this frequency about fmax/4 most efficiency enhancedment techniques cannot be used. The lower efficiency and higher B. Down-Conversion Mixers The 40GHz down-conversion mixer uses a single balanced mixer with RLC tank bandpass filtering at 20 GHz. The tank can be made high Q with just flat band of 2.16 GHz channel

4 TAMU ECEN625 FINAL PROJECT REPORT 4 width. The leakage from 40 GHz LO and 60 GHz than get attenuated by the high Q filter. the entire band. S11 is matched to below -10dB over the band while S22 is a little worse near 56 GHz to be -6dB, otherwise it all below -10dB. However, regarding a single 2.16 GHz channel, the gain variation is less than 1dB, which makes baseband digital compensation easy to design. Figure 8. Down Conversion Mixers The 20GHz IQ mixer down converts the IF signal to baseband. The 2nd order RC low-pass load of the mixer filters away the down converted leakages at 20 GHz from 40 GHz LO and 40 GHz from 60 GHz RF leakage and also higher frequencies. A 2nd order high Q low-pass with cut-off frequency at 1.5 GHz can sufficiently remove high frequency interferences. The output waveform has an peak amplitude of 100mV, large enough to drive a 50Ω output buffer for baseband interfacing. VI. LO GENERATION AND DISTRIBUTION A cross-coupled VCO and two tail-injected frequency dividers are used to generate the 40GHz and 20GHz IQ LO signals. There will be inevitable phase offset between 40GHz and 20GHz LO signals. System level simulation demostrates that this offset does affect the final EVM for the same IQ balance at 20 GHz LO. Figure 10. Wideband Common Source LNA The PA consumes a DC power of 21.6dBm and has a saturated power of 13dBm at 5 dbm input power. The maximum power added efficiency is acheived at 2dBm input power to be 10% as in Figure 11, maximum output power efficiency with 17dB high gain is 11%, which is comparable to recent published 60 GHz PAs but with a much larger saturated power. The 1dB compression point of the PA occurs at -16dBm input power but with a output power of already 6dBm, large enough for reasonable distance wireless transmission. The maximum power gain of of the PA is 17dBm at -6dBm input power. The gain variation over the band is 3dB at in Figure 12, which become 1dB when power is restricted to within 1 channel, imposing not much burden to digital baseband. Figure 9. 40GHz/20GHz LO generation Figure 11. Power Added Efficiency vs Input Power VII. SIMULATION RESULTS AND COMPARISON The LNA gives a gain of more than 25dB with a 3dB bandwidth of of 10 GHz. A NF of 2.4dB is acheived over The 40 GHz and 20 GHz LO phase noise is shown in Figure 13. The 1MHz offset phase noise is -95dBc for 40GHz

5 TAMU ECEN625 FINAL PROJECT REPORT 5 TX and RX LO phases by the delay of the PA and LNA. At 60GHz, this delay is very difficult to detect and compensate in analog domain. This is usually done on digital BB chip by using another digital frequency locked loop to remove the frequency and phase offset [7]. Figure 12. Power Gain vs Frequency and -101dBc for 20GHz. This performance is lower than low GHz VCOs. However, the effect of close-in phase noise can be compensated later by digital circuits. The phase noise at 1GHz offset is -165dBc for both frequency LOs. This low phase noise compensates the wide bandwidth of 2.16GHz. At the same carrier power the interference is -69dBc, causing no danger of desensitization. The integrated adjacent inteference power than is simular to 2.4GHz WiFi standard. However, outside the 9GHz band, power emission still needs to satisfy the FCC regulation. Figure 14. Constellation Diagram VIII. CONCLUSIONS This work demostrates a 60GHz band single-chip QPSK transceiver RF front-end. The resultant EVM implies more than enough BER for QPSK modulation. Higher density modulation is also possible at this EVM. The EVM of 20dB can be further improved after the digital compesation for 16QAM modulation requirement. A data rate of 3.5 Gb/s can be transmitted by one 2.16GHz channels over the 2m wireless Link. Possible enhancement can be a 16QAM modulation using the same chip for a data rate of 7 Gb/s per channel as in [8]. REFERENCES Figure GHz/20GHz LO phase noise The testbench of the entire transceiver consists of two 1.75 Gb/s PRBS generator for IQ baseband digital input, transmitter output to an -70dB variable gain attenuator, connecting the 50Ω antenna of the receiver, which then gives two differential IQ baseband digital 1.75 Gb/s PRBS stream. The constellation diagram is shown in Figure 14 with an EVM of -20dB. Ideal voltage buffers are used after LO signals to guarantee the same LO frequency. Phase offset between 40GHz and 20GHz are tested to be not affecting the system performance as long as the 20GHz LO signals maintain quadrature phase alignment. The constellation is rotated to some degree due to the inevitable phase misalignment of the [1] Behzad Razavi, A Millimeter-Wave CMOS Heterodyne Receiver With On-Chip LO and Divider, IEEE J. Solid-State Circuits, vol. 43, no. 2, pp , Feb [2] Alexander Tomkins, etc., A Zero-IF 60 GHz 65nm CMOS Transceiver With Direct BPSK Modulation Demonstrating up to 6 Gb/s Data Rates Over a 2m Wireless Link, IEEE J. Solid-State Circuits, vol. 44, no. 8, pp , Aug [3] Ali Parsa and Behzad Razavi, A New Transceiver Architecture for the 60-GHz Band, IEEE J. Solid-State Circuits, vol. 44, no. 3, pp , Mar [4] Stefano Pellerano, etc., A 64 GHz LNA With 15.5dB Gain and 6.5dB NF in 90nm CMOS, IEEE J. Solid-State Circuits, vol. 43, no. 7, pp , Jul [5] Jihwan Kim, etc., A Linear Multi-Mode CMOS Power Amplifier With Discrete Resizing and Concurrent Power Combining Structure, IEEE J. Solid-State Circuits, vol. 46, no. 5, pp , May [6] Jau-Jr Lin, etc., Wideband PA and LNA for 60-GHz Radio in 90-nm LP CMOS Technology, Compound Semiconductor Integrated Circuits Symposium, pp. 1 4, [7] Xiao Yan and Qian Wang, Frequency Pre-estimation Aided Carrier Recovery Algorithm for high-speed M-PSK communication, Communication Systems, ICCS th IEEE Singapore International Conference, pp [8] Kenichi Okada, etc., Full Four-Channel 6.3-Gb/s 60-GHz CMOS Transceiver With Low-Power Analog and Digital Baseband Circuitry, IEEE J. Solid-State Circuits, vol. 48, no. 1, pp , Jan

