CMOS Dual Band Receiver GSM 900-Mhz / DSS-GSM1800-GHz

Size: px
Start display at page:

Download "CMOS Dual Band Receiver GSM 900-Mhz / DSS-GSM1800-GHz"

Transcription

1 CMOS Dual Band Receiver GSM 900-Mhz / DSS-GSM1800-GHz By : Dhruvang Darji Transistor integrated Circuit

2 A Dual-Band Receiver implemented with a weaver architecture with two frequency stages operating at 900MHz and 1.8GHz by using two Voltage Controlled Oscillator fabricated with 0.18µm CMOS technology. The receiver achieves total Gain of db at 900MHz and db at 1.8GHz of G, and dbm/ dbm of IIP3, dbm/ dbm of Noise Figure, while consuming mw of Power Consumption in a 1.8V supply Voltage. 1. Introduction T he main Goal of this project is to design a single dual band radio frequency receiver for GSM- 900MHz and GSM-1.8GHz communication system the simple block diagram of the given system in shown in Figure 1. Here two different antenna is used as the input impedance can be different for the two given input therefore two system are designed with such architecture. The main aim of the project was to attain low noise figure, optimum linearity, optimum Gain for the given communication Bands. The first block toward the designing process was to choose the appropriate architecture. Some of the architecture which were kept for were brief study and consideration were i) Superheterodyne Receiver architecture: the Superheterodyne receiver offers superior sensitivity, Frequency stability and selectivity. But the major drawback of Superheterodyne Receiver Is that the image frequency is received. LO and IF signals and harmonics and mixtures leaking to different places may cause problems ii) Direct Conversion Receiver Architecture: the disadvantages of the Superheterodyne receive are overcome i.e. there are no image band but the disadvantage of Direct conversion architecture is difficulties in implementation of dc offsets, leakage between RX and TX in full duplex operation, mixing spurs with direct conversion with even order distortion and flicker noise. iii) Image rejection Architectures like Heartley Architecture and Weaver Architecture. : this two architecture avoid the tradeoff between the image rejection and channel selection the further detail of this architecture is given in next block of description. Then in later part of the each design of building block of the system is discussed in detail based on Weaver Architecture, and at results of Spurs and comparison of experimental and hand calculated results summarizes the report. From Figure 1 we observe that two different frequency are been transformed to intermediate Frequency(IF) and then added after the channel selection further given to analog to digital converter (ADC). In this given architecture we find a heavy tradeoff between image rejection and channel selection. Figure 1: 900Mhz 1.8GHz Dual Band Receiver 2. Image Reject Receiver Architecture The objective of this Architecture is to eliminate image rejection filters and move channel selection to the baseband. Hartley Architecture Hartley s circuit mixes the RF input with the quadrature outputs of the local oscillator (LO) and low pass filters and shifts the results by 90 before adding them together. It can be shown that at point A and B contain the desired channel with the same polarity and the image with opposite polarity. The summed output is therefore free from the image.

3 translates this component to 2ω2-ωin-2ω1, i.e., image of the signal with respect to ω2, and mixing with ω2 brings it to ω2-ωin1+ω1, the same IF at which the signal appears. Figure 2: Hartley Image Rejection [1] The principal drawback of the Hartley architecture is its sensitivity to mismatches with phase and gain imbalance, the image is only partially cancelled. The influence of gain and phase mismatch on image rejection can be studied by lumping the mismatches of the mixers, the low-pass filters, the two ports of the adder, and the 90 phase-shift network into the error terms A and Ө for the gain and phase mismatches, respectively, between the two paths in the Hartley architecture. Figure 3: Weaver Architecture [2] Weaver Architecture Weaver architecture [4] is an extension of Hartley architecture. It can work as a modulator as well as image reject receiver. The architecture is shown in figure 3. Weaver architecture implements two consecutive quadrature down conversion on the signal such that the image is suppressed while adding at the output or else they are inverted so eliminated by adding at the output. Weaver topology avoids the issues related to RC- CR networks: resistance and capacitance variations, degradation of IRR as the frequency departs from 1/ (R1C1), attenuation, and noise. The weaver architecture must deal with a secondary image if the second IF is not zero. Illustrated in Figure 4, this effect arises if a component at 2ω2-ωin1+2ω1 accompanies the RF signal. Downconversion to the first IF Figure 4: Secondary Image in Weaver Architecture [1] 3. Receiver Architecture As shown in Figure 5 the receiver architecture, to employ 450- and 1350-MHz LO frequencies, we postulate that the transmitter must incorporate two upconversion steps: from baseband to an intermediate frequency (IF) of 450 MHz and from 450 to 900 MHz or 1.8 GHz. We also recognize that a simple mixer driven by the 450- MHz IF and the 1350-MHz LO generates the 900- MHz and 1.8-GHz signals with equal amplitudes, necessitating substantial filtering to suppress the unwanted component. It is therefore desirable to perform the second upconversion by singlesideband (SSB) mixing

4 Figure 5 Receiver Schematic Circuit is then undergo second quadrature Downconversion operation. The LNA and mixer of the two band are separate to allow flexibility in choice of device dimension and bias current, thus optimizing the performance in each path. For the second down conversion two quadrature down conversion mixer is provided both for I Q baseband output. Figure 6 Dual Band Receiver Architecture As shown in figure 3 given architecture the signal received is given to duplexer to perform band selection. The next step would be a Low Noise Amplifier (LNA) and two quadrature mixer which boosts and translates the IF to 450MHz the result The in receiver LO1 is set to midway between 900MHz and 1.8GHz bands, making two band images of each other. So RF mixing is highside for 900MHz and low side for 1.8GHz. The band select switches between two i.e. 900Hz and 1.8GHz. Also band select switch controls the addition and subtraction at the receiver output in order to generate the desired signal and reject image component. The Gain, Noise, Linearity play a vital role in the receiver s overall performance. Necessary iterations were made to achieve the optimum solution Transistor integrated Circuit

