P D Storage Temperature Range T stg - 65 to +150 C Operating Junction Temperature T J 200 C

Size: px
Start display at page:

Download "P D Storage Temperature Range T stg - 65 to +150 C Operating Junction Temperature T J 200 C"

Transcription

1 Technical Data Document Number: MRF1535T1 Rev. 8, 5/06 Replaced by MRF1535NT1/FNT1. There are no form, fit or function changes with this part replacement. N suffix added to part number to indicate transition to lead-free terminations. RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Designed for broadband commercial and industrial applications with frequencies to 5 MHz. The high gain and broadband performance of these devices make them ideal for large-signal, common source amplifier applications in 12.5 volt mobile FM equipment. Specified 5 MHz, 12.5 Volts Output Power 35 Watts Power Gain.0 db Efficiency % Capable of Handling : Vdc, 5 MHz, 2 db Overdrive Excellent Thermal Stability Characterized with Series Equivalent Large- Signal Impedance Parameters Broadband -Full Power Across the Band: MHz 0-4 MHz 4-5 MHz Broadband UHF/VHF Demonstration Amplifier Information Available Upon Request 0 C Capable Plastic Package In Tape and Reel. T1 Suffix = 0 Units per 44 mm, 13 inch Reel. Table 1. Maximum Ratings Rating Symbol Value Unit Drain-Source Voltage V DSS -0.5, + Vdc Gate-Source Voltage V GS ± Vdc Drain Current Continuous I D 6 Adc Total Device T C = 25 C (1) Derate above 25 C P D Storage Temperature Range T stg - 65 to +1 C Operating Junction Temperature T J 0 C Table 2. Thermal Characteristics MRF1535T1 MRF1535FT1 5 MHz, 35 W, 12.5 V LATERAL N- CHANNEL BROADBAND RF POWER MOSFETs CASE , STYLE 1 TO WRAP PLASTIC MRF1535T1 CASE 1264A-02, STYLE 1 TO PLASTIC MRF1535FT1 W W/ C Characteristic Symbol Value Unit Thermal Resistance, Junction to Case R θjc 0.90 C/W Table 3. Moisture Sensitivity Level Test Methodology Rating Package Peak Temperature Unit Per JESD 22-A113, IPC/JEDEC J-STD C TJ TC 1. Calculated based on the formula P D = RθJC NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed., Inc., 06. All rights reserved. 1

2 Table 4. Electrical Characteristics (T C = 25 C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Off Characteristics Drain-Source Breakdown Voltage (V GS = 0 Vdc, I D = 0 μadc) Zero Gate Voltage Drain Current (V DS = Vdc, V GS = 0 Vdc) Gate-Source Leakage Current (V GS = Vdc, V DS = 0 Vdc) On Characteristics Gate Threshold Voltage (V DS = 12.5 Vdc, I D = 0 μa) Drain-Source On-Voltage (V GS = 5 Vdc, I D = 0.6 A) Drain-Source On-Voltage (V GS = Vdc, I D = 2.0 Adc) Dynamic Characteristics Input Capacitance (Includes Input Matching Capacitance) (V DS = 12.5 Vdc, V GS = 0 V, f = 1 MHz) Output Capacitance (V DS = 12.5 Vdc, V GS = 0 V, f = 1 MHz) Reverse Transfer Capacitance (V DS = 12.5 Vdc, V GS = 0 V, f = 1 MHz) RF Characteristics (In Freescale Test Fixture) Common-Source Amplifier Power Gain (, P out = 35 Watts, I DQ = 0 ma) f = 5 MHz Drain Efficiency (, P out = 35 Watts, I DQ = 0 ma) f = 5 MHz V (BR)DSS Vdc I DSS 1 μadc I GSS 0.3 μadc V GS(th) Vdc R DS(on) 0.7 Ω V DS(on) 1 Vdc C iss 2 pf C oss 1 pf C rss pf G ps db η % 2

3 V GG C11 + C R4 R3 C23 B1 C22 + C21 V DD L5 RF INPUT N1 C1 Z1 L1 C9 R2 R1 DUT Z2 Z3 L2 Z4 Z5 Z6 Z7 Z8 Z9 L3 L4 Z RF OUTPUT N2 C C2 C3 C4 C5 C6 C7 C8 C12 C13 C14 C15 C16 C17 C18 C19, OUTPUT POWER (WATTS) Pout 0 0 B1 Ferroxcube #VK0 C1, C9, C, C23 3 pf, 0 mil Chip Capacitors C2, C5 0 to pf Trimmer Capacitors C3, C15 33 pf, 0 mil Chip Capacitors C4, C6, C19 18 pf, 0 mil Chip Capacitors C7 1 pf, 0 mil Chip Capacitor C8 2 pf, 0 mil Chip Capacitor C, C21 μf, V Electrolytic Capacitors C11, C22 4 pf, 0 mil Chip Capacitors C12, C13 1 pf, 0 mil Chip Capacitors C14 1 pf, 0 mil Chip Capacitor C16 68 pf, 0 mil Chip Capacitor C17 1 pf, 0 mil Chip Capacitor C18 51 pf, 0 mil Chip Capacitor L nh, Coilcraft #A05T L2 5 nh, Coilcraft #A02T L3 1 Turn, #26 AWG, 0.2 ID 1 2 Figure MHz Broadband Test Circuit TYPICAL CHARACTERISTICS, MHz MHz 135 MHz 175 MHz 4 IRL, INPUT RETURN LOSS (db) L4 1 Turn, #26 AWG, 0.2 ID L5 4 Turn, #24 AWG, ID N1, N2 Type N Flange Mounts R1 6.5 Ω, 1/4 W Chip Resistor R2 39 Ω Chip Resistor (0805) R3 1.2 kω, 1/8 W Chip Resistor R4 33 kω, 1/4 W Chip Resistor Z1 0.9 x Microstrip Z x Microstrip Z x Microstrip Z4 0.1 x Microstrip Z5, Z6 0.1 x 0.0 Microstrip Z x Microstrip Z8 0.2 x Microstrip Z9 0.3 x Microstrip Z 0.2 x Microstrip Board Glass Teflon, 31 mils 155 MHz 135 MHz 175 MHz P in, INPUT POWER (WATTS) Figure 2. Output Power versus Input Power P out, OUTPUT POWER (WATTS) Figure 3. Input Return Loss versus Output Power 3

4 TYPICAL CHARACTERISTICS, MHz GAIN (db), OUTPUT POWER (WATTS) Pout, OUTPUT POWER (WATTS) P out P out, OUTPUT POWER (WATTS) Figure 4. Gain versus Output Power 0 I DQ, BIASING CURRENT (ma) Figure 6. Output Power versus Biasing Current MHz 175 MHz 135 MHz MHz 175 MHz MHz 135 MHz P in = dbm 155 MHz 135 MHz I DQ = 2 ma P in = dbm , DRAIN EFFICIENCY (%), DRAIN EFFICIENCY (%), DRAIN EFFICIENCY (%) P out, OUTPUT POWER (WATTS) Figure 5. Drain Efficiency versus Output Power I DQ, BIASING CURRENT (ma) Figure 7. Drain Efficiency versus Biasing Current MHz 175 MHz MHz 175 MHz 135 MHz 135 MHz 175 MHz 155 MHz MHz P in = dbm I DQ = 2 ma P in = dbm V DD, SUPPLY VOLTAGE (VOLTS) Figure 8. Output Power versus Supply Voltage V DD, SUPPLY VOLTAGE (VOLTS) Figure 9. Drain Efficiency versus Supply Voltage 4

5 V GG B1 V DD C14 C13 C12 + C11 R3 R2 C25 L1 C24 C23 + C22 RF INPUT N1 C1 R1 C Z1 Z2 Z3 Z4 Z5 Z6 C2 C3 C4 C5 C6 C7 C8 C9 DUT Z7 C15 C16 Z8 C17 Z9 C18 C19 C Z C21 N2 RF OUTPUT, OUTPUT POWER (WATTS) Pout B1 Ferroxcube VK0 C1 1 pf, 0 mil Chip Capacitor C2 3 pf, 0 mil Chip Capacitor C3 3.6 pf, 0 mil Chip Capacitor C4 2.2 pf, 0 mil Chip Capacitor C5 pf, 0 mil Chip Capacitor C6, C7 16 pf, 0 mil Chip Capacitors C8, C15, C16 27 pf, 0 mil Chip Capacitors C9 43 pf, 0 mil Chip Capacitor C, C14, C25 1 pf, 0 mil Chip Capacitors C11, C22 μf, V Electrolytic Capacitors C12, C24 1,0 pf, 0 mil Chip Capacitors C13, C μf, 0 mil Chip Capacitors C17, C18 24 pf, 0 mil Chip Capacitors C19 1 pf, 0 mil Chip Capacitor C 8.2 pf, 0 mil Chip Capacitor P in, INPUT POWER (WATTS) Figure 11. Output Power versus Input Power Figure. 4-5 MHz Broadband Test Circuit TYPICAL CHARACTERISTICS, 4-5 MHz 4 MHz 4 MHz 0 MHz 5 MHz IRL, INPUT RETURN LOSS (db) C pf, 0 mil Chip Capacitor L nh, 5 Turn, Coilcraft N1, N2 Type N Flange Mounts R1 0 Ω Chip Resistor (0805) R2 1 kω Chip Resistor (0805) R3 33 kω, 1/8 W Chip Resistor Z x Microstrip Z2 1.0 x Microstrip Z x Microstrip Z4 0.1 x Microstrip Z5, Z8 0.1 x Microstrip Z6, Z7 0.1 x Microstrip Z x Microstrip Z x Microstrip Board Glass Teflon, 31 mils MHz 4 MHz 5 MHz 0 MHz 15 0 P out, OUTPUT POWER (WATTS) Figure 12. Input Return Loss versus Output Power 5

6 TYPICAL CHARACTERISTICS, 4-5 MHz GAIN (db), OUTPUT POWER (WATTS) Pout, OUTPUT POWER (WATTS) P out MHz 4 MHz P out, OUTPUT POWER (WATTS) Figure 13. Gain versus Output Power I DQ, BIASING CURRENT (ma) Figure 15. Output Power versus Biasing Current 0 4 MHz 5 MHz MHz 4 MHz 0 MHz 5 MHz 5 MHz MHz 0 MHz 12 V DD, SUPPLY VOLTAGE (VOLTS) Figure 17. Output Power versus Supply Voltage 13 0 MHz P in = 34 dbm 00 I DQ = 2 ma P in = 34 dbm , DRAIN EFFICIENCY (%), DRAIN EFFICIENCY (%), DRAIN EFFICIENCY (%) MHz 5 MHz P out, OUTPUT POWER (WATTS) Figure 14. Drain Efficiency versus Output Power 5 MHz 4 MHz 0 0 MHz I DQ, BIASING CURRENT (ma) Figure 16. Drain Efficiency versus Biasing Current MHz 4 MHz V DD, SUPPLY VOLTAGE (VOLTS) Figure 18. Drain Efficiency versus Supply Voltage 4 MHz 4 MHz 13 0 MHz 4 MHz P in = 34 dbm 00 0 MHz I DQ = 2 ma P in = 34 dbm

7 Z o = Ω f = 175 MHz Z OL * f = 4 MHz f MHz Z in Ω Z OL * Ω j j0.2 Z in = Complex conjugate of source impedance. Z OL * = Z OL * Z in f = 135 MHz f = 5 MHz f = 4 MHz f = 5 MHz f = 175 MHz Z in f = 135 MHz V DD = 12.5 V, I DQ = 2 ma, P out = 35 W j j j j0.1 Complex conjugate of the load impedance at given output power, voltage, frequency, and η D > %. Z in = Complex conjugate of source impedance. Z OL * = V DD = 12.5 V, I DQ = 0 ma, P out = 35 W f MHz Complex conjugate of the load impedance at given output power, voltage, frequency, and η D > %. Note: Z OL * was chosen based on tradeoffs between gain, drain efficiency, and device stability. Z in Ω Z OL * Ω j j j j j j j j0.5 Input Matching Network Device Under Test Output Matching Network Z in Z OL * Figure 19. Series Equivalent Input and Output Impedance 7

8 Table 5. Common Source Scattering Parameters () I DQ = 2 ma f S 11 S 21 S 12 S 22 MHz S 11 φ S 21 φ S 12 φ S 22 φ I DQ = 1.0 A f S 11 S 21 S 12 S 22 MHz S 11 φ S 21 φ S 12 φ S 22 φ I DQ = 2.0 A f S 11 S 21 S 12 S 22 MHz S 11 φ S 21 φ S 12 φ S 22 φ

9 APPLICATIONS INFORMATION DESIGN CONSIDERATIONS This device is a common-source, RF power, N-Channel enhancement mode, Lateral Metal-Oxide Semiconductor Field-Effect Transistor (MOSFET). Freescale Application Note AN211A, FETs in Theory and Practice, is suggested reading for those not familiar with the construction and characteristics of FETs. This surface mount packaged device was designed primarily for VHF and UHF mobile power amplifier applications. Manufacturability is improved by utilizing the tape and reel capability for fully automated pick and placement of parts. However, care should be taken in the design process to insure proper heat sinking of the device. The major advantages of Lateral RF power MOSFETs include high gain, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. MOSFET CAPACITANCES The physical structure of a MOSFET results in capacitors between all three terminals. The metal oxide gate structure determines the capacitors from gate-to-drain (C gd ), and gate-to-source (C gs ). The PN junction formed during fabrication of the RF MOSFET results in a junction capacitance from drain-to-source (C ds ). These capacitances are characterized as input (C iss ), output (C oss ) and reverse transfer (C rss ) capacitances on data sheets. The relationships between the inter- terminal capacitances and those given on data sheets are shown below. The C iss can be specified in two ways: 1. Drain shorted to source and positive voltage at the gate. 2. Positive voltage of the drain in respect to source and zero volts at the gate. In the latter case, the numbers are lower. However, neither method represents the actual operating conditions in RF applications. Gate C gd C gs Drain C ds Source C iss = C gd + C gs C oss = C gd + C ds C rss = C gd DRAIN CHARACTERISTICS One critical figure of merit for a FET is its static resistance in the full-on condition. This on-resistance, R DS(on), occurs in the linear region of the output characteristic and is specified at a specific gate- source voltage and drain current. The drain-source voltage under these conditions is termed V DS(on). For MOSFETs, V DS(on) has a positive temperature coefficient at high temperatures because it contributes to the power dissipation within the device. BV DSS values for this device are higher than normally required for typical applications. Measurement of BV DSS is not recommended and may result in possible damage to the device. GATE CHARACTERISTICS The gate of the RF MOSFET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The DC input resistance is very high - on the order of 9 Ω resulting in a leakage current of a few nanoamperes. Gate control is achieved by applying a positive voltage to the gate greater than the gate- to- source threshold voltage, V GS(th). Gate Voltage Rating Never exceed the gate voltage rating. Exceeding the rated V GS can result in permanent damage to the oxide layer in the gate region. Gate Termination The gates of these devices are essentially capacitors. Circuits that leave the gate open- circuited or floating should be avoided. These conditions can result in turn-on of the devices due to voltage build-up on the input capacitor due to leakage currents or pickup. Gate Protection These devices do not have an internal monolithic zener diode from gate- to- source. If gate protection is required, an external zener diode is recommended. Using a resistor to keep the gate-to-source impedance low also helps dampen transients and serves another important function. Voltage transients on the drain can be coupled to the gate through the parasitic gate- drain capacitance. If the gate-to-source impedance and the rate of voltage change on the drain are both high, then the signal coupled to the gate may be large enough to exceed the gate-threshold voltage and turn the device on. DC BIAS Since this device is an enhancement mode FET, drain current flows only when the gate is at a higher potential than the source. RF power FETs operate optimally with a quiescent drain current (I DQ ), whose value is application dependent. This device was characterized at I DQ = 1 ma, which is the suggested value of bias current for typical applications. For special applications such as linear amplification, I DQ may have to be selected to optimize the critical parameters. The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may generally be just a simple resistive divider network. Some special applications may require a more elaborate bias system. GAIN CONTROL Power output of this device may be controlled to some degree with a low power dc control signal applied to the gate, thus facilitating applications such as manual gain control, ALC/AGC and modulation systems. This characteristic is very dependent on frequency and load line. 9

