CMOS Cascade Sigma-Delta Modulators for Sensors and Telecom

Size: px
Start display at page:

Download "CMOS Cascade Sigma-Delta Modulators for Sensors and Telecom"

Transcription

1 CMOS Cascade Sigma-Delta Modulators for Sensors and Telecom

2 ANALOG CIRCUITS AND SIGNAL PROCESSING SERIES Consulting Editor: Mohammed Ismail. Ohio State University Titles in former series International Series in Engineering and Computer Science: SIGMA DELTA A/D CONVERSION FOR SIGNAL CONDITIONING Philips, K., van Roermund, A.H.M. Vol. 874, ISBN CALIBRATION TECHNIQUES IN NYQUIST A/D CONVERTERS van der Ploeg, H., Nauta, B. Vol. 873, ISBN ADAPTIVE TECHNIQUES FOR MIXED SIGNAL SYSTEM ON CHIP Fayed, A., Ismail, M. Vol. 872, ISBN WIDE-BANDWIDTH HIGH-DYNAMIC RANGE D/A CONVERTERS Doris, Konstantinos, van Roermund, Arthur, Leenaerts, Domine Vol. 871 ISBN: METHODOLOGY FOR THE DIGITAL CALIBRATION OF ANALOG CIRCUITS AND SYSTEMS: WITH CASE STUDIES Pastre, Marc, Kayal, Maher Vol. 870, ISBN: HIGH-SPEED PHOTODIODES IN STANDARD CMOS TECHNOLOGY Radovanovic, Sasa, Annema, Anne-Johan, Nauta, Bram Vol. 869, ISBN: LOW-POWER LOW-VOLTAGE SIGMA-DELTA MODULATORS IN NANOMETER CMOS Yao, Libin, Steyaert, Michiel, Sansen, Willy Vol. 868, ISBN: X DESIGN OF VERY HIGH-FREQUENCY MULTIRATE SWITCHED-CAPACITOR CIRCUITS U, Seng Pan, Martins, Rui Paulo, Epifânio da Franca, José Vol. 867, ISBN: DYNAMIC CHARACTERISATION OF ANALOGUE-TO-DIGITAL CONVERTERS Dallet, Dominique; Machado da Silva, José (Eds.) Vol. 860, ISBN: ANALOG DESIGN ESSENTIALS Sansen, Willy Vol. 859, ISBN: , DESIGN OF WIRELESS AUTONOMOUS DATALOGGER IC S Claes and Sansen Vol. 854, ISBN: MATCHING PROPERTIES OF DEEP SUB-MICRON MOS TRANSISTORS Croon, Sansen, Maes Vol. 851, ISBN: LNA-ESD CO-DESIGN FOR FULLY INTEGRATED CMOS WIRELESS RECEIVERS Leroux and Steyaert Vol. 843, ISBN: SYSTEMATIC MODELING AND ANALYSIS OF TELECOM FRONTENDS AND THEIR BUILDING BLOCKS Vanassche, Gielen, Sansen Vol. 842, ISBN: LOW-POWER DEEP SUB-MICRON CMOS LOGIC SUB-THRESHOLD CURRENT REDUCTION van der Meer, van Staveren, van Roermund Vol. 841, ISBN: WIDEBAND LOW NOISE AMPLIFIERS EXPLOITING THERMAL NOISE CANCELLATION Bruccoleri, Klumperink, Nauta Vol. 840, ISBN: CMOS PLL SYNTHESIZERS: ANALYSIS AND DESIGN Shu, Keliu, Sánchez-Sinencio, Edgar Vol. 783, ISBN: SYSTEMATIC DESIGN OF SIGMA-DELTA ANALOG-TO-DIGITAL CONVERTERS Bajdechi and Huijsing Vol. 768, ISBN: OPERATIONAL AMPLIFIER SPEED AND ACCURACY IMPROVEMENT Ivanov and Filanovsky Vol. 763, ISBN: STATIC AND DYNAMIC PERFORMANCE LIMITATIONS FOR HIGH SPEED D/A CONVERTERS van den Bosch, Steyaert and Sansen Vol. 761, ISBN: DESIGN AND ANALYSIS OF HIGH EFFICIENCY LINE DRIVERS FOR Xdsl Piessens and Steyaert Vol. 759, ISBN:

3 CMOS Cascade Sigma-Delta Modulators for Sensors and Telecom Error Analysis and Practical Design By R. del Ro í F. Medeiro B. Pérez-Verdú J.M. de la Rosa and Á. Rodríguez-Vázquez Spanish Microelectronics Center IMSE-CNM and University of Seville, Spain

4 A C.I.P. Catalogue record for this book is available from the Library of Congress. ISBN (HB) ISBN (HB) ISBN (e-book) ISBN (e-book) Published by Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands. Printed on acid-free paper All Rights Reserved 2006 Springer No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Printed in the Netherlands

5 CONTENTS List of Abbreviations xi Preface xv CHAPTER 1 ADCs: Principles, Architectures, and State of the Art Analog-to-Digital Conversion: Fundamentals Sampling Quantization Oversampling ADCs: Fundamentals Oversampling Noise-shaping Basic architecture of oversampling ADCs Performance metrics Ideal performance Single-Loop Architectures st-order modulator nd-order modulator High-order modulators Stability concerns Optimized NTFs High-order topologies Non-linear stabilization techniques Cascade Architectures Multi-Bit Architectures Influence of DAC errors Element trimming and analog calibration Digital correction Dynamic element matching Dual-quantization Leslie-Singh architecture Single-loop Ms Cascade Ms v

6 vi Contents 1.6. Parallel Architectures Frequency division multiplexing Time division multiplexing Code division multiplexing State of the Art in ADCs Summary CHAPTER 2 Non-Ideal Performance of Modulators Integrator Leakage Leaky integrator Single-loop modulators st-order loop nd-order loop Lth-order loops Cascade modulators Capacitor Mismatch Single-loop modulators nd-order loop Lth-order loops Cascade modulators Integrator Settling Error Model for the transient response of SC integrators SC integrator model Transient during integration Transient during sampling Integration-sampling process Validation of the proposed model Comparison with experimental results Comparison with traditional models Effect of the amplifier finite gain-bandwidth product Single-loop modulators Cascade modulators Effect of the amplifier finite slew rate Effect of the switch finite on-resistance Effect on an ideal integrator Effect on the amplifier GB Effect on the amplifier SR Circuit Noise Noise in track-and-holds Track component

7 Contents vii Sampled-and-held component Folding-back effect Noise in SC integrators Switches controlled by Switches controlled by Opamp noise Noise in the references Total noise Circuit noise in modulators Fully-differential circuitry Clock Jitter Sources of Distortion Distortion due to the non-linear capacitors Distortion due to the amplifier non-linear gain Distortion due to the switch non-linear on-resistance Distortion due to the non-linear settling Summary CHAPTER 3 A Wideband Modulator in 3.3-V m CMOS Design Methodology Topology Selection Switched-Capacitor Implementation Specifications for the Building Blocks Modulator sizing Fast modulator sizing Fine-tuning of blocks specs Integrator scaling Design of the Building Blocks Amplifiers Front-end amplifier Remaining amplifiers Comparators Switches Capacitors Programmable A/D/A converter A/D converter D/A converter Control circuitry Clock phase generator

8 viii Contents 3.6. Layout and Prototyping Experimental Results Performance of the A/D/A converter Influence of jitter noise Influence of settling errors Influence of switching noise Performance Summary Performance Comparison with the State of the Art Summary CHAPTER 4 A Modulator in 2.5-V m CMOS for ADSL/ADSL Topology Selection Switched-Capacitor Implementation Specifications for the Building Blocks Design of the Building Blocks Amplifiers Front-end amplifiers Back-end amplifiers Non-linearities Comparators Switches Capacitors A/D/A converter A/D converter D/A converter Clock phase generator Auxiliary blocks Reference voltage generator Master current generator Anti-aliasing filter Layout and Prototyping Experimental Results Performance Summary Performance Comparison with the State of the Art Summary

9 Contents ix CHAPTER 5 A Modulator with Programmable Signal Gain for Automotive Sensor Interfaces Basic Design Considerations Architecture Selection and High-Level Sizing Modulator architecture SC implementation High-level sizing and building-block specifications Design of the Building Blocks Amplifiers Comparators Switches Capacitor arrays Auxiliary blocks Layout and Prototyping Experimental Results Summary APPENDIX A An Expandible Family of Cascade Modulators A.1. Topology Description A.2. Non-Ideal Performance APPENDIX B Power Estimator for Cascade Modulators B.1. Dominant Error Mechanisms B.2. Estimation of Power Consumption REFERENCES Index