5 Even this Architecture suffers from disadvantages in context with direct conversion receiver. For example DC Offset due to selfmixing of the second LO, Flicker Noise, even I-Q mismatch degrades the down converted signal. 4. Building Blocks The design of Building blocks were designed with many iterations and trades of over noise, linearity, gain and power consumption. A. Low Noise Amplifier An LNA [1] is a key component which is placed at the front-end of a RF Communication circuit. Using an LNA, the effect of noise from subsequent stages of the receive chain is reduced by the gain of the LNA, while the noise of the LNA itself is injected directly into the received signal. Thus, it is necessary for an LNA to boost the desired signal power while adding as little noise and distortion as possible. This enables retrieval of the signal in the later stages of the system. A good LNA has a low NF (e.g. 2 db), a large enough gain (e.g. 20 db) and should have large enough intermodulation and compression point (IP3 and P1dB). Low noise amplifiers are one of the basic building blocks of any communication system. The purpose of the LNA is to amplify the received signal to acceptable levels with minimum self-generated additional noise. Gain, NF, non-linearity and impedance matching are four most important parameters in LNA design. There are few topologies by which optimum Results of LNA can be achieved. Iteration in topologies were for example 1) common Gate LNA, 2) Common Source LNA, 3) Inductor less LNA, 4) cascade Source degenerative LNA. Cascaded Source Degenerative LNA description and design specification are shown below. B. LNA + Mixer To achieve a relative low noise figure and a reasonable Input match, the LNA employs a common-source cascade stage with inductive degeneration [1]. To avoid uncertainties due to bond wire inductance, both the source inductor and the drain inductor or are integrated on the chip. Drawing approximately 5 ma from the supply, the LNA exhibits a noise figure of less than 4.5 db and IP 3 of greater than -2dBm. The parasitic capacitance of L 2 the drain junction and overlap capacitance of M 2, and the input capacitance of the mixers resonate with L 2 at the frequency of interest. With a Q of about three, this resonance lowers the image signal by approximately 10 db The LNA directly drives the quadrature RF mixers, which are configured as single-balanced circuits. Employing inductive loads to minimize thermal noise, each mixer drains 2 ma to achieve a reasonable tradeoff between noise and nonlinearity. With 39 db of voltage gain in the LNA, it is desirable to realize an of greater than 1.26 V (equivalent to 15dBm in a 50- interface) in the mixer, while maintaining its input-referred noise voltage below roughly 5 nv/ Hz 1/2. The dimensions of the LO input transistor play a key role in performance of a Mixer. Transistor is sized such that its overdrive voltage is sufficiently large to guarantee the required IP 3. Transistors LO input and in Fig. 7 also influence the noise and conversion gain of the mixer. The choice of the width of these devices is governed by a tradeoff between their switching time and the parasitic capacitances they introduce at node For a given (sinusoidal) LO swing, and are simultaneously on for a shorter period of time as their width increases. A compromise is thus reached by choosing (W/L)=200μm/0.18µm, allowing the pair to turn off with a differential swing of 100 mv while degrading the conversion gain by less than 1 db.

6 The interface between the LNA and the mixer merits particular attention. As shown in Fig. 6, to achieve a well-defined bias current in the mixer, the LNA incorporates the dc load with diodeconnected devices and Neglecting the dc drop across L, we note that V GS4 + V GS5 = V GS7 + V GS7 Thus, proper rationing of biasing transistor of LNA with respect to Input LO transistor of Mixer defines I d7 as a multiple I 2 of Capacitor C provides an ac ground at the source of so that the output resistance of does not degrade Q of LO 2. Realized as an NMOS transistor, C consists of a large number of gate fingers to reduce the channel resistance, achieving a Q of greater than 30 at the frequency of interest. In contrast to ac coupling techniques, the above approach incurs no signal loss, but it consumes some voltage headroom. Interestingly, Interface Transistor of LNA can serve as the current source for another circuit, e.g., an oscillator, thus reusing the bias current of the LNA. Figure 7: LNA with Mixer Biasing (Interface) Circuit Figure 9: P 1dB of LNA1.8Ghz Figure 8: RF Mixer 900Mhz 1.8GHz Noise Figure 4.02dB 3.92dB IIP 3-4dB -6dB S11-12dB -8.25dB S21 18dB 14dB P 1dB -9.17dB dB Gain 28.4dB 39.5dB

7 Figure 10: Mixer TestBench

8 Figure11: inputs given to mixer (a)vif (b)vlo Figure12:output after low pass amplifier Figure13:output from the mixer Figure14:differential output after LPF Figure 14: Output after Low Pass Amplifier Figure 13: Vin and VLO input to the mixer Figure 12: Differential Output after LPF Figure 11: output from Mixer

9 Table 1: LNA Stimulated Results Figure 17 Band Switching in IF Mixer [2] Figure 15: Gain, Noise Figure, S11 C. IF Mixer Figure 16: Transient Analysis RF Mixer The differential input of RF mixer is capacitive coupled to the input of the IF mixer, allowing independent biasing. With over all voltage gain of 39dB in LNA and Mixer, the linearity of IF tends to limit the performance of Receiver. The addition and subtraction discussed before has to be incorporate in RF stage. To avoid voltage headroom limitations at the output of the mixer, this function is implemented by switching the polarity of one of the differential signals generated by the RF mixers (Figure 12). The switching network is present in both signal paths to equalize the delays, but only one of the paths is controlled by the band-select input and the other is hard-wired. Figure 18 IF Mixer As shown in Figure 13 the IF mixer has double balanced circuit topology with transistor with vinn, vinp as input pair baseband and!baseband! as current multiplexer, vlop and vlon as switching Transistors. Whole circuit drain current is 1mA, input transistors are sized which can incorporate an over drive voltage of approx. 500mV, therefor achieving Ip3 of 18dB. The low transconductance of input transistors together

10 with voltage headroom limitations ultimately results in a slight voltage conversion loss of about -2 db in the IF mixer. The current multiplexer performs the switching function illustrated in Fig. 12. chosen. Figure 21: Simple Cross Coupled VCO [1] Figure 19: Noise Figure IF Mixer D. Voltage Controlled Oscillator Balanced NMOS VCO. The only losses being assumed in Figure 2.2 are those associated with the inductor. In reality there would also be losses associated with the variable capacitors (varactors) and the MOSFETs (the active devices). In practical integrated VCOs the inductors are on-chip spiral inductors with low quality factor that dominates the losses of the VCO tank. The quality factor QL of the inductor is given by An LC tank VCO can be thought of as two 1-port networks connected together. Figure 20: RLC Tank [1] One 1-port represents the frequency selective tank where the oscillations occur and the other 1-port represents the active circuit that cancels the losses in the tank. Oscillations can occur when i) the negative conductance of the active network cancels out the positive conductance (loss) of the tank ii) the closed loop gain has zero phase shift. Conditions i) & ii) above amount to a closed loop gain greater than or equal to unity magnitude with no imaginary component. The first step in designing an oscillator is to choose a circuit topology or type. For this example a balanced NMOS VCO will be Figure 22: VCO 1350MHz/450MHz Schematic Diagram

11 Q L = ω LR Where, ω is the oscillation frequency [rad/s]. L is the value of the inductance [H]. R is inductor s equivalent series resistance [Ω]. QL in practical silicon RF IC processes ranges from 5 to 10. Values of on-chip inductances range from 0.1 nh to 10 mh in practical RF IC processes. It can be shown that the oscillation frequency of the circuit shown in Figure 15-16, assuming ideal varactors and MOSFETs is given by ω = 1 2 LC 2 1 R2 C L It can also be shown, under the same set of assumptions that the gm of each MOSFET must be gm RC/ L for oscillation to occur. plot is shown below Figure 24: Bandpass Filter Response 5. Spurious Response An important concern in Heterodyne and image rejection receiver is the translation of various interferes to the desired channel frequency after Downconversion. Owing to nonlinearities and switching operations in each mixers, an interference at f int results in component at kf int + mf LO. With two down conversion using LO 1 and LO 2 the down conversion spurs appears at kf int ± mf LO1 ± mf LO2, many of which may fall in the desired based band channel. Since in band interferers are not filtered before channel selection and since they are located on the same side of f LO1 as the desired signal, they are not suppressed by the image rejection technique used in the receiver Figure 23: VCO 1.8GHz Periodic Phase Noise E. Baseband Filter Baseband filter or we can see image reject filter which is added at the output of RF mixer before giving it to IF mixer. Image rejection is required to get desired frequency In this Receiver system we have use a 500MHz Low Pass Filter with R=160Ω and C=2pF the Bode Figure 25: spurious component downconverted to baseband (a) effect of in band interference (b) most significant spur combination [2]

12 It is also important to know that spurious response is not exercise in single noise figure measurement, but it revels the performance of the receiver. The spurious response of a dual band receiver has been examined with the aid of spreadsheet program. Five interference frequencies in each band were found to be the most significant sources of downconverted spurs. Fig. 20 (b) illustrates the mixing mechanisms that generate in-channel components. Random mismatches in the RF mixers together with the finite bandwidth of the IF bandpass filter yield another type of spur that results from mixing of the RF input and harmonics of the second LO. In addition to input-dependent spurious response, some other tones are observed that result from mixing of the LO signals themselves. The most significant of these is given byf LO1-3f LO2. Another affect arises in 1.8GHz mode is the receiver signal corruption by image before the first down conversion. As illustrated in Fig. 16, if a strong image Component at 900 MHz accompanies the desired signal, second-order distortion in the LNA creates the second harmonic of the image, thereby degrading the signal-to-noise ratio SNR in the DCS1800 band. Nevertheless, since the Duplexer suppresses the image considerably, the corruption is negligible. Simulations indicate that if a 98-dBm 1800GHz signal and a 30-dBm 900-MHz image are applied to the receiver, the output of the LNA exhibits an SNR of 50 db provided the duplexer attenuates the image by 40 db. With a fully differential LNA/mixer design, this effect would be even less critical. Figure 26: Second Order distortion in 1800MHz band 6. Experimental Results 900MHz 1.8GHz Noise Figure 3.8dB 4.2dB IIP 3-8dBm -6dBm Image 40dB 36dB Rejection Power 84mW 90mW Dissipation Voltage Gain 31dBm 39dBm Supply Voltage 1.8V Technology 0.18µm Table 2: Experimental Result for Dual Band Receiver

13 Reference: [1] B. Razavi, RF Microelectronics, Englewood Cliffs, NJ: Prentice-Hall, [2] S. Wu and B. Razavi, A 900-MHz/1.8-GHz CMOS receiver for dual band applications, in ISSCC Dig. Tech. Papers, Feb. 1998, pp [3] R. Hartley, Modulation system, U.S. Patent , Apr [4]D. K. Weaver, Jr., A third method of generation and detection of single-sideband signals, Proc. IRE, pp , June [5] D. K. Shaeffer and T. H. Lee, A 1.5V, 1.5GHz CMOS low noise amplifier, in Symp. VLSI Circuits Dig. Tech. Papers, June 1996, pp [6] D. K. Weaver, Jr., A third method of generation and detection of single-sideband signals, Proc. IRE, pp , June 1956.

A 900MHz / 1.8GHz CMOS Receiver for Dual Band Applications*

A 900MHz / 1.8GHz CMOS Receiver for Dual Band Applications* FA 8.2: S. Wu, B. Razavi A 900MHz / 1.8GHz CMOS Receiver for Dual Band Applications* University of California, Los Angeles, CA This dual-band CMOS receiver for GSM and DCS1800 applications incorporates

More information

RF Integrated Circuits

RF Integrated Circuits Introduction and Motivation RF Integrated Circuits The recent explosion in the radio frequency (RF) and wireless market has caught the semiconductor industry by surprise. The increasing demand for affordable

More information

Designing a 960 MHz CMOS LNA and Mixer using ADS. EE 5390 RFIC Design Michelle Montoya Alfredo Perez. April 15, 2004

Designing a 960 MHz CMOS LNA and Mixer using ADS. EE 5390 RFIC Design Michelle Montoya Alfredo Perez. April 15, 2004 Designing a 960 MHz CMOS LNA and Mixer using ADS EE 5390 RFIC Design Michelle Montoya Alfredo Perez April 15, 2004 The University of Texas at El Paso Dr Tim S. Yao ABSTRACT Two circuits satisfying the

More information

Receiver Architecture

Receiver Architecture Receiver Architecture Receiver basics Channel selection why not at RF? BPF first or LNA first? Direct digitization of RF signal Receiver architectures Sub-sampling receiver noise problem Heterodyne receiver

More information

Quadrature GPS Receiver Front-End in 0.13μm CMOS: The QLMV cell

Quadrature GPS Receiver Front-End in 0.13μm CMOS: The QLMV cell 1 Quadrature GPS Receiver Front-End in 0.13μm CMOS: The QLMV cell Yee-Huan Ng, Po-Chia Lai, and Jia Ruan Abstract This paper presents a GPS receiver front end design that is based on the single-stage quadrature

More information

CHAPTER 4 ULTRA WIDE BAND LOW NOISE AMPLIFIER DESIGN

CHAPTER 4 ULTRA WIDE BAND LOW NOISE AMPLIFIER DESIGN 93 CHAPTER 4 ULTRA WIDE BAND LOW NOISE AMPLIFIER DESIGN 4.1 INTRODUCTION Ultra Wide Band (UWB) system is capable of transmitting data over a wide spectrum of frequency bands with low power and high data

More information

CHAPTER 3 CMOS LOW NOISE AMPLIFIERS

CHAPTER 3 CMOS LOW NOISE AMPLIFIERS 46 CHAPTER 3 CMOS LOW NOISE AMPLIFIERS 3.1 INTRODUCTION The Low Noise Amplifier (LNA) plays an important role in the receiver design. LNA serves as the first block in the RF receiver. It is a critical

More information

SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver

SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver Arvin R. Shahani, Derek K. Shaeffer, Thomas H. Lee Stanford University, Stanford, CA At submicron channel lengths, CMOS is

More information

TSEK03: Radio Frequency Integrated Circuits (RFIC) Lecture 5-6: Mixers

TSEK03: Radio Frequency Integrated Circuits (RFIC) Lecture 5-6: Mixers TSEK03: Radio Frequency Integrated Circuits (RFIC) Lecture 5-6: Mixers Ted Johansson, EKS, ISY ted.johansson@liu.se Overview 2 Razavi: Chapter 6.1-6.3, pp. 343-398. Lee: Chapter 13. 6.1 Mixers general

More information

A 2.6GHz/5.2GHz CMOS Voltage-Controlled Oscillator*

A 2.6GHz/5.2GHz CMOS Voltage-Controlled Oscillator* WP 23.6 A 2.6GHz/5.2GHz CMOS Voltage-Controlled Oscillator* Christopher Lam, Behzad Razavi University of California, Los Angeles, CA New wireless local area network (WLAN) standards have recently emerged