10 MOUNTING The specified maximum thermal resistance of 0.9 C/W assumes a majority of the 0.1 x 0.8 source contact on the back side of the package is in good contact with an appropriate heat sink. As with all RF power devices, the goal of the thermal design should be to minimize the temperature at the back side of the package. AMPLIFIER DESIGN Impedance matching networks similar to those used with bipolar transistors are suitable for this device. For examples see Freescale Application Note AN721, Impedance Matching Networks Applied to RF Power Transistors. Large- signal impedances are provided, and will yield a good first pass approximation. Since RF power MOSFETs are triode devices, they are not unilateral. This coupled with the very high gain of this device yields a device capable of self oscillation. Stability may be achieved by techniques such as drain loading, input shunt resistive loading, or output to input feedback. The RF test fixture implements a parallel resistor and capacitor in series with the gate, and has a load line selected for a higher efficiency, lower gain, and more stable operating region. Two-port stability analysis with this device s S- parameters provides a useful tool for selection of loading or feedback circuitry to assure stable operation. See Freescale Application Note AN215A, RF Small- Signal Design Using Two- Port Parameters for a discussion of two port network theory and stability.

11 NOTES 11

12 NOTES 12

13 NOTES 13

14 PACKAGE DIMENSIONS B E1 A aaa D1 M 4X b2 D A aaa M 2X b1 aaa M r1 4 D A 5 D A DRAIN ID 4X e D DRAIN ID NOTE X b3 DATUM PLANE H Y E E2 Y A C D SEATING PLANE SEATING PLANE E2 VIEW Y-Y NOTES: 1. CONTROLLING DIMENSION: INCH. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, DATUM PLANE H IS LOCATED AT TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE. 4. DIMENSION D AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS PER SIDE. DIMENSION D AND E1 DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H. 5. DIMENSIONS b1 AND b3 DO NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE TOTAL IN EXCESS OF THE b1 AND b2 DIMENSIONS AT MAXIMUM MATERIAL CONDITION. 6. CROSSHATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG. L c1 A1 A2 STYLE 1: PIN 1. SOURCE (COMMON) 2. DRAIN 3. SOURCE (COMMON) 4. SOURCE (COMMON) 5. GATE 6. SOURCE (COMMON) CASE ISSUE K TO WRAP PLASTIC MRF1535T1 INCHES MILLIMETERS DIM MIN MAX MIN MAX A A A D D E E E L b b b c e BSC 4.90 BSC r aaa

15 B 2X P aaa M D A B E1 A E2 D1 aaa 4X b2 M aaa M D A 2X b1 aaa M D A D A 4X b DRAIN ID 4X e D D DRAIN ID NOTE bbb C A B E VIEW Y-Y c1 D SEATING PLANE Y F ZONE "J" Y A1 6 A2 A NOTES: 1. CONTROLLING DIMENSION: INCH. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, DIMENSIONS D AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS PER SIDE. DIMENSIONS D AND E1 DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H. 4. DIMENSIONS b1 AND b3 DO NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE TOTAL IN EXCESS OF THE b1 AND b2 DIMENSIONS AT MAXIMUM MATERIAL CONDITION. 5. CROSSHATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG. 6. DIMENSION A2 APPLIES WITHIN ZONE J ONLY. STYLE 1: PIN 1. SOURCE (COMMON) 2. DRAIN 3. SOURCE (COMMON) 4. SOURCE (COMMON) 5. GATE 6. SOURCE (COMMON) CASE 1264A-02 ISSUE C TO PLASTIC MRF1535FT1 INCHES MILLIMETERS DIM MIN MAX MIN MAX A A A D D1 D2 0.8 BSC 0.8 BSC.57 BSC BSC E E E2 0.1 BSC 4.32 BSC F BSC 0.64 BSC P b b b c e BSC 4.90 BSC aaa bbb

16 How to Reach Us: Home Page: USA/Europe or Locations Not Listed: Technical Information Center, CH3 10 N. Alma School Road Chandler, Arizona or Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen Muenchen, Germany (English) (English) (German) (French) support@freescale.com Japan: Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo Japan or support.japan@freescale.com Asia/Pacific: Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong support.asia@freescale.com For Literature Requests Only: Literature Distribution Center P.O. Box 55 Denver, Colorado or Fax: LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. reserves the right to make changes without further notice to any products herein. makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Typical parameters that may be provided in data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including Typicals, must be validated for each customer application by customer s technical experts. does not convey any license under its patent rights nor the rights of others. products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the product could create a situation where personal injury or death may occur. Should Buyer purchase or use products for any such unintended or unauthorized application, Buyer shall indemnify and hold and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescale and the Freescale logo are trademarks of, Inc. All other product or service names are the property of their respective owners., Inc. 06. All rights reserved. Document Number: MRF1535T1 16 Rev. 8, 5/06 RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics of their non-rohs-compliant and/or non-pb-free counterparts. For further information, see or contact your Freescale sales representative. For information on Freescale s Environmental Products program, go to

Freescale Semiconductor, I

Freescale Semiconductor, I 查询 MRF1550FT1 供应商 nc. SEMICONDUCTOR TECHNICAL DATA Order this document by MRF1550T1/D The RF MOSFET Line N Channel Enhancement Mode Lateral MOSFETs Designed for broadband commercial and industrial applications

More information

P D Storage Temperature Range T stg - 65 to +150 C Operating Junction Temperature T J 150 C

P D Storage Temperature Range T stg - 65 to +150 C Operating Junction Temperature T J 150 C Technical Data Document Number: MRF1511 Rev., 5/ Replaced by MRF1511NT1. There are no form, fit or function changes with this part replacement. N suffix added to part number to indicate transition to lead-free

More information

Characteristic Symbol Value Unit Thermal Resistance, Junction-to-Case R θjc 6 C/W

Characteristic Symbol Value Unit Thermal Resistance, Junction-to-Case R θjc 6 C/W Technical Data Silicon Lateral FET, N-Channel Enhancement-Mode MOSFET Designed for use in medium voltage, moderate power amplifiers such as portable analog and digital cellular radios and PC RF modems.

