LTC1440/LTC1441/LTC1442 Ultralow Power Single/Dual Comparator with Reference DESCRIPTIO FEATURES APPLICATIO S TYPICAL APPLICATIO

Size: px
Start display at page:

Download "LTC1440/LTC1441/LTC1442 Ultralow Power Single/Dual Comparator with Reference DESCRIPTIO FEATURES APPLICATIO S TYPICAL APPLICATIO"

Transcription

1 LTC/LTC/LTC Ultralow Power Single/Dual Comparator with Reference FEATURES Ultralow Quiescent Current:.µA Typ (LTC) Reference Output Drives.µF Capacitor Adjustable Hysteresis (LTC/LTC) Wide Supply Range: Single: V to V Dual: ±V to ±.V Input Voltage Range Includes the Negative Supply TTL/CMOS Compatible Outputs µs Propagation Delay with mv Overdrive No Crowbar Current ma Continuous Source Current Pin Compatible Upgrades for MAX9/9/9 mm x mm x.mm DFN Package (LTC) APPLICATIO S U Battery-Powered System Monitoring Threshold Detectors Window Comparators Oscillator Circuits, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners. DESCRIPTIO U The LTC /LTC/LTC are ultralow power single and dual comparators with built-in references. The comparators feature less than.µa supply current over temperature (LTC), a.v ±% reference, programmable hysteresis (LTC/LTC) and TTL/CMOS outputs that sink and source current. The reference output can drive a bypass capacitor of up to.µf without oscillation. The comparators operate from a single V to V supply or a dual ±V to ±.V supply (LTC). Comparator hysteresis is easily programmed by using two resistors and the pin (LTC/LTC). Each comparator s input operates from the negative supply to within.v of the positive supply. The comparator output stage can continuously source up to ma. By eliminating the cross-conducting current that normally happens when the comparator changes logic states, the power supply glitches are eliminated. The LTC is available in -pin PDIP, SO, MSOP and DFN packages. The LTC/LTC are available in -pin PDIP and SO packages. TYPICAL APPLICATIO R.M % R.M % IN IN.V V U Micropower.9V V CC Threshold Detector SUPPLY CURRENT (µa) LTC Supply Current vs Temperature V = V = GND = V LTC GND.. TEMPERATURE ( C) // TA TA fd

2 LTC/LTC/LTC ABSOLUTE MAXIMUM RATINGS (Note ) W W W Voltage V to, V to GND, GND to...v to.v IN, IN,... (V.V) to (.V)... (V.V) to (.V) (LTC)... (V.V) to (GND.V) (LTC/LTC)... (V.V) to (.V) Current IN, IN,... ma... ma... ma U Short-Circuit Duration (V.V)...Continuous Power Dissipation... mw Operating Temperature Range LTCXC... C to C LTCXI... C to C Storage Temperature Range... C to C Storage Temperature Range (DD Package)... C to C Junction Temperature... C Junction Temperature (DD Package)... C Lead Temperature (Soldering, sec)... C PACKAGE/ORDER INFORMATION GND IN IN T JMAX = C, θ JA = C/ W (DD) UNDERSIDE METAL CONNECTED TO (PCB CONNECTION OPTIONAL) ORDER PART NUMBER LTCCDD LTCIDD A IN A IN A N PACKAGE -LEAD PDIP TOP VIEW TOP VIEW DD PART MARKING* LBTH V DD PACKAGE -LEAD (mm mm) PLASTIC DFN B V IN B IN B S PACKAGE -LEAD PLASTIC SO T JMAX = C, θ JA = C/ W (N) T JMAX = C, θ JA = C/ W (S) U W U GND IN IN N PACKAGE -LEAD PDIP T JMAX = C, θ JA = C/ W (N) T JMAX = C, θ JA = C/ W (S) ORDER PART NUMBER LTCCN LTCCS LTCIN LTCIS ORDER PART NUMBER LTCCN LTCCS LTCIN LTCIS S PART MARKING I TOP VIEW V S PACKAGE -LEAD PLASTIC SO S PART MARKING I I A IN A IN B N PACKAGE -LEAD PDIP TOP VIEW ORDER PART NUMBER LTCCMS LTCIMS GND IN IN T JMAX = C, θ JA = C/ W (N) T JMAX = C, θ JA = C/ W (S) MS PACKAGE -LEAD PLASTIC MSOP T JMAX = C, θ JA = C/ W B V S PACKAGE -LEAD PLASTIC SO Order Options Tape and Reel: Add #TR Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF Lead Free Part Marking: TOP VIEW V MS PART MARKING* LTBX ORDER PART NUMBER LTCCN LTCCS LTCIN LTCIS S PART MARKING I Consult LTC Marketing for parts specified with wider operating temperature ranges. * The temperature grade is identified by a label on the shipping container. fd

