Computer Architecture and Organization: L08: Design Control Lines

Size: px
Start display at page:

Download "Computer Architecture and Organization: L08: Design Control Lines"

Transcription

1 Computer Architecture and Organization: L08: Design Control Lines By: A. H. Abdul Hafez 1 CAO, by Dr. A.H. Abdul Hafez, CE Dept. HKU December 20, 2016

2 Outlines 1. Simple example: revision to bus system 2. Registers and Memory Control lines circuits 1. Design of TR and AR registers 2. Design of memory read and write lines 3. Common bus selection lines 3. Accumulator logic design 1. AC control lines 2. Adder logic design 4. End 2 CAO, by Dr. A.H. Abdul Hafez, CE Dept. HKU December 20, 2016

3 3 CAO, by Dr. A.H. Abdul Hafez, CE Dept. HKU December 20, 2016

4 Fetch Table (5-6) Control Functions and Microoperations for the basic computer (Mano computer) R T0: R T1: AR PC IR M[AR], PC PC + 1 Decode R T2: D0.D7 IR (12-14), I IR (15), AR IR (0-11) Indirect D 7 IT3: AR M[AR] Interrupt T0 T1 T2 IEN (FGI + FGO): R 1 RT0: Memory Reference AND D 0 T4: D 0 T5: ADD D 1 T4: D 1 T5: LDA D 2 T4: D 2 T5: AR 0, TR PC RT1: M[AR] TR, PC 0 RT2: PC PC + 1, IEN 0, R 0, SC 0 DR M[AR] AC AC ^ DR, SC 0 DR M[AR] AC AC ^ DR, E Cout, SC 0 DR M[AR] AC DR, SC 0 STA D 3 T4: M[AR] AC, SC 0 BUN D 4 T4: PC AR, SC 0 BSA D 5 T4: D 5 T5: ISZ D 6 T4: D 6 T5: D 6 T6: M[AR] PC, AR AR+1 PC AR, SC 0 DR M[AR] DR DR + 1 M[AR] DR, if DR=0 then PC PC + 1 Register Reference D7 I T3 = r IR( I ) = Bi [bit in IR (0-11) that specifies the operation] r: SC 0 CLA rb 11 : AC 0 CLE rb 10 : E 0 CMA rb 9 : AC AC CME rb 8 : E E CIR rb 7 : AC shr AC, AC(15) E, E AC (0) CIL rb 6 : AC shl AC, AC(0) E, E AC (15) INC rb 5 : AC AC+1 SPA rb 4 : If (AC (15)=0) then (PC PC+1) SNA rb 3 : If (AC (15)=1) then (PC PC+1) SZA rb 2 : If (AC =0) then (PC PC+1) SZE rb 1 : If (E=0) then (PC PC+1) HLT rb 0 : S 0 (S is a start-stop flip-flop) Input-output D7 I T3 =p (common for all input-output instructions) IR( I ) = Bi [bit in IR (6-11) that specifies the instructions] p: SC 0 INP pb 11 : AC(0-7) INPR, FGI 0 OUT pb 10 : OUTR AC (0-7), FGO 0 SKI pb 9 : if (FGI=1) then (PC PC + 1) SKO pb 8 : if (FGO=1) then (PC PC + 1) ION pb 7 : IEN 1 IOF pb 6 : IEN 0 4

5 Design of Basic Computer The proposed basic computer consists of the following hardware components: 1- A memory unit with 4096 words of 16 bits each. 2- Nine registers : AR, PC, DR, AC, IR, TR, OUTR, INPR, and SC. 3- Seven Flip Flops: I, S, E, R, IEN, FGI, and FGO. 4- Two decoders: 3-to-8 op-code decoder and 4-to-16 timing decoder bit common bus. 6- Control logic gates. 7- Adder and logic circuit connected to the input of the accumulator. December 20, 2016 CAO, by Dr. A.H. Abdul Hafez, CE Dept. HKU 5

6 S E R IEN FGI FGO DR instruction register (IR) AC 3x8 decoder D0 I D7 T15 Control logic gates x6 decoder T0 4-bit Sequence Counter (SC) (CLR) Clock (INR) 6

7 Control Lines: Simple Example The multiplexer selects one of the four registers as the source register. Control lines for the MUX are driven by external circuitry. The data is made available to all registers, but only one actually loads the data. Again, external hardware generates load signals for the four registers such that no more than one is active at any given time. The symbolic statement for a bus transfer may mention the bus or its presence may be implied in the statement. When bus is included in the statement we write: BUS C, A BUS (however it is A C) P: A B Q: A C R: B D S: C A T: D C U: D B 7 CAO, by Dr. A.H. Abdul Hafez, CE Dept. HKU December 20, 2016

8 Registers and Memory Control lines circuits Note: To design the control circuit for any register or memory input control lines, we have to scan table (5-6) to find the required control functions for each control line. Ex: Design of TR After the scanning of table (5-6), TR is modified only by the microoperation RTo: TR PC, So the control circuit will be From Bus 12 TR 12 To the Bus LD R To CLK 8

9 Ex: Design of AR register Scan table (5-6) for the transfer statements that change the content of AR: R T0: AR PC R T2: AR IR(0-11) D 7IT3: AR M[AR] LD (AR) LD (AR) LD (AR) LD(AR)= R T0+R T2+D 7IT3 RT0: AR 0 D5T4: AR AR+1 CLR (AR) INR (AR) D 7 I T3 T2 From bus 1 2 AR LD INR CLR 1 2 to bus clock R T0 D5 T4 9

10 Ex: Design of Memory Read and Write control circuits Scanning the table, lead to the control functions for the Read and Write memory input lines: Read= R T 1 +D 7 IT 3 +(D 0 +D 1 +D 2 +D 6 ) T 4 Write= RT 1 +D 3 T 4 +D 5 T 4 +D 6 T 6 Memory Do D1 D2 D6 R T1 D 7 I T3 Read Write R T1 D3 T4 D5 T4 D6 T6 T4 10

11 Control circuit of single Flip Flop Ex: For the IEN Flip Flop, table 5-6 shows that IEN may change as a result of the instructions: ION, IOF, and is reset at the end of the interrupt cycle. The control functions and microoperations are: pb7: IEN 1 pb6: IEN 0 RT2: IEN 0 ION instruction IOF instruction ION instruction at the end of the interrupt cycle D'7 I T3 p B7 J SET Q J KQ(t+1) Clock IEN B6 R K CLR Q T2 11

12 Control of Common Bus Encoder for Bus Selection : Table. 5-6 S0 = x1 + x3 + x5 + x7 S1 = x2 + x3 + x6 + x7 S2 = x4 + x5 + x6 + x7 x1 = 1 : D T 4 D T 5 Control Function : x2 = 1 : Bus AR 4 5 : PC : PC AR AR Bus PC x D T D T5 x1 = 1 corresponds to the bus connection of AR as a source x 1 x 2 x 3 x 4 x 5 x 6 x 7 Encoder So S1 S2 Multiplexer Bus Select Input x7 = 1 : Bus Memory Same as Memory Read Control Function : x 7 R' T1 D7 ' IT3 ( D0 D1 D2 D3 ) T 4 12

13 Design of Accumulator Logic Circuit The circuits associated with the AC register are shown in the Figure below. The Adder has three inputs: one set of 16-bit from the output of the accumulator. Another set of 16-bit comes from the DR register. A third set of 8-bit comes from the INPR. The AC is provided with three control lines: LD, INR, and CLR. 16 From DR From INPR 16 8 Adder and logic circuit Accumulator register (AC) To Bus LD INR CLR Clock Control gates 13

14 Design of AC Register Search table 5-6 for the statements that change the content of AC. The statements, their control functions and the corresponding logic circuit are shown below. From adder and logic AC To Bus D0 AND LD INR CLR Clock D T 0 D T 1 2 pb rb rb rb rb rb D T 5 11 : AC AC DR : AC AC DR : AC DR : AC(0 7) INPR : AC AC : AC shr AC, AC(15) E : AC shr AC, AC(0) E : AC 0 : AC AC 1 LD CLR INR T5 D1 D2 T5 p B11 r B9 B7 B6 ADD DR INPR COM SHR SHL INC B5 CLR Fig. (5-20) B11 14

15 Adder and Logic Circuit This circuit consists of 16 single-bit adder and logic duplicated circuits. The carry output of the first stage is connected to the carry input of the next stage, and so on. INPR (1) INPR (0) DR (14) AC (15) Cin DR (14) AC (14) DR (1) AC (1) Cin DR (0) AC (0) Stage15 Stage 14 Stage 1 Stage 0 Cout Cout Cout E AC (15) AC (14) AC (1) AC (0) Detail connection of single stage 15

16 Adder and Logic circuit DR(i) AC(i) AND (Output of OR gate in Fig. 5-20) LD Ci FA ADD Ii (Fig.2-11) J Q AC(i) Ci+1 DR K bit(i) From INPR INPR COM Clock SHR AC(i+1) SHL AC(i-1) 16

17 The end of the Lecture Thanks for your time Questions are welcome 17 CAO, by Dr. A.H. Abdul Hafez, CE Dept. HKU December 20, 2016

Computer Architecture and Organization:

Computer Architecture and Organization: Computer Architecture and Organization: L03: Register transfer and System Bus By: A. H. Abdul Hafez Abdul.hafez@hku.edu.tr, ah.abdulhafez@gmail.com 1 CAO, by Dr. A.H. Abdul Hafez, CE Dept. HKU Outlines

More information

EC4205 Microprocessor and Microcontroller

EC4205 Microprocessor and Microcontroller EC4205 Microprocessor and Microcontroller Webcast link: https://sites.google.com/a/bitmesra.ac.in/aminulislam/home All announcement made through webpage: check back often Students are welcome outside the

More information

Controller Implementation--Part I. Cascading Edge-triggered Flip-Flops

Controller Implementation--Part I. Cascading Edge-triggered Flip-Flops Controller Implementation--Part I Alternative controller FSM implementation approaches based on: Classical Moore and Mealy machines Time state: Divide and Counter Jump counters Microprogramming (ROM) based

More information

Java Bread Board Introductory Digital Electronics Exercise 2, Page 1

Java Bread Board Introductory Digital Electronics Exercise 2, Page 1 Java Bread Board Introductory Digital Electronics Exercise 2, Page 1 JBB Excercise 2 The aim of this lab is to demonstrate how basic logic gates can be used to implement simple memory functions, introduce

More information

Design of Microprogrammed Control Units (MCU) using VHDL Description. Arvutitehnika erikusus

Design of Microprogrammed Control Units (MCU) using VHDL Description. Arvutitehnika erikusus Design of Microprogrammed Control Units (MCU) using VHDL Description Arvutitehnika erikusus 1 Hardwired control unit S5 A S6 & D Q Q D Q Q CLOCK A hardwired control unit accomplishes a conditional transfer

More information

Understanding Engineers #2

Understanding Engineers #2 Understanding Engineers #! The graduate with a Science degree asks, "Why does it work?"! The graduate with an Engineering degree asks, "How does it work?"! The graduate with an Accounting degree asks,

More information

Lecture 02: Digital Logic Review

Lecture 02: Digital Logic Review CENG 3420 Lecture 02: Digital Logic Review Bei Yu byu@cse.cuhk.edu.hk CENG3420 L02 Digital Logic. 1 Spring 2017 Review: Major Components of a Computer CENG3420 L02 Digital Logic. 2 Spring 2017 Review:

More information

CSE 370 Winter Homework 5 Solutions

CSE 370 Winter Homework 5 Solutions CSE 370 Winter 2008 Homework 5 Solutions 1) Carry Look-Ahead Adder (CLA) a) add1 b) add4 c) cla4 d) cla16 e) Gate Count: 118 gates add1 : 3 gates add4 : 4*Add1 = 12 gates cla4 : 14 gates cla16: (4*Add4)

More information

ICS 151 Final. (Last Name) (First Name)

ICS 151 Final. (Last Name) (First Name) ICS 151 Final Name Student ID Signature :, (Last Name) (First Name) : : Instructions: 1. Please verify that your paper contains 19 pages including this cover and 3 blank pages. 2. Write down your Student-Id

More information

Solutions. ICS 151 Final. Q1 Q2 Q3 Q4 Total Credit Score. Instructions: Student ID. (Last Name) (First Name) Signature

Solutions. ICS 151 Final. Q1 Q2 Q3 Q4 Total Credit Score. Instructions: Student ID. (Last Name) (First Name) Signature ICS 151 Final Name Student ID Signature :, (Last Name) (First Name) : : Instructions: 1. Please verify that your paper contains 19 pages including this cover and 3 blank pages. 2. Write down your Student-Id

More information

RISC Central Processing Unit

RISC Central Processing Unit RISC Central Processing Unit Lan-Da Van ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Spring, 2014 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/

More information

Learning Outcomes. Spiral 2 3. DeMorgan Equivalents NEGATIVE (ACTIVE LO) LOGIC. Negative Logic One hot State Assignment System Design Examples

Learning Outcomes. Spiral 2 3. DeMorgan Equivalents NEGATIVE (ACTIVE LO) LOGIC. Negative Logic One hot State Assignment System Design Examples 2-3. Learning Outcomes 2-3.2 Spiral 2 3 Negative Logic One hot State Assignment System Design Examples I understand the active low signal convention and how to interface circuits that use both active high

More information

Practical Workbook Logic Design & Switching Theory

Practical Workbook Logic Design & Switching Theory Practical Workbook Logic Design & Switching Theory Name : Year : Batch : Roll No : Department: Second Edition Fall 2017-18 Dept. of Computer & Information Systems Engineering NED University of Engineering

More information

Brought to you by. Priti Srinivas Sajja. PS01CMCA02 Course Content. Tutorial Practice Material. Acknowldgement References. Website pritisajja.

Brought to you by. Priti Srinivas Sajja. PS01CMCA02 Course Content. Tutorial Practice Material. Acknowldgement References. Website pritisajja. Brought to you by Priti Srinivas Sajja PS01CMCA02 Course Content Tutorial Practice Material Acknowldgement References Website pritisajja.info Multiplexer Means many into one, also called data selector

More information

On Built-In Self-Test for Adders

On Built-In Self-Test for Adders On Built-In Self-Test for s Mary D. Pulukuri and Charles E. Stroud Dept. of Electrical and Computer Engineering, Auburn University, Alabama Abstract - We evaluate some previously proposed test approaches

More information

Exam #2 EE 209: Fall 2017

Exam #2 EE 209: Fall 2017 29 November 2017 Exam #2 EE 209: Fall 2017 Name: USCid: Session: Time: MW 10:30 11:50 / TH 11:00 12:20 (circle one) 1 hour 50 minutes Possible Score 1. 27 2. 28 3. 17 4. 16 5. 22 TOTAL 110 PERFECT 100

More information

Digital Electronics 8. Multiplexer & Demultiplexer

Digital Electronics 8. Multiplexer & Demultiplexer 1 Module -8 Multiplexers and Demultiplexers 1 Introduction 2 Principles of Multiplexing and Demultiplexing 3 Multiplexer 3.1 Types of multiplexer 3.2 A 2 to 1 multiplexer 3.3 A 4 to 1 multiplexer 3.4 Multiplex

More information

EC4205 Microprocessor and Microcontroller

EC4205 Microprocessor and Microcontroller EC4205 Microprocessor and Microcontroller Webcast link: https://sites.google.com/a/bitmesra.ac.in/aminulislam/home All announcement made through webpage: check back often Students are welcome outside the

More information

Design For Test. VLSI Design I. Design for Test. page 1. What can we do to increase testability?

Design For Test. VLSI Design I. Design for Test. page 1. What can we do to increase testability? VLS esign esign for Test esign For Test What can we do to increase ability? He s dead Jim... Overview design for architectures ad-hoc, scan based, built-in in Goal: You are familiar with ability metrics

More information

Class Project: Low power Design of Electronic Circuits (ELEC 6970) 1

Class Project: Low power Design of Electronic Circuits (ELEC 6970) 1 Power Minimization using Voltage reduction and Parallel Processing Sudheer Vemula Dept. of Electrical and Computer Engineering Auburn University, Auburn, AL. Goal of the project:- To reduce the power consumed

More information

Adder Comparator 7 segment display Decoder for 7 segment display D flip flop Analysis of sequential circuits. Sequence detector

Adder Comparator 7 segment display Decoder for 7 segment display D flip flop Analysis of sequential circuits. Sequence detector Lecture 3 Adder Comparator 7 segment display Decoder for 7 segment display D flip flop Analysis of sequential circuits Counter Sequence detector TNGE11 Digitalteknik, Lecture 3 1 Adder TNGE11 Digitalteknik,

More information

IES Digital Mock Test

IES Digital Mock Test . The circuit given below work as IES Digital Mock Test - 4 Logic A B C x y z (a) Binary to Gray code converter (c) Binary to ECESS- converter (b) Gray code to Binary converter (d) ECESS- To Gray code

More information

Microprocessor & Interfacing Lecture Programmable Interval Timer

Microprocessor & Interfacing Lecture Programmable Interval Timer Microprocessor & Interfacing Lecture 30 8254 Programmable Interval Timer P A R U L B A N S A L A S S T P R O F E S S O R E C S D E P A R T M E N T D R O N A C H A R Y A C O L L E G E O F E N G I N E E

More information

Types of Control. Programmed Non-programmed. Program Counter Hardwired

Types of Control. Programmed Non-programmed. Program Counter Hardwired Lecture #5 In this lecture we will introduce the sequential circuits. We will overview various Latches and Flip Flops (30 min) Give Sequential Circuits design concept Go over several examples as time permits

More information

Project Board Game Counter: Digital

Project Board Game Counter: Digital Project 1.3.3 Board Game Counter: Digital Introduction Just a few short weeks ago, most of you knew little or nothing about digital electronics. Now you are about to build and simulate a complete design.