10 LIST OF ABBREVIATIONS M A/D, A-to-D ADC ADSL AFE AGC BiCMOS BP M CAD CDMA CLA CMFB CMOS CPE CPU CT D/A, D-to-A DAC DC DDS DEM DMT DNL DOR DR DSL DSP DT DWA EDGE ENOB ESD Parallel Sigma-Delta Sigma-Delta Sigma-Delta Modulator Analog-to-Digital Analog-to-Digital Converter Asymmetric Digital Subscriber Line Analog Front-End Automatic Gain Control Bipolar and Complementary Metal-Oxide-Semiconductor Band-Pass Sigma-Delta Modulator Computer Aided Design Code Division Multiple Access Clocked Averaging Common-Mode Feedback Complementary Metal-Oxide-Semiconductor Customer Premises Equipment Central Processing Unit Continuous-Time Digital-to-Analog Digital-to-Analog Converter Direct Current Data Directed Scrambling Dynamic Element Matching Discrete Multi-Tone Differential Non-Linearity Digital Output Rate Dynamic Range Digital Subscriber Line Digital Signal Processing Discrete-Time Data Weighted Averaging Enhanced Data-rates for Global Evolution Effective Number Of Bits Electrostatic Discharge xi

11 xii List of Abbreviations FFT FIR FOM FS GB GPS GSM HD HDSL IBE IC IIR ILA INL IO ISDN LNA LP M LSB MASH MEMS MiM MOS MOSFET, MOST MSB MTPR nmos NTF Opamp OS OSR OTA PCB PDF PDM PLC Fast Fourier Transform Finite Impulse Response Figure Of Merit Full Scale Gain-Bandwidth Product Global Positioning System Global System for Mobile-Communications Harmonic Distortion High-data-rate Digital Subscriber Line In-Band Error Integrated Circuit Infinite Impulse Response Individual Level Averaging Integral Non-Linearity Input/Output Integrated Services Digital Network Low-Noise Amplifier Low-Pass Sigma-Delta Modulator Least Significant Bit Multi-Stage Noise Shaping Micro-Electro-Mechanical System Metal-insulator-Metal Metal-Oxide-Semiconductor Metal-Oxide-Semiconductor Field-Effect Transistor Most Significant Bit Multi-Tone Power Ratio N-channel MOS Noise Transfer Function Operational Amplifier Output Swing Oversampling Ratio Operational Transconductance Amplifier Printed Circuit Board Probability Density Function Pulse-Density Modulated Power Line Communications

12 List of Abbreviations xiii PLL pmos PROM PSD RAM RF ROM S/H SC SDLS SFDR SI SNR SNDR SoC SR STF THD TI UMTS UWB VDSL VLSI WLAN WMAN xdsl Phase-Locked Loop P-channel MOS Programmable Read-Only Memory Power Spectral Density Random Access Memory Radio Frequency Read-Only Memory Sample-and-Hold Switched-Capacitor Symmetrical Digital Subscriber Line Spurious-Free Dynamic Range Switched-Current Signal-to-Noise Ratio Signal-to-(Noise+Distortion) Ratio System-on-Chip Slew Rate Signal Transfer Function Total Harmonic Distortion Time-Interleaved Sigma-Delta Universal Mobile Telecommunications System Ultra-Wide Band Very-high-data-rate Digital Subscriber Line Very Large Scale of Integration Wireless Local Area Network Wireless Metropolitan Area Network All/any Digital Subscriber Line

13 PREFACE The rapid evolution experimented by microelectronics during the last decades has propitiated the birth and spread of lots of electronic systems with increasing presence in different aspects of our everyday life: consumer electronics, information technology, communications, automotion, medicine, leisure, etc. Probably, communications has been one of the areas with largest expansion; many applications have been developed, both for wireline systems DSL technologies for broadband access to the Internet, PLC technology, etc. [Gagn97] and for wireless systems mobile telephony, GPS, WLAN, WMAN, UWB, etc. [Abidi95]. No doubt, the continuous scaling of VLSI technologies has been a determinant factor for this rapid evolution. Technology scaling has allowed miniaturization, portability, increased functionality, and cost reduction of these systems. Nowadays, it is possible to integrate millions of transistors in a single chip using submicron CMOS processes and, simultaneously, the speed of digital circuits has increased up to the gigahertz range. This technological advances have enabled monolithic integration of complete electronic systems on a single chip (SoC), in which digital signal processing (DSP) techniques are extensively used for robust implementation of complex algorithms within reduced computational times. In these systems, the present trend is to move the border between the analog and digital parts, usually called interface, as close as possible to the point where information is received or emitted. In this way, most of the SoC functionalities are implemented in the digital domain, where the system benefits from the reduction of silicon area, supply voltage, and power consumption, and from the increased operation speed that are peculiar to the progressive technology scaling. The application of analog circuits is then restricted, in most cases, to interface tasks: signal conditioning, filtering, and analog-to-digital (A-to-D) and digital-to-analog (D-to-A) conversion. In addition, the trend to massive digital processing and to an earlier digitalization of signals leads to an increase of the dynamic range and bandwidth requirements in the interface circuits. On the other hand, the design of high resolution, high bandwidth converters is greatly involved when they are integrated together with the DSP circuits, mainly because the designers must use mainstream digital CMOS processes, in which analog primitives are not fully optimized [Bult00] [Malo01]. Thus, these converters have to operate with low voltage supply and transistors whose threshold voltages are comparatively high, with no use of extra process steps to improve the linearity or the matching of the devices, and, above all, in an hostile environment full of noisy digital circuits. Among the existing techniques to perform the A-to-D conversion, those based on modulation [Inose62] offer key advantages for their implementation in SoCs. Unlike traditional converters, which require high accuracy in their building blocks in order to xv

14 xvi Preface achieve overall high accuracy, the oversampling and noise-shaping techniques employed in converters allow to trade speed for accuracy. In this way, an operation that is relatively insensitive to imperfections on the analog circuit can be obtained at the cost of increased complexity and speed in the associated digital circuitry (needed for post-processing) [Nors97]. These demanding requirements on the digital part, which were a handicap for the integration of converters before the development of VLSI technologies, now relax the implementation of the analog section, whose requirements are more difficult to achieve in processes with a clear digital orientation. This has motivated that, although being originally conceived for low-frequency, high-resolution applications like audio [Candy85] [Adams86] [Boser88] [Bran91a] and precision measurement [Sign90] [Yama94], the usage of converters has progressively spreaded across medium- and high-frequency applications [Bran91b] [OptE91] [Yin94] [Broo97]. Fig. 1 illustrates the state of the art in A-to-D converters in CMOS technologies reported up to year 2000 and places them in the resolution bandwidth plane. The ranges of the specifications for the main applications are depicted on this plane in an approximated way. It can be observed that modulation-based A-to-D converters cover a wide frequency FIGURE 1 State of the art in A-to-D converters in CMOS technologies reported up to year (The ranges of the applications shown are approximated).

15 Preface xvii interval, ranging from 100Hz to 10MHz. Higher speed applications are still dominated by Nyquist-type converters (especially, pipeline, folding-interpolative, and flash) [Plas94] [Raza95]. Oversampling techniques are little efficient in these applications, because of the excessive operation speed that is required in the analog blocks. However, converters are clearly dominant in measurement, voice, and audio systems, and coexist with algorithmic, subranging, and pipeline converters in systems for mobile communications and broadband wireline applications like ADSL. Furthermore, it is commonly accepted that whenever an industrial application can be covered by using a converter, the simpler the better, this solution should be considered as the optimum one, for feasibility, yield, robustness, and time-to-market reasons [Rivo03]. In these applications, the implementation of Nyquist converters gets involved as the technology scales down: calibration techniques that consume considerable area and power are required in order to achieve resolutions larger than 13 bits [Mayes96] [Opris00] [Guil01]. As an alternative, the use of converters has gained ground and architectures that are oriented to high-frequency applications have been successfully implemented. In these architectures, the weakened benefits of oversampling (necessarily moderate) are compensated by resorting to high-order topologies either in a single loop [Geer00] or in a multi-stage cascade [Yin94] [Feld98] [Marq98] [Geer99] [Mori00], which often incorporate multi-bit quantization either pure [Geer00] [Fuji00] or by means of dual- quantization techniques [Bran91b] [Broo97] [Mede99]. Nevertheless, the prototypes implemented so far demonstrate the viability of converters for high-frequency applications ( 1MHz ), but not that their incorporation to SoCs is still robust in deep-submicron processes. Indeed, only a few prototypes [Geer99] [Fuji00] [Mori00] have been integrated in modern deep-submicron CMOS technologies, but they are mixed-signal oriented they offer better device matching and supply voltages of 3.3V, or even 5V, together with low-vt transistors [Fuji00]. In this scenario, the work presented in this book tries to demonstrate the viability of robust high-frequency, high-resolution converters using deep-submicron CMOS technologies oriented to the development of SoCs. This encompasses an adequate selection of architectures, techniques, and building blocks that allow, not only to obtain highperformance modulators, but also to solve the problems associated to their practical implementation in digital-oriented VLSI technologies (low supply voltage, poor linearity and matching of devices, etc.). The results of this work are demonstrated through two prototypes for broadband applications that are integrated in deep-submicron CMOS technologies. They have been developed in the frame of the EU ESPRIT Project (MIXMODEST) and the Spanish CICYT Projects TIC and TIC (ADAVERE), devoted to the investigation of architectures and techniques for the implementation of A-to-D converters in last generation CMOS technologies.

16 xviii Preface The first prototype is a wideband cascade with dual quantization of 1 and 4 bits, which has been implemented in a m standard digital CMOS process with epitaxial (low-ohmic, conductive) substrate. The modulator operates with an oversampling ratio of 16 and exhibits a differential full-scale range of 4V using the 3.3-V nominal supply voltage. It achieves an effective resolution of 13bit at 4MS/s and consumes 78mW, while operated at 64-MHz internal clock frequency. The second design is conceived to be incorporated to a CPE modem for ADSL and ADSL+ in a 2.5-V m CMOS process. The selected topology is a cascade with quantization of 1 and 3 bits, which operates with an oversampling ratio of 32 or 16, and exhibits a differential full-scale range of 3V. The prototype achieves an effective resolution of 13.8bit at 2.2MS/s and 12.7bit at 4.4MS/s, with a power consumption of 66mW, while operating with a sampling frequency of 70.4MHz. The book also presents the design of a third prototype to be included in an automotive sensor interface in a 3.3-V m CMOS process. The modulator topology is a 2-1 single-bit cascade that can be digitally programmed to yield four gain values 0.5, 1, 2, and 4 in order to obtain a better fitting to the different sensor outputs. This prototype has been developed in the frame of the EU ESPRIT Project (TAMES-2), whose objective is to improve the industrial testability of high-resolution A-to-D interfaces embedded in SoCs. The modulator achieves an effective resolution of 18bit at 40kS/s and consumes 14.7mW, while operated at 5.12-MHz internal clock frequency. The three prototypes presented in the book avoid the use of calibration techniques, non-standard transistors, or on-chip voltages larger than the nominal supply, and their performances are competitive to the current state of the art. The contents of the book are organized in five chapters. Chapter 1 presents an introduction to A-to-D converters, showing the principles of operation, the basic architectures, and the ideal performance of modulators. Topologies for their practical implementation are introduced and their pros and cons are discussed. The state of the art in low-pass modulators in CMOS technologies is then revised, showing existing trends in present designs. Chapter 2 is dedicated to the exhaustive analysis of the main non-idealities that affect the performance of modulators. System considerations, behavioral models, and closed expressions are obtained for the impact of the different non-idealities, which can be used as estimable guidelines for practical implementation of modulators. Chapters 3 and 4 describe the design of the two modulators intended for broadband applications, whereas Chapter 5 describes the design of the modulator with programmable gain for automotive sensor interfaces. The topology selection, the requirements of the building blocks, and their design at the transistor level are deeply

17 Preface xix discussed. The measured performance for the prototypes is presented and compared with the state-of-the-art modulators. The considerations presented through the book for the design of cascade modulators in deep-submicron CMOS are extended in Appendixes A and B. Appendix A proposes a family of cascade modulators that is easily expandible to high order, while preserving a low systematic loss of resolution and a high overload level. An analytical method to estimate its power consumption is presented in Appendix B.

18 xx Preface References to the Preface [Abidi95] A.A. Abidi, Low-Power Radio-Frequency ICs for Portable Communications. Proceedings of the IEEE, vol. 83, pp , April [Adams86] [Boser88] [Bran91a] [Bran91b] B.E. Boser and B.A. Wooley, The Design of Sigma-Delta Modulation Analog-to-Digital Converters. IEEE Journal of Solid-State Circuits, vol. 23. pp , December B. Brandt, D.W. Wingard, and B.A. Wooley, Second-Order Sigma-Delta Modulation for Digital-Audio Signal Acquisition. IEEE Journal of Solid- State Circuits, vol. 23. pp , April B.P. Brandt and B.A. Wooley, A 50-MHz Multibit Sigma-Delta Modulator for 12-b 2-MHz A/D Conversion. IEEE Journal of Solid-State Circuits, vol. 26, pp , December R.W. Adams, Design and Implementation of an Audio 18-bit Analog- to-digital Converter Using Oversampling Techniques. Journal of Audio Engineering Society, vol. 34, pp , March [Broo97] T.L. Brooks, D.H. Robertson, D.F. Kelly, A. Del Muro, and S. W. Harston, A Cascaded Sigma-Delta Pipeline A/D Converter with 1.25 MHz Signal Bandwidth and 89 db SNR. IEEE Journal of Solid-State Circuits, vol. 32, pp , December [Bult00] [Candy85] [Feld98] [Fuji00] [Gagn97] [Geer99] [Geer00] [Guil01] K. Bult, Analog Design in Deep Sub-Micron CMOS. Proc. of the IEEE European Solid-State Circuits Conference, pp , J.C. Candy, A Use of Double Integration in Sigma-Delta Modulation. IEEE Transactions on Communications. vol. 33, pp , March A.R. Feldman, B.E. Boser, and P.R. Gray, A 13-Bit, 1.4-MS/s Sigma-Delta Modulator for RF Baseband Channel Applications. IEEE Journal of Solid- State Circuits, vol. 33, pp , October I. Fujimori, L. Longo, A. Hairapetian, K. Seiyama, S. Kosic, J. Cao, and S.-L. Chan, A 90-dB SNR 2.5-MHz Output-Rate ADC Using Cascaded Multibit Delta-Sigma modulation at 8x Oversampling Ratio. IEEE Journal of Solid- State Circuits, vol. 35, pp , December M. Gagnaire, An Overview of Broad-band Access Technologies. Proceedings of the IEEE, vol. 85, pp , December Y. Geerts, A. Marques, M. Steyaert, and W. Sansen, A 3.3-V, 15-bit, Delta- Sigma ADC with a Signal Bandwidth of 1.1 MHz for ADSL Applications. IEEE Journal of Solid-State Circuits, vol. 34, pp , July Y. Geerts, M. Steyaert, and W. Sansen, A High-Performance Multibit CMOS ADC. IEEE Journal of Solid-State Circuits, vol. 35, pp , December J. Guilherme, P. Figueredo, P. Azevedo, G. Minderico, A. Leal, J. Vital, and J. F ranca, A Pipeline 15-b 10Msample/s Analog-to-Digital Converter for ADSL Applications. Proc. of the IEEE International Symposium on Circuits and Systems, vol. 1, pp , May 2001.