More information

Rating Symbol Value Unit Drain-Source Voltage V DSS 40 Vdc Gate-Source Voltage V GS ± 20 Vdc Total Device T C = 25 C Derate above 25 C

Rating Symbol Value Unit Drain-Source Voltage V DSS 40 Vdc Gate-Source Voltage V GS ± 20 Vdc Total Device T C = 25 C Derate above 25 C MOTOROLA SEMICONDUCTOR TECHNICAL DATA Order this document by MRF157T1/D The RF MOSFET Line RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Designed for broadband commercial

More information

RF Power Field Effect Transistor Array N-Channel Enhancement-Mode Lateral MOSFET

RF Power Field Effect Transistor Array N-Channel Enhancement-Mode Lateral MOSFET Technical Data Document Number: Rev. 6, 7/2005 Will be replaced by MRF9002NR2 in Q305. N suffix indicates 260 C reflow capable. The PFP-16 package has had lead-free terminations from its initial release.

More information

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Designed for broadband commercial and industrial applications with frequencies to 175 MHz. The high gain and

More information

RF LDMOS Wideband 2-Stage Power Amplifiers

RF LDMOS Wideband 2-Stage Power Amplifiers Technical Data RF LDMOS Wideband 2-Stage Power Amplifiers Designed for broadband commercial and industrial applications with frequencies from 132 MHz to 960 MHz. The high gain and broadband performance

More information

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Technical Data RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Designed for broadband commercial and industrial applications with frequencies to 5 MHz. The high gain and broadband

More information

Gallium Arsenide PHEMT RF Power Field Effect Transistor

Gallium Arsenide PHEMT RF Power Field Effect Transistor Technical Data Gallium Arsenide PHEMT RF Power Field Effect Transistor Designed for WLL base station applications with frequencies from 3400 to 3600 MHz. Suitable for TDMA and CDMA amplifier applications.

More information

ARCHIVE INFORMATION. Cellular Band RF Linear LDMOS Amplifier MHL9236MN. Freescale Semiconductor. Technical Data

ARCHIVE INFORMATION. Cellular Band RF Linear LDMOS Amplifier MHL9236MN. Freescale Semiconductor. Technical Data Technical Data Cellular Band RF Linear LDMOS Amplifier Designed for ultra- linear amplifier applications in ohm systems operating in the cellular frequency band. A silicon FET Class A design provides outstanding

More information

Characteristic Symbol Value Unit Thermal Resistance, Junction to Case. Test Conditions

Characteristic Symbol Value Unit Thermal Resistance, Junction to Case. Test Conditions Technical Data Document Number: Rev. 5, 5/2006 RF LDMOS Wideband Integrated Power Amplifier The wideband integrated circuit is designed for base station applications. It uses Freescale s newest High Voltage

More information

ARCHIVE INFORMATION. Cellular Band RF Linear LDMOS Amplifier MHL9838. Freescale Semiconductor. Technical Data MHL9838. Rev.

ARCHIVE INFORMATION. Cellular Band RF Linear LDMOS Amplifier MHL9838. Freescale Semiconductor. Technical Data MHL9838. Rev. Technical Data Rev. 4, 1/2005 Replaced by N. There are no form, fit or function changes with this part replacement. N suffix added to part number to indicate transition to lead-free terminations. Cellular

More information

ARCHIVE INFORMATION. PCS Band RF Linear LDMOS Amplifier MHL Freescale Semiconductor. Technical Data MHL Rev. 4, 1/2005

ARCHIVE INFORMATION. PCS Band RF Linear LDMOS Amplifier MHL Freescale Semiconductor. Technical Data MHL Rev. 4, 1/2005 Technical Data Rev. 4, 1/25 Replaced by N. There are no form, fit or function changes with this part replacement. N suffix added to part number to indicate transition to lead-free terminations. PCS Band

More information

P D Storage Temperature Range T stg - 65 to +175 C Operating Junction Temperature T J 200 C

P D Storage Temperature Range T stg - 65 to +175 C Operating Junction Temperature T J 200 C Technical Data Document Number: MRF6S186 Rev. 2, 5/26 Replaced by MRF6S186NR1/NBR1. There are no form, fit or function changes with this part replacement. N suffix added to part number to indicate transition

More information

LIFETIME BUY LAST ORDER 3 OCT 08 LAST SHIP 14 MAY 09. RF Power Field-Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET MRF374A

LIFETIME BUY LAST ORDER 3 OCT 08 LAST SHIP 14 MAY 09. RF Power Field-Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET MRF374A Technical Data Document Number: Rev. 5, 5/26 LIFETIME BUY RF Power Field-Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Designed for broadband commercial and industrial applications with frequencies

More information

921 MHz-960 MHz SiFET RF Integrated Power Amplifier

921 MHz-960 MHz SiFET RF Integrated Power Amplifier Technical Data 9 MHz-96 MHz SiFET RF Integrated Power Amplifier The MHVIC9HNR integrated circuit is designed for GSM base stations, uses Freescale s newest High Voltage (6 Volts) LDMOS IC technology, and

More information

ARCHIVE INFORMATION. Cellular Band RF Linear LDMOS Amplifier MHL9318. Freescale Semiconductor. Technical Data MHL9318. Rev.

ARCHIVE INFORMATION. Cellular Band RF Linear LDMOS Amplifier MHL9318. Freescale Semiconductor. Technical Data MHL9318. Rev. Technical Data Rev. 3, 1/2005 Replaced by N. There are no form, fit or function changes with this part replacement. N suffix added to part number to indicate transition to lead-free terminations. Cellular

More information

ELECTRICAL CHARACTERISTICS (T C = 25 C unless otherwise noted) Characteristic Symbol Min Typ Max Unit OFF CHARACTERISTICS (1) Drain Source Breakdown V

ELECTRICAL CHARACTERISTICS (T C = 25 C unless otherwise noted) Characteristic Symbol Min Typ Max Unit OFF CHARACTERISTICS (1) Drain Source Breakdown V SEMICONDUCTOR TECHNICAL DATA Order this document by /D The RF MOSFET Line N Channel Enhancement Mode Lateral MOSFET Designed for broadband commercial and industrial applications with frequencies from 800

More information

ELECTRICAL CHARACTERISTICS continued (T C = 25 C unless otherwise noted) ON CHARACTERISTICS Gate Threshold Voltage (V DS = 10 Vdc, I D = 100 µa) Chara

ELECTRICAL CHARACTERISTICS continued (T C = 25 C unless otherwise noted) ON CHARACTERISTICS Gate Threshold Voltage (V DS = 10 Vdc, I D = 100 µa) Chara SEMICONDUCTOR TECHNICAL DATA Order this document by MRF182/D The RF MOSFET Line N Channel Enhancement Mode Lateral MOSFETs High Gain, Rugged Device Broadband Performance from HF to 1 GHz Bottom Side Source

More information

RF LDMOS Wideband Integrated Power Amplifiers

RF LDMOS Wideband Integrated Power Amplifiers Technical Data RF LDMOS Wideband Integrated Power Amplifiers The MW4IC00 wideband integrated circuit is designed for use as a distortion signature device in analog predistortion systems. It uses Freescale

More information

RF LDMOS Wideband Integrated Power Amplifier MHVIC2115R2. Freescale Semiconductor, I. The Wideband IC Line SEMICONDUCTOR TECHNICAL DATA

RF LDMOS Wideband Integrated Power Amplifier MHVIC2115R2. Freescale Semiconductor, I. The Wideband IC Line SEMICONDUCTOR TECHNICAL DATA MOTOROLA nc. SEMICONDUCTOR TECHNICAL DATA Order this document by /D The Wideband IC Line RF LDMOS Wideband Integrated Power Amplifier The wideband integrated circuit is designed for base station applications.