More information

CS302 - Digital Logic Design Glossary By

CS302 - Digital Logic Design Glossary By CS302 - Digital Logic Design Glossary By ABEL : Advanced Boolean Expression Language; a software compiler language for SPLD programming; a type of hardware description language (HDL) Adder : A digital

More information

Unit-6 PROGRAMMABLE INTERRUPT CONTROLLERS 8259A-PROGRAMMABLE INTERRUPT CONTROLLER (PIC) INTRODUCTION

Unit-6 PROGRAMMABLE INTERRUPT CONTROLLERS 8259A-PROGRAMMABLE INTERRUPT CONTROLLER (PIC) INTRODUCTION M i c r o p r o c e s s o r s a n d M i c r o c o n t r o l l e r s P a g e 1 PROGRAMMABLE INTERRUPT CONTROLLERS 8259A-PROGRAMMABLE INTERRUPT CONTROLLER (PIC) INTRODUCTION Microcomputer system design requires

More information

COURSE LEARNING OUTCOMES AND OBJECTIVES

COURSE LEARNING OUTCOMES AND OBJECTIVES COURSE LEARNING OUTCOMES AND OBJECTIVES A student who successfully fulfills the course requirements will have demonstrated: 1. an ability to analyze and design CMOS logic gates 1-1. convert numbers from

More information

MICROPROCESSORS AND MICROCONTROLLER 1

MICROPROCESSORS AND MICROCONTROLLER 1 MICROPROCESSORS AND MICROCONTROLLER 1 Microprocessor Applications Data Acquisition System Data acquisition is the process of sampling signals that measure real world physical conditions ( such as temperature,

More information

Datapath Components. Control vs. Datapath, Registers, Adders (Binary Addition) Copyright (c) 2012 Sean Key

Datapath Components. Control vs. Datapath, Registers, Adders (Binary Addition) Copyright (c) 2012 Sean Key atapath Components Control vs. atapath, Registers, Adders (Binary Addition) Copyright (c) 2012 ean Key ata vs. Control Most digital circuits can be divided into two parts Control Circuitry to control the

More information

6.111 Lecture # 19. Controlling Position. Some General Features of Servos: Servomechanisms are of this form:

6.111 Lecture # 19. Controlling Position. Some General Features of Servos: Servomechanisms are of this form: 6.111 Lecture # 19 Controlling Position Servomechanisms are of this form: Some General Features of Servos: They are feedback circuits Natural frequencies are 'zeros' of 1+G(s)H(s) System is unstable if

More information

Multiplier and Accumulator Using Csla

Multiplier and Accumulator Using Csla IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 10, Issue 1, Ver. 1 (Jan - Feb. 2015), PP 36-44 www.iosrjournals.org Multiplier and Accumulator

More information

Lecture 18. BUS and MEMORY

Lecture 18. BUS and MEMORY Lecture 18 BUS and MEMORY Slides of Adam Postula used 12/8/2002 1 SIGNAL PROPAGATION FROM ONE SOURCE TO MANY SINKS A AND XOR Signal le - FANOUT = 3 AND AND B BUS LINE Signal Driver - Sgle Source Many Sks

More information

Computer Hardware. Pipeline

Computer Hardware. Pipeline Computer Hardware Pipeline Conventional Datapath 2.4 ns is required to perform a single operation (i.e. 416.7 MHz). Register file MUX B 0.6 ns Clock 0.6 ns 0.2 ns Function unit 0.8 ns MUX D 0.2 ns c. Production

More information

What you can do with very little:

What you can do with very little: page How Computers Work Lecture 3 irect Execution RISC Processor: The Unpipelined ET How Computers Work Lecture 3 Page What you can do with very little: Each instruction class can be implemented using

More information

74F161A 74F163A Synchronous Presettable Binary Counter

74F161A 74F163A Synchronous Presettable Binary Counter Synchronous Presettable Binary Counter General Description The and are high-speed synchronous modulo-16 binary counters. They are synchronously presettable for application in programmable dividers and

More information

COMPUTER ORGANIZATION & ARCHITECTURE DIGITAL LOGIC CSCD211- DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF GHANA

COMPUTER ORGANIZATION & ARCHITECTURE DIGITAL LOGIC CSCD211- DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF GHANA COMPUTER ORGANIZATION & ARCHITECTURE DIGITAL LOGIC LOGIC Logic is a branch of math that tries to look at problems in terms of being either true or false. It will use a set of statements to derive new true

More information

Lecture 20: Several Commercial Counters & Shift Register

Lecture 20: Several Commercial Counters & Shift Register EE2: Switching Systems Lecture 2: Several Commercial Counters & Shift Register Prof. YingLi Tian Nov. 27, 27 Department of Electrical Engineering The City College of New York The City University of New

More information

Switch/ Jumper Table 1-1: Factory Settings Factory Settings (Jumpers Installed) Function Controlled Activates pull-up/ pull-down resistors on Port 0 digital P7 I/O lines Activates pull-up/ pull-down resistors