More information

Session 3. CMOS RF IC Design Principles

Session 3. CMOS RF IC Design Principles Session 3 CMOS RF IC Design Principles Session Delivered by: D. Varun 1 Session Topics Standards RF wireless communications Multi standard RF transceivers RF front end architectures Frequency down conversion

More information

ISSCC 2006 / SESSION 20 / WLAN/WPAN / 20.5

ISSCC 2006 / SESSION 20 / WLAN/WPAN / 20.5 20.5 An Ultra-Low Power 2.4GHz RF Transceiver for Wireless Sensor Networks in 0.13µm CMOS with 400mV Supply and an Integrated Passive RX Front-End Ben W. Cook, Axel D. Berny, Alyosha Molnar, Steven Lanzisera,

More information

Highly linear common-gate mixer employing intrinsic second and third order distortion cancellation

Highly linear common-gate mixer employing intrinsic second and third order distortion cancellation Highly linear common-gate mixer employing intrinsic second and third order distortion cancellation Mahdi Parvizi a), and Abdolreza Nabavi b) Microelectronics Laboratory, Tarbiat Modares University, Tehran

More information

2005 IEEE. Reprinted with permission.

2005 IEEE. Reprinted with permission. P. Sivonen, A. Vilander, and A. Pärssinen, Cancellation of second-order intermodulation distortion and enhancement of IIP2 in common-source and commonemitter RF transconductors, IEEE Transactions on Circuits

More information

LF to 4 GHz High Linearity Y-Mixer ADL5350

LF to 4 GHz High Linearity Y-Mixer ADL5350 LF to GHz High Linearity Y-Mixer ADL535 FEATURES Broadband radio frequency (RF), intermediate frequency (IF), and local oscillator (LO) ports Conversion loss:. db Noise figure:.5 db High input IP3: 25

More information

RF IC Design Challenges

RF IC Design Challenges 25.1 RF IC Design Challenges Behzad Razavi Electrical Engineering Department University of California, Los Angeles Abstract This paper describes the challenges in designing RF integrated circuits for wireless

More information

Low Flicker Noise Current-Folded Mixer

Low Flicker Noise Current-Folded Mixer Chapter 4 Low Flicker Noise Current-Folded Mixer The chapter presents a current-folded mixer achieving low 1/f noise for low power direct conversion receivers. Section 4.1 introduces the necessity of low

More information

Tuesday, March 22nd, 9:15 11:00

Tuesday, March 22nd, 9:15 11:00 Nonlinearity it and mismatch Tuesday, March 22nd, 9:15 11:00 Snorre Aunet (sa@ifi.uio.no) Nanoelectronics group Department of Informatics University of Oslo Last time and today, Tuesday 22nd of March:

More information

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier Chapter 5 Operational Amplifiers and Source Followers 5.1 Operational Amplifier In single ended operation the output is measured with respect to a fixed potential, usually ground, whereas in double-ended

More information

NEW WIRELESS applications are emerging where

NEW WIRELESS applications are emerging where IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 39, NO. 4, APRIL 2004 709 A Multiply-by-3 Coupled-Ring Oscillator for Low-Power Frequency Synthesis Shwetabh Verma, Member, IEEE, Junfeng Xu, and Thomas H. Lee,

More information

A High Gain and Improved Linearity 5.7GHz CMOS LNA with Inductive Source Degeneration Topology

A High Gain and Improved Linearity 5.7GHz CMOS LNA with Inductive Source Degeneration Topology A High Gain and Improved Linearity 5.7GHz CMOS LNA with Inductive Source Degeneration Topology Ch. Anandini 1, Ram Kumar 2, F. A. Talukdar 3 1,2,3 Department of Electronics & Communication Engineering,

More information

Chapter 6. Case Study: 2.4-GHz Direct Conversion Receiver. 6.1 Receiver Front-End Design

Chapter 6. Case Study: 2.4-GHz Direct Conversion Receiver. 6.1 Receiver Front-End Design Chapter 6 Case Study: 2.4-GHz Direct Conversion Receiver The chapter presents a 0.25-µm CMOS receiver front-end designed for 2.4-GHz direct conversion RF transceiver and demonstrates the necessity and

More information

ISSCC 2006 / SESSION 33 / MOBILE TV / 33.4

ISSCC 2006 / SESSION 33 / MOBILE TV / 33.4 33.4 A Dual-Channel Direct-Conversion CMOS Receiver for Mobile Multimedia Broadcasting Vincenzo Peluso, Yang Xu, Peter Gazzerro, Yiwu Tang, Li Liu, Zhenbiao Li, Wei Xiong, Charles Persico Qualcomm, San

More information

Transceiver Architectures

Transceiver Architectures + Transceiver Architectures Outline Heterodyne Receivers! Problem of Image! Mixing Spurs! Sliding-IF RX Direct-Conversion Receivers! LO Leakage and Offsets! Even-Order Nonlinearity! I/Q Mismatch Image-Reject

More information

Evaluating and Optimizing Tradeoffs in CMOS RFIC Upconversion Mixer Design. by Dr. Stephen Long University of California, Santa Barbara

Evaluating and Optimizing Tradeoffs in CMOS RFIC Upconversion Mixer Design. by Dr. Stephen Long University of California, Santa Barbara Evaluating and Optimizing Tradeoffs in CMOS RFIC Upconversion Mixer Design by Dr. Stephen Long University of California, Santa Barbara It is not easy to design an RFIC mixer. Different, sometimes conflicting,

More information

SP 23.6: A 1.8GHz CMOS Voltage-Controlled Oscillator

SP 23.6: A 1.8GHz CMOS Voltage-Controlled Oscillator SP 23.6: A 1.8GHz CMOS Voltage-Controlled Oscillator Behzad Razavi University of California, Los Angeles, CA Formerly with Hewlett-Packard Laboratories, Palo Alto, CA This paper describes the factors that

More information

ALTHOUGH zero-if and low-if architectures have been

ALTHOUGH zero-if and low-if architectures have been IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 40, NO. 6, JUNE 2005 1249 A 110-MHz 84-dB CMOS Programmable Gain Amplifier With Integrated RSSI Function Chun-Pang Wu and Hen-Wai Tsao Abstract This paper describes

More information

Due to the absence of internal nodes, inverter-based Gm-C filters [1,2] allow achieving bandwidths beyond what is possible

Due to the absence of internal nodes, inverter-based Gm-C filters [1,2] allow achieving bandwidths beyond what is possible A Forward-Body-Bias Tuned 450MHz Gm-C 3 rd -Order Low-Pass Filter in 28nm UTBB FD-SOI with >1dBVp IIP3 over a 0.7-to-1V Supply Joeri Lechevallier 1,2, Remko Struiksma 1, Hani Sherry 2, Andreia Cathelin

More information

High Gain Low Noise Amplifier Design Using Active Feedback

High Gain Low Noise Amplifier Design Using Active Feedback Chapter 6 High Gain Low Noise Amplifier Design Using Active Feedback In the previous two chapters, we have used passive feedback such as capacitor and inductor as feedback. This chapter deals with the

More information

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2 ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2 20.2 A Digitally Calibrated 5.15-5.825GHz Transceiver for 802.11a Wireless LANs in 0.18µm CMOS I. Bouras 1, S. Bouras 1, T. Georgantas

More information

Quiz2: Mixer and VCO Design

Quiz2: Mixer and VCO Design Quiz2: Mixer and VCO Design Fei Sun and Hao Zhong 1 Question1 - Mixer Design 1.1 Design Criteria According to the specifications described in the problem, we can get the design criteria for mixer design:

More information

Introduction to Receivers

Introduction to Receivers Introduction to Receivers Purpose: translate RF signals to baseband Shift frequency Amplify Filter Demodulate Why is this a challenge? Interference Large dynamic range required Many receivers must be capable

More information

ISSCC 2004 / SESSION 26 / OPTICAL AND FAST I/O / 26.6

ISSCC 2004 / SESSION 26 / OPTICAL AND FAST I/O / 26.6 ISSCC 2004 / SESSION 26 / OPTICAL AND FAST I/O / 26.6 26.6 40Gb/s Amplifier and ESD Protection Circuit in 0.18µm CMOS Technology Sherif Galal, Behzad Razavi University of California, Los Angeles, CA Optical

More information

A low noise amplifier with improved linearity and high gain

A low noise amplifier with improved linearity and high gain International Journal of Electronics and Computer Science Engineering 1188 Available Online at www.ijecse.org ISSN- 2277-1956 A low noise amplifier with improved linearity and high gain Ram Kumar, Jitendra

More information

THE interest in millimeter-wave communications for broadband

THE interest in millimeter-wave communications for broadband IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 42, NO. 12, DECEMBER 2007 2887 Heterodyne Phase Locking: A Technique for High-Speed Frequency Division Behzad Razavi, Fellow, IEEE Abstract A phase-locked loop

More information

CMOS Design of Wideband Inductor-Less LNA

CMOS Design of Wideband Inductor-Less LNA IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 8, Issue 3, Ver. I (May.-June. 2018), PP 25-30 e-issn: 2319 4200, p-issn No. : 2319 4197 www.iosrjournals.org CMOS Design of Wideband Inductor-Less

More information

Radio Receiver Architectures and Analysis

Radio Receiver Architectures and Analysis Radio Receiver Architectures and Analysis Robert Wilson December 6, 01 Abstract This article discusses some common receiver architectures and analyzes some of the impairments that apply to each. 1 Contents

More information

CMOS RFIC Design for Direct Conversion Receivers. Zhaofeng ZHANG Supervisor: Dr. Jack Lau

CMOS RFIC Design for Direct Conversion Receivers. Zhaofeng ZHANG Supervisor: Dr. Jack Lau CMOS RFIC Design for Direct Conversion Receivers Zhaofeng ZHANG Supervisor: Dr. Jack Lau Outline of Presentation Background Introduction Thesis Contributions Design Issues and Solutions A Direct Conversion

More information

A 5.2GHz RF Front-End

A 5.2GHz RF Front-End University of Michigan, EECS 522 Final Project, Winter 2011 Natekar, Vasudevan and Viswanath 1 A 5.2GHz RF Front-End Neel Natekar, Vasudha Vasudevan, and Anupam Viswanath, University of Michigan, Ann Arbor.

More information

TSEK03: Radio Frequency Integrated Circuits (RFIC) Lecture 8 & 9: Oscillators

TSEK03: Radio Frequency Integrated Circuits (RFIC) Lecture 8 & 9: Oscillators TSEK03: Radio Frequency Integrated Circuits (RFIC) Lecture 8 & 9: Oscillators Ted Johansson, EKS, ISY ted.johansson@liu.se Overview 2 Razavi: Chapter 8, pp. 505-532, 544-551, 491-498. 8.1 Performance Parameters

More information

RF CMOS 0.5 µm Low Noise Amplifier and Mixer Design

RF CMOS 0.5 µm Low Noise Amplifier and Mixer Design RF CMOS 0.5 µm Low Noise Amplifier and Mixer Design By VIKRAM JAYARAM, B.Tech Signal Processing and Communication Group & UMESH UTHAMAN, B.E Nanomil FINAL PROJECT Presented to Dr.Tim S Yao of Department

More information

Transceiver Architectures (III)

Transceiver Architectures (III) Image-Reject Receivers Transceiver Architectures (III) Since the image and the signal lie on the two sides of the LO frequency, it is possible to architect the RX so that it can distinguish between the

More information

LINEARITY IMPROVEMENT OF CASCODE CMOS LNA USING A DIODE CONNECTED NMOS TRANSISTOR WITH A PARALLEL RC CIRCUIT

LINEARITY IMPROVEMENT OF CASCODE CMOS LNA USING A DIODE CONNECTED NMOS TRANSISTOR WITH A PARALLEL RC CIRCUIT Progress In Electromagnetics Research C, Vol. 17, 29 38, 2010 LINEARITY IMPROVEMENT OF CASCODE CMOS LNA USING A DIODE CONNECTED NMOS TRANSISTOR WITH A PARALLEL RC CIRCUIT C.-P. Chang, W.-C. Chien, C.-C.

More information

FA 8.1: A 115mW CMOS GPS Receiver

FA 8.1: A 115mW CMOS GPS Receiver FA 8.1: A 115mW CMOS GPS Receiver D. Shaeffer, A. Shahani, S.S. Mohan, H. Samavati, H. Rategh M. Hershenson, M. Xu, C.P. Yue, D. Eddleman, and T.H. Lee Stanford University OVERVIEW GPS Overview Architecture

More information

THE rapid growth of portable wireless communication

THE rapid growth of portable wireless communication 1166 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 32, NO. 8, AUGUST 1997 A Class AB Monolithic Mixer for 900-MHz Applications Keng Leong Fong, Christopher Dennis Hull, and Robert G. Meyer, Fellow, IEEE Abstract

More information

Design of a Low Power 5GHz CMOS Radio Frequency Low Noise Amplifier Rakshith Venkatesh

Design of a Low Power 5GHz CMOS Radio Frequency Low Noise Amplifier Rakshith Venkatesh Design of a Low Power 5GHz CMOS Radio Frequency Low Noise Amplifier Rakshith Venkatesh Abstract A 5GHz low power consumption LNA has been designed here for the receiver front end using 90nm CMOS technology.

More information

Low-Noise Amplifiers

Low-Noise Amplifiers 007/Oct 4, 31 1 General Considerations Noise Figure Low-Noise Amplifiers Table 6.1 Typical LNA characteristics in heterodyne systems. NF IIP 3 db 10 dbm Gain 15 db Input and Output Impedance 50 Ω Input

More information

THE RECENT SURGE in applications of radio-frequency

THE RECENT SURGE in applications of radio-frequency 428 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 44, NO. 6, JUNE 1997 Design Considerations for Direct-Conversion Receivers Behzad Razavi Abstract This paper

More information

A Merged CMOS LNA and Mixer for a WCDMA Receiver

A Merged CMOS LNA and Mixer for a WCDMA Receiver IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 38, NO. 6, JUNE 2003 1045 A Merged CMOS LNA and Mixer for a WCDMA Receiver Henrik Sjöland, Member, IEEE, Ali Karimi-Sanjaani, and Asad A. Abidi, Fellow, IEEE

More information

A 7-GHz 1.8-dB NF CMOS Low-Noise Amplifier

A 7-GHz 1.8-dB NF CMOS Low-Noise Amplifier 852 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 37, NO. 7, JULY 2002 A 7-GHz 1.8-dB NF CMOS Low-Noise Amplifier Ryuichi Fujimoto, Member, IEEE, Kenji Kojima, and Shoji Otaka Abstract A 7-GHz low-noise amplifier

More information

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5 ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5 20.5 A 2.4GHz CMOS Transceiver and Baseband Processor Chipset for 802.11b Wireless LAN Application George Chien, Weishi Feng, Yungping

More information

RF transmitter with Cartesian feedback

RF transmitter with Cartesian feedback UNIVERSITY OF MICHIGAN EECS 522 FINAL PROJECT: RF TRANSMITTER WITH CARTESIAN FEEDBACK 1 RF transmitter with Cartesian feedback Alexandra Holbel, Fu-Pang Hsu, and Chunyang Zhai, University of Michigan Abstract

More information

An up-conversion TV receiver front-end with noise canceling body-driven pmos common gate LNA and LC-loaded passive mixer

An up-conversion TV receiver front-end with noise canceling body-driven pmos common gate LNA and LC-loaded passive mixer LETTER IEICE Electronics Express, Vol.14, No.9, 1 11 An up-conversion TV receiver front-end with noise canceling body-driven pmos common gate LNA and LC-loaded passive mixer Donggu Im 1 and Ilku Nam 2a)

More information

Receiver Architectures

Receiver Architectures 83080RA/1 Receiver Architectures Markku Renfors Tampere University of Technology Digital Media Institute/Telecommunications 83080RA/2 Topics 1. Main analog components for receivers - amplifiers - filters

More information

THE unlicensed band around 60 GHz continues to present

THE unlicensed band around 60 GHz continues to present IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 2, FEBRUARY 2008 477 A Millimeter-Wave CMOS Heterodyne Receiver With On-Chip LO and Divider Behzad Razavi, Fellow, IEEE Abstract A heterodyne receiver

More information

A GSM Band Low-Power LNA 1. LNA Schematic

A GSM Band Low-Power LNA 1. LNA Schematic A GSM Band Low-Power LNA 1. LNA Schematic Fig1.1 Schematic of the Designed LNA 2. Design Summary Specification Required Simulation Results Peak S21 (Gain) > 10dB >11 db 3dB Bandwidth > 200MHz (

More information

THE TREND toward implementing systems with low

THE TREND toward implementing systems with low 724 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 30, NO. 7, JULY 1995 Design of a 100-MHz 10-mW 3-V Sample-and-Hold Amplifier in Digital Bipolar Technology Behzad Razavi, Member, IEEE Abstract This paper

More information

Technical Article A DIRECT QUADRATURE MODULATOR IC FOR 0.9 TO 2.5 GHZ WIRELESS SYSTEMS

Technical Article A DIRECT QUADRATURE MODULATOR IC FOR 0.9 TO 2.5 GHZ WIRELESS SYSTEMS Introduction As wireless system designs have moved from carrier frequencies at approximately 9 MHz to wider bandwidth applications like Personal Communication System (PCS) phones at 1.8 GHz and wireless

More information

INTRODUCTION TO TRANSCEIVER DESIGN ECE3103 ADVANCED TELECOMMUNICATION SYSTEMS

INTRODUCTION TO TRANSCEIVER DESIGN ECE3103 ADVANCED TELECOMMUNICATION SYSTEMS INTRODUCTION TO TRANSCEIVER DESIGN ECE3103 ADVANCED TELECOMMUNICATION SYSTEMS FUNCTIONS OF A TRANSMITTER The basic functions of a transmitter are: a) up-conversion: move signal to desired RF carrier frequency.

More information

A-1.8V Operation Switchable Direct-Conversion Receiver with sub-harmonic mixer

A-1.8V Operation Switchable Direct-Conversion Receiver with sub-harmonic mixer , pp.94-98 http://dx.doi.org/1.14257/astl.216.135.24 A-1.8V Operation Switchable Direct-Conversion Receiver with sub-harmonic mixer Mi-young Lee 1 1 Dept. of Electronic Eng., Hannam University, Ojeong

More information

RF/IF Terminology and Specs

RF/IF Terminology and Specs RF/IF Terminology and Specs Contributors: Brad Brannon John Greichen Leo McHugh Eamon Nash Eberhard Brunner 1 Terminology LNA - Low-Noise Amplifier. A specialized amplifier to boost the very small received

More information

6.776 High Speed Communication Circuits and Systems Lecture 14 Voltage Controlled Oscillators

6.776 High Speed Communication Circuits and Systems Lecture 14 Voltage Controlled Oscillators 6.776 High Speed Communication Circuits and Systems Lecture 14 Voltage Controlled Oscillators Massachusetts Institute of Technology March 29, 2005 Copyright 2005 by Michael H. Perrott VCO Design for Narrowband

More information

RADIO RECEIVERS ECE 3103 WIRELESS COMMUNICATION SYSTEMS

RADIO RECEIVERS ECE 3103 WIRELESS COMMUNICATION SYSTEMS RADIO RECEIVERS ECE 3103 WIRELESS COMMUNICATION SYSTEMS FUNCTIONS OF A RADIO RECEIVER The main functions of a radio receiver are: 1. To intercept the RF signal by using the receiver antenna 2. Select the

More information

High-Linearity CMOS. RF Front-End Circuits

High-Linearity CMOS. RF Front-End Circuits High-Linearity CMOS RF Front-End Circuits Yongwang Ding Ramesh Harjani iigh-linearity CMOS tf Front-End Circuits - Springer Library of Congress Cataloging-in-Publication Data A C.I.P. Catalogue record

More information

WITH advancements in submicrometer CMOS technology,

WITH advancements in submicrometer CMOS technology, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 3, MARCH 2005 881 A Complementary Colpitts Oscillator in CMOS Technology Choong-Yul Cha, Member, IEEE, and Sang-Gug Lee, Member, IEEE

More information

Lecture 20: Passive Mixers

Lecture 20: Passive Mixers EECS 142 Lecture 20: Passive Mixers Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2005 by Ali M. Niknejad A. M. Niknejad University of California, Berkeley EECS 142 Lecture 20 p.