Technology Trend of Ultra-High Data Rate Wireless CMOS Transceivers

Technology Trend of Ultra-High Data Rate Wireless CMOS Transceivers 2017.07.03 Technology Trend of Ultra-High Data Rate Wireless CMOS Transceivers Akira Matsuzawa and Kenichi Okada Tokyo Institute of Technology Contents 1 Demand for high speed data transfer Developed high

More information

Radio Research Directions. Behzad Razavi Communication Circuits Laboratory Electrical Engineering Department University of California, Los Angeles

Radio Research Directions. Behzad Razavi Communication Circuits Laboratory Electrical Engineering Department University of California, Los Angeles Radio Research Directions Behzad Razavi Communication Circuits Laboratory Electrical Engineering Department University of California, Los Angeles Outline Introduction Millimeter-Wave Transceivers - Applications

More information

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2 ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2 20.2 A Digitally Calibrated 5.15-5.825GHz Transceiver for 802.11a Wireless LANs in 0.18µm CMOS I. Bouras 1, S. Bouras 1, T. Georgantas

More information

TSEK38 Radio Frequency Transceiver Design: Project work B

TSEK38 Radio Frequency Transceiver Design: Project work B TSEK38 Project Work: Task specification A 1(15) TSEK38 Radio Frequency Transceiver Design: Project work B Course home page: Course responsible: http://www.isy.liu.se/en/edu/kurs/tsek38/ Ted Johansson (ted.johansson@liu.se)

More information

Session 3. CMOS RF IC Design Principles

Session 3. CMOS RF IC Design Principles Session 3 CMOS RF IC Design Principles Session Delivered by: D. Varun 1 Session Topics Standards RF wireless communications Multi standard RF transceivers RF front end architectures Frequency down conversion

More information

mmw to THz ultra high data rate radio access technologies

mmw to THz ultra high data rate radio access technologies mmw to THz ultra high data rate radio access technologies Dr. Laurent HERAULT VP Europe, CEA LETI Pierre Vincent Head of RF IC design Lab, CEA LETI Outline mmw communication use cases and standards mmw

More information

Chapter 6. Case Study: 2.4-GHz Direct Conversion Receiver. 6.1 Receiver Front-End Design

Chapter 6. Case Study: 2.4-GHz Direct Conversion Receiver. 6.1 Receiver Front-End Design Chapter 6 Case Study: 2.4-GHz Direct Conversion Receiver The chapter presents a 0.25-µm CMOS receiver front-end designed for 2.4-GHz direct conversion RF transceiver and demonstrates the necessity and

More information

65-GHz Receiver in SiGe BiCMOS Using Monolithic Inductors and Transformers

65-GHz Receiver in SiGe BiCMOS Using Monolithic Inductors and Transformers 65-GHz Receiver in SiGe BiCMOS Using Monolithic Inductors and Transformers Michael Gordon, Terry Yao, Sorin P. Voinigescu University of Toronto March 10 2006, UBC, Vancouver Outline Motivation mm-wave

More information

Bluetooth Receiver. Ryan Rogel, Kevin Owen I. INTRODUCTION

Bluetooth Receiver. Ryan Rogel, Kevin Owen I. INTRODUCTION 1 Bluetooth Receiver Ryan Rogel, Kevin Owen Abstract A Bluetooth radio front end is developed and each block is characterized. Bits are generated in MATLAB, GFSK endcoded, and used as the input to this

More information

433MHz front-end with the SA601 or SA620

433MHz front-end with the SA601 or SA620 433MHz front-end with the SA60 or SA620 AN9502 Author: Rob Bouwer ABSTRACT Although designed for GHz, the SA60 and SA620 can also be used in the 433MHz ISM band. The SA60 performs amplification of the

More information

An All CMOS, 2.4 GHz, Fully Adaptive, Scalable, Frequency Hopped Transceiver

An All CMOS, 2.4 GHz, Fully Adaptive, Scalable, Frequency Hopped Transceiver An All CMOS, 2.4 GHz, Fully Adaptive, Scalable, Frequency Hopped Transceiver Farbod Behbahani John Leete Alexandre Kral Shahrzad Tadjpour Karapet Khanoyan Paul J. Chang Hooman Darabi Maryam Rofougaran

More information

Receiver Architecture

Receiver Architecture Receiver Architecture Receiver basics Channel selection why not at RF? BPF first or LNA first? Direct digitization of RF signal Receiver architectures Sub-sampling receiver noise problem Heterodyne receiver

More information

5.4: A 5GHz CMOS Transceiver for IEEE a Wireless LAN

5.4: A 5GHz CMOS Transceiver for IEEE a Wireless LAN 5.4: A 5GHz CMOS Transceiver for IEEE 802.11a Wireless LAN David Su, Masoud Zargari, Patrick Yue, Shahriar Rabii, David Weber, Brian Kaczynski, Srenik Mehta, Kalwant Singh, Sunetra Mendis, and Bruce Wooley