More information

LIFETIME BUY LAST ORDER 1 JUL 11 LAST SHIP 30 JUN MHz -960 MHz SiFET RF Integrated Power Amplifier MHVIC910HNR2. Freescale Semiconductor

LIFETIME BUY LAST ORDER 1 JUL 11 LAST SHIP 30 JUN MHz -960 MHz SiFET RF Integrated Power Amplifier MHVIC910HNR2. Freescale Semiconductor LIFETIME BUY Technical Data 9 MHz -96 MHz SiFET RF Integrated Power Amplifier The MHVIC9HNR integrated circuit is designed for GSM base stations, uses Freescale s newest High Voltage (6 Volts) LDMOS IC

More information

CMOS Micro-Power Comparator plus Voltage Follower

CMOS Micro-Power Comparator plus Voltage Follower Freescale Semiconductor Technical Data Rev 2, 05/2005 CMOS Micro-Power Comparator plus Voltage Follower The is an analog building block consisting of a very-high input impedance comparator. The voltage

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs RF Power transistors designed for applications operating at 10 MHz. These devices are suitable for use in pulsed

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs RF Power transistors designed for CW and pulsed applications operating at 1300 MHz. These devices are suitable

More information

P D Storage Temperature Range T stg 65 to +150 C Operating Junction Temperature T J 200 C

P D Storage Temperature Range T stg 65 to +150 C Operating Junction Temperature T J 200 C SEMICONDUCTOR TECHNICAL DATA Order this document by /D The RF MOSFET Line N Channel Enhancement Mode Designed primarily for linear large signal output stages up to150 MHz frequency range. Specified 50

More information

RF LDMOS Wideband 2-Stage Power Amplifiers

RF LDMOS Wideband 2-Stage Power Amplifiers Technical Data RF LDMOS Wideband 2-Stage Power Amplifiers Designed for broadband commercial and industrial applications with frequencies from 132 MHz to 960 MHz. The high gain and broadband performance

More information

P D Storage Temperature Range T stg 65 to +150 C Operating Junction Temperature T J 200 C

P D Storage Temperature Range T stg 65 to +150 C Operating Junction Temperature T J 200 C SEMICONDUCTOR TECHNICAL DATA Order this document by MRF151/D The RF MOSFET Line N Channel Enhancement Mode MOSFET Designed for broadband commercial and military applications at frequencies to 175 MHz.

More information

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Technical Data Reference Design Library Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Device Characteristics (From Device Data Sheet) Designed for broadband commercial and industrial

More information

ARCHIVE INFORMATION. RF Power Field Effect Transistor N- Channel Enhancement- Mode Lateral MOSFET MRF21120R6. Freescale Semiconductor.

ARCHIVE INFORMATION. RF Power Field Effect Transistor N- Channel Enhancement- Mode Lateral MOSFET MRF21120R6. Freescale Semiconductor. Technical Data RF Power Field Effect Transistor N- Channel Enhancement- Mode Lateral MOSFET Designed for W- CDMA base station applications with frequencies from 2110 to 2170 MHz. Suitable for FM, TDMA,

More information

Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier

Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier Technical Data Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier The is a General Purpose Amplifier that is internally input and output matched. It is designed for a broad

More information

Watts W/ C Storage Temperature Range T stg 65 to +200 C Operating Junction Temperature T J 200 C. Test Conditions

Watts W/ C Storage Temperature Range T stg 65 to +200 C Operating Junction Temperature T J 200 C. Test Conditions SEMICONDUCTOR TECHNICAL DATA Order this document by MRF19125/D The RF Sub Micron MOSFET Line N Channel Enhancement Mode Lateral MOSFETs Designed for PCN and PCS base station applications with frequencies

More information

Heterostructure Field Effect Transistor (GaAs HFET) Broadband High Linearity Amplifier

Heterostructure Field Effect Transistor (GaAs HFET) Broadband High Linearity Amplifier Technical Data Heterostructure Field Effect Transistor (GaAs HFET) Broadband High Linearity Amplifier The is a General Purpose Amplifier that is internally input and output prematched. It is designed for

More information

ARCHIVE INFORMATION MW4IC2230MBR1 MW4IC2230GMBR1. Freescale Semiconductor. Technical Data. Document Number: MW4IC2230 Rev.

ARCHIVE INFORMATION MW4IC2230MBR1 MW4IC2230GMBR1. Freescale Semiconductor. Technical Data. Document Number: MW4IC2230 Rev. Technical Data Replaced by MW4IC2230NBR1(GNBR1). There are no form, fit or function changes with this part replacement. N suffix added to part number to indicate transition to lead- free terminations.

More information

Watts W/ C Storage Temperature Range T stg 65 to +150 C Operating Junction Temperature T J 200 C. Test Conditions MRF9085SR3/MRF9085LSR3

Watts W/ C Storage Temperature Range T stg 65 to +150 C Operating Junction Temperature T J 200 C. Test Conditions MRF9085SR3/MRF9085LSR3 SEMICONDUCTOR TECHNICAL DATA Order this document by MRF9085/D The RF Sub Micron MOSFET Line N Channel Enhancement Mode Lateral MOSFETs Designed for broadband commercial and industrial applications with

More information

Watts W/ C Storage Temperature Range T stg 65 to +150 C Operating Junction Temperature T J 200 C. Test Conditions

Watts W/ C Storage Temperature Range T stg 65 to +150 C Operating Junction Temperature T J 200 C. Test Conditions SEMICONDUCTOR TECHNICAL DATA Order this document by MRF21125/D The RF Sub Micron MOSFET Line N Channel Enhancement Mode Lateral MOSFETs Designed for W CDMA base station applications with frequencies from

More information

Characteristic Symbol Value (1,2) Unit Thermal Resistance, Junction to Case Case Temperature 80 C, 20 W CW

Characteristic Symbol Value (1,2) Unit Thermal Resistance, Junction to Case Case Temperature 80 C, 20 W CW Technical Data Document Number: MRF5S9100 Rev. 4, 5/2006 Replaced by MRF5S9100NR1/NBR1. There are no form, fit or function changes with this part replacement. N suffix added to part number to indicate

More information

RF LDMOS Wideband Integrated Power Amplifiers

RF LDMOS Wideband Integrated Power Amplifiers Technical Data RF LDMOS Wideband Integrated Power Amplifiers The MW4IC2230N wideband integrated circuit is designed for W-CDMA base station applications. It uses Freescale s newest High Voltage (26 to

More information

RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET Technical Data RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET RF Power transistor designed for applications operating at frequencies between 960 and 400 MHz, % to 20% duty

More information

Watts W/ C Storage Temperature Range Tstg 65 to +150 C Operating Junction Temperature TJ 200 C

Watts W/ C Storage Temperature Range Tstg 65 to +150 C Operating Junction Temperature TJ 200 C SEMICONDUCTOR TECHNICAL DATA Order this document by MRF184/D The RF MOSFET Line N Channel Enhancement Mode Lateral MOSFETs Designed for broadband commercial and industrial applications at frequencies to

More information

Rating Symbol Value Unit Drain Source Voltage V DSS 65 Vdc Gate Source Voltage V GS ±20 Vdc Total Device T C = 25 C Derate above 25 C

Rating Symbol Value Unit Drain Source Voltage V DSS 65 Vdc Gate Source Voltage V GS ±20 Vdc Total Device T C = 25 C Derate above 25 C SEMICONDUCTOR TECHNICAL DATA Order this document by MRF284/D The RF Sub Micron MOSFET Line N Channel Enhancement Mode Lateral MOSFETs Designed for PCN and PCS base station applications at frequencies from

More information

PD Characteristic Symbol Max Unit Thermal Resistance, Junction to Case RθJC 0.8 C/W

PD Characteristic Symbol Max Unit Thermal Resistance, Junction to Case RθJC 0.8 C/W SEMICONDUCTOR TECHNICAL DATA Order this document by MRF173/D The RF MOSFET Line N Channel Enhancement Mode MOSFETs Designed for broadband commercial and military applications up to 2 MHz frequency range.