More information

Reconfigurable and Simultaneous Dual Band Galileo/GPS Front-end Receiver in 0.13µm RFCMOS

Reconfigurable and Simultaneous Dual Band Galileo/GPS Front-end Receiver in 0.13µm RFCMOS Reconfigurable and Simultaneous Dual Band Galileo/GPS Front-end Receiver in 0.13µm RFCMOS A. Pizzarulli 1, G. Montagna 2, M. Pini 3, S. Salerno 4, N.Lofu 2 and G. Sensalari 1 (1) Fondazione Torino Wireless,

More information

EVALUATION KIT AVAILABLE 10MHz to 1050MHz Integrated RF Oscillator with Buffered Outputs. Typical Operating Circuit. 10nH 1000pF MAX2620 BIAS SUPPLY

EVALUATION KIT AVAILABLE 10MHz to 1050MHz Integrated RF Oscillator with Buffered Outputs. Typical Operating Circuit. 10nH 1000pF MAX2620 BIAS SUPPLY 19-1248; Rev 1; 5/98 EVALUATION KIT AVAILABLE 10MHz to 1050MHz Integrated General Description The combines a low-noise oscillator with two output buffers in a low-cost, plastic surface-mount, ultra-small

More information

1 Introduction to Highly Integrated and Tunable RF Receiver Front Ends

1 Introduction to Highly Integrated and Tunable RF Receiver Front Ends 1 Introduction to Highly Integrated and Tunable RF Receiver Front Ends 1.1 Introduction With the ever-increasing demand for instant access to data over wideband communication channels, the quest for a

More information

Receiver Design. Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University 2011/2/21

Receiver Design. Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University 2011/2/21 Receiver Design Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University 2011/2/21 MW & RF Design / Prof. T. -L. Wu 1 The receiver mush be very sensitive to -110dBm

More information

Low-Voltage IF Transceiver with Limiter/RSSI and Quadrature Modulator

Low-Voltage IF Transceiver with Limiter/RSSI and Quadrature Modulator 19-1296; Rev 2; 1/1 EVALUATION KIT MANUAL FOLLOWS DATA SHEET Low-Voltage IF Transceiver with General Description The is a highly integrated IF transceiver for digital wireless applications. It operates

More information

Dr.-Ing. Ulrich L. Rohde

Dr.-Ing. Ulrich L. Rohde Dr.-Ing. Ulrich L. Rohde Noise in Oscillators with Active Inductors Presented to the Faculty 3 : Mechanical engineering, Electrical engineering and industrial engineering, Brandenburg University of Technology

More information

Radio Research Directions. Behzad Razavi Communication Circuits Laboratory Electrical Engineering Department University of California, Los Angeles

Radio Research Directions. Behzad Razavi Communication Circuits Laboratory Electrical Engineering Department University of California, Los Angeles Radio Research Directions Behzad Razavi Communication Circuits Laboratory Electrical Engineering Department University of California, Los Angeles Outline Introduction Millimeter-Wave Transceivers - Applications

More information

ADI 2006 RF Seminar. Chapter II RF/IF Components and Specifications for Receivers

ADI 2006 RF Seminar. Chapter II RF/IF Components and Specifications for Receivers ADI 2006 RF Seminar Chapter II RF/IF Components and Specifications for Receivers 1 RF/IF Components and Specifications for Receivers Fixed Gain and Variable Gain Amplifiers IQ Demodulators Analog-to-Digital

More information

ELEN 701 RF & Microwave Systems Engineering. Lecture 2 September 27, 2006 Dr. Michael Thorburn Santa Clara University

ELEN 701 RF & Microwave Systems Engineering. Lecture 2 September 27, 2006 Dr. Michael Thorburn Santa Clara University ELEN 701 RF & Microwave Systems Engineering Lecture 2 September 27, 2006 Dr. Michael Thorburn Santa Clara University Lecture 2 Radio Architecture and Design Considerations, Part I Architecture Superheterodyne

More information

A New Transceiver Architecture for the 60-GHz Band Ali Parsa, Member, IEEE, and Behzad Razavi, Fellow, IEEE

A New Transceiver Architecture for the 60-GHz Band Ali Parsa, Member, IEEE, and Behzad Razavi, Fellow, IEEE IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 44, NO. 3, MARCH 2009 751 A New Transceiver Architecture for the 60-GHz Band Ali Parsa, Member, IEEE, and Behzad Razavi, Fellow, IEEE Abstract A new half-rf architecture

More information

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI UNIT III TUNED AMPLIFIERS PART A (2 Marks)

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI UNIT III TUNED AMPLIFIERS PART A (2 Marks) MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI-621213. UNIT III TUNED AMPLIFIERS PART A (2 Marks) 1. What is meant by tuned amplifiers? Tuned amplifiers are amplifiers that are designed to reject a certain

More information

Design of a Low Noise Amplifier using 0.18µm CMOS technology

Design of a Low Noise Amplifier using 0.18µm CMOS technology The International Journal Of Engineering And Science (IJES) Volume 4 Issue 6 Pages PP.11-16 June - 2015 ISSN (e): 2319 1813 ISSN (p): 2319 1805 Design of a Low Noise Amplifier using 0.18µm CMOS technology

More information

EE301 Electronics I , Fall

EE301 Electronics I , Fall EE301 Electronics I 2018-2019, Fall 1. Introduction to Microelectronics (1 Week/3 Hrs.) Introduction, Historical Background, Basic Consepts 2. Rewiev of Semiconductors (1 Week/3 Hrs.) Semiconductor materials

More information

A 3 5 GHz CMOS High Linearity Ultra Wideband Low Noise Amplifier in 0.18µ CMOS

A 3 5 GHz CMOS High Linearity Ultra Wideband Low Noise Amplifier in 0.18µ CMOS Proceedings of the 5th WSEAS Int. Conf. on CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, Dallas, USA, November -, 6 5 A 5 GHz CMOS High Linearity Ultra Wideband Low Noise Amplifier in.8µ

More information

Analog and RF circuit techniques in nanometer CMOS

Analog and RF circuit techniques in nanometer CMOS Analog and RF circuit techniques in nanometer CMOS Bram Nauta University of Twente The Netherlands http://icd.ewi.utwente.nl b.nauta@utwente.nl UNIVERSITY OF TWENTE. Outline Introduction Balun-LNA-Mixer

More information

Outline. Noise and Distortion. Noise basics Component and system noise Distortion INF4420. Jørgen Andreas Michaelsen Spring / 45 2 / 45

Outline. Noise and Distortion. Noise basics Component and system noise Distortion INF4420. Jørgen Andreas Michaelsen Spring / 45 2 / 45 INF440 Noise and Distortion Jørgen Andreas Michaelsen Spring 013 1 / 45 Outline Noise basics Component and system noise Distortion Spring 013 Noise and distortion / 45 Introduction We have already considered

More information

Chapter 13 Oscillators and Data Converters

Chapter 13 Oscillators and Data Converters Chapter 13 Oscillators and Data Converters 13.1 General Considerations 13.2 Ring Oscillators 13.3 LC Oscillators 13.4 Phase Shift Oscillator 13.5 Wien-Bridge Oscillator 13.6 Crystal Oscillators 13.7 Chapter