More information

A 1.7-to-2.2GHz Full-Duplex Transceiver System with >50dB Self-Interference Cancellation over 42MHz Bandwidth

A 1.7-to-2.2GHz Full-Duplex Transceiver System with >50dB Self-Interference Cancellation over 42MHz Bandwidth A 1.7-to-2.2GHz Full-Duplex Transceiver System with >50dB Self-Interference Cancellation Tong Zhang, Ali Najafi, Chenxin Su, Jacques C. Rudell University of Washington, Seattle Feb. 8, 2017 International

More information

INTRODUCTION TO TRANSCEIVER DESIGN ECE3103 ADVANCED TELECOMMUNICATION SYSTEMS

INTRODUCTION TO TRANSCEIVER DESIGN ECE3103 ADVANCED TELECOMMUNICATION SYSTEMS INTRODUCTION TO TRANSCEIVER DESIGN ECE3103 ADVANCED TELECOMMUNICATION SYSTEMS FUNCTIONS OF A TRANSMITTER The basic functions of a transmitter are: a) up-conversion: move signal to desired RF carrier frequency.

More information

ISSCC 2006 / SESSION 33 / MOBILE TV / 33.4

ISSCC 2006 / SESSION 33 / MOBILE TV / 33.4 33.4 A Dual-Channel Direct-Conversion CMOS Receiver for Mobile Multimedia Broadcasting Vincenzo Peluso, Yang Xu, Peter Gazzerro, Yiwu Tang, Li Liu, Zhenbiao Li, Wei Xiong, Charles Persico Qualcomm, San

More information

RF/IF Terminology and Specs

RF/IF Terminology and Specs RF/IF Terminology and Specs Contributors: Brad Brannon John Greichen Leo McHugh Eamon Nash Eberhard Brunner 1 Terminology LNA - Low-Noise Amplifier. A specialized amplifier to boost the very small received

More information

ADI 2006 RF Seminar. Chapter II RF/IF Components and Specifications for Receivers

ADI 2006 RF Seminar. Chapter II RF/IF Components and Specifications for Receivers ADI 2006 RF Seminar Chapter II RF/IF Components and Specifications for Receivers 1 RF/IF Components and Specifications for Receivers Fixed Gain and Variable Gain Amplifiers IQ Demodulators Analog-to-Digital

More information

A 1.9GHz Single-Chip CMOS PHS Cellphone

A 1.9GHz Single-Chip CMOS PHS Cellphone A 1.9GHz Single-Chip CMOS PHS Cellphone IEEE JSSC, Vol. 41, No.12, December 2006 William Si, Srenik Mehta, Hirad Samavati, Manolis Terrovitis, Michael Mack, Keith Onodera, Steve Jen, Susan Luschas, Justin

More information

RFIC Design ELEN 351 Lecture 2: RFIC Architectures

RFIC Design ELEN 351 Lecture 2: RFIC Architectures RFIC Design ELEN 351 Lecture 2: RFIC Architectures Instructor: Dr. Allen Sweet Copy right 2003 ELEN 351 1 RFIC Architectures Modulation Choices Receiver Architectures Transmitter Architectures VCOs, Phase

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: Feasibility test of THz channel for high-speed wireless link Date Submitted: 12 Nov 2013 Source: Jae-Young Kim, Ho-Jin

More information

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5 ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5 20.5 A 2.4GHz CMOS Transceiver and Baseband Processor Chipset for 802.11b Wireless LAN Application George Chien, Weishi Feng, Yungping

More information

Insights Into Circuits for Frequency Synthesis at mm-waves Andrea Mazzanti Università di Pavia, Italy

Insights Into Circuits for Frequency Synthesis at mm-waves Andrea Mazzanti Università di Pavia, Italy RFIC2014, Tampa Bay June 1-3, 2014 Insights Into Circuits for Frequency Synthesis at mm-waves Andrea Mazzanti Università di Pavia, Italy High data rate wireless networks MAN / LAN PAN ~7GHz of unlicensed

More information

A Digitally-Calibrated 20-Gb/s 60-GHz Direct-Conversion Transceiver in 65-nm CMOS

A Digitally-Calibrated 20-Gb/s 60-GHz Direct-Conversion Transceiver in 65-nm CMOS A Digitally-Calibrated 20-Gb/s 60-GHz Direct-Conversion Transceiver in 65-nm CMOS Seitaro Kawai, Ryo Minami, Yuki Tsukui, Yasuaki Takeuchi, Hiroki Asada, Ahmed Musa, Rui Murakami, Takahiro Sato, Qinghong

More information

Research and Development Activities in RF and Analog IC Design. RFIC Building Blocks. Single-Chip Transceiver Systems (I) Howard Luong

Research and Development Activities in RF and Analog IC Design. RFIC Building Blocks. Single-Chip Transceiver Systems (I) Howard Luong Research and Development Activities in RF and Analog IC Design Howard Luong Analog Research Laboratory Department of Electrical and Electronic Engineering Hong Kong University of Science and Technology

More information

CMOS LNA Design for Ultra Wide Band - Review

CMOS LNA Design for Ultra Wide Band - Review International Journal of Innovation and Scientific Research ISSN 235-804 Vol. No. 2 Nov. 204, pp. 356-362 204 Innovative Space of Scientific Research Journals http://www.ijisr.issr-journals.org/ CMOS LNA

More information

Receiver Architectures

Receiver Architectures 83080RA/1 Receiver Architectures Markku Renfors Tampere University of Technology Digital Media Institute/Telecommunications 83080RA/2 Topics 1. Main analog components for receivers - amplifiers - filters

More information

System-Level Time-Domain Behavioral Modeling for A Mobile WiMax Transceiver

System-Level Time-Domain Behavioral Modeling for A Mobile WiMax Transceiver System-Level Time-Domain Behavioral Modeling for A Mobile WiMax Transceiver Jie He, Jun Seo Yang, Yongsup Kim, and Austin S. Kim HIDS Lab, Telecommunication R&D Center, Samsung Electronics jie.he@samung.com,

More information

A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding

A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding A 64-QAM 6GHz CMOS Transceiver with 4-Channel Bonding Kenichi Okada, Ryo Minami, Yuuki Tsukui, Seitaro Kawai, Yuuki Seo, Shinji Sato, Satoshi Kondo, Tomohiro Ueno, Yasuaki Takeuchi, Tatsuya Yamaguchi,

More information

LOW COST PHASED ARRAY ANTENNA TRANSCEIVER FOR WPAN APPLICATIONS

LOW COST PHASED ARRAY ANTENNA TRANSCEIVER FOR WPAN APPLICATIONS LOW COST PHASED ARRAY ANTENNA TRANSCEIVER FOR WPAN APPLICATIONS Introduction WPAN (Wireless Personal Area Network) transceivers are being designed to operate in the 60 GHz frequency band and will mainly

More information

60 GHz RX. Waveguide Receiver Module. Features. Applications. Data Sheet V60RXWG3. VubIQ, Inc

60 GHz RX. Waveguide Receiver Module. Features. Applications. Data Sheet V60RXWG3. VubIQ, Inc GHz RX VRXWG Features Complete millimeter wave receiver WR-, UG-8/U flange Operates in the to GHz unlicensed band db noise figure Up to.8 GHz modulation bandwidth I/Q analog baseband interface Integrated

More information

High Data Rate 60 GHz CMOS Transceiver Design

High Data Rate 60 GHz CMOS Transceiver Design High Data Rate 6 GHz CMOS Transceiver Design Akira Matsuzawa Department of Physical Electronics Graduate School of Science and Electronics Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8552,

More information

Understanding Low Phase Noise Signals. Presented by: Riadh Said Agilent Technologies, Inc.

Understanding Low Phase Noise Signals. Presented by: Riadh Said Agilent Technologies, Inc. Understanding Low Phase Noise Signals Presented by: Riadh Said Agilent Technologies, Inc. Introduction Instabilities in the frequency or phase of a signal are caused by a number of different effects. Each

More information

TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation. Ted Johansson, EKS, ISY

TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation. Ted Johansson, EKS, ISY TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation Ted Johansson, EKS, ISY 2 RX Nonlinearity Issues, Demodulation RX nonlinearities (parts of 2.2) System Nonlinearity Sensitivity

More information

Design of mm-wave Injection Locking Power Amplifier. Student: Jiafu Lin Supervisor: Asst. Prof. Boon Chirn Chye

Design of mm-wave Injection Locking Power Amplifier. Student: Jiafu Lin Supervisor: Asst. Prof. Boon Chirn Chye Design of mm-wave Injection Locking Power Amplifier Student: Jiafu Lin Supervisor: Asst. Prof. Boon Chirn Chye 1 Design Review Ref. Process Topology VDD (V) RFIC 2008[1] JSSC 2007[2] JSSC 2009[3] JSSC

More information

mm-wave Transceiver Challenges for the 5G and 60GHz Standards Prof. Emanuel Cohen Technion

mm-wave Transceiver Challenges for the 5G and 60GHz Standards Prof. Emanuel Cohen Technion mm-wave Transceiver Challenges for the 5G and 60GHz Standards Prof. Emanuel Cohen Technion November 11, 11, 2015 2015 1 mm-wave advantage Why is mm-wave interesting now? Available Spectrum 7 GHz of virtually

More information

TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation. Ted Johansson, EKS, ISY

TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation. Ted Johansson, EKS, ISY TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation Ted Johansson, EKS, ISY RX Nonlinearity Issues: 2.2, 2.4 Demodulation: not in the book 2 RX nonlinearities System Nonlinearity

More information

NEW WIRELESS applications are emerging where

NEW WIRELESS applications are emerging where IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 39, NO. 4, APRIL 2004 709 A Multiply-by-3 Coupled-Ring Oscillator for Low-Power Frequency Synthesis Shwetabh Verma, Member, IEEE, Junfeng Xu, and Thomas H. Lee,

More information

Chapter 3 Communication Concepts

Chapter 3 Communication Concepts Chapter 3 Communication Concepts 1 Sections to be covered 3.1 General Considerations 3.2 Analog Modulation 3.3 Digital Modulation 3.4 Spectral Regrowth 3.7 Wireless Standards 2 Chapter Outline Modulation

More information

Full Duplex Radios. Sachin Katti Kumu Networks & Stanford University 4/17/2014 1

Full Duplex Radios. Sachin Katti Kumu Networks & Stanford University 4/17/2014 1 Full Duplex Radios Sachin Katti Kumu Networks & Stanford University 4/17/2014 1 It is generally not possible for radios to receive and transmit on the same frequency band because of the interference that

More information

Simplified, high performance transceiver for phase modulated RFID applications

Simplified, high performance transceiver for phase modulated RFID applications Simplified, high performance transceiver for phase modulated RFID applications Buchanan, N. B., & Fusco, V. (2015). Simplified, high performance transceiver for phase modulated RFID applications. In Proceedings

More information

SiGe PLL design at 28 GHz

SiGe PLL design at 28 GHz SiGe PLL design at 28 GHz 2015-09-23 Tobias Tired Electrical and Information Technology Lund University May 14, 2012 Waqas Ahmad (Lund University) Presentation outline E-band wireless backhaul Beam forming

More information

60 GHz Receiver (Rx) Waveguide Module

60 GHz Receiver (Rx) Waveguide Module The PEM is a highly integrated millimeter wave receiver that covers the GHz global unlicensed spectrum allocations packaged in a standard waveguide module. Receiver architecture is a double conversion,

More information

TestData Summary of 5.2GHz WLAN Direct Conversion RF Transceiver Board

TestData Summary of 5.2GHz WLAN Direct Conversion RF Transceiver Board Page 1 of 16 ========================================================================================= TestData Summary of 5.2GHz WLAN Direct Conversion RF Transceiver Board =========================================================================================

More information

Does The Radio Even Matter? - Transceiver Characterization Testing Framework

Does The Radio Even Matter? - Transceiver Characterization Testing Framework Does The Radio Even Matter? - Transceiver Characterization Testing Framework TRAVIS COLLINS, PHD ROBIN GETZ 2017 Analog Devices, Inc. All rights reserved. 1 Which cost least? 3 2017 Analog Devices, Inc.

More information

CMOS Design of Wideband Inductor-Less LNA

CMOS Design of Wideband Inductor-Less LNA IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 8, Issue 3, Ver. I (May.-June. 2018), PP 25-30 e-issn: 2319 4200, p-issn No. : 2319 4197 www.iosrjournals.org CMOS Design of Wideband Inductor-Less

More information

Challenges in Designing CMOS Wireless System-on-a-chip

Challenges in Designing CMOS Wireless System-on-a-chip Challenges in Designing CMOS Wireless System-on-a-chip David Su Atheros Communications Santa Clara, California IEEE Fort Collins, March 2008 Introduction Outline Analog/RF: CMOS Transceiver Building Blocks

More information

Quadrature GPS Receiver Front-End in 0.13μm CMOS: The QLMV cell

Quadrature GPS Receiver Front-End in 0.13μm CMOS: The QLMV cell 1 Quadrature GPS Receiver Front-End in 0.13μm CMOS: The QLMV cell Yee-Huan Ng, Po-Chia Lai, and Jia Ruan Abstract This paper presents a GPS receiver front end design that is based on the single-stage quadrature

More information

Lecture 3: Wireless Physical Layer: Modulation Techniques. Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday

Lecture 3: Wireless Physical Layer: Modulation Techniques. Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday Lecture 3: Wireless Physical Layer: Modulation Techniques Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday Modulation We saw a simple example of amplitude modulation in the last lecture Modulation how

More information

RF transmitter with Cartesian feedback

RF transmitter with Cartesian feedback UNIVERSITY OF MICHIGAN EECS 522 FINAL PROJECT: RF TRANSMITTER WITH CARTESIAN FEEDBACK 1 RF transmitter with Cartesian feedback Alexandra Holbel, Fu-Pang Hsu, and Chunyang Zhai, University of Michigan Abstract

More information

Pulse-Based Ultra-Wideband Transmitters for Digital Communication

Pulse-Based Ultra-Wideband Transmitters for Digital Communication Pulse-Based Ultra-Wideband Transmitters for Digital Communication Ph.D. Thesis Defense David Wentzloff Thesis Committee: Prof. Anantha Chandrakasan (Advisor) Prof. Joel Dawson Prof. Charles Sodini Ultra-Wideband

More information

Full Duplex CMOS Transceiver with On-Chip Self-Interference Cancelation. Seyyed Amir Ayati

Full Duplex CMOS Transceiver with On-Chip Self-Interference Cancelation. Seyyed Amir Ayati Full Duplex CMOS Transceiver with On-Chip Self-Interference Cancelation by Seyyed Amir Ayati A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved

More information

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 678A 40MHZ TO 900MHZ DIRECT CONVERSION QUADRATURE DEMODULATOR

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 678A 40MHZ TO 900MHZ DIRECT CONVERSION QUADRATURE DEMODULATOR DESCRIPTION QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 678A LT5517 Demonstration circuit 678A is a 40MHz to 900MHz Direct Conversion Quadrature Demodulator featuring the LT5517. The LT 5517 is a direct

More information

Radio-Frequency Conversion and Synthesis (for a 115mW GPS Receiver)

Radio-Frequency Conversion and Synthesis (for a 115mW GPS Receiver) Radio-Frequency Conversion and Synthesis (for a 115mW GPS Receiver) Arvin Shahani Stanford University Overview GPS Overview Frequency Conversion Frequency Synthesis Conclusion GPS Overview: Signal Structure

More information

A 60-GHz Digitally-Controlled Phase Modulator with Phase Error Calibration

A 60-GHz Digitally-Controlled Phase Modulator with Phase Error Calibration IEICE Society Conference A 60-GHz Digitally-Controlled Phase Modulator with Phase Error Calibration Rui WU, Ning Li, Kenichi Okada, and Akira Tokyo Institute of Technology Background 1 9-GHz unlicensed

More information

Chapter 4 Radio Communication Basics

Chapter 4 Radio Communication Basics Chapter 4 Radio Communication Basics Chapter 4 Radio Communication Basics RF Signal Propagation and Reception Basics and Keywords Transmitter Power and Receiver Sensitivity Power - antenna gain: G TX,

More information

Technical Article A DIRECT QUADRATURE MODULATOR IC FOR 0.9 TO 2.5 GHZ WIRELESS SYSTEMS

Technical Article A DIRECT QUADRATURE MODULATOR IC FOR 0.9 TO 2.5 GHZ WIRELESS SYSTEMS Introduction As wireless system designs have moved from carrier frequencies at approximately 9 MHz to wider bandwidth applications like Personal Communication System (PCS) phones at 1.8 GHz and wireless

More information

Bridging the Gap between System & Circuit Designers

Bridging the Gap between System & Circuit Designers Bridging the Gap between System & Circuit Designers October 27, 2004 Presented by: Kal Kalbasi Q & A Marc Petersen Copyright 2003 Agilent Technologies, Inc. The Gap System Communication System Design System

More information

RF Integrated Circuits

RF Integrated Circuits Introduction and Motivation RF Integrated Circuits The recent explosion in the radio frequency (RF) and wireless market has caught the semiconductor industry by surprise. The increasing demand for affordable

More information

What to do with THz? Ali M. Niknejad Berkeley Wireless Research Center University of California Berkeley. WCA Futures SIG

What to do with THz? Ali M. Niknejad Berkeley Wireless Research Center University of California Berkeley. WCA Futures SIG What to do with THz? Ali M. Niknejad Berkeley Wireless Research Center University of California Berkeley WCA Futures SIG Outline THz Overview Potential THz Applications THz Transceivers in Silicon? Application

More information

Application of PC Vias to Configurable RF Circuits

Application of PC Vias to Configurable RF Circuits Application of PC Vias to Configurable RF Circuits March 24, 2008 Prof. Jeyanandh Paramesh Department of Electrical and Computer Engineering Carnegie Mellon University Pittsburgh, PA 15213 Ultimate Goal:

More information

A Pulse-Based CMOS Ultra-Wideband Transmitter for WPANs

A Pulse-Based CMOS Ultra-Wideband Transmitter for WPANs A Pulse-Based CMOS Ultra-Wideband Transmitter for WPANs Murat Demirkan* Solid-State Circuits Research Laboratory University of California, Davis *Now with Agilent Technologies, Santa Clara, CA 03/20/2008

More information

ISSCC 2006 / SESSION 20 / WLAN/WPAN / 20.5

ISSCC 2006 / SESSION 20 / WLAN/WPAN / 20.5 20.5 An Ultra-Low Power 2.4GHz RF Transceiver for Wireless Sensor Networks in 0.13µm CMOS with 400mV Supply and an Integrated Passive RX Front-End Ben W. Cook, Axel D. Berny, Alyosha Molnar, Steven Lanzisera,

More information

CMOS RFIC Design for Direct Conversion Receivers. Zhaofeng ZHANG Supervisor: Dr. Jack Lau

CMOS RFIC Design for Direct Conversion Receivers. Zhaofeng ZHANG Supervisor: Dr. Jack Lau CMOS RFIC Design for Direct Conversion Receivers Zhaofeng ZHANG Supervisor: Dr. Jack Lau Outline of Presentation Background Introduction Thesis Contributions Design Issues and Solutions A Direct Conversion

More information

HIGH-GAIN CMOS LOW NOISE AMPLIFIER FOR ULTRA WIDE-BAND WIRELESS RECEIVER

HIGH-GAIN CMOS LOW NOISE AMPLIFIER FOR ULTRA WIDE-BAND WIRELESS RECEIVER Progress In Electromagnetics Research C, Vol. 7, 183 191, 2009 HIGH-GAIN CMOS LOW NOISE AMPLIFIER FOR ULTRA WIDE-BAND WIRELESS RECEIVER A. Dorafshan and M. Soleimani Electrical Engineering Department Iran

More information

Keywords: ISM, RF, transmitter, short-range, RFIC, switching power amplifier, ETSI

Keywords: ISM, RF, transmitter, short-range, RFIC, switching power amplifier, ETSI Maxim > Design Support > Technical Documents > Application Notes > Wireless and RF > APP 4929 Keywords: ISM, RF, transmitter, short-range, RFIC, switching power amplifier, ETSI APPLICATION NOTE 4929 Adapting

More information

Fully integrated UHF RFID mobile reader with power amplifiers using System-in-Package (SiP)

Fully integrated UHF RFID mobile reader with power amplifiers using System-in-Package (SiP) Fully integrated UHF RFID mobile reader with power amplifiers using System-in-Package (SiP) Hyemin Yang 1, Jongmoon Kim 2, Franklin Bien 3, and Jongsoo Lee 1a) 1 School of Information and Communications,

More information

Low-Power RF Integrated Circuit Design Techniques for Short-Range Wireless Connectivity

Low-Power RF Integrated Circuit Design Techniques for Short-Range Wireless Connectivity Low-Power RF Integrated Circuit Design Techniques for Short-Range Wireless Connectivity Marvin Onabajo Assistant Professor Analog and Mixed-Signal Integrated Circuits (AMSIC) Research Laboratory Dept.

More information

W-CDMA Upconverter and PA Driver with Power Control

W-CDMA Upconverter and PA Driver with Power Control 19-2108; Rev 1; 8/03 EVALUATION KIT AVAILABLE W-CDMA Upconverter and PA Driver General Description The upconverter and PA driver IC is designed for emerging ARIB (Japan) and ETSI-UMTS (Europe) W-CDMA applications.

More information

Designing a 960 MHz CMOS LNA and Mixer using ADS. EE 5390 RFIC Design Michelle Montoya Alfredo Perez. April 15, 2004

Designing a 960 MHz CMOS LNA and Mixer using ADS. EE 5390 RFIC Design Michelle Montoya Alfredo Perez. April 15, 2004 Designing a 960 MHz CMOS LNA and Mixer using ADS EE 5390 RFIC Design Michelle Montoya Alfredo Perez April 15, 2004 The University of Texas at El Paso Dr Tim S. Yao ABSTRACT Two circuits satisfying the

More information

Advanced RF Measurements You Didn t Know Your Oscilloscope Could Make. Brad Frieden Philip Gresock

Advanced RF Measurements You Didn t Know Your Oscilloscope Could Make. Brad Frieden Philip Gresock Advanced RF Measurements You Didn t Know Your Oscilloscope Could Make Brad Frieden Philip Gresock Agenda RF measurement challenges Oscilloscope platform overview Typical RF characteristics Bandwidth vs.