More information

LOGIC DIAGRAM: HALF ADDER TRUTH TABLE: A B CARRY SUM. 2012/ODD/III/ECE/DE/LM Page No. 1

LOGIC DIAGRAM: HALF ADDER TRUTH TABLE: A B CARRY SUM. 2012/ODD/III/ECE/DE/LM Page No. 1 LOGIC DIAGRAM: HALF ADDER TRUTH TABLE: A B CARRY SUM K-Map for SUM: K-Map for CARRY: SUM = A B + AB CARRY = AB 22/ODD/III/ECE/DE/LM Page No. EXPT NO: DATE : DESIGN OF ADDER AND SUBTRACTOR AIM: To design

More information

Positive and Negative Logic

Positive and Negative Logic Course: B.Sc. Applied Physical Science (Computer Science) Year & Sem.: IInd Year, Sem - IIIrd Subject: Computer Science Paper No.: IX Paper Title: Computer System Architecture Lecture No.: 4 Lecture Title:

More information

CS/EE Homework 9 Solutions

CS/EE Homework 9 Solutions S/EE 260 - Homework 9 Solutions ue 4/6/2000 1. onsider the synchronous ripple carry counter on page 5-8 of the notes. Assume that the flip flops have a setup time requirement of 2 ns and that the gates

More information

LIST OF EXPERIMENTS. KCTCET/ /Odd/3rd/ETE/CSE/LM

LIST OF EXPERIMENTS. KCTCET/ /Odd/3rd/ETE/CSE/LM LIST OF EXPERIMENTS. Study of logic gates. 2. Design and implementation of adders and subtractors using logic gates. 3. Design and implementation of code converters using logic gates. 4. Design and implementation

More information

Topics Introduction to Microprocessors

Topics Introduction to Microprocessors Topics 2244 Introduction to Microprocessors Chapter 8253 Programmable Interval Timer/Counter Suree Pumrin,, Ph.D. Interfacing with 886/888 Programming Mode 2244 Introduction to Microprocessors 2 8253/54

More information

EECS150 - Digital Design Lecture 2 - Synchronous Digital Systems Review Part 1. Outline

EECS150 - Digital Design Lecture 2 - Synchronous Digital Systems Review Part 1. Outline EECS5 - Digital Design Lecture 2 - Synchronous Digital Systems Review Part January 2, 2 John Wawrzynek Electrical Engineering and Computer Sciences University of California, Berkeley http://www-inst.eecs.berkeley.edu/~cs5

More information

Serial Addition. Lecture 29 1

Serial Addition. Lecture 29 1 Serial Addition Operations in digital computers are usually done in parallel because that is a faster mode of operation. Serial operations are slower because a datapath operation takes several clock cycles,

More information

Circuits in CMOS VLSI. Darshana Sankhe

Circuits in CMOS VLSI. Darshana Sankhe Circuits in CMOS VLSI Darshana Sankhe Static CMOS Advantages: Static (robust) operation, low power, scalable with technology. Disadvantages: Large size: An N input gate requires 2N transistors. Large capacitance:

More information

Datapath Components. Multipliers, Counters, Timers, Register Files

Datapath Components. Multipliers, Counters, Timers, Register Files Datapath Components Multipliers, Counters, Timers, Register Files Multipliers An N x N multiplier Multiplies two N bit binary inputs Generates an NN bit result Creating a multiplier using two-level logic

More information

Digital Logic and Design (Course Code: EE222) Lecture 14: Combinational Contd.. Decoders/Encoders

Digital Logic and Design (Course Code: EE222) Lecture 14: Combinational Contd.. Decoders/Encoders Indian Institute of Technology Jodhpur, Year 28 29 Digital Logic and Design (Course Code: EE222) Lecture 4: Combinational Contd.. Decoders/Encoders Course Instructor: Shree Prakash Tiwari Email: sptiwari@iitj.ac.in

More information

HCC/HCF4017B HCC/HCF4022B

HCC/HCF4017B HCC/HCF4022B HCC/HCF4017B HCC/HCF4022B COUNTERS/DIIDERS 4017B DECADE COUNTER WITH 10 DECODED OUTPUTS 4022B OCTAL COUNTER WITH 8 DECODED OUTPUTS FULLY STATIC OPERATION MEDIUM SPEED OPERATION-12MHz (typ.) AT DD = 10

More information

Asahi Kasei Microsystems AKM5451 Cell Phone Receiver with Interface Circuitry Circuit Analysis

Asahi Kasei Microsystems AKM5451 Cell Phone Receiver with Interface Circuitry Circuit Analysis April 15, 2003 Asahi Kasei Microsystems AKM5451 Cell Phone Receiver with Interface Circuitry Circuit Analysis Table of Contents Introduction...Page 1 List of Figures...Page 2 Device Summary Sheet...Page

More information

Department of Electronics and Communication Engineering

Department of Electronics and Communication Engineering Department of Electronics and Communication Engineering Sub Code/Name: BEC3L2- DIGITAL ELECTRONICS LAB Name Reg No Branch Year & Semester : : : : LIST OF EXPERIMENTS Sl No Experiments Page No Study of

More information

! Sequential Logic. ! Timing Hazards. ! Dynamic Logic. ! Add state elements (registers, latches) ! Compute. " From state elements

! Sequential Logic. ! Timing Hazards. ! Dynamic Logic. ! Add state elements (registers, latches) ! Compute.  From state elements ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 19: April 2, 2019 Sequential Logic, Timing Hazards and Dynamic Logic Lecture Outline! Sequential Logic! Timing Hazards! Dynamic Logic 4 Sequential

More information

Data output signals May or may not be same a input signals

Data output signals May or may not be same a input signals Combinational Logic Part 2 We ve been looking at simple combinational logic elements Gates, buffers, and drivers Now ready to go on to larger blocks MSI - Medium Scale Integration or Integrate Circuits

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R05310402 Set No. 1 1. (a) What are the parameters that are necessary to define the electrical characteristics of CMOS circuits? Mention the typical values of a CMOS NAND gate. (b) Design a CMOS

More information

Combinational Circuits DC-IV (Part I) Notes

Combinational Circuits DC-IV (Part I) Notes Combinational Circuits DC-IV (Part I) Notes Digital Circuits have been classified as: (a) Combinational Circuits: In these circuits output at any instant of time depends on inputs present at that instant

More information

EECS 270 Winter 2017, Lecture 15 Page 1 of 8

EECS 270 Winter 2017, Lecture 15 Page 1 of 8 EECS 270 Winter 2017, Lecture 15 Page 1 of 8 Mealy machines (6.3) A Mealy machine is one where the outputs depend directly on the inputs. That has significantly more implications than you d think. First

More information

GATE Online Free Material

GATE Online Free Material Subject : Digital ircuits GATE Online Free Material 1. The output, Y, of the circuit shown below is (a) AB (b) AB (c) AB (d) AB 2. The output, Y, of the circuit shown below is (a) 0 (b) 1 (c) B (d) A 3.

More information

Lecture 3: Logic circuit. Combinational circuit and sequential circuit

Lecture 3: Logic circuit. Combinational circuit and sequential circuit Lecture 3: Logic circuit Combinational circuit and sequential circuit TRAN THI HONG HONG@IS.NAIST.JP Content Lecture : Computer organization and performance evaluation metrics Lecture 2: Processor architecture

More information

COLLEGE OF ENGINEERING, NASIK

COLLEGE OF ENGINEERING, NASIK Pune Vidyarthi Griha s COLLEGE OF ENGINEERING, NASIK LAB MANUAL DIGITAL ELECTRONICS LABORATORY Subject Code: 2246 27-8 PUNE VIDYARTHI GRIHA S COLLEGE OF ENGINEERING,NASHIK. INDEX Batch : - Sr.No Title

More information

EXPERIMENT NO 1 TRUTH TABLE (1)

EXPERIMENT NO 1 TRUTH TABLE (1) EPERIMENT NO AIM: To verify the Demorgan s theorems. APPARATUS REQUIRED: THEORY: Digital logic trainer and Patch cords. The digital signals are discrete in nature and can only assume one of the two values

More information

EE 308 Spring 2006 FINAL PROJECT: INTERFACING AND MOTOR CONTROL WEEK 1 PORT EXPANSION FOR THE MC9S12

EE 308 Spring 2006 FINAL PROJECT: INTERFACING AND MOTOR CONTROL WEEK 1 PORT EXPANSION FOR THE MC9S12 FINAL PROJECT: INTERFACING AND MOTOR CONTROL In this sequence of labs you will learn how to interface with additional hardware and implement a motor speed control system. WEEK 1 PORT EXPANSION FOR THE

More information

ICS312 Machine-level and Systems Programming

ICS312 Machine-level and Systems Programming Computer Architecture and Programming: Examples and Sample Problems ICS312 Machine-level and Systems Programming Henri Casanova (henric@hawaii.edu) 0000 1100 Somehow, the is initialized to some content,

More information

DELD MODEL ANSWER DEC 2018

DELD MODEL ANSWER DEC 2018 2018 DELD MODEL ANSWER DEC 2018 Q 1. a ) How will you implement Full adder using half-adder? Explain the circuit diagram. [6] An adder is a digital logic circuit in electronics that implements addition

More information

MSI Design Examples. Designing a circuit that adds three 4-bit numbers

MSI Design Examples. Designing a circuit that adds three 4-bit numbers MSI Design Examples In this lesson, you will see some design examples using MSI devices. These examples are: Designing a circuit that adds three 4-bit numbers. Design of a 4-to-16 Decoder using five 2-to-4

More information

Combinatorial Logic Design Multiplexers and ALUs CS 64: Computer Organization and Design Logic Lecture #14

Combinatorial Logic Design Multiplexers and ALUs CS 64: Computer Organization and Design Logic Lecture #14 Combinatorial Logic Design Multiplexers and ALUs CS 64: Computer Organization and Design Logic Lecture #14 Ziad Matni Dept. of Computer Science, UCSB Administrative Remaining on the calendar This supersedes

More information

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING SEMESTER TWO EXAMINATION 2017/2018

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING SEMESTER TWO EXAMINATION 2017/2018 UNIVERSITY OF BOLTON [EES04] SCHOOL OF ENGINEERING BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING SEMESTER TWO EXAMINATION 2017/2018 INTERMEDIATE DIGITAL ELECTRONICS AND COMMUNICATIONS MODULE NO: EEE5002

More information

Combinational Logic Circuits. Combinational Logic

Combinational Logic Circuits. Combinational Logic Combinational Logic Circuits The outputs of Combinational Logic Circuits are only determined by the logical function of their current input state, logic 0 or logic 1, at any given instant in time. The

More information

Digital Circuits Laboratory LAB no. 12. REGISTERS

Digital Circuits Laboratory LAB no. 12. REGISTERS REGISTERS are sequential logic circuits that store and/or shift binary sequences. can be classified in: memory registers (with parallel load) - latch shift registers (with serial load) combined registers

More information

ELECTROVATE. Electromania Problem Statement Discussion

ELECTROVATE. Electromania Problem Statement Discussion ELECTROVATE Electromania Problem Statement Discussion An Competition Basic Circuiting What is Electromania? Innovation Debugging Lets Revise the Basics Electronics Digital Analog Digital Electronics Similar