More information

Low Phase Noise Gm-Boosted Differential Gate-to-Source Feedback Colpitts CMOS VCO Jong-Phil Hong, Student Member, IEEE, and Sang-Gug Lee, Member, IEEE

Low Phase Noise Gm-Boosted Differential Gate-to-Source Feedback Colpitts CMOS VCO Jong-Phil Hong, Student Member, IEEE, and Sang-Gug Lee, Member, IEEE IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 44, NO. 11, NOVEMBER 2009 3079 Low Phase Noise Gm-Boosted Differential Gate-to-Source Feedback Colpitts CMOS VCO Jong-Phil Hong, Student Member, IEEE, and Sang-Gug

More information

Design and Simulation Study of Active Balun Circuits for WiMAX Applications

Design and Simulation Study of Active Balun Circuits for WiMAX Applications Design and Simulation Study of Circuits for WiMAX Applications Frederick Ray I. Gomez 1,2,*, John Richard E. Hizon 2 and Maria Theresa G. De Leon 2 1 New Product Introduction Department, Back-End Manufacturing

More information

Low-Power RF Integrated Circuit Design Techniques for Short-Range Wireless Connectivity

Low-Power RF Integrated Circuit Design Techniques for Short-Range Wireless Connectivity Low-Power RF Integrated Circuit Design Techniques for Short-Range Wireless Connectivity Marvin Onabajo Assistant Professor Analog and Mixed-Signal Integrated Circuits (AMSIC) Research Laboratory Dept.

More information

ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.8

ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.8 ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.8 10.8 10Gb/s Limiting Amplifier and Laser/Modulator Driver in 0.18µm CMOS Technology Sherif Galal, Behzad Razavi Electrical Engineering

More information

On the design of low- voltage, low- power CMOS analog multipliers for RF applications

On the design of low- voltage, low- power CMOS analog multipliers for RF applications C.J. Debono, F. Maloberti, J. Micallef: "On the design of low-voltage, low-power CMOS analog multipliers for RF applications"; IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 10,

More information

RFIC DESIGN EXAMPLE: MIXER

RFIC DESIGN EXAMPLE: MIXER APPENDIX RFI DESIGN EXAMPLE: MIXER The design of radio frequency integrated circuits (RFIs) is relatively complicated, involving many steps as mentioned in hapter 15, from the design of constituent circuit

More information

A Low Power Single Ended Inductorless Wideband CMOS LNA with G m Enhancement and Noise Cancellation

A Low Power Single Ended Inductorless Wideband CMOS LNA with G m Enhancement and Noise Cancellation 2017 International Conference on Electronic, Control, Automation and Mechanical Engineering (ECAME 2017) ISBN: 978-1-60595-523-0 A Low Power Single Ended Inductorless Wideband CMOS LNA with G m Enhancement

More information

Optimizing the Performance of Very Wideband Direct Conversion Receivers

Optimizing the Performance of Very Wideband Direct Conversion Receivers Optimizing the Performance of Very Wideband Direct Conversion Receivers Design Note 1027 John Myers, Michiel Kouwenhoven, James Wong, Vladimir Dvorkin Introduction Zero-IF receivers are not new; they have

More information

DESIGN OF 3 TO 5 GHz CMOS LOW NOISE AMPLIFIER FOR ULTRA-WIDEBAND (UWB) SYSTEM

DESIGN OF 3 TO 5 GHz CMOS LOW NOISE AMPLIFIER FOR ULTRA-WIDEBAND (UWB) SYSTEM Progress In Electromagnetics Research C, Vol. 9, 25 34, 2009 DESIGN OF 3 TO 5 GHz CMOS LOW NOISE AMPLIFIER FOR ULTRA-WIDEBAND (UWB) SYSTEM S.-K. Wong and F. Kung Faculty of Engineering Multimedia University

More information

ACMOS RF up/down converter would allow a considerable

ACMOS RF up/down converter would allow a considerable IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 32, NO. 7, JULY 1997 1151 Low Voltage Performance of a Microwave CMOS Gilbert Cell Mixer P. J. Sullivan, B. A. Xavier, and W. H. Ku Abstract This paper demonstrates

More information

Mixer. General Considerations V RF VLO. Noise. nonlinear, R ON

Mixer. General Considerations V RF VLO. Noise. nonlinear, R ON 007/Nov/7 Mixer General Considerations LO S M F F LO L Noise ( a) nonlinearity (b) Figure 6.5 (a) Simple switch used as mixer (b) implementation of switch with an NMOS device. espect to espect to It is

More information

A Comparative Analysis between Homodyne and Heterodyne Receiver Architecture Md Sarwar Hossain * & Muhammad Sajjad Hussain **

A Comparative Analysis between Homodyne and Heterodyne Receiver Architecture Md Sarwar Hossain * & Muhammad Sajjad Hussain ** A Comparative Analysis between Homodyne and Heterodyne Receiver Architecture Manarat International University Studies, 2 (1): 152-157, December 2011 ISSN 1815-6754 @ Manarat International University, 2011

More information

Design and optimization of a 2.4 GHz RF front-end with an on-chip balun

Design and optimization of a 2.4 GHz RF front-end with an on-chip balun Vol. 32, No. 9 Journal of Semiconductors September 2011 Design and optimization of a 2.4 GHz RF front-end with an on-chip balun Xu Hua( 徐化 ) 1;, Wang Lei( 王磊 ) 2, Shi Yin( 石寅 ) 1, and Dai Fa Foster( 代伐

More information

Design technique of broadband CMOS LNA for DC 11 GHz SDR

Design technique of broadband CMOS LNA for DC 11 GHz SDR Design technique of broadband CMOS LNA for DC 11 GHz SDR Anh Tuan Phan a) and Ronan Farrell Institute of Microelectronics and Wireless Systems, National University of Ireland Maynooth, Maynooth,Co. Kildare,

More information

AVoltage Controlled Oscillator (VCO) was designed and

AVoltage Controlled Oscillator (VCO) was designed and 1 EECE 457 VCO Design Project Jason Khuu, Erik Wu Abstract This paper details the design and simulation of a Voltage Controlled Oscillator using a 0.13µm process. The final VCO design meets all specifications.

More information

Transconductance Amplifier Structures With Very Small Transconductances: A Comparative Design Approach

Transconductance Amplifier Structures With Very Small Transconductances: A Comparative Design Approach 770 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 37, NO. 6, JUNE 2002 Transconductance Amplifier Structures With Very Small Transconductances: A Comparative Design Approach Anand Veeravalli, Student Member,

More information

Down-Converter Gilbert-Cell Mixer for WiMax Applications using 0.15µm GaAs HEMT Technology

Down-Converter Gilbert-Cell Mixer for WiMax Applications using 0.15µm GaAs HEMT Technology Down-Converter Gilbert-Cell Mixer for WiMax Applications using 0.15µm GaAs HEMT Technology Abdullah Mohammed H. Almohaimeed A thesis presented to Ottawa-Carleton Institute for Electrical and Computer Engineering

More information