LOW COST PHASED ARRAY ANTENNA TRANSCEIVER FOR WPAN APPLICATIONS

Size: px
Start display at page:

Download "LOW COST PHASED ARRAY ANTENNA TRANSCEIVER FOR WPAN APPLICATIONS"

Transcription

1 LOW COST PHASED ARRAY ANTENNA TRANSCEIVER FOR WPAN APPLICATIONS Introduction WPAN (Wireless Personal Area Network) transceivers are being designed to operate in the 60 GHz frequency band and will mainly be used for home environment radio links. So far, three basic technologies have been developed for implementing these WPAN devices: 1. Transceivers with a fixed antenna beam and wide aperture: have limited RF performance and no user-tracking ability. 2. MIMO (Multi Input Multi Output): have potential user-tracking ability, but also have marginal RF performance due to high losses that affect waves at 60 GHz reflected by the walls which cancels the potential advantage. 3. Digital Active Phased Array Antenna systems (APAA): have user-tracking ability and good RF power density. In principle digital APAA can handle both compressed as well as uncompressed signals. Digital beam forming is performed by dividing the baseband signal power in as many parts as there are antenna array elements. Then, the bit stream corresponding to each antenna element is digitally phased accordingly with the requested phase value. Now the phased bit streams are used for modulating the RF carrier in one or more steps. At last the modulated carriers are radiated by the antenna array. The baseband processor is complex and expensive; the related conventional RF subsystem is complex and expensive as well. The digital APAA system becomes even more complex when the bit stream is not directly available: this happens when the signal is still compressed. In this case, the baseband processor must first perform a decompression function in order to make available the bit stream. This additional function can significantly increase the cost of the digital APAA. Moreover, if multiple radiated channels are required, the above process and its complications will be multiplied by the number of contemporary channels that are to be handled. We could conclude that ANALOG APAA should be the best technical solution. In fact, analog APAA can handle compressed and uncompressed signals because the signal 1

2 phasing operations are independent of the data stream, don't involve complex and expensive digital processors and can handle several contemporary channels. No analog APAA commercial transceiver at 60 GHz is available yet. In fact, currently, analog APAA conventional technology (based on conventional phase shifters) has prohibitive production costs, even for military applications. General description With this paper, Beam is presenting a new kind of ANALOG APAA transceiver at 60 GHz, characterized by low production cost and high RF performance. The system has several contemporary advantages and some major unique features that no other technology can deliver: 1. Baseband processor independence: signal phasing is performed at the RF level. 2. Simple RF circuitry. 3. Low production cost. 4. Ability to handle compressed as well as uncompressed signals without extra cost. 5. Full transparency to the modulation method. 6. High power density at the receiver antenna, which allows a Bit Error Rate, (BER), widely exceeding any practical need. 7. Automatic reciprocal detection of the network elements. 8. Insensitivity to external parasitic signals at the same frequency. 9. Wall penetration ability. 10. Ability to radiate several independent beams devoted to different users, still securing an excellent BER for each one of the links. 11. Occasional obstacles in the line of sight are avoided using reflected signal bounces from walls. TX and RX antennas are embedded on one external side of an LTCC, (Low Temperature Co-fired Ceramic), multilayer substrate. On the opposite external side, the MMIC (Monolithic Microwave Integrated Circuit) circuits of the transceiver are flip-chip mounted. Strip line microwave connections, passive RF components and bias lines are contained within the inner substrates of the LTCC multilayer structure. The system can have azimuth and elevation beam steering. Though, for WPAN applications, azimuth steering has been considered sufficient. Antenna Several solutions are under development (all of them in the micro strip field) with the aim of maximizing the gain, the bandwidth and the steering angle and minimizing the production cost. In the following, is described the layout and the simulated performance of one example (not the final, not necessarily the best): 2

3 Thanks to the high directivity of the antenna, any possible external parasitic signal at 60 GHz that may possibly enter the receiver is reduced to random noise by the phased array behavior. This circumstance doesn't cause significant interferrence to the service, as long as the system relies on an excess of S/N (Signal to Noise) ratio at the receiver. The same TX, (Transmitter), and RX antennas support and steer multiple independent beams, for radiating / receiving independent signals. TX / RX / Distributed Local Oscillator The TX and RX front end are a conventional MMIC subsystem, as far as circuits at 60 GHz can be considered conventional. On the contrary, the MMIC Local Oscillator, (patent pending), is a new and unconventional structure of conventional circuits used in unconventional way. The following is the block diagram of the Distributed Local Oscillator: 3

4 A reference signal is generated at 15 GHz which injects and locks the push-push oscillator 15 ~ 30 GHz. After splitting, the signals inject and lock the set of push-push oscillators at 30 ~ 60m GHz. This way at the output ports of the buffer amplifiers are delivered coherent signals for UP / DOWN conversion. The phase of each individual signal is changed, tuning the BRF (Band Rejection Filter) of each one of the PSIPPO (Phase Shifted Injected Push-Push Oscillator) at 30 ~ 60 GHz. The analog beam orientation of the system is operated at the level of the LO, avoiding conventional phase shifters. The MMIC technology utilizes bipolar transistors on SiGe, (Silicon Germanium). Overall System The following figure describes the block diagram of the system: As can be seen, the LO (local oscillator) signals are set in such a way that the antenna beam orientation is the same for TX and RX. This is necessary for the automatic selfalignment of the network elements. DOWN conversion The down conversion of the RF signal received by the RX is direct-coherent. Direct down conversion, (coherent as well as non-coherent), has the major advantage of using simple hardware. Potential disadvantages of simple direct down conversion are: 4