More information

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Technical Data RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Designed primarily for large- signal output applications at 2450 MHz. Device is suitable for use in industrial,

More information

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Technical Data RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Designed primarily for pulsed wideband applications with frequencies up to 150 MHz. Device is unmatched and is

More information

Low-Power CMOS Ionization Smoke Detector IC

Low-Power CMOS Ionization Smoke Detector IC Freescale Semiconductor Technical Data Rev 4, 05/2005 Low-Power CMOS Ionization Smoke Detector IC The, when used with an ionization chamber and a small number of external components, will detect smoke.

More information

PD Storage Temperature Range Tstg 65 to +150 C Operating Junction Temperature TJ 200 C

PD Storage Temperature Range Tstg 65 to +150 C Operating Junction Temperature TJ 200 C SEMICONDUCTOR TECHNICAL DATA Order this document by /D The RF MOSFET Line Designed for wideband large signal amplifier and oscillator applications up to MHz range, in single ended configuration. Guaranteed

More information

RF Power Field Effect Transistors N- Channel Enhancement- Mode Lateral MOSFETs

RF Power Field Effect Transistors N- Channel Enhancement- Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N- Channel Enhancement- Mode Lateral MOSFETs Designed primarily for CW large-signal output and driver applications with frequencies up to 600 MHz. Devices

More information

RF Power Field Effect Transistors N- Channel Enhancement- Mode Lateral MOSFETs

RF Power Field Effect Transistors N- Channel Enhancement- Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N- Channel Enhancement- Mode Lateral MOSFETs Designed for GSM and GSM EDGE base station applications with frequencies from 18 to 2 MHz. Suitable for TDMA,

More information

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Technical Data RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Designed for Class A or Class AB base station applications with frequencies up to 2000 MHz. Suitable for analog

More information

Low Voltage 1:18 Clock Distribution Chip

Low Voltage 1:18 Clock Distribution Chip Freescale Semiconductor Technical Data Low Voltage 1:18 Clock Distribution Chip The is a 1:18 low voltage clock distribution chip with 2.5 V or 3.3 V LVCMOS output capabilities. The device features the

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs RF Power transistors designed for applications operating at frequencies between 1.8 and 600 MHz. These devices

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Freescale Semiconductor Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Designed primarily for large--signal output applications at 2450 MHz. Devices are suitable

More information

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Designed primarily for CW large-signal output and driver applications at 2450 MHz. Devices are suitable for use

More information

PD Operating Junction and Storage Temperature Range TJ, Tstg 65 to +150 C

PD Operating Junction and Storage Temperature Range TJ, Tstg 65 to +150 C SEMICONDUCTOR TECHNICAL DATA Order this document by MRF4427/D The RF Line Designed for amplifier, frequency multiplier, or oscillator applications in industrial equipment constructed with surface mount

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Designed primarily for CW large--signal output and driver applications with frequencies up to 600 MHz. Devices

More information

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Technical Data RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Designed for broadband commercial and industrial applications with frequencies up to 1000 MHz The high gain and

More information

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Technical Data RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Designed for broadband commercial and industrial applications with frequencies from 470 to 860 MHz. The high gain

More information

RF LDMOS Wideband Integrated Power Amplifiers

RF LDMOS Wideband Integrated Power Amplifiers Technical Data RF LDMOS Wideband Integrated Power Amplifiers The MWE6IC9N wideband integrated circuit is designed with on-chip matching that makes it usable from 869 to 96 MHz. This multi-stage structure

More information

Watts W/ C Storage Temperature Range T stg 65 to +150 C Operating Junction Temperature T J 200 C

Watts W/ C Storage Temperature Range T stg 65 to +150 C Operating Junction Temperature T J 200 C SEMICONDUCTOR TECHNICAL DATA Order this document by MRF176GU/D The RF MOSFET Line N Channel Enhancement Mode Designed for broadband commercial and military applications using push pull circuits at frequencies

More information

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Designed for broadband commercial and industrial applications with frequencies up to 1000 MHz The high gain and

More information

Low-Power CMOS Ionization Smoke Detector IC with Interconnect and Temporal Horn Driver

Low-Power CMOS Ionization Smoke Detector IC with Interconnect and Temporal Horn Driver Freescale Semiconductor Technical Data Low-Power CMOS Ionization Smoke Detector IC with Interconnect and Temporal Horn Driver The, when used with an ionization chamber and a small number of external components,

More information

Freescale Semiconductor, I

Freescale Semiconductor, I nc. SEMICONDUCTOR TECHNICAL DATA Order this document by MRF282/D The RF Sub Micron MOSFET Line N Channel Enhancement Mode Lateral MOSFETs Designed for Class A and Class AB PCN and PCS base station applications

More information

ARCHIVE INFORMATION. RF Power Field -Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET MRF372R3 MRF372R5. Freescale Semiconductor

ARCHIVE INFORMATION. RF Power Field -Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET MRF372R3 MRF372R5. Freescale Semiconductor Technical Data Document Number: MRF372 Rev. 9, 5/2006 RF Power Field -Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET Designed for broadband commercial and industrial applications with frequencies

More information

ARCHIVE INFORMATION. RF Power Field-Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET MRF377 MRF377R3 MRF377R5. Freescale Semiconductor

ARCHIVE INFORMATION. RF Power Field-Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET MRF377 MRF377R3 MRF377R5. Freescale Semiconductor Technical Data Document Number: MRF377 Rev. 1, 12/2004 RF Power Field-Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Designed for broadband commercial and industrial applications with frequencies

More information

ELECTRICAL CHARACTERISTICS (T C = 25 C unless otherwise noted) Characteristic Symbol Min Typ Max Unit OFF CHARACTERISTICS Collector Emitter Breakdown

ELECTRICAL CHARACTERISTICS (T C = 25 C unless otherwise noted) Characteristic Symbol Min Typ Max Unit OFF CHARACTERISTICS Collector Emitter Breakdown SEMICONDUCTOR TECHNICAL DATA Order this document by MRF20060R/D The RF Sub Micron Bipolar Line The MRF20060R and MRF20060RS are designed for class AB broadband commercial and industrial applications at

More information

Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier

Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier Freescale Semiconductor Technical Data Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier The is a general purpose amplifier that is internally input and output matched. It

More information

NDF10N60Z. N-Channel Power MOSFET 600 V, 0.75

NDF10N60Z. N-Channel Power MOSFET 600 V, 0.75 NDFNZ N-Channel Power MOSFET V,.7 Features Low ON Resistance Low Gate Charge ESD Diode Protected Gate % Avalanche Tested % R g Tested These Devices are Pb Free, Halogen Free/BFR Free and are RoHS Compliant

More information

PD Storage Temperature Range Tstg 65 to +200 C Operating Junction Temperature TJ 200 C

PD Storage Temperature Range Tstg 65 to +200 C Operating Junction Temperature TJ 200 C SEMICONDUCTOR TECHNICAL DATA Order this document by MRF187/D Product Is Not Recommended for New Design. The next generation of higher performance products are in development. Visit our online Selector

More information

ELECTRICAL CHARACTERISTICS continued (T C = 25 C unless otherwise noted) Characteristic Symbol Min Typ Max Unit OFF CHARACTERISTICS Emitter Base Break

ELECTRICAL CHARACTERISTICS continued (T C = 25 C unless otherwise noted) Characteristic Symbol Min Typ Max Unit OFF CHARACTERISTICS Emitter Base Break SEMICONDUCTOR TECHNICAL DATA Order this document by /D The RF Sub Micron Bipolar Line Designed for broadband commercial and industrial applications at frequencies from 1800 to 2000 MHz. The high gain and

More information

NTMD4840NR2G. Power MOSFET 30 V, 7.5 A, Dual N Channel, SOIC 8

NTMD4840NR2G. Power MOSFET 30 V, 7.5 A, Dual N Channel, SOIC 8 NTMDN Power MOSFET 3 V, 7. A, Dual N Channel, SOIC Features Low R DS(on) to Minimize Conduction Losses Low Capacitance to Minimize Driver Losses Optimized Gate Charge to Minimize Switching Losses Dual

More information

NTMS5838NL. Power MOSFET 40 V, 7.5 A, 20 m

NTMS5838NL. Power MOSFET 40 V, 7.5 A, 20 m Power MOSFET V, 7.5 A, 2 m Features Low R DS(on) Low Capacitance Optimized Gate Charge These Devices are Pb Free, Halogen Free/BFR Free and are RoHS Compliant MAXIMUM RATINGS ( unless otherwise stated)

More information

NVLJD4007NZTBG. Small Signal MOSFET. 30 V, 245 ma, Dual, N Channel, Gate ESD Protection, 2x2 WDFN Package

NVLJD4007NZTBG. Small Signal MOSFET. 30 V, 245 ma, Dual, N Channel, Gate ESD Protection, 2x2 WDFN Package NVLJD7NZ Small Signal MOSFET V, 2 ma, Dual, N Channel, Gate ESD Protection, 2x2 WDFN Package Features Optimized Layout for Excellent High Speed Signal Integrity Low Gate Charge for Fast Switching Small

More information

NTNS3164NZT5G. Small Signal MOSFET. 20 V, 361 ma, Single N Channel, SOT 883 (XDFN3) 1.0 x 0.6 x 0.4 mm Package

NTNS3164NZT5G. Small Signal MOSFET. 20 V, 361 ma, Single N Channel, SOT 883 (XDFN3) 1.0 x 0.6 x 0.4 mm Package NTNS36NZ Small Signal MOSFET V, 36 ma, Single N Channel, SOT 883 (XDFN3). x.6 x. mm Package Features Single N Channel MOSFET Ultra Low Profile SOT 883 (XDFN3). x.6 x. mm for Extremely Thin Environments

More information

NTMD4820NR2G. Power MOSFET 30 V, 8 A, Dual N Channel, SOIC 8

NTMD4820NR2G. Power MOSFET 30 V, 8 A, Dual N Channel, SOIC 8 NTMDN Power MOSFET V, A, Dual N Channel, SOIC Features Low R DS(on) to Minimize Conduction Losses Low Capacitance to Minimize Driver Losses Optimized Gate Charge to Minimize Switching Losses Dual SOIC

More information

NTMS5835NL. Power MOSFET 40 V, 12 A, 10 m

NTMS5835NL. Power MOSFET 40 V, 12 A, 10 m Power MOSFET V, 2 A, m Features Low R DS(on) Low Capacitance Optimized Gate Charge These Devices are Pb Free, Halogen Free/BFR Free and are RoHS Compliant MAXIMUM RATINGS ( unless otherwise stated) Parameter

More information

NTGD4167C. Power MOSFET Complementary, 30 V, +2.9/ 2.2 A, TSOP 6 Dual

NTGD4167C. Power MOSFET Complementary, 30 V, +2.9/ 2.2 A, TSOP 6 Dual Power MOSFET Complementary, 3 V, +.9/. A, TSOP 6 Dual Features Complementary N Channel and P Channel MOSFET Small Size (3 x 3 mm) Dual TSOP 6 Package Leading Edge Trench Technology for Low On Resistance

More information

NTMS4801NR2G. Power MOSFET 30 V, 12 A, N Channel, SO 8

NTMS4801NR2G. Power MOSFET 30 V, 12 A, N Channel, SO 8 NTMSN Power MOSFET 3 V, A, N Channel, SO Features Low R DS(on) to Minimize Conduction Losses Low Capacitance to Minimize Driver Losses Optimized Gate Charge to Minimize Switching Losses This is a Pb Free

More information

Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family

Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family Application Note Rev., 1/3 NOTE: The theory in this application note is still applicable, but some of the products referenced may be discontinued. Quiescent Current Thermal Tracking Circuit in the RF Integrated

More information

MRFIC2006. The MRFIC Line SEMICONDUCTOR TECHNICAL DATA

MRFIC2006. The MRFIC Line SEMICONDUCTOR TECHNICAL DATA SEMICONDUCTOR TECHNICAL DATA Order this document by /D The MRFIC Line The is an Integrated PA designed for linear operation in the MHz to. GHz frequency range. The design utilizes Motorola s advanced MOSAIC

More information

PD Storage Temperature Range Tstg 65 to +150 C. Characteristic Symbol Max Unit Thermal Resistance, Junction to Case RθJC 4.

PD Storage Temperature Range Tstg 65 to +150 C. Characteristic Symbol Max Unit Thermal Resistance, Junction to Case RθJC 4. SEMICONDUCTOR TECHNICAL DATA Order this document by /D The RF Line... designed for 12.5 Volt UHF large signal amplifier applications in industrial and commercial FM equipment operating to 512 MHz. Specified

More information

NVD5117PLT4G. Power MOSFET 60 V, 16 m, 61 A, Single P Channel

NVD5117PLT4G. Power MOSFET 60 V, 16 m, 61 A, Single P Channel Power MOSFET 6 V, 16 m, 61 A, Single P Channel Features Low R DS(on) to Minimize Conduction Losses High Current Capability Avalanche Energy Specified AEC Q11 Qualified These Devices are Pb Free, Halogen

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Designed for W--CDMA and LTE base station applications with frequencies from 211 to 217 MHz. Can be used in

More information

RF Power Field Effect Transistor N- Channel Enhancement- Mode Lateral MOSFET

RF Power Field Effect Transistor N- Channel Enhancement- Mode Lateral MOSFET Technical Data RF Power Field Effect Transistor N- Channel Enhancement- Mode Lateral MOSFET Designed for CDMA base station applications with frequencies from 2600 to 2700 MHz Suitable for WiMAX, WiBro

More information

NTTFS5116PLTWG. Power MOSFET 60 V, 20 A, 52 m. Low R DS(on) Fast Switching These Devices are Pb Free and are RoHS Compliant

NTTFS5116PLTWG. Power MOSFET 60 V, 20 A, 52 m. Low R DS(on) Fast Switching These Devices are Pb Free and are RoHS Compliant Power MOSFET 6 V, 2 A, 52 m Features Low R DS(on) Fast Switching These Devices are Pb Free and are RoHS Compliant Applications Load Switches DC Motor Control DC DC Conversion MAXIMUM RATINGS ( unless otherwise

More information

NTTFS5820NLTWG. Power MOSFET. 60 V, 37 A, 11.5 m. Low R DS(on) Low Capacitance Optimized Gate Charge These Devices are Pb Free and are RoHS Compliant

NTTFS5820NLTWG. Power MOSFET. 60 V, 37 A, 11.5 m. Low R DS(on) Low Capacitance Optimized Gate Charge These Devices are Pb Free and are RoHS Compliant NTTFS582NL Power MOSFET 6 V, 37 A,.5 m Features Low R DS(on) Low Capacitance Optimized Gate Charge These Devices are Pb Free and are RoHS Compliant MAXIMUM RATINGS ( unless otherwise stated) Parameter

More information

NTTFS3A08PZTWG. Power MOSFET 20 V, 15 A, Single P Channel, 8FL

NTTFS3A08PZTWG. Power MOSFET 20 V, 15 A, Single P Channel, 8FL NTTFS3A8PZ Power MOSFET V, 5 A, Single P Channel, 8FL Features Ultra Low R DS(on) to Minimize Conduction Losses 8FL 3.3 x 3.3 x.8 mm for Space Saving and Excellent Thermal Conduction ESD Protection Level

More information

Figure 1. MRF6S27015NR1(GNR1) Test Circuit Schematic

Figure 1. MRF6S27015NR1(GNR1) Test Circuit Schematic Technical Data RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Designed for CDMA base station applications with frequencies from 2000 to 2700 MHz. Suitable for WiMAX, WiBro,

More information

NTGS3441BT1G. Power MOSFET. -20 V, -3.5 A, Single P-Channel, TSOP-6. Low R DS(on) in TSOP-6 Package 2.5 V Gate Rating This is a Pb-Free Device

NTGS3441BT1G. Power MOSFET. -20 V, -3.5 A, Single P-Channel, TSOP-6. Low R DS(on) in TSOP-6 Package 2.5 V Gate Rating This is a Pb-Free Device Power MOSFET - V, -. A, Single P-Channel, TSOP- Features Low R DS(on) in TSOP- Package. V Gate Rating This is a Pb-Free Device Applications Battery Switch and Load Management Applications in Portable Equipment

More information

NVD5865NL. Power MOSFET 60 V, 46 A, 16 m, Single N Channel

NVD5865NL. Power MOSFET 60 V, 46 A, 16 m, Single N Channel Power MOSFET 6 V, 6 A, 16 m, Single N Channel Features Low R DS(on) to Minimize Conduction Losses High Current Capability Avalanche Energy Specified AEC Q1 Qualified These Devices are Pb Free, Halogen

More information

NTMD4184PFR2G. Power MOSFET and Schottky Diode -30 V, -4.0 A, Single P-Channel with 20 V, 2.2 A, Schottky Barrier Diode Features

NTMD4184PFR2G. Power MOSFET and Schottky Diode -30 V, -4.0 A, Single P-Channel with 20 V, 2.2 A, Schottky Barrier Diode Features NTMDPF Power MOSFET and Schottky Diode -3 V, -. A, Single P-Channel with V,. A, Schottky Barrier Diode Features FETKY Surface Mount Package Saves Board Space Independent Pin-Out for MOSFET and Schottky

More information

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Designed for W-CDMA and LTE base station applications with frequencies from 211 to 217 MHz. Can be used in Class

More information

Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier

Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier Freescale Semiconductor Technical Data Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier The is a general purpose amplifier that is internally input and output matched. It

More information

RF LDMOS Wideband Integrated Power Amplifiers. Freescale Semiconductor, I MW5IC2030MBR1 MW5IC2030GMBR1. The Wideband IC Line

RF LDMOS Wideband Integrated Power Amplifiers. Freescale Semiconductor, I MW5IC2030MBR1 MW5IC2030GMBR1. The Wideband IC Line MOTOROLA nc. SEMICONDUCTOR TECHNICAL DATA Order this document by MW5IC23M/D The Wideband IC Line RF LDMOS Wideband Integrated Power Amplifiers The MW5IC23 wideband integrated circuit is designed for base

More information

NTD5805N, NVD5805N. Power MOSFET 40 V, 51 A, Single N Channel, DPAK

NTD5805N, NVD5805N. Power MOSFET 40 V, 51 A, Single N Channel, DPAK NTD585N, NVD585N Power MOSFET V, 5 A, Single N Channel, Features Low R DS(on) High Current Capability Avalanche Energy Specified NVD Prefix for Automotive and Other Applications Requiring Unique Site and

More information

NTLUD3A260PZ. Power MOSFET 20 V, 2.1 A, Cool Dual P Channel, ESD, 1.6x1.6x0.55 mm UDFN Package

NTLUD3A260PZ. Power MOSFET 20 V, 2.1 A, Cool Dual P Channel, ESD, 1.6x1.6x0.55 mm UDFN Package NTLUDAPZ Power MOSFET V,. A, Cool Dual P Channel, ESD,.x.x. mm UDFN Package Features UDFN Package with Exposed Drain Pads for Excellent Thermal Conduction Low Profile UDFN.x.x. mm for Board Space Saving

More information

NDD60N360U1 35G. N-Channel Power MOSFET. 100% Avalanche Tested These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant.

NDD60N360U1 35G. N-Channel Power MOSFET. 100% Avalanche Tested These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant. NDDN3U N-Channel Power MOSFET V, 3 m Features % Avalanche Tested These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant ABSOLUTE MAXIMUM RATINGS ( unless otherwise noted) V (BR)DSS R DS(ON)

More information

Quiescent Current Control for the RF Integrated Circuit Device Family

Quiescent Current Control for the RF Integrated Circuit Device Family Application Note Rev., 5/ Quiescent Current Control for the RF Integrated Circuit Device Family By: James Seto INTRODUCTION This application note introduces a bias control circuit that can be used with

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Designed for WiMAX base station applications with frequencies up to 2700 MHz. Suitable for WiMAX, WiBro, BWA,

More information

NDF10N62Z. N-Channel Power MOSFET

NDF10N62Z. N-Channel Power MOSFET NDFNZ N-Channel Power MOSFET V,.7 Features Low ON Resistance Low Gate Charge ESD Diode Protected Gate % Avalanche Tested These Devices are Pb Free, Halogen Free/BFR Free and are RoHS Compliant V DSS R

More information

LAST ORDER 19SEP02 LAST SHIP 19MAR03 DEVICE ON LIFETIME BUY. Freescale Semiconductor, I. DUAL BAND/DUAL MODE GaAs INTEGRATED POWER AMPLIFIER

LAST ORDER 19SEP02 LAST SHIP 19MAR03 DEVICE ON LIFETIME BUY. Freescale Semiconductor, I. DUAL BAND/DUAL MODE GaAs INTEGRATED POWER AMPLIFIER nc. Order this document by MRFIC856/D The MRFIC856 is designed for dual band subscriber equipment applications at in the cellular (800 MHz) and PCS (900 MHz) bands. The device incorporates two phemt GaAs

More information