More information

Co-existence. DECT/CAT-iq vs. other wireless technologies from a HW perspective

Co-existence. DECT/CAT-iq vs. other wireless technologies from a HW perspective Co-existence DECT/CAT-iq vs. other wireless technologies from a HW perspective Abstract: This White Paper addresses three different co-existence issues (blocking, sideband interference, and inter-modulation)

More information

Abstract. Index terms- LC tank Voltage-controlled oscillator(vco),cmos,phase noise, supply voltage

Abstract. Index terms- LC tank Voltage-controlled oscillator(vco),cmos,phase noise, supply voltage Low Power Low Phase Noise LC To Reduce Start Up Time OF RF Transmitter M.A.Nandanwar,Dr.M.A.Gaikwad,Prof.D.R.Dandekar B.D.College Of Engineering,Sewagram,Wardha(M.S.)INDIA. Abstract Voltage controlled

More information

Receiver Design. Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University 2011/2/21

Receiver Design. Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University 2011/2/21 Receiver Design Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University 2011/2/21 MW & RF Design / Prof. T. -L. Wu 1 The receiver mush be very sensitive to -110dBm

More information

26.8: A 1.9GHz Single-Chip CMOS PHS Cellphone

26.8: A 1.9GHz Single-Chip CMOS PHS Cellphone 26.8: A 1.9GHz Single-Chip CMOS PHS Cellphone William W. Si, Srenik Mehta, Hirad Samavati, Manolis Terrovitis, Michael Mack, KeithOnodera, SteveJen, Susan Luschas, Justin Hwang, SuniMendis, DavidSu, BruceWooley

More information

Design Considerations for 5G mm-wave Receivers. Stefan Andersson, Lars Sundström, and Sven Mattisson

Design Considerations for 5G mm-wave Receivers. Stefan Andersson, Lars Sundström, and Sven Mattisson Design Considerations for 5G mm-wave Receivers Stefan Andersson, Lars Sundström, and Sven Mattisson Outline Introduction to 5G @ mm-waves mm-wave on-chip frequency generation mm-wave analog front-end design

More information

Optical Phase-Locking and Wavelength Synthesis

Optical Phase-Locking and Wavelength Synthesis 2014 IEEE Compound Semiconductor Integrated Circuits Symposium, October 21-23, La Jolla, CA. Optical Phase-Locking and Wavelength Synthesis M.J.W. Rodwell, H.C. Park, M. Piels, M. Lu, A. Sivananthan, E.

More information

Low-Voltage IF Transceiver with Limiter/RSSI and Quadrature Modulator

Low-Voltage IF Transceiver with Limiter/RSSI and Quadrature Modulator 19-1296; Rev 2; 1/1 EVALUATION KIT MANUAL FOLLOWS DATA SHEET Low-Voltage IF Transceiver with General Description The is a highly integrated IF transceiver for digital wireless applications. It operates

More information

A 1.6-to-3.2/4.8 GHz Dual Modulus Injection-Locked Frequency Multiplier in

A 1.6-to-3.2/4.8 GHz Dual Modulus Injection-Locked Frequency Multiplier in RTU1D-2 LAICS A 1.6-to-3.2/4.8 GHz Dual Modulus Injection-Locked Frequency Multiplier in 0.18µm CMOS L. Zhang, D. Karasiewicz, B. Ciftcioglu and H. Wu Laboratory for Advanced Integrated Circuits and Systems

More information

A New Transceiver Architecture for the 60-GHz Band Ali Parsa, Member, IEEE, and Behzad Razavi, Fellow, IEEE

A New Transceiver Architecture for the 60-GHz Band Ali Parsa, Member, IEEE, and Behzad Razavi, Fellow, IEEE IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 44, NO. 3, MARCH 2009 751 A New Transceiver Architecture for the 60-GHz Band Ali Parsa, Member, IEEE, and Behzad Razavi, Fellow, IEEE Abstract A new half-rf architecture

More information

24 GHz ISM Band Integrated Transceiver Preliminary Technical Documentation MAIC

24 GHz ISM Band Integrated Transceiver Preliminary Technical Documentation MAIC FEATURES Millimeter-wave (mmw) integrated transceiver Direct up and down conversion architecture 24 GHz ISM band 23.5-25.5 GHz frequency of operation 1.5 Volt operation, low-power consumption LO Quadrature

More information

Transceiver Architectures (III)

Transceiver Architectures (III) Image-Reject Receivers Transceiver Architectures (III) Since the image and the signal lie on the two sides of the LO frequency, it is possible to architect the RX so that it can distinguish between the

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK v01.05.00 HMC141/142 MIXER OPERATION

More information

Design of low-loss 60 GHz integrated antenna switch in 65 nm CMOS

Design of low-loss 60 GHz integrated antenna switch in 65 nm CMOS LETTER IEICE Electronics Express, Vol.15, No.7, 1 10 Design of low-loss 60 GHz integrated antenna switch in 65 nm CMOS Korkut Kaan Tokgoz a), Seitaro Kawai, Kenichi Okada, and Akira Matsuzawa Department

More information

An Energy Efficient 1 Gb/s, 6-to-10 GHz CMOS IR-UWB Transmitter and Receiver With Embedded On-Chip Antenna

An Energy Efficient 1 Gb/s, 6-to-10 GHz CMOS IR-UWB Transmitter and Receiver With Embedded On-Chip Antenna An Energy Efficient 1 Gb/s, 6-to-10 GHz CMOS IR-UWB Transmitter and Receiver With Embedded On-Chip Antenna Zeshan Ahmad, Khaled Al-Ashmouny, Kuo-Ken Huang EECS 522 Analog Integrated Circuits (Winter 09)