More information

TABLE 3-2 Truth Table for Code Converter Example

TABLE 3-2 Truth Table for Code Converter Example 997 by Prentice-Hall, Inc. Mano & Kime Upper Saddle River, New Jersey 7458 T-28 TABLE 3-2 Truth Table for Code Converter Example Decimal Digit Input BCD Output Excess-3 A B C D W Y Z 2 3 4 5 6 7 8 9 Truth

More information

MM58174A Microprocessor-Compatible Real-Time Clock

MM58174A Microprocessor-Compatible Real-Time Clock MM58174A Microprocessor-Compatible Real-Time Clock General Description The MM58174A is a low-threshold metal-gate CMOS circuit that functions as a real-time clock and calendar in bus-oriented microprocessor

More information

Electronic Instrumentation

Electronic Instrumentation 5V 1 1 1 2 9 10 7 CL CLK LD TE PE CO 15 + 6 5 4 3 P4 P3 P2 P1 Q4 Q3 Q2 Q1 11 12 13 14 2-14161 Electronic Instrumentation Experiment 7 Digital Logic Devices and the 555 Timer Part A: Basic Logic Gates Part

More information

Number system: the system used to count discrete units is called number. Decimal system: the number system that contains 10 distinguished

Number system: the system used to count discrete units is called number. Decimal system: the number system that contains 10 distinguished Number system: the system used to count discrete units is called number system Decimal system: the number system that contains 10 distinguished symbols that is 0-9 or digits is called decimal system. As

More information

DIGITAL DESIGN WITH SM CHARTS

DIGITAL DESIGN WITH SM CHARTS DIGITAL DESIGN WITH SM CHARTS By: Dr K S Gurumurthy, UVCE, Bangalore e-notes for the lectures VTU EDUSAT Programme Dr. K S Gurumurthy, UVCE, Blore Page 1 19/04/2005 DIGITAL DESIGN WITH SM CHARTS The utility

More information

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700:

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700: SYNCHRONOUS SUNTIAL CIRCUITS Notes - Unit 6 ASYNCHRONOUS CIRCUITS: LATCHS SR LATCH: R S R t+ t t+ t S restricted SR Latch S R S R SR LATCH WITH NABL: R R' S R t+ t t+ t t t S S' LATCH WITH NABL: This is

More information

SRV ENGINEERING COLLEGE SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE SEMBODAI

SRV ENGINEERING COLLEGE SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE SEMBODAI SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE SEMBODAI 6489 (Approved By AICTE,Newdelhi Affiliated To ANNA UNIVERSITY::Chennai) CS 62 DIGITAL ELECTRONICS LAB (REGULATION-23) LAB MANUAL DEPARTMENT OF

More information

HCF40103B 8-STAGE PRESETTABLE SYNCHRONOUS 8 BIT BINARY DOWN COUNTERS

HCF40103B 8-STAGE PRESETTABLE SYNCHRONOUS 8 BIT BINARY DOWN COUNTERS 8-STAGE PRESETTABLE SYNCHRONOUS 8 BIT BINARY DOWN COUNTERS SYNCHRONOUS OR ASYNCHRONOUS PRESET MEDIUM -SPEED OPERATION : f CL =3.6MHz (Typ.) at V DD = 10V CASCADABLE QUIESCENT CURRENT SPECIF. UP TO 20V

More information

CSE 260 Digital Computers: Organization and Logical Design. Midterm Solutions

CSE 260 Digital Computers: Organization and Logical Design. Midterm Solutions CSE 260 Digital Computers: Organization and Logical Design Midterm Solutions Jon Turner 2/28/2008 1. (10 points). The figure below shows a simulation of the washu-1 processor, with some items blanked out.

More information

First Name: Last Name: Lab Cover Page. Teaching Assistant to whom you are submitting

First Name: Last Name: Lab Cover Page. Teaching Assistant to whom you are submitting Student Information First Name School of Computer Science Faculty of Engineering and Computer Science Last Name Student ID Number Lab Cover Page Please complete all (empty) fields: Course Name: DIGITAL

More information

Topics. Low Power Techniques. Based on Penn State CSE477 Lecture Notes 2002 M.J. Irwin and adapted from Digital Integrated Circuits 2002 J.

Topics. Low Power Techniques. Based on Penn State CSE477 Lecture Notes 2002 M.J. Irwin and adapted from Digital Integrated Circuits 2002 J. Topics Low Power Techniques Based on Penn State CSE477 Lecture Notes 2002 M.J. Irwin and adapted from Digital Integrated Circuits 2002 J. Rabaey Review: Energy & Power Equations E = C L V 2 DD P 0 1 +

More information

Basic Symbols for Register Transfers. Symbol Description Examples

Basic Symbols for Register Transfers. Symbol Description Examples T-58 Basic Symbols for Register Trasfers TABLE 7- Basic Symbols for Register Trasfers Symbol Descriptio Examples Letters Deotes a register AR, R2, DR, IR (ad umerals) Paretheses Deotes a part of a register

More information

A New Capacitive Sensing Circuit using Modified Charge Transfer Scheme

A New Capacitive Sensing Circuit using Modified Charge Transfer Scheme 78 Hyeopgoo eo : A NEW CAPACITIVE CIRCUIT USING MODIFIED CHARGE TRANSFER SCHEME A New Capacitive Sensing Circuit using Modified Charge Transfer Scheme Hyeopgoo eo, Member, KIMICS Abstract This paper proposes

More information

Digital Integrated CircuitDesign

Digital Integrated CircuitDesign Digital Integrated CircuitDesign Lecture 13 Building Blocks (Multipliers) Register Adder Shift Register Adib Abrishamifar EE Department IUST Acknowledgement This lecture note has been summarized and categorized

More information

Project Part 1 A. The task was to design a 4 to 1 multiplexer that uses 8 bit buses on the inputs with an output of a single 8 bit bus.