19 Preface xxi [Inose62] [Malo01] [Marq98] [Mayes96] [Mede99] [Mori00] [Nors97] [Opris00] H. Inose, Y. Yasuda, and J. Murakami, A Telemetering System by Code Modulation - Modulation. IRE Transactions on Space Electronics and Telemetry, vol. 8, pp , September F. Maloberti, Analog Design for CMOS VLSI Systems. Kluwer Academic Publishers, A.M. Marques, V. Peluso, M.S.J. Steyaert, and W. Sansen, A 15-b Resolution 2-MHz Nyquist Rate ADC in a 1- m CMOS Technology. IEEE Journal of Solid-State Circuits, vol. 33, pp , July M.K. Mayes and S.W. Chin, A 200 mw, 1 Msample/s 16-b Pipelined A/D Converter with On-Chip 32 b Microcontroller. IEEE Journal of Solid-State Circuits, vol. 31, pp , December F. Medeiro, B. Perez-Verdú, and A. Rodríguez-Vázquez, A 13-bit, 2.2-MS/s, 55-mW Multibit Cascade Modulator in CMOS 0.7- m Single-Poly Technology. IEEE Journal of Solid-State Circuits, vol. 34, pp , June J.C. Morizio, M. Hoke, T. Kocak, C. Geddie, C. Hughes, J. Perry, S. Madhavapeddi, M.H. Hood, G. Lynch, H. Kondoh, T. Kumamoto, T. Okuda, H. Noda, M. Ishiwaki, T. Miki, and M. Nakaya, 14-bit 2.2-MS/s Sigma-Delta ADC s. IEEE Journal of Solid-State Circuits, vol. 35, pp , July S.R. Norsworthy, R. Schreier, and G.C. Temes (Editors), Delta-Sigma Data Converters: Theory, Design and Simulation. IEEE Press, I.E. Opris, B.C. Wong, and S.W. Chin, A Pipeline A/D Converter Architecture with Low DNL. IEEE Journal of Solid-State Circuits, vol. 35, pp , February [OptE91] F. Op t Eynde, G.M. Yin, and W. Sansen, A CMOS Fourth-order 14b 500ksample/s Sigma-delta ADC Converter. Proc. of IEEE International Solid- State Circuit Conference, pp , [Plas94] R. van de Plassche, Integrated Analog-to-Digital and Digital-to-Analog Converters. Kluwer Academic Publishers, [Raza95] B. Razavi, Principles of Data Converter System Design. IEEE Press, [Rivo03] [Sign90] [Yama94] [Yin94] R. Rivoir, Nyquist-rate Converters: An Overview, Chapter 1 in CMOS Telecom Data Converters (A. Rodríguez-Vázquez, F. Medeiro, E. Janssens, Editors). Kluwer Academic Publishers, B.P. del Signore, D.A. Kerth, N.S. Sooch, and E.J. Swanson, A Monolithic 20-b Delta-Sigma A/D Converter. IEEE Journal of Solid-State Circuits, vol. 25, pp , December K. Yamamura, A. Nogi, and A. Barlow, A low power 20 bit instrumentation delta-sigma ADC. Proc. of the IEEE Custom Integrated Circuits Conference, pp , G. Yin and W. Sansen, A High-Frequency and High-Resolution Fourth-Order A/D Converter in BiCMOS Technology. IEEE Journal of Solid-State Circuits, vol. 29, pp , August 1994.

ADVANCED DESIGN TECHNIQUES FOR RF POWER AMPLIFIERS

ADVANCED DESIGN TECHNIQUES FOR RF POWER AMPLIFIERS ADVANCED DESIGN TECHNIQUES FOR RF POWER AMPLIFIERS ANALOG CIRCUITS AND SIGNAL PROCESSING SERIES Consulting Editor: Mohammed Ismail. Ohio State University Related Titles: CMOS CASCADE SIGMA-DELTA MODULATORS

More information

IQ CALIBRATION TECHNIQUES FOR CMOS RADIO TRANSCEIVERS

IQ CALIBRATION TECHNIQUES FOR CMOS RADIO TRANSCEIVERS IQ CALIBRATION TECHNIQUES FOR CMOS RADIO TRANSCEIVERS ANALOG CIRCUITS AND SIGNAL PROCESSING SERIES Consulting Editor: Mohammed Ismail. Ohio State University Related Titles: asasdas CMOS CURRENT-MODE CIRCUITS

More information

DESIGN OF MULTI-BIT DELTA-SIGMA A/D CONVERTERS

DESIGN OF MULTI-BIT DELTA-SIGMA A/D CONVERTERS DESIGN OF MULTI-BIT DELTA-SIGMA A/D CONVERTERS DESIGN OF MULTI-BIT DELTA-SIGMA A/D CONVERTERS by Yves Geerts Alcatel Microelectronics, Belgium Michiel Steyaert KU Leuven, Belgium and Willy Sansen KU Leuven,

More information

Basic Concepts and Architectures

Basic Concepts and Architectures CMOS Sigma-Delta Converters From Basics to State-of of-the-art Basic Concepts and Architectures Rocío del Río, R Belén Pérez-Verdú and José M. de la Rosa {rocio,belen,jrosa}@imse.cnm.es KTH, Stockholm,

More information

LOW-POWER LOW-VOLTAGE SIGMA-DELTA MODULATORS IN NANOMETER CMOS

LOW-POWER LOW-VOLTAGE SIGMA-DELTA MODULATORS IN NANOMETER CMOS LOW-POWER LOW-VOLTAGE SIGMA-DELTA MODULATORS IN NANOMETER CMOS THE INTERNATIONAL SERIES IN ENGINEERING AND COMPUTER SCIENCE Related Titles: ANALOG CIRCUITS AND SIGNAL PROCESSING Consulting Editor: Mohammed

More information

SYSTEMATIC DESIGN OF SIGMA-DELTA ANALOG-TO-DIGITAL CONVERTERS

SYSTEMATIC DESIGN OF SIGMA-DELTA ANALOG-TO-DIGITAL CONVERTERS SYSTEMATIC DESIGN OF SIGMA-DELTA ANALOG-TO-DIGITAL CONVERTERS THE KLUWER INTERNATIONAL SERIES IN ENGINEERING AND COMPUTER SCIENCE Related Titles: ANALOG CIRCUITS AND SIGNAL PROCESSING Consulting Editor:

More information

IQ CALIBRATION TECHNIQUES FOR CMOS RADIO TRANSCEIVERS

IQ CALIBRATION TECHNIQUES FOR CMOS RADIO TRANSCEIVERS IQ CALIBRATION TECHNIQUES FOR CMOS RADIO TRANSCEIVERS ANALOG CIRCUITS AND SIGNAL PROCESSING SERIES Consulting Editor: Mohammed Ismail. Ohio State University Related Titles: asasdas CMOS CURRENT-MODE CIRCUITS

More information

ULTRA LOW POWER CAPACITIVE SENSOR INTERFACES

ULTRA LOW POWER CAPACITIVE SENSOR INTERFACES ULTRA LOW POWER CAPACITIVE SENSOR INTERFACES ANALOG CIRCUITS AND SIGNAL PROCESSING SERIES Consulting Editor: Mohammed Ismail. Ohio State University Titles in Series: ULTRA LOW POWER CAPACITIVE SENSOR INTERFACES

More information

Broadband Continuous-Time Sigma-Delta Analog-to-Digital Conversion Using MOSIS AMI 0.5 um CMOS Technology

Broadband Continuous-Time Sigma-Delta Analog-to-Digital Conversion Using MOSIS AMI 0.5 um CMOS Technology Broadband Continuous-Time Sigma-Delta Analog-to-Digital Conversion Using MOSIS AMI 0.5 um CMOS Technology Rationale and Goals A Research/Educational Proposal Shouli Yan and Edgar Sanchez-Sinencio Department

More information

ADAPTIVE LOW-POWER CIRCUITS FOR WIRELESS COMMUNICATIONS

ADAPTIVE LOW-POWER CIRCUITS FOR WIRELESS COMMUNICATIONS ADAPTIVE LOW-POWER CIRCUITS FOR WIRELESS COMMUNICATIONS ANALOG CIRCUITS AND SIGNAL PROCESSING SERIES Consulting Editor: Mohammed Ismail. Ohio State University Related Titles: CMOS CASCADE SIGMA-DELTA MODULATORS

More information

Materials in this course have been contributed by Fernando Medeiro, José M. de la Rosa, Rocío del Río, Belén Pérez-Verdú and

Materials in this course have been contributed by Fernando Medeiro, José M. de la Rosa, Rocío del Río, Belén Pérez-Verdú and CMOS Sigma-Delta Converters From Basics to State-of-the-Art Circuits and Errors Angel Rodríguez-Vázquez angel@imse.cnm.es Barcelona, 29-30 / Septiembre / 2010 Materials in this course have been contributed

More information

LOW-FREQUENCY NOISE IN ADVANCED MOS DEVICES

LOW-FREQUENCY NOISE IN ADVANCED MOS DEVICES LOW-FREQUENCY NOISE IN ADVANCED MOS DEVICES ANALOG CIRCUITS AND SIGNAL PROCESSING SERIES Consulting Editor: Mohammed Ismail. Ohio State University Titles in Series: CMOS SINGLE CHIP FAST FREQUENCY HOPPING

More information

On the Study of Improving Noise Shaping Techniques in Wide Bandwidth Sigma Delta Modulators

On the Study of Improving Noise Shaping Techniques in Wide Bandwidth Sigma Delta Modulators On the Study of Improving Noise Shaping Techniques in Wide Bandwidth Sigma Delta Modulators By Du Yun Master Degree in Electrical and Electronics Engineering 2013 Faculty of Science and Technology University

More information

I must be selected in the presence of strong

I must be selected in the presence of strong Semiconductor Technology Analyzing sigma-delta ADCs in deep-submicron CMOS technologies Sigma-delta ( ) analog-to-digital-converters are critical components in wireless transceivers. This study shows that

More information

METHODOLOGY FOR THE DIGITAL CALIBRATION OF ANALOG CIRCUITS AND SYSTEMS

METHODOLOGY FOR THE DIGITAL CALIBRATION OF ANALOG CIRCUITS AND SYSTEMS METHODOLOGY FOR THE DIGITAL CALIBRATION OF ANALOG CIRCUITS AND SYSTEMS METHODOLOGY FOR THE DIGITAL CALIBRATION OF ANALOG CIRCUITS AND SYSTEMS with Case Studies by Marc Pastre Ecole Polytechnique Fédérale

More information

Pipeline vs. Sigma Delta ADC for Communications Applications

Pipeline vs. Sigma Delta ADC for Communications Applications Pipeline vs. Sigma Delta ADC for Communications Applications Noel O Riordan, Mixed-Signal IP Group, S3 Semiconductors noel.oriordan@s3group.com Introduction The Analog-to-Digital Converter (ADC) is a key

More information

Nanometer CMOS Sigma-Delta Modulators for Software Defined Radio

Nanometer CMOS Sigma-Delta Modulators for Software Defined Radio Nanometer CMOS Sigma-Delta Modulators for Software Defined Radio Alonso Morgado Rocío del Río José M. de la Rosa Nanometer CMOS Sigma-Delta Modulators for Software Defined Radio 2123 Alonso Morgado Instituto

More information

SWITCHED-CAPACITOR TECHNIQUES FOR HIGH-ACCURACY FILTER AND ADC DESIGN

SWITCHED-CAPACITOR TECHNIQUES FOR HIGH-ACCURACY FILTER AND ADC DESIGN SWITCHED-CAPACITOR TECHNIQUES FOR HIGH-ACCURACY FILTER AND ADC DESIGN QQ ANALOG CIRCUITS AND SIGNAL PROCESSING SERIES Consulting Editor: Mohammed Ismail. Ohio State University Titles in Series: IQ CALIBRATION

More information

Appendix A Comparison of ADC Architectures

Appendix A Comparison of ADC Architectures Appendix A Comparison of ADC Architectures A comparison of continuous-time delta-sigma (CT ), pipeline, and timeinterleaved (TI) SAR ADCs which target wide signal bandwidths (greater than 100 MHz) and

More information

Architectures and Design Methodologies for Very Low Power and Power Effective A/D Sigma-Delta Converters

Architectures and Design Methodologies for Very Low Power and Power Effective A/D Sigma-Delta Converters 0 Architectures and Design Methodologies for Very Low Power and Power Effective A/D Sigma-Delta Converters F. Maloberti University of Pavia - Italy franco.maloberti@unipv.it 1 Introduction Summary Sigma-Delta

More information

ANALOG CIRCUIT DESIGN

ANALOG CIRCUIT DESIGN ANALOG CIRCUIT DESIGN Analog Circuit Design High-Speed Analog-to-Digital Converters; Mixed-Signal Design; PLL's and Synthesizers Edited by Rudy J. van de Plassche Broadcom Netherlands B. V., Bunnik Johan

More information

SpringerBriefs in Electrical and Computer Engineering

SpringerBriefs in Electrical and Computer Engineering SpringerBriefs in Electrical and Computer Engineering More information about this series at http://www.springer.com/series/10059 David Fouto Nuno Paulino Design of Low Power and Low Area Passive Sigma

More information

Minimizing Spurious Tones in Digital Delta-Sigma Modulators

Minimizing Spurious Tones in Digital Delta-Sigma Modulators Minimizing Spurious Tones in Digital Delta-Sigma Modulators ANALOG CIRCUITS AND SIGNAL PROCESSING Series Editors: Mohammed Ismail Mohamad Sawan For other titles published in this series, go to http://www.springer.com/series/7381

More information

SUPPORTED by a considerable commercial success, wireline

SUPPORTED by a considerable commercial success, wireline IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 51, NO. 1, JANUARY 2004 47 Highly Linear 2.5-V CMOS 61 Modulator for ADSL+ Rocío del Río, José M. de la Rosa, Belén Pérez-Verdú, Manuel

More information

Smart AD and DA Conversion

Smart AD and DA Conversion Smart AD and DA Conversion ANALOG CIRCUITS AND SIGNAL PROCESSING Consulting Editor: Mohammed Ismail. Ohio State University For other titles published in this series, go to www.springer.com/series/7381

More information

Data Converters. Springer FRANCO MALOBERTI. Pavia University, Italy

Data Converters. Springer FRANCO MALOBERTI. Pavia University, Italy Data Converters by FRANCO MALOBERTI Pavia University, Italy Springer Contents Dedicat ion Preface 1. BACKGROUND ELEMENTS 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 The Ideal Data Converter Sampling 1.2.1 Undersampling

More information

Acronyms. ADC analog-to-digital converter. BEOL back-end-of-line

Acronyms. ADC analog-to-digital converter. BEOL back-end-of-line Acronyms ADC analog-to-digital converter BEOL back-end-of-line CDF cumulative distribution function CMOS complementary metal-oxide-semiconductor CPU central processing unit CR charge-redistribution CS

More information

Advanced AD/DA converters. ΔΣ DACs. Overview. Motivations. System overview. Why ΔΣ DACs

Advanced AD/DA converters. ΔΣ DACs. Overview. Motivations. System overview. Why ΔΣ DACs Advanced AD/DA converters Overview Why ΔΣ DACs ΔΣ DACs Architectures for ΔΣ DACs filters Smoothing filters Pietro Andreani Dept. of Electrical and Information Technology Lund University, Sweden Advanced

More information

ANALOG CIRCUITS AND SIGNAL PROCESSING

ANALOG CIRCUITS AND SIGNAL PROCESSING ANALOG CIRCUITS AND SIGNAL PROCESSING Series Editors Mohammed Ismail, The Ohio State University Mohamad Sawan, École Polytechnique de Montréal For further volumes: http://www.springer.com/series/7381 Yongjian

More information

RELAXED TIMING ISSUE IN GLOBAL FEEDBACK PATHS OF UNITY- STF SMASH SIGMA DELTA MODULATOR ARCHITECTURE

RELAXED TIMING ISSUE IN GLOBAL FEEDBACK PATHS OF UNITY- STF SMASH SIGMA DELTA MODULATOR ARCHITECTURE RELAXED TIMING ISSUE IN GLOBAL FEEDBACK PATHS OF UNITY- STF SMASH SIGMA DELTA MODULATOR ARCHITECTURE Mehdi Taghizadeh and Sirus Sadughi Department of Electrical Engineering, Science and Research Branch,

More information

THE USE of multibit quantizers in oversampling analogto-digital

THE USE of multibit quantizers in oversampling analogto-digital 966 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 57, NO. 12, DECEMBER 2010 A New DAC Mismatch Shaping Technique for Sigma Delta Modulators Mohamed Aboudina, Member, IEEE, and Behzad

More information

ULTRA LOW POWER CAPACITIVE SENSOR INTERFACES

ULTRA LOW POWER CAPACITIVE SENSOR INTERFACES ULTRA LOW POWER CAPACITIVE SENSOR INTERFACES ANALOG CIRCUITS AND SIGNAL PROCESSING SERIES Consulting Editor: Mohammed Ismail. Ohio State University Titles in Series: ULTRA LOW POWER CAPACITIVE SENSOR INTERFACES

More information

A Triple-mode Sigma-delta Modulator Design for Wireless Standards

A Triple-mode Sigma-delta Modulator Design for Wireless Standards 0th International Conference on Information Technology A Triple-mode Sigma-delta Modulator Design for Wireless Standards Babita R. Jose, P. Mythili, Jawar Singh *, Jimson Mathew * Cochin University of

More information

Cascaded Noise Shaping for Oversampling A/D and D/A Conversion Bruce A. Wooley Stanford University

Cascaded Noise Shaping for Oversampling A/D and D/A Conversion Bruce A. Wooley Stanford University Cascaded Noise Shaping for Oversampling A/D and D/A Conversion Bruce A. Wooley Stanford University Bruce A. Wooley - 1 - Copyright 2005, Stanford University Outline Oversampling modulators for A-to-D conversion

More information

ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.4

ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.4 ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.4 25.4 A 1.8V 14b 10MS/s Pipelined ADC in 0.18µm CMOS with 99dB SFDR Yun Chiu, Paul R. Gray, Borivoje Nikolic University of California, Berkeley,

More information

Integrated Microsystems Laboratory. Franco Maloberti

Integrated Microsystems Laboratory. Franco Maloberti University of Pavia Integrated Microsystems Laboratory Power Efficient Data Convertes Franco Maloberti franco.maloberti@unipv.it OUTLINE Introduction Managing the noise power budget Challenges of State-of-the-art

More information

Time-interleaved Analog-to-Digital Converters

Time-interleaved Analog-to-Digital Converters Time-interleaved Analog-to-Digital Converters ANALOG CIRCUITS AND SIGNAL PROCESSING SERIES Consulting Editor: Mohammed Ismail. Ohio State University For other titles published in this series, go to www.springer.com/series/7381

More information

NPTEL. VLSI Data Conversion Circuits - Video course. Electronics & Communication Engineering.