5 1. A possible shift from zero of the expected "zero IF", (IF: Frequency). This is due to a possible frequency offset between the received carrier and LO signal. 2. Possible dc offset. This can be generated by the self converted LO signal leaked through the mixer RF port and reflected back to the mixer by the LNA, (Low Noise Amplifier), output port. In the presented system, the "non-zero IF" is eliminated by the coherent down conversion, while the dc offset is minimized by using a balanced configuration for the last LNA stage. BER "MONTE CARLO" simulation Results of the Monte Carlo statistical simulation are depicted in the following figures. The calculation has been performed for QPSK, (Quadrature Phase Shift Keying), modulation. As can be seen, for Eb/No=29 db the BER is lower than any practical need. This excess of BER will be used for making possible 60 GHz reflected and through wall transmission. Conclusion This new Analog APAA transceiver has excellent RF performance, fast locking ability, low production cost, simple MW hardware. It has no complex and expensive baseband digital processor. It is transparent to any kind of modulation method and is signal protocol independent. It can process uncompressed and compressed signals as well, at no additional cost. For all these characteristics the new technology can be used also for highly competitive last-mile transceiver links, not only for home applications. 5

Session 3. CMOS RF IC Design Principles

Session 3. CMOS RF IC Design Principles Session 3 CMOS RF IC Design Principles Session Delivered by: D. Varun 1 Session Topics Standards RF wireless communications Multi standard RF transceivers RF front end architectures Frequency down conversion

More information

ADI 2006 RF Seminar. Chapter II RF/IF Components and Specifications for Receivers

ADI 2006 RF Seminar. Chapter II RF/IF Components and Specifications for Receivers ADI 2006 RF Seminar Chapter II RF/IF Components and Specifications for Receivers 1 RF/IF Components and Specifications for Receivers Fixed Gain and Variable Gain Amplifiers IQ Demodulators Analog-to-Digital

More information

Development of Low Cost Millimeter Wave MMIC

Development of Low Cost Millimeter Wave MMIC INFORMATION & COMMUNICATIONS Development of Low Cost Millimeter Wave MMIC Koji TSUKASHIMA*, Miki KUBOTA, Osamu BABA, Hideki TANGO, Atsushi YONAMINE, Tsuneo TOKUMITSU and Yuichi HASEGAWA This paper describes

More information

22. VLSI in Communications

22. VLSI in Communications 22. VLSI in Communications State-of-the-art RF Design, Communications and DSP Algorithms Design VLSI Design Isolated goals results in: - higher implementation costs - long transition time between system

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [RF Devices for Millimeter-Wave Applications ] Date Submitted: [10 November 2003] Source: [Kenichi

More information

INTRODUCTION TO TRANSCEIVER DESIGN ECE3103 ADVANCED TELECOMMUNICATION SYSTEMS

INTRODUCTION TO TRANSCEIVER DESIGN ECE3103 ADVANCED TELECOMMUNICATION SYSTEMS INTRODUCTION TO TRANSCEIVER DESIGN ECE3103 ADVANCED TELECOMMUNICATION SYSTEMS FUNCTIONS OF A TRANSMITTER The basic functions of a transmitter are: a) up-conversion: move signal to desired RF carrier frequency.

More information

ISSCC 2006 / SESSION 10 / mm-wave AND BEYOND / 10.1

ISSCC 2006 / SESSION 10 / mm-wave AND BEYOND / 10.1 10.1 A 77GHz 4-Element Phased Array Receiver with On-Chip Dipole Antennas in Silicon A. Babakhani, X. Guan, A. Komijani, A. Natarajan, A. Hajimiri California Institute of Technology, Pasadena, CA Achieving

More information

A Miniaturized Multi-Channel TR Module Design Based on Silicon Substrate

A Miniaturized Multi-Channel TR Module Design Based on Silicon Substrate Progress In Electromagnetics Research Letters, Vol. 74, 117 123, 2018 A Miniaturized Multi-Channel TR Module Design Based on Silicon Substrate Jun Zhou 1, 2, *, Jiapeng Yang 1, Donglei Zhao 1, and Dongsheng

More information

Low Profile Tracking Ground-Station Antenna Arrays for Satellite Communications

Low Profile Tracking Ground-Station Antenna Arrays for Satellite Communications 7th Nano-Satellite Symposium and the 4th UNISEC-Global Meeting Low Profile Tracking Ground-Station Antenna Arrays for Satellite Communications Mario Gachev 1,3, Plamen Dankov 2,3 1 RaySat Bulgaria Ltd.,

More information

Holography Transmitter Design Bill Shillue 2000-Oct-03

Holography Transmitter Design Bill Shillue 2000-Oct-03 Holography Transmitter Design Bill Shillue 2000-Oct-03 Planned Photonic Reference Distribution for Test Interferometer The transmitter for the holography receiver is made up mostly of parts that are already

More information

RF Integrated Circuits

RF Integrated Circuits Introduction and Motivation RF Integrated Circuits The recent explosion in the radio frequency (RF) and wireless market has caught the semiconductor industry by surprise. The increasing demand for affordable

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [60GHz-band Gigabit Transceivers and Their Applications ] Date Submitted: [12 January 2004] Source: [Kenichi

More information

What to do with THz? Ali M. Niknejad Berkeley Wireless Research Center University of California Berkeley. WCA Futures SIG

What to do with THz? Ali M. Niknejad Berkeley Wireless Research Center University of California Berkeley. WCA Futures SIG What to do with THz? Ali M. Niknejad Berkeley Wireless Research Center University of California Berkeley WCA Futures SIG Outline THz Overview Potential THz Applications THz Transceivers in Silicon? Application

More information

Technical Article A DIRECT QUADRATURE MODULATOR IC FOR 0.9 TO 2.5 GHZ WIRELESS SYSTEMS

Technical Article A DIRECT QUADRATURE MODULATOR IC FOR 0.9 TO 2.5 GHZ WIRELESS SYSTEMS Introduction As wireless system designs have moved from carrier frequencies at approximately 9 MHz to wider bandwidth applications like Personal Communication System (PCS) phones at 1.8 GHz and wireless

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK v01.05.00 HMC141/142 MIXER OPERATION

More information

Radar System Design Considerations -- System Modeling Findings (MOS-AK Conference Hangzhou 2017)

Radar System Design Considerations -- System Modeling Findings (MOS-AK Conference Hangzhou 2017) Radar System Design Considerations -- System Modeling Findings (MOS-AK Conference Hangzhou 2017) Silicon Radar GmbH Im Technologiepark 1 15236 Frankfurt (Oder) Germany Outline 1 Introduction to Short Distance

More information

Effects to develop a high-performance millimeter-wave radar with RF CMOS technology

Effects to develop a high-performance millimeter-wave radar with RF CMOS technology Effects to develop a high-performance millimeter-wave radar with RF CMOS technology Yasuyoshi OKITA Kiyokazu SUGAI Kazuaki HAMADA Yoji OHASHI Tetsuo SEKI High Resolution Angle-widening Abstract We are

More information

ELEC RADAR FRONT-END SUMMARY

ELEC RADAR FRONT-END SUMMARY ELEC Radar Front-End is designed for FMCW (including CW) radar application. The output frequency of each RX provides range, speed, and amplitude information to DSP. It will detect target azimuth angle

More information

IQ+ XT. 144Mhz SDR-RF Exciter (preliminar v0.1)

IQ+ XT. 144Mhz SDR-RF Exciter (preliminar v0.1) IQ+ XT 144Mhz SDR-RF Exciter (preliminar v0.1) INTRODUCTION Since the IQ+ receiver was introduced one year ago several people ask if I have plans to produce an IQ+ transmitter. Initially I didn't plan

More information

Low Cost Transmitter For A Repeater

Low Cost Transmitter For A Repeater Low Cost Transmitter For A Repeater 1 Desh Raj Yumnam, 2 R.Bhakkiyalakshmi, 1 PG Student, Dept of Electronics &Communication (VLSI), SRM Chennai, 2 Asst. Prof, SRM Chennai, Abstract - There has been dramatically

More information

Chapter 6. Case Study: 2.4-GHz Direct Conversion Receiver. 6.1 Receiver Front-End Design

Chapter 6. Case Study: 2.4-GHz Direct Conversion Receiver. 6.1 Receiver Front-End Design Chapter 6 Case Study: 2.4-GHz Direct Conversion Receiver The chapter presents a 0.25-µm CMOS receiver front-end designed for 2.4-GHz direct conversion RF transceiver and demonstrates the necessity and

More information

Behzad Razavi, RF Microelectronics, Prentice Hall PTR, 1998

Behzad Razavi, RF Microelectronics, Prentice Hall PTR, 1998 2008/Sep/17 1 Text Book: Behzad Razavi, RF Microelectronics, Prentice Hall PTR, 1998 References: (MSR) Thomas H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2/e, Cambridge University Press,

More information

Rethinking The Role Of phemt Cascode Amplifiers In RF Design

Rethinking The Role Of phemt Cascode Amplifiers In RF Design Guest Column February 10, 2014 Rethinking The Role Of phemt Cascode Amplifiers In RF Design By Alan Ake, Skyworks Solutions, Inc. I consider myself fortunate that, as a fresh-out-of-school EE, I was able

More information

SiGe PLL design at 28 GHz

SiGe PLL design at 28 GHz SiGe PLL design at 28 GHz 2015-09-23 Tobias Tired Electrical and Information Technology Lund University May 14, 2012 Waqas Ahmad (Lund University) Presentation outline E-band wireless backhaul Beam forming

More information

mm-wave Transceiver Challenges for the 5G and 60GHz Standards Prof. Emanuel Cohen Technion

mm-wave Transceiver Challenges for the 5G and 60GHz Standards Prof. Emanuel Cohen Technion mm-wave Transceiver Challenges for the 5G and 60GHz Standards Prof. Emanuel Cohen Technion November 11, 11, 2015 2015 1 mm-wave advantage Why is mm-wave interesting now? Available Spectrum 7 GHz of virtually

More information

mmw to THz ultra high data rate radio access technologies

mmw to THz ultra high data rate radio access technologies mmw to THz ultra high data rate radio access technologies Dr. Laurent HERAULT VP Europe, CEA LETI Pierre Vincent Head of RF IC design Lab, CEA LETI Outline mmw communication use cases and standards mmw

More information

System-on-Chip. Electro-thermal effects in radio ICs. Overview. Tri-band GSM radio receiver (front-end)