Project Part 1 A. The task was to design a 4 to 1 multiplexer that uses 8 bit buses on the inputs with an output of a single 8 bit bus. Project Part 1 A Circuit Description and Diagrams: The task was to design a 4 to 1 multiplexer that uses 8 bit buses on the inputs with an output of a single 8 bit bus. Shown below is a jpeg screenshot

More information

HCF4017B DECADE COUNTER WITH 10 DECODED OUTPUTS

HCF4017B DECADE COUNTER WITH 10 DECODED OUTPUTS DECADE COUNTER WITH 10 DECODED OUTPUTS MEDIUM SPEED OPERATION : 10 MHz (Typ.) at V DD = 10V FULLY STATIC OPERATION STANDARDIZED SYMMETRICAL OUTPUT CHARACTERISTICS QUIESCENT CURRENT SPECIFIED UP TO 20V

More information

Hardware Flags. and the RTI system. Microcomputer Architecture and Interfacing Colorado School of Mines Professor William Hoff

Hardware Flags. and the RTI system. Microcomputer Architecture and Interfacing Colorado School of Mines Professor William Hoff Hardware Flags and the RTI system 1 Need for hardware flag Often a microcontroller needs to test whether some event has occurred, and then take an action For example A sensor outputs a pulse when a model

More information

Power Spring /7/05 L11 Power 1

Power Spring /7/05 L11 Power 1 Power 6.884 Spring 2005 3/7/05 L11 Power 1 Lab 2 Results Pareto-Optimal Points 6.884 Spring 2005 3/7/05 L11 Power 2 Standard Projects Two basic design projects Processor variants (based on lab1&2 testrigs)

More information

FPGA IMPLEMENTATION OF POWER EFFICIENT ALL DIGITAL PHASE LOCKED LOOP

FPGA IMPLEMENTATION OF POWER EFFICIENT ALL DIGITAL PHASE LOCKED LOOP INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET) Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM14) ISSN 0976

More information

Introduction. BME208 Logic Circuits Yalçın İŞLER

Introduction. BME208 Logic Circuits Yalçın İŞLER Introduction BME208 Logic Circuits Yalçın İŞLER islerya@yahoo.com http://me.islerya.com 1 Lecture Three hours a week (three credits) No other sections, please register this section Tuesday: 09:30 12:15

More information

Chapter 9. sequential logic technologies

Chapter 9. sequential logic technologies Chapter 9. sequential logic technologies In chapter 4, we looked at diverse implementation technologies for combinational logic circuits: random logic, regular logic, programmable logic. The similar variants

More information

Digital Design and System Implementation. Overview of Physical Implementations

Digital Design and System Implementation. Overview of Physical Implementations Digital Design and System Implementation Overview of Physical Implementations CMOS devices CMOS transistor circuit functional behavior Basic logic gates Transmission gates Tri-state buffers Flip-flops

More information

Chapter 5 Sequential Logic Circuits Part II Hiroaki Kobayashi 7/11/2011

Chapter 5 Sequential Logic Circuits Part II Hiroaki Kobayashi 7/11/2011 Chapter 5 Sequential Logic Circuits Part II Hiroaki Kobayashi 7//2 Ver. 72 7//2 Computer Engineering What is a Sequential Circuit? A circuit consists of a combinational logic circuit and internal memory

More information

Module 2.B. 9S12C Multiplexed Bus Expansion. Tim Rogers 2017

Module 2.B. 9S12C Multiplexed Bus Expansion. Tim Rogers 2017 Module 2.B 9S12C Multiplexed Bus Expansion Tim Rogers 2017 Learning Outcome #2 An ability to interface a microcontroller to various devices How? A+B are the most complex interface we will study in 362

More information

D f ref. Low V dd (~ 1.8V) f in = D f ref

D f ref. Low V dd (~ 1.8V) f in = D f ref A 5.3 GHz Programmable Divider for HiPerLAN in 0.25µm CMOS N. Krishnapura 1 & P. Kinget 2 Lucent Technologies, Bell Laboratories, USA. 1 Currently at Columbia University, New York, NY, 10027, USA. 2 Currently

More information

Computer Architecture: Part II. First Semester 2013 Department of Computer Science Faculty of Science Chiang Mai University

Computer Architecture: Part II. First Semester 2013 Department of Computer Science Faculty of Science Chiang Mai University Computer Architecture: Part II First Semester 2013 Department of Computer Science Faculty of Science Chiang Mai University Outline Combinational Circuits Flips Flops Flops Sequential Circuits 204231: Computer

More information

Chapter 9. sequential logic technologies

Chapter 9. sequential logic technologies Chapter 9. sequential logic technologies In chapter 4, we looked at diverse implementation technologies for combinational logic circuits: random logic, regular logic, programmable logic. Similarly, variations

More information

Sequential Logic Circuits

Sequential Logic Circuits LAB EXERCISE - 5 Page 1 of 6 Exercise 5 Sequential Logic Circuits 1 - Introduction Goal of the exercise The goals of this exercise are: - verify the behavior of simple sequential logic circuits; - measure

More information

CHAPTER IV DESIGN AND ANALYSIS OF VARIOUS PWM TECHNIQUES FOR BUCK BOOST CONVERTER

CHAPTER IV DESIGN AND ANALYSIS OF VARIOUS PWM TECHNIQUES FOR BUCK BOOST CONVERTER 59 CHAPTER IV DESIGN AND ANALYSIS OF VARIOUS PWM TECHNIQUES FOR BUCK BOOST CONVERTER 4.1 Conventional Method A buck-boost converter circuit is a combination of the buck converter topology and a boost converter

More information

CS61c: Introduction to Synchronous Digital Systems

CS61c: Introduction to Synchronous Digital Systems CS61c: Introduction to Synchronous Digital Systems J. Wawrzynek March 4, 2006 Optional Reading: P&H, Appendix B 1 Instruction Set Architecture Among the topics we studied thus far this semester, was the

More information