NPTEL. VLSI Data Conversion Circuits - Video course. Electronics & Communication Engineering. NPTEL Syllabus VLSI Data Conversion Circuits - Video course COURSE OUTLINE This course covers the analysis and design of CMOS Analog-to-Digital and Digital-to-Analog Converters,with about 7 design assigments.

More information

Design of Continuous Time Multibit Sigma Delta ADC for Next Generation Wireless Applications

Design of Continuous Time Multibit Sigma Delta ADC for Next Generation Wireless Applications RESEARCH ARTICLE OPEN ACCESS Design of Continuous Time Multibit Sigma Delta ADC for Next Generation Wireless Applications Sharon Theresa George*, J. Mangaiyarkarasi** *(Department of Information and Communication

More information

MASH 2-1 MULTI-BIT SIGMA-DELTA MODULATOR FOR WLAN L 2 ( ) ( ) 1( 1 1 1

MASH 2-1 MULTI-BIT SIGMA-DELTA MODULATOR FOR WLAN L 2 ( ) ( ) 1( 1 1 1 MASH 2- MULTI-BIT SIGMA-DELTA MODULATOR FOR WLAN Yu hang, Ning Xie, Hui Wang and Yejun He College of Information Engineering, Shenzhen University, Shenzhen, Guangdong 58060, China kensouren@yahoo.com.cn

More information

SWITCHED-CURRENTS an analogue technique for digital technology

SWITCHED-CURRENTS an analogue technique for digital technology SWITCHED-CURRENTS an analogue technique for digital technology Edited by С Toumazou, ]. B. Hughes & N. C. Battersby Supported by the IEEE Circuits and Systems Society Technical Committee on Analog Signal

More information

EE247 Lecture 24. EE247 Lecture 24

EE247 Lecture 24. EE247 Lecture 24 EE247 Lecture 24 Administrative EE247 Final exam: Date: Wed. Dec. 15 th Time: -12:30pm-3:30pm- Location: 289 Cory Closed book/course notes No calculators/cell phones/pdas/computers Bring one 8x11 paper

More information

Modulator with Op- Amp Gain Compensation for Nanometer CMOS Technologies

Modulator with Op- Amp Gain Compensation for Nanometer CMOS Technologies A. Pena Perez, V.R. Gonzalez- Diaz, and F. Maloberti, ΣΔ Modulator with Op- Amp Gain Compensation for Nanometer CMOS Technologies, IEEE Proceeding of Latin American Symposium on Circuits and Systems, Feb.

More information

A 98dB 3.3V 28mW-per-channel multibit audio DAC in a standard 0.35µm CMOS technology

A 98dB 3.3V 28mW-per-channel multibit audio DAC in a standard 0.35µm CMOS technology A 98dB 3.3V 28mW-per-channel multibit audio DAC in a standard 0.35µm CMOS technology M. Annovazzi, V. Colonna, G. Gandolfi, STMicroelectronics Via Tolomeo, 2000 Cornaredo (MI), Italy vittorio.colonna@st.com

More information

ANALOG CMOS FILTERS FOR VERY HIGH FREQUENCIES

ANALOG CMOS FILTERS FOR VERY HIGH FREQUENCIES ANALOG CMOS FILTERS FOR VERY HIGH FREQUENCIES THE KLUWER INTERNATIONAL SERIES IN ENGINEERING AND COMPUTER SCIENCE ANALOG CIRCUITS AND SIGNAL PROCESSING Consulting Editor Mohammed Ismail Ohio State University

More information

CMOS ADC & DAC Principles

CMOS ADC & DAC Principles CMOS ADC & DAC Principles Willy Sansen KULeuven, ESAT-MICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 10-05 201 Table of contents Definitions Digital-to-analog converters Resistive Capacitive

More information

Lecture #6: Analog-to-Digital Converter

Lecture #6: Analog-to-Digital Converter Lecture #6: Analog-to-Digital Converter All electrical signals in the real world are analog, and their waveforms are continuous in time. Since most signal processing is done digitally in discrete time,

More information

ADVANCES in VLSI technology result in manufacturing

ADVANCES in VLSI technology result in manufacturing INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2013, VOL. 59, NO. 1, PP. 99 104 Manuscript received January 8, 2013; revised March, 2013. DOI: 10.2478/eletel-2013-0012 Rapid Prototyping of Third-Order

More information

Oversampling Data Converters Tuesday, March 15th, 9:15 11:40

Oversampling Data Converters Tuesday, March 15th, 9:15 11:40 Oversampling Data Converters Tuesday, March 15th, 9:15 11:40 Snorre Aunet (sa@ifi.uio.no) Nanoelectronics group Department of Informatics University of Oslo Last time and today, Tuesday 15th of March:

More information

Sigma-Delta ADC Tutorial and Latest Development in 90 nm CMOS for SoC

Sigma-Delta ADC Tutorial and Latest Development in 90 nm CMOS for SoC Sigma-Delta ADC Tutorial and Latest Development in 90 nm CMOS for SoC Jinseok Koh Wireless Analog Technology Center Texas Instruments Inc. Dallas, TX Outline Fundamentals for ADCs Over-sampling and Noise

More information

2.4 A/D Converter Survey Linearity

2.4 A/D Converter Survey Linearity 2.4 A/D Converter Survey 21 mum and minimum power spectral density (PSD) levels. In the case of a single-channel receiver, this implies the gain control range of the VGA, while in a multi-channel receiver

More information

Understanding Delta-Sigma Data Converters

Understanding Delta-Sigma Data Converters Understanding Delta-Sigma Data Converters Richard Schreier Analog Devices, Inc. Gabor C. Temes Oregon State University OlEEE IEEE Press iwiley- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Foreword

More information

BandPass Sigma-Delta Modulator for wideband IF signals

BandPass Sigma-Delta Modulator for wideband IF signals BandPass Sigma-Delta Modulator for wideband IF signals Luca Daniel (University of California, Berkeley) Marco Sabatini (STMicroelectronics Berkeley Labs) maintain the same advantages of BaseBand converters

More information

Oversampling Converters

Oversampling Converters Oversampling Converters Behzad Razavi Electrical Engineering Department University of California, Los Angeles Outline Basic Concepts First- and Second-Order Loops Effect of Circuit Nonidealities Cascaded

More information

Comparator Design for Delta Sigma Modulator

Comparator Design for Delta Sigma Modulator International Conference on Emerging Trends in and Applied Sciences (ICETTAS 2015) Comparator Design for Delta Sigma Modulator Pinka Abraham PG Scholar Dept.of ECE College of Engineering Munnar Jayakrishnan

More information

72 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 51, NO. 1, JANUARY 2004

72 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 51, NO. 1, JANUARY 2004 72 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 51, NO. 1, JANUARY 2004 High-Order Multibit Modulators and Pseudo Data-Weighted-Averaging in Low-Oversampling 16 ADCs for Broad-Band

More information

Research and Development Activities in RF and Analog IC Design. RFIC Building Blocks. Single-Chip Transceiver Systems (I) Howard Luong

Research and Development Activities in RF and Analog IC Design. RFIC Building Blocks. Single-Chip Transceiver Systems (I) Howard Luong Research and Development Activities in RF and Analog IC Design Howard Luong Analog Research Laboratory Department of Electrical and Electronic Engineering Hong Kong University of Science and Technology

More information

Design of Pipeline Analog to Digital Converter

Design of Pipeline Analog to Digital Converter Design of Pipeline Analog to Digital Converter Vivek Tripathi, Chandrajit Debnath, Rakesh Malik STMicroelectronics The pipeline analog-to-digital converter (ADC) architecture is the most popular topology

More information

Cascaded Noise-Shaping Modulators for Oversampled Data Conversion

Cascaded Noise-Shaping Modulators for Oversampled Data Conversion Cascaded Noise-Shaping Modulators for Oversampled Data Conversion Bruce A. Wooley Stanford University B. Wooley, Stanford, 2004 1 Outline Oversampling modulators for A/D conversion Cascaded noise-shaping

More information

FUNDAMENTALS OF ANALOG TO DIGITAL CONVERTERS: PART I.1

FUNDAMENTALS OF ANALOG TO DIGITAL CONVERTERS: PART I.1 FUNDAMENTALS OF ANALOG TO DIGITAL CONVERTERS: PART I.1 Many of these slides were provided by Dr. Sebastian Hoyos January 2019 Texas A&M University 1 Spring, 2019 Outline Fundamentals of Analog-to-Digital

More information

A 1.8-V 16 Modulator Interface for an Electret Microphone With On-Chip Reference

A 1.8-V 16 Modulator Interface for an Electret Microphone With On-Chip Reference IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 37, NO. 3, MARCH 2002 279 A 1.8-V 16 Modulator Interface for an Electret Microphone With On-Chip Reference Ovidiu Bajdechi, Student Member, IEEE, and Johan H.

More information

EE247 Lecture 22. Figures of merit (FOM) and trends for ADCs How to use/not use FOM. EECS 247 Lecture 22: Data Converters 2004 H. K.

EE247 Lecture 22. Figures of merit (FOM) and trends for ADCs How to use/not use FOM. EECS 247 Lecture 22: Data Converters 2004 H. K. EE247 Lecture 22 Pipelined ADCs Combining the bits Stage implementation Circuits Noise budgeting Figures of merit (FOM) and trends for ADCs How to use/not use FOM Oversampled ADCs EECS 247 Lecture 22:

More information

Design of a Sigma Delta modulator for wireless communication applications based on ADSL standard

Design of a Sigma Delta modulator for wireless communication applications based on ADSL standard Design of a Sigma Delta modulator for wireless communication applications based on ADSL standard Mohsen Beiranvand 1, Reza Sarshar 2, Younes Mokhtari 3 1- Department of Electrical Engineering, Islamic

More information

A Multi-bit Delta-Sigma Modulator with a Passband Tunable from DC to Half the Sampling Frequency. Kentaro Yamamoto

A Multi-bit Delta-Sigma Modulator with a Passband Tunable from DC to Half the Sampling Frequency. Kentaro Yamamoto A Multi-bit Delta-Sigma Modulator with a Passband Tunable from DC to Half the Sampling Frequency by Kentaro Yamamoto A thesis submitted in conformity with the requirements for the degree of Master of Applied

More information

DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY

DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY Neha Bakawale Departmentof Electronics & Instrumentation Engineering, Shri G. S. Institute of

More information

Data Converters. Specifications for Data Converters. Overview. Testing and characterization. Conditions of operation

Data Converters. Specifications for Data Converters. Overview. Testing and characterization. Conditions of operation Data Converters Overview Specifications for Data Converters Pietro Andreani Dept. of Electrical and Information Technology Lund University, Sweden Conditions of operation Type of converter Converter specifications

More information

Design of a High-speed, High-resolution ADC for Medical Ultrasound Applications -

Design of a High-speed, High-resolution ADC for Medical Ultrasound Applications - The figures of merit (FoMs) encompassing power, effective resolution and speed rank the dynamic performance of the ADC core among the best in its class. J. Bjørnsen: Design of a High-speed, High-resolution

More information

Analog-to-Digital Converter Survey & Analysis. Bob Walden. (310) Update: July 16,1999

Analog-to-Digital Converter Survey & Analysis. Bob Walden. (310) Update: July 16,1999 Analog-to-Digital Converter Survey & Analysis Update: July 16,1999 References: 1. R.H. Walden, Analog-to-digital converter survey and analysis, IEEE Journal on Selected Areas in Communications, vol. 17,

More information

CHAPTER. delta-sigma modulators 1.0

CHAPTER. delta-sigma modulators 1.0 CHAPTER 1 CHAPTER Conventional delta-sigma modulators 1.0 This Chapter presents the traditional first- and second-order DSM. The main sources for non-ideal operation are described together with some commonly

More information

OVERSAMPLING analog-to-digital converters (ADCs)

OVERSAMPLING analog-to-digital converters (ADCs) 918 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 40, NO. 4, APRIL 2005 A Third-Order 61 Modulator in 0.18-m CMOS With Calibrated Mixed-Mode Integrators Jae Hoon Shim, Student Member, IEEE, In-Cheol Park,

More information

Low-power Sigma-Delta AD Converters

Low-power Sigma-Delta AD Converters Low-power Sigma-Delta AD Converters Willy Sansen KULeuven, ESAT-MICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 10-05 211 Table of contents Delta-sigma modulation The switch problem The

More information

INF4420. ΔΣ data converters. Jørgen Andreas Michaelsen Spring 2012

INF4420. ΔΣ data converters. Jørgen Andreas Michaelsen Spring 2012 INF4420 ΔΣ data converters Spring 2012 Jørgen Andreas Michaelsen (jorgenam@ifi.uio.no) Outline Oversampling Noise shaping Circuit design issues Higher order noise shaping Introduction So far we have considered

More information

An 8- bit current mode ripple folding A/D converter

An 8- bit current mode ripple folding A/D converter H. Dinc, F. Maloberti: "An 8-bit current mode ripple folding A/D converter"; Proc. of the 2003 Int. Symposium on Circuits and Systems, ISCAS 2003, Bangkok, 25-28 May 2003, Vol. 1, pp. 981-984. 20xx IEEE.

More information

2. ADC Architectures and CMOS Circuits

2. ADC Architectures and CMOS Circuits /58 2. Architectures and CMOS Circuits Francesc Serra Graells francesc.serra.graells@uab.cat Departament de Microelectrònica i Sistemes Electrònics Universitat Autònoma de Barcelona paco.serra@imb-cnm.csic.es

More information

A Low-Power 6-b Integrating-Pipeline Hybrid Analog-to-Digital Converter

A Low-Power 6-b Integrating-Pipeline Hybrid Analog-to-Digital Converter A Low-Power 6-b Integrating-Pipeline Hybrid Analog-to-Digital Converter Quentin Diduck, Martin Margala * Electrical and Computer Engineering Department 526 Computer Studies Bldg., PO Box 270231 University

More information

ANALOG CIRCUIT DESIGN

ANALOG CIRCUIT DESIGN ANALOG CIRCUIT DESIGN Analog Circuit Design Fractional-N Synthesizers, Design for Robustness, Line and Bus Drivers Edited by Arthur van Roermund Eindhoven University of Technology, The Netherlands Michiel

More information

A single-slope 80MS/s ADC using two-step time-to-digital conversion

A single-slope 80MS/s ADC using two-step time-to-digital conversion A single-slope 80MS/s ADC using two-step time-to-digital conversion The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published

More information

Mansour Keramat. * No part may be reproduced without permission from the author. 1- Application of Data Converters. Contents

Mansour Keramat. * No part may be reproduced without permission from the author. 1- Application of Data Converters. Contents Mansour Keramat Analog and Mixed Signal Laboratory Electrical & Computer Eng. Dept. University of Connecticut Storrs, CT 06269 E-mail: keramat@engr.uconn.edu URL: http://www.engr.uconn.edu/~keramat * No

More information

A Novel Dual Mode Reconfigurable Delta Sigma Modulator for B-mode and CW Doppler Mode Operation in Ultra Sonic Applications

A Novel Dual Mode Reconfigurable Delta Sigma Modulator for B-mode and CW Doppler Mode Operation in Ultra Sonic Applications A Novel Dual Mode Reconfigurable Delta Sigma Modulator for B-mode and CW Doppler Mode Operation in Ultra Sonic Applications Asghar Charmin 1, Mohammad Honarparvar 2, Esmaeil Najafi Aghdam 2 1. Department

More information

ECE 627 Project: Design of a High-Speed Delta-Sigma A/D Converter

ECE 627 Project: Design of a High-Speed Delta-Sigma A/D Converter ECE 627 Project: Design of a High-Speed Delta-Sigma A/D Converter Brian L. Young youngbr@eecs.oregonstate.edu Oregon State University June 6, 28 I. INTRODUCTION The goal of the Spring 28, ECE 627 project

More information

A 25MS/s 14b 200mW Σ Modulator in 0.18µm CMOS

A 25MS/s 14b 200mW Σ Modulator in 0.18µm CMOS UT Mixed-Signal/RF Integrated Circuits Seminar Series A 25MS/s 14b 200mW Σ Modulator in 0.18µm CMOS Pio Balmelli April 19 th, Austin TX 2 Outline VDSL specifications Σ A/D converter features Broadband

More information

A Segmented DAC based Sigma-Delta ADC by Employing DWA

A Segmented DAC based Sigma-Delta ADC by Employing DWA A Segmented DAC based Sigma-Delta ADC by Employing DWA Sakineh Jahangirzadeh 1 and Ebrahim Farshidi 1 1 Electrical Department, Faculty of Engnerring, Shahid Chamran University of Ahvaz, Ahvaz, Iran May

More information

Compensation of Nonlinearities in ΣΔ Modulators Using Digital Assisted Analog Electronics Approach

Compensation of Nonlinearities in ΣΔ Modulators Using Digital Assisted Analog Electronics Approach Compensation of Nonlinearities in ΣΔ Modulators Using Digital Assisted Analog Electronics Approach Atta Ul Mustafa and Muhammad Atif National University of Computer and Emerging Sciences, Electrical Engineering

More information

ECEN 610 Mixed-Signal Interfaces

ECEN 610 Mixed-Signal Interfaces Spring 2014 S. Hoyos-ECEN-610 1 ECEN 610 Mixed-Signal Interfaces Sebastian Hoyos Texas A&M University Analog and Mixed Signal Group Oversampling ADC Spring 2014 S. Hoyos-ECEN-610 2 Spring 2014 S. Hoyos-ECEN-610

More information

Gábor C. Temes. School of Electrical Engineering and Computer Science Oregon State University. 1/57

Gábor C. Temes. School of Electrical Engineering and Computer Science Oregon State University. 1/57 Gábor C. Temes School of Electrical Engineering and Computer Science Oregon State University temes@ece.orst.edu 1/57 Switched-Capacitor Circuit Techniques ORIGIN : "SC" replacing "R"; 1873, James Clerk

More information

Integrated Circuit Design for High-Speed Frequency Synthesis

Integrated Circuit Design for High-Speed Frequency Synthesis Integrated Circuit Design for High-Speed Frequency Synthesis John Rogers Calvin Plett Foster Dai ARTECH H O US E BOSTON LONDON artechhouse.com Preface XI CHAPTER 1 Introduction 1 1.1 Introduction to Frequency

More information

A Two- Bit- per- Cycle Successive- Approximation ADC with Background Offset Calibration

A Two- Bit- per- Cycle Successive- Approximation ADC with Background Offset Calibration M. Casubolo, M. Grassi, A. Lombardi, F. Maloberti, P. Malcovati: "A Two-Bit-per- Cycle Successive-Approximation ADC with Background Calibration"; 15th IEEE Int. Conf. on Electronics, Circuits and Systems,

More information

Low- Power Third- Order ΣΔ Modulator with Cross Couple Paths for WCDMA Applications

Low- Power Third- Order ΣΔ Modulator with Cross Couple Paths for WCDMA Applications C. Della Fiore, F. Maloberti, P. Malcovati: "Low-Power Third-Order ΣΔ Modulator with Cross Couple Paths for WCDMA Applications"; Ph. D. Research in Microelectronics and Electronics, PRIME 2006, Otranto,

More information

A K-Delta-1-Sigma Modulator for Wideband Analog-to-Digital Conversion

A K-Delta-1-Sigma Modulator for Wideband Analog-to-Digital Conversion A K-Delta-1-Sigma Modulator for Wideband Analog-to-Digital Conversion Abstract : R. Jacob Baker and Vishal Saxena Department of Electrical and Computer Engineering Boise State University jbaker@boisestate.edu

More information

A Successive Approximation ADC based on a new Segmented DAC

A Successive Approximation ADC based on a new Segmented DAC A Successive Approximation ADC based on a new Segmented DAC segmented current-mode DAC successive approximation ADC bi-direction segmented current-mode DAC DAC INL 0.47 LSB DNL 0.154 LSB DAC 3V 8 2MS/s

More information

RECENTLY, low-voltage and low-power circuit design

RECENTLY, low-voltage and low-power circuit design IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 55, NO. 4, APRIL 2008 319 A Programmable 0.8-V 10-bit 60-MS/s 19.2-mW 0.13-m CMOS ADC Operating Down to 0.5 V Hee-Cheol Choi, Young-Ju

More information

Combining Multipath and Single-Path Time-Interleaved Delta-Sigma Modulators Ahmed Gharbiya and David A. Johns

Combining Multipath and Single-Path Time-Interleaved Delta-Sigma Modulators Ahmed Gharbiya and David A. Johns 1224 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 55, NO. 12, DECEMBER 2008 Combining Multipath and Single-Path Time-Interleaved Delta-Sigma Modulators Ahmed Gharbiya and David A.

More information

A VCO-based analog-to-digital converter with secondorder sigma-delta noise shaping

A VCO-based analog-to-digital converter with secondorder sigma-delta noise shaping A VCO-based analog-to-digital converter with secondorder sigma-delta noise shaping The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

More information

ISSN:

ISSN: 1391 DESIGN OF 9 BIT SAR ADC USING HIGH SPEED AND HIGH RESOLUTION OPEN LOOP CMOS COMPARATOR IN 180NM TECHNOLOGY WITH R-2R DAC TOPOLOGY AKHIL A 1, SUNIL JACOB 2 1 M.Tech Student, 2 Associate Professor,

More information

Op-Amp Design Project EE 5333 Analog Integrated Circuits Prof. Ramesh Harjani Department of ECE University of Minnesota, Twin Cities Report prepared

Op-Amp Design Project EE 5333 Analog Integrated Circuits Prof. Ramesh Harjani Department of ECE University of Minnesota, Twin Cities Report prepared Op-Amp Design Project EE 5333 Analog Integrated Circuits Prof. Ramesh Harjani Department of ECE University of Minnesota, Twin Cities Report prepared by: Nirav Desai (4280229) 1 Contents: 1. Design Specifications

More information

Second-Order Sigma-Delta Modulator in Standard CMOS Technology

Second-Order Sigma-Delta Modulator in Standard CMOS Technology SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol. 1, No. 3, November 2004, 37-44 Second-Order Sigma-Delta Modulator in Standard CMOS Technology Dragiša Milovanović 1, Milan Savić 1, Miljan Nikolić 1 Abstract:

More information

Low-Power Pipelined ADC Design for Wireless LANs

Low-Power Pipelined ADC Design for Wireless LANs Low-Power Pipelined ADC Design for Wireless LANs J. Arias, D. Bisbal, J. San Pablo, L. Quintanilla, L. Enriquez, J. Vicente, J. Barbolla Dept. de Electricidad y Electrónica, E.T.S.I. de Telecomunicación,

More information

A 4b/cycle Flash-assisted SAR ADC with Comparator Speed-boosting Technique

A 4b/cycle Flash-assisted SAR ADC with Comparator Speed-boosting Technique JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.18, NO.2, APRIL, 2018 ISSN(Print) 1598-1657 https://doi.org/10.5573/jsts.2018.18.2.281 ISSN(Online) 2233-4866 A 4b/cycle Flash-assisted SAR ADC with

More information

MSP430 Teaching Materials

MSP430 Teaching Materials MSP430 Teaching Materials Chapter 9 Data Acquisition A/D Conversion Introduction Texas Instruments t Incorporated University of Beira Interior (PT) Pedro Dinis Gaspar, António Espírito Santo, Bruno Ribeiro,

More information

A 4 GSample/s 8-bit ADC in. Ken Poulton, Robert Neff, Art Muto, Wei Liu, Andrew Burstein*, Mehrdad Heshami* Agilent Laboratories Palo Alto, California

A 4 GSample/s 8-bit ADC in. Ken Poulton, Robert Neff, Art Muto, Wei Liu, Andrew Burstein*, Mehrdad Heshami* Agilent Laboratories Palo Alto, California A 4 GSample/s 8-bit ADC in 0.35 µm CMOS Ken Poulton, Robert Neff, Art Muto, Wei Liu, Andrew Burstein*, Mehrdad Heshami* Agilent Laboratories Palo Alto, California 1 Outline Background Chip Architecture

More information