More information

PTX-0350 RF UPCONVERTER, MHz

PTX-0350 RF UPCONVERTER, MHz PTX-0350 RF UPCONVERTER, 300 5000 MHz OPERATING MODES I/Q upconverter RF = LO + IF upconverter RF = LO - IF upconverter Synthesizer 10 MHz REFERENCE INPUT/OUTPUT EXTERNAL LOCAL OSCILLATOR INPUT I/Q BASEBAND

More information

Satellite Communications: Part 4 Signal Distortions & Errors and their Relation to Communication Channel Specifications. Howard Hausman April 1, 2010

Satellite Communications: Part 4 Signal Distortions & Errors and their Relation to Communication Channel Specifications. Howard Hausman April 1, 2010 Satellite Communications: Part 4 Signal Distortions & Errors and their Relation to Communication Channel Specifications Howard Hausman April 1, 2010 Satellite Communications: Part 4 Signal Distortions

More information

A 5-Gb/s 156-mW Transceiver with FFE/Analog Equalizer in 90-nm CMOS Technology Wang Xinghua a, Wang Zhengchen b, Gui Xiaoyan c,

A 5-Gb/s 156-mW Transceiver with FFE/Analog Equalizer in 90-nm CMOS Technology Wang Xinghua a, Wang Zhengchen b, Gui Xiaoyan c, 4th International Conference on Computer, Mechatronics, Control and Electronic Engineering (ICCMCEE 2015) A 5-Gb/s 156-mW Transceiver with FFE/Analog Equalizer in 90-nm CMOS Technology Wang Xinghua a,

More information

PXI WiMAX Measurement Suite Data Sheet

PXI WiMAX Measurement Suite Data Sheet PXI WiMAX Measurement Suite Data Sheet The most important thing we build is trust Transmit power Spectral mask Occupied bandwidth EVM (all, data only, pilots only) Frequency error Gain imbalance, Skew

More information

Evaluating and Optimizing Tradeoffs in CMOS RFIC Upconversion Mixer Design. by Dr. Stephen Long University of California, Santa Barbara

Evaluating and Optimizing Tradeoffs in CMOS RFIC Upconversion Mixer Design. by Dr. Stephen Long University of California, Santa Barbara Evaluating and Optimizing Tradeoffs in CMOS RFIC Upconversion Mixer Design by Dr. Stephen Long University of California, Santa Barbara It is not easy to design an RFIC mixer. Different, sometimes conflicting,

More information

THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE

THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE Topology Comparison and Design of Low Noise Amplifier for Enhanced Gain Arul Thilagavathi M. PG Student, Department of ECE, Dr. Sivanthi Aditanar College

More information

A 2.6GHz/5.2GHz CMOS Voltage-Controlled Oscillator*

A 2.6GHz/5.2GHz CMOS Voltage-Controlled Oscillator* WP 23.6 A 2.6GHz/5.2GHz CMOS Voltage-Controlled Oscillator* Christopher Lam, Behzad Razavi University of California, Los Angeles, CA New wireless local area network (WLAN) standards have recently emerged

More information

DESIGN OF 2.4 GHZ LOW POWER CMOS TRANSMITTER FRONT END

DESIGN OF 2.4 GHZ LOW POWER CMOS TRANSMITTER FRONT END Volume 117 No. 16 2017, 685-694 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu DESIGN OF 2.4 GHZ LOW POWER CMOS TRANSMITTER FRONT END 1 S.Manjula,

More information

9 Best Practices for Optimizing Your Signal Generator Part 2 Making Better Measurements

9 Best Practices for Optimizing Your Signal Generator Part 2 Making Better Measurements 9 Best Practices for Optimizing Your Signal Generator Part 2 Making Better Measurements In consumer wireless, military communications, or radar, you face an ongoing bandwidth crunch in a spectrum that

More information

SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver

SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver Arvin R. Shahani, Derek K. Shaeffer, Thomas H. Lee Stanford University, Stanford, CA At submicron channel lengths, CMOS is

More information

CMOS Dual Band Receiver GSM 900-Mhz / DSS-GSM1800-GHz

CMOS Dual Band Receiver GSM 900-Mhz / DSS-GSM1800-GHz CMOS Dual Band Receiver GSM 900-Mhz / DSS-GSM1800-GHz By : Dhruvang Darji 46610334 Transistor integrated Circuit A Dual-Band Receiver implemented with a weaver architecture with two frequency stages operating

More information

SiNANO-NEREID Workshop:

SiNANO-NEREID Workshop: SiNANO-NEREID Workshop: Towards a new NanoElectronics Roadmap for Europe Leuven, September 11 th, 2017 WP3/Task 3.2 Connectivity RF and mmw Design Outline Connectivity, what connectivity? High data rates

More information

THE BASICS OF RADIO SYSTEM DESIGN

THE BASICS OF RADIO SYSTEM DESIGN THE BASICS OF RADIO SYSTEM DESIGN Mark Hunter * Abstract This paper is intended to give an overview of the design of radio transceivers to the engineer new to the field. It is shown how the requirements

More information

EECS 290C: Advanced circuit design for wireless Class Final Project Due: Thu May/02/2019

EECS 290C: Advanced circuit design for wireless Class Final Project Due: Thu May/02/2019 EECS 290C: Advanced circuit design for wireless Class Final Project Due: Thu May/02/2019 Project: A fully integrated 2.4-2.5GHz Bluetooth receiver. The receiver has LNA, RF mixer, baseband complex filter,

More information

RADIO RECEIVERS ECE 3103 WIRELESS COMMUNICATION SYSTEMS

RADIO RECEIVERS ECE 3103 WIRELESS COMMUNICATION SYSTEMS RADIO RECEIVERS ECE 3103 WIRELESS COMMUNICATION SYSTEMS FUNCTIONS OF A RADIO RECEIVER The main functions of a radio receiver are: 1. To intercept the RF signal by using the receiver antenna 2. Select the

More information