System-on-Chip. Electro-thermal effects in radio ICs. Overview. Tri-band GSM radio receiver (front-end) System-on-Chip Overview Pietro Andreani Dept. of Electrical and Information Technology Lund University, Sweden Material from Sensitivity Degradation in a Tri-Band GSM BiCMOS Direct-Conversion Receiver

More information

Lecture 5: Dynamic Link

Lecture 5: Dynamic Link Lecture 5: Dynamic Link 2015.0 Release ANSYS HFSS for Antenna Design 1 2015 ANSYS, Inc. Antenna System Co-Simulation Transmit/Receive (T/R) Module Block Diagram Antenna Element Replicate Times Power

More information

Overview: Trends and Implementation Challenges for Multi-Band/Wideband Communication

Overview: Trends and Implementation Challenges for Multi-Band/Wideband Communication Overview: Trends and Implementation Challenges for Multi-Band/Wideband Communication Mona Mostafa Hella Assistant Professor, ESCE Department Rensselaer Polytechnic Institute What is RFIC? Any integrated

More information

Keywords: GPS, receiver, GPS receiver, MAX2769, 2769, 1575MHz, Integrated GPS Receiver, Global Positioning System

Keywords: GPS, receiver, GPS receiver, MAX2769, 2769, 1575MHz, Integrated GPS Receiver, Global Positioning System Maxim > Design Support > Technical Documents > User Guides > APP 3910 Keywords: GPS, receiver, GPS receiver, MAX2769, 2769, 1575MHz, Integrated GPS Receiver, Global Positioning System USER GUIDE 3910 User's

More information

5G Systems and Packaging Opportunities

5G Systems and Packaging Opportunities 5G Systems and Packaging Opportunities Rick Sturdivant, Ph.D. Founder and Chief Technology Officer MPT, Inc. (www.mptcorp.com), ricksturdivant@gmail.com Abstract 5G systems are being developed to meet

More information

Optical Delay Line Application Note

Optical Delay Line Application Note 1 Optical Delay Line Application Note 1.1 General Optical delay lines system (ODL), incorporates a high performance lasers such as DFBs, optical modulators for high operation frequencies, photodiodes,

More information

Maximizing MIMO Effectiveness by Multiplying WLAN Radios x3

Maximizing MIMO Effectiveness by Multiplying WLAN Radios x3 ATHEROS COMMUNICATIONS, INC. Maximizing MIMO Effectiveness by Multiplying WLAN Radios x3 By Winston Sun, Ph.D. Member of Technical Staff May 2006 Introduction The recent approval of the draft 802.11n specification

More information

Design Considerations for 5G mm-wave Receivers. Stefan Andersson, Lars Sundström, and Sven Mattisson

Design Considerations for 5G mm-wave Receivers. Stefan Andersson, Lars Sundström, and Sven Mattisson Design Considerations for 5G mm-wave Receivers Stefan Andersson, Lars Sundström, and Sven Mattisson Outline Introduction to 5G @ mm-waves mm-wave on-chip frequency generation mm-wave analog front-end design

More information

Silicon Integrated Circuits for Space Applications

Silicon Integrated Circuits for Space Applications 1 Silicon Integrated Circuits for Space Applications R. Piesiewicz Abstract Within this special session paper we present a selection of our designed and prototyped silicon integrated circuits realized

More information

3D Integration Using Wafer-Level Packaging

3D Integration Using Wafer-Level Packaging 3D Integration Using Wafer-Level Packaging July 21, 2008 Patty Chang-Chien MMIC Array Receivers & Spectrographs Workshop Pasadena, CA Agenda Wafer-Level Packaging Technology Overview IRAD development on

More information

SATURNE Microsystems Based on Wide Band Gap Materials for Future Space Transmitting Ultra Wideband Receiving Systems

SATURNE Microsystems Based on Wide Band Gap Materials for Future Space Transmitting Ultra Wideband Receiving Systems SATURNE Microsystems Based on Wide Band Gap Materials for Future Space Transmitting Ultra Wideband Receiving Systems A. ZIAEI THALES Research & Technology Research & Technology www.saturne-project.com

More information

Receiver Architecture

Receiver Architecture Receiver Architecture Receiver basics Channel selection why not at RF? BPF first or LNA first? Direct digitization of RF signal Receiver architectures Sub-sampling receiver noise problem Heterodyne receiver

More information

EEC 134AB. Application Note. Radar System Design for RF. By: Yharo Torres. Group: Diode Hard 3. Fundamental Design of Radar:

EEC 134AB. Application Note. Radar System Design for RF. By: Yharo Torres. Group: Diode Hard 3. Fundamental Design of Radar: EEC 134AB Application Note Radar System Design for RF By: Yharo Torres Group: Diode Hard 3 Fundamental Design of Radar: The radar design we decided to go with for the quarter 2 design is one that is fundamentally

More information

A 5 GHz CMOS Low Power Down-conversion Mixer for Wireless LAN Applications

A 5 GHz CMOS Low Power Down-conversion Mixer for Wireless LAN Applications Proceedings of the 5th WSEAS Int. Conf. on CIRCUITS, SYSTES, ELECTRONICS, CONTROL & SIGNAL PROCESSING, Dallas, USA, November 1-, 2006 26 A 5 GHz COS Low Power Down-conversion ixer for Wireless LAN Applications

More information

FEATURES DESCRIPTION BENEFITS APPLICATIONS. Preliminary PT4501 Sub-1 GHz Wideband FSK Transceiver

FEATURES DESCRIPTION BENEFITS APPLICATIONS. Preliminary PT4501 Sub-1 GHz Wideband FSK Transceiver Preliminary PT4501 Sub-1 GHz Wideband FSK Transceiver DESCRIPTION The PT4501 is a highly integrated wideband FSK multi-channel half-duplex transceiver operating in sub-1 GHz license-free ISM bands. The

More information

Full Duplex CMOS Transceiver with On-Chip Self-Interference Cancelation. Seyyed Amir Ayati

Full Duplex CMOS Transceiver with On-Chip Self-Interference Cancelation. Seyyed Amir Ayati Full Duplex CMOS Transceiver with On-Chip Self-Interference Cancelation by Seyyed Amir Ayati A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved

More information

Beamforming measurements. Markus Loerner, Market Segment Manager RF & microwave component test

Beamforming measurements. Markus Loerner, Market Segment Manager RF & microwave component test Beamforming measurements Markus Loerner, Market Segment Manager RF & microwave component test Phased Arrays not a new concept Airborne ı Phased Array Radars: since the 60 s ı Beams are steerable electronically

More information

Modeling Physical PCB Effects 5&

Modeling Physical PCB Effects 5& Abstract Getting logical designs to meet specifications is the first step in creating a manufacturable design. Getting the physical design to work is the next step. The physical effects of PCB materials,

More information

A 5.8-GHz microwave (vital-signs) Doppler radar (for non-contact human vital-signs detection)

A 5.8-GHz microwave (vital-signs) Doppler radar (for non-contact human vital-signs detection) A 5.8-GHz microwave (vital-signs) Doppler radar (for non-contact human vital-signs detection) 1 2 CB-CPW : conductor-backed coplanar waveguide At 5.8 GHz Transmission (S 21 ): -6.0 db Reflection (S 11

More information

Receiver Design. Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University 2011/2/21

Receiver Design. Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University 2011/2/21 Receiver Design Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University 2011/2/21 MW & RF Design / Prof. T. -L. Wu 1 The receiver mush be very sensitive to -110dBm

More information

Integration Techniques for MMICs and Chip Devices in LTCC Multichip Modules for Radio Frequencies

Integration Techniques for MMICs and Chip Devices in LTCC Multichip Modules for Radio Frequencies Integration Techniques for MMICs and Chip Devices in LTCC Multichip Modules for Radio Frequencies R. Kulke *, W. Simon *, M. Rittweger *, I. Wolff *, S. Baker +, R. Powell + and M. Harrison + * Institute

More information

T/R Modules. Version 1.0

T/R Modules. Version 1.0 T/R Modules Version 1.0 Date: Jun 1, 2015 CONTENT Product Overview... 3 FACTS ON THE TECHNOLOGY... 4 ABOUT NANOWAVE... 6 RF Components and Subsystems NANOWAVE Technologies Inc. is a privately owned Canadian

More information

Radio Receiver Architectures and Analysis

Radio Receiver Architectures and Analysis Radio Receiver Architectures and Analysis Robert Wilson December 6, 01 Abstract This article discusses some common receiver architectures and analyzes some of the impairments that apply to each. 1 Contents

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECEN60: Network Theory Broadband Circuit Design Fall 014 Lecture 13: Frequency Synthesizer Examples Sam Palermo Analog & Mixed-Signal Center Texas A&M University Agenda Frequency Synthesizer Examples Design

More information

Combining filters and self-interference cancellation for mixer-first receivers in Full Duplex and Frequency-Division Duplex transceiver systems

Combining filters and self-interference cancellation for mixer-first receivers in Full Duplex and Frequency-Division Duplex transceiver systems Combining filters and self-interference cancellation for mixer-first receivers in Full Duplex and Frequency-Division Duplex transceiver systems Gert-Jan Groot Wassink, bachelor student Electrical Engineering

More information

Beamforming for 4.9G/5G Networks

Beamforming for 4.9G/5G Networks Beamforming for 4.9G/5G Networks Exploiting Massive MIMO and Active Antenna Technologies White Paper Contents 1. Executive summary 3 2. Introduction 3 3. Beamforming benefits below 6 GHz 5 4. Field performance

More information

A 1.9GHz Single-Chip CMOS PHS Cellphone

A 1.9GHz Single-Chip CMOS PHS Cellphone A 1.9GHz Single-Chip CMOS PHS Cellphone IEEE JSSC, Vol. 41, No.12, December 2006 William Si, Srenik Mehta, Hirad Samavati, Manolis Terrovitis, Michael Mack, Keith Onodera, Steve Jen, Susan Luschas, Justin

More information

TestData Summary of 5.2GHz WLAN Direct Conversion RF Transceiver Board

TestData Summary of 5.2GHz WLAN Direct Conversion RF Transceiver Board Page 1 of 16 ========================================================================================= TestData Summary of 5.2GHz WLAN Direct Conversion RF Transceiver Board =========================================================================================

More information

White Paper. Gallium Nitride (GaN) Enabled C-Band T/R Modules

White Paper. Gallium Nitride (GaN) Enabled C-Band T/R Modules White Paper Gallium Nitride (GaN) Enabled C-Band T/R Modules Technical Contact: Rick Sturdivant, President Microwave Packaging Technology, Inc. Mobile: 310-980-3039 rsturdivant@mptcorp.com Business Contact:

More information

Subminiature, Low power DACs Address High Channel Density Transmitter Systems

Subminiature, Low power DACs Address High Channel Density Transmitter Systems Subminiature, Low power DACs Address High Channel Density Transmitter Systems By: Analog Devices, Inc. (ADI) Daniel E. Fague, Applications Engineering Manager, High Speed Digital to Analog Converters Group

More information

Research and Development Activities in RF and Analog IC Design. RFIC Building Blocks. Single-Chip Transceiver Systems (I) Howard Luong

Research and Development Activities in RF and Analog IC Design. RFIC Building Blocks. Single-Chip Transceiver Systems (I) Howard Luong Research and Development Activities in RF and Analog IC Design Howard Luong Analog Research Laboratory Department of Electrical and Electronic Engineering Hong Kong University of Science and Technology

More information

Above 200 GHz On-Chip CMOS Frequency Generation, Transmission and Receiving

Above 200 GHz On-Chip CMOS Frequency Generation, Transmission and Receiving Above 200 GHz On-Chip CMOS Frequency Generation, Transmission and Receiving Bassam Khamaisi and Eran Socher Department of Physical Electronics Faculty of Engineering Tel-Aviv University Outline Background

More information

RF Board Design for Next Generation Wireless Systems

RF Board Design for Next Generation Wireless Systems RF Board Design for Next Generation Wireless Systems Page 1 Introduction Purpose: Provide basic background on emerging WiMax standard Introduce a new tool for Genesys that will aide in the design and verification

More information

Varactor-Tuned Oscillators. Technical Data. VTO-8000 Series

Varactor-Tuned Oscillators. Technical Data. VTO-8000 Series Varactor-Tuned Oscillators Technical Data VTO-8000 Series Features 600 MHz to 10.5 GHz Coverage Fast Tuning +7 to +13 dbm Output Power ± 1.5 db Output Flatness Hermetic Thin-film Construction Description

More information

PROJECT ON MIXED SIGNAL VLSI

PROJECT ON MIXED SIGNAL VLSI PROJECT ON MXED SGNAL VLS Submitted by Vipul Patel TOPC: A GLBERT CELL MXER N CMOS AND BJT TECHNOLOGY 1 A Gilbert Cell Mixer in CMOS and BJT technology Vipul Patel Abstract This paper describes a doubly

More information

Receiver Design for Passive Millimeter Wave (PMMW) Imaging

Receiver Design for Passive Millimeter Wave (PMMW) Imaging Introduction Receiver Design for Passive Millimeter Wave (PMMW) Imaging Millimeter Wave Systems, LLC Passive Millimeter Wave (PMMW) sensors are used for remote sensing and security applications. They rely

More information

Fully integrated CMOS transmitter design considerations

Fully integrated CMOS transmitter design considerations Semiconductor Technology Fully integrated CMOS transmitter design considerations Traditionally, multiple IC chips are needed to build transmitters (Tx) used in wireless communications. The difficulty with

More information

TECH BRIEF Addressing Phase Noise Challenges in Radar and Communication Systems

TECH BRIEF Addressing Phase Noise Challenges in Radar and Communication Systems Addressing Phase Noise Challenges in Radar and Communication Systems Phase noise is rapidly becoming the most critical factor addressed in sophisticated radar and communication systems. This is because

More information

TSEK38 Radio Frequency Transceiver Design: Project work B

TSEK38 Radio Frequency Transceiver Design: Project work B TSEK38 Project Work: Task specification A 1(15) TSEK38 Radio Frequency Transceiver Design: Project work B Course home page: Course responsible: http://www.isy.liu.se/en/edu/kurs/tsek38/ Ted Johansson (ted.johansson@liu.se)

More information

The wireless industry

The wireless industry From May 2007 High Frequency Electronics Copyright Summit Technical Media, LLC RF SiP Design Verification Flow with Quadruple LO Down Converter SiP By HeeSoo Lee and Dean Nicholson Agilent Technologies

More information

CUSTOM INTEGRATED ASSEMBLIES

CUSTOM INTEGRATED ASSEMBLIES 17 CUSTOM INTEGRATED ASSEMBLIES CUSTOM INTEGRATED ASSEMBLIES Cougar offers full first-level integration capabilities, providing not just performance components but also full subsystem solutions to help

More information

1 Introduction to Highly Integrated and Tunable RF Receiver Front Ends

1 Introduction to Highly Integrated and Tunable RF Receiver Front Ends 1 Introduction to Highly Integrated and Tunable RF Receiver Front Ends 1.1 Introduction With the ever-increasing demand for instant access to data over wideband communication channels, the quest for a

More information

SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver

SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver Arvin R. Shahani, Derek K. Shaeffer, Thomas H. Lee Stanford University, Stanford, CA At submicron channel lengths, CMOS is

More information

Low-Voltage IF Transceiver with Limiter/RSSI and Quadrature Modulator

Low-Voltage IF Transceiver with Limiter/RSSI and Quadrature Modulator 19-1296; Rev 2; 1/1 EVALUATION KIT MANUAL FOLLOWS DATA SHEET Low-Voltage IF Transceiver with General Description The is a highly integrated IF transceiver for digital wireless applications. It operates

More information

RFIC Design ELEN 351 Lecture 2: RFIC Architectures

RFIC Design ELEN 351 Lecture 2: RFIC Architectures RFIC Design ELEN 351 Lecture 2: RFIC Architectures Instructor: Dr. Allen Sweet Copy right 2003 ELEN 351 1 RFIC Architectures Modulation Choices Receiver Architectures Transmitter Architectures VCOs, Phase

More information

8.5 GHz to 13.5 GHz, GaAs, MMIC, I/Q Mixer HMC521ALC4

8.5 GHz to 13.5 GHz, GaAs, MMIC, I/Q Mixer HMC521ALC4 11 7 8 9 FEATURES Downconverter, 8. GHz to 13. GHz Conversion loss: 9 db typical Image rejection: 27. dbc typical LO to RF isolation: 39 db typical Input IP3: 16 dbm typical Wide IF bandwidth: dc to 3.

More information

Bluetooth Receiver. Ryan Rogel, Kevin Owen I. INTRODUCTION

Bluetooth Receiver. Ryan Rogel, Kevin Owen I. INTRODUCTION 1 Bluetooth Receiver Ryan Rogel, Kevin Owen Abstract A Bluetooth radio front end is developed and each block is characterized. Bits are generated in MATLAB, GFSK endcoded, and used as the input to this

More information

Wireless Energy for Battery-less Sensors

Wireless Energy for Battery-less Sensors Wireless Energy for Battery-less Sensors Hao Gao Mixed-Signal Microelectronics Outline System of Wireless Power Transfer (WPT) RF Wireless Power Transfer RF Wireless Power Transfer Ultra Low Power sions

More information

TRA_120_002 Radar Front End 120-GHz Highly Integrated IQ Transceiver with Antennas on Chip in Silicon Germanium Technology

TRA_120_002 Radar Front End 120-GHz Highly Integrated IQ Transceiver with Antennas on Chip in Silicon Germanium Technology Silicon Radar GmbH Im Technologiepark 1 15236 Frankfurt (Oder) Germany fon +49.335.557 17 60 fax +49.335.557 10 50 http://www.siliconradar.com TRA_120_002 Radar Front End 120-GHz Highly Integrated IQ Transceiver

More information

Introduction to ixblue RF drivers and amplifiers for optical modulators

Introduction to ixblue RF drivers and amplifiers for optical modulators Introduction to ixblue RF drivers and amplifiers for optical modulators Introduction : ixblue designs, produces and commercializes optical modulators intended for a variety of applications including :

More information

PRODUCT APPLICATION NOTES

PRODUCT APPLICATION NOTES Extending the HMC189MS8 Passive Frequency Doubler Operating Range with External Matching General Description The HMC189MS8 is a miniature passive frequency doubler in a plastic 8-lead MSOP package. The

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [Introduction of vertically connected wireless system] Date Submitted: [ 14 JAN, 2004] Source: [Ami Kanazawa

More information

Designing Next-Generation AESA Radar Part 2: Individual Antenna Design

Designing Next-Generation AESA Radar Part 2: Individual Antenna Design Design Designing Next-Generation AESA Radar Part 2: Individual Antenna Design Figure 8: Antenna design Specsheet user interface showing the electrical requirements input (a), physical constraints input

More information

Analysis and Design of Autonomous Microwave Circuits

Analysis and Design of Autonomous Microwave Circuits Analysis and Design of Autonomous Microwave Circuits ALMUDENA SUAREZ IEEE PRESS WILEY A JOHN WILEY & SONS, INC., PUBLICATION Contents Preface xiii 1 Oscillator Dynamics 1 1.1 Introduction 1 1.2 Operational

More information

NEW WIRELESS applications are emerging where

NEW WIRELESS applications are emerging where IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 39, NO. 4, APRIL 2004 709 A Multiply-by-3 Coupled-Ring Oscillator for Low-Power Frequency Synthesis Shwetabh Verma, Member, IEEE, Junfeng Xu, and Thomas H. Lee,

More information

Chapter 4 Radio Communication Basics

Chapter 4 Radio Communication Basics Chapter 4 Radio Communication Basics Chapter 4 Radio Communication Basics RF Signal Propagation and Reception Basics and Keywords Transmitter Power and Receiver Sensitivity Power - antenna gain: G TX,

More information

Local Oscillator Phase Noise Influence on Single Carrier and OFDM Modulations

Local Oscillator Phase Noise Influence on Single Carrier and OFDM Modulations Local Oscillator Phase Noise Influence on Single Carrier and OFDM Modulations Vitor Fialho,2, Fernando Fortes 2,3, and Manuela Vieira,2 Universidade Nova de Lisboa Faculdade de Ciências e Tecnologia DEE

More information

Dr.-Ing. Ulrich L. Rohde

Dr.-Ing. Ulrich L. Rohde Dr.-Ing. Ulrich L. Rohde Noise in Oscillators with Active Inductors Presented to the Faculty 3 : Mechanical engineering, Electrical engineering and industrial engineering, Brandenburg University of Technology

More information

TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation. Ted Johansson, EKS, ISY

TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation. Ted Johansson, EKS, ISY TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation Ted Johansson, EKS, ISY RX Nonlinearity Issues: 2.2, 2.4 Demodulation: not in the book 2 RX nonlinearities System Nonlinearity

More information

Today s mobile devices

Today s mobile devices PAGE 1 NOVEMBER 2013 Highly Integrated, High Performance Microwave Radio IC Chipsets cover 6-42 GHz Bands Complete Upconversion & Downconversion Chipsets for Microwave Point-to-Point Outdoor Units (ODUs)

More information

Linearity Improvement Techniques for Wireless Transmitters: Part 1

Linearity Improvement Techniques for Wireless Transmitters: Part 1 From May 009 High Frequency Electronics Copyright 009 Summit Technical Media, LLC Linearity Improvement Techniques for Wireless Transmitters: art 1 By Andrei Grebennikov Bell Labs Ireland In modern telecommunication

More information

Wideband Receiver for Communications Receiver or Spectrum Analysis Usage: A Comparison of Superheterodyne to Quadrature Down Conversion

Wideband Receiver for Communications Receiver or Spectrum Analysis Usage: A Comparison of Superheterodyne to Quadrature Down Conversion A Comparison of Superheterodyne to Quadrature Down Conversion Tony Manicone, Vanteon Corporation There are many different system architectures which can be used in the design of High Frequency wideband

More information

RF MEMS for Low-Power Communications

RF MEMS for Low-Power Communications RF MEMS for Low-Power Communications Clark T.-C. Nguyen Center for Wireless Integrated Microsystems Dept. of Electrical Engineering and Computer Science University of Michigan Ann Arbor, Michigan 48109-2122

More information

note application Measurement of Frequency Stability and Phase Noise by David Owen

note application Measurement of Frequency Stability and Phase Noise by David Owen application Measurement of Frequency Stability and Phase Noise note by David Owen The stability of an RF source is often a critical parameter for many applications. Performance varies considerably with

More information

A Broadband T/R Front-End of Millimeter Wave Holographic Imaging

A Broadband T/R Front-End of Millimeter Wave Holographic Imaging Journal of Computer and Communications, 2015, 3, 35-39 Published Online March 2015 in SciRes. http://www.scirp.org/journal/jcc http://dx.doi.org/10.4236/jcc.2015.33006 A Broadband T/R Front-End of Millimeter

More information

K-MC2 RADAR TRANSCEIVER Replaced by K-MC3 Datasheet. Features. Applications. Description. Blockdiagram

K-MC2 RADAR TRANSCEIVER Replaced by K-MC3 Datasheet. Features. Applications. Description. Blockdiagram Features 24 GHz short range transceiver 90MHz sweep FM input High sensitivity, integrated RF/IF amplifier Dual 62 patch narrow beam antenna Buffered, gain adjustable I/Q IF outputs Additional DC IF outputs

More information

THE BASICS OF RADIO SYSTEM DESIGN

THE BASICS OF RADIO SYSTEM DESIGN THE BASICS OF RADIO SYSTEM DESIGN Mark Hunter * Abstract This paper is intended to give an overview of the design of radio transceivers to the engineer new to the field. It is shown how the requirements

More information

MPT, Inc. The Right Solution With A Lower Risk At The Right Time.

MPT, Inc. The Right Solution With A Lower Risk At The Right Time. MPT, Inc. The Right Solution With A Lower Risk At The Right Time. For More Information About MPT Contact: Craig Parrish VP Strategic Business Development cparrish@mptcorp.com OFFICE: (714) 316-7300 MOBILE:

More information

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2 ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2 20.2 A Digitally Calibrated 5.15-5.825GHz Transceiver for 802.11a Wireless LANs in 0.18µm CMOS I. Bouras 1, S. Bouras 1, T. Georgantas

More information

65-GHz Receiver in SiGe BiCMOS Using Monolithic Inductors and Transformers

65-GHz Receiver in SiGe BiCMOS Using Monolithic Inductors and Transformers 65-GHz Receiver in SiGe BiCMOS Using Monolithic Inductors and Transformers Michael Gordon, Terry Yao, Sorin P. Voinigescu University of Toronto March 10 2006, UBC, Vancouver Outline Motivation mm-wave

More information

24 GHz ISM Band Silicon RF IC Capability

24 GHz ISM Band Silicon RF IC Capability Cobham Electronic Systems Sensor Systems Lowell, MA USA www.cobham.com June 14, 2012 Steve.Fetter@cobham.com The most important thing we build is trust 24 GHz ISM Band Silicon RF IC Capability This data

More information

An All CMOS, 2.4 GHz, Fully Adaptive, Scalable, Frequency Hopped Transceiver

An All CMOS, 2.4 GHz, Fully Adaptive, Scalable, Frequency Hopped Transceiver An All CMOS, 2.4 GHz, Fully Adaptive, Scalable, Frequency Hopped Transceiver Farbod Behbahani John Leete Alexandre Kral Shahrzad Tadjpour Karapet Khanoyan Paul J. Chang Hooman Darabi Maryam Rofougaran

More information

Design of S-Band Double-Conversion Superheterodyne Receiver Front-End for RADAR Systems

Design of S-Band Double-Conversion Superheterodyne Receiver Front-End for RADAR Systems Cloud Publications International Journal of Advanced Electronics and Radar Technology 2015, Volume 1, Issue 1, pp. 32-37, Article ID Tech-425 Short Communication Open Access Design of S-Band Double-Conversion

More information

Multi-function Phased Array Radars (MPAR)

Multi-function Phased Array Radars (MPAR) Multi-function Phased Array Radars (MPAR) Satyanarayana S, General Manager - RF systems, Mistral Solutions Pvt. Ltd., Bangalore, Karnataka, satyanarayana.s@mistralsolutions.com Abstract In this paper,

More information