3 LTC/LTC/LTC ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T A = C. V = V and = GND = V unless otherwise noted. SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS Power Supply V Supply Voltage Range.. V I CC Supply Current IN = IN mv LTC C T A C.. µa = (LTC/LTC) C T A C. µa LTC.. µa LTC.. µa Comparator V OS Comparator Input Offset Voltage V CM =.V ± ± mv I IN Input Leakage Current (IN, IN ) V IN = IN =.V ±. ±. na Input Leakage Current () ±. ±. na V CM Comparator Input Common V.V V Mode Range CMRR Common Mode Rejection Ratio to V.V. mv/v PSRR Power Supply Rejection Ratio V = V to V (LTC). mv/v V =.V to V (LTC/LTC). mv/v NOISE Voltage Noise Hz to khz µv RMS V Hysteresis Input Voltage Range LTC/LTC mv V t PD Propagation Delay C = pf Overdrive = mv µs Overdrive = mv µs V OH Output High Voltage I O = ma V.V V V OL Output Low Voltage I O =.ma LTC GND.V V LTC/LTC.V V Reference V Reference Voltage No Load LTC/LTC C T A C..9 V C T A C.. V LTC (MSOP, DFN).. V I SOURCE Reference Output Source Current V mv (LTC) µa I SINK Reference Output Sink Current V.mV (LTC) µa V Reference Source Current I SOURCE ma (LTC). mv Reference Sink Current I SINK µa (LTC).. mv mv NOISE Voltage Noise Hz to khz µv RMS fd

4 LTC/LTC/LTC ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T A = C. V = V and = GND = V unless otherwise noted. SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS Power Supply V Supply Voltage Range V I CC Supply Current IN = IN mv LTC C T A C.9 µa = (LTC/LTC) C T A C. µa LTC.. µa LTC.. µa Comparator V OS Comparator Input Offset Voltage V CM =.V ± ± mv I IN Input Leakage Current (IN, IN ) V IN = IN =.V ±. ± na Input Leakage Current () ±. ± na V CM Comparator Input Common V.V V Mode Range CMRR Common Mode Rejection Ratio to V.V. mv/v PSRR Power Supply Rejection Ratio V = V to V (LTC). mv/v V =.V to V (LTC/LTC). mv/v NOISE Voltage Noise Hz to khz µv RMS V Hysteresis Input Voltage Range LTC/LTC mv V t PD Propagation Delay C = pf Overdrive = mv µs Overdrive = mv µs V OH Output High Voltage I O = ma V.V V Comparator V OL Output Low Voltage I O =.ma LTC GND.V V LTC/LTC.V V Reference V Reference Voltage No Load LTC/LTC C T A C...9 V C T A C.. V LTC (MSOP, DFN).. V I SOURCE Reference Output Source Current V mv (LTC) µa I SINK Reference Output Sink Current V.mV (LTC) µa V Reference Source Current I SOURCE ma (LTC).. mv Reference Sink Current I SINK µa (LTC).. mv mv NOISE Voltage Noise Hz to khz µv RMS Note : Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime. fd

5 TYPICAL PERFOR A CE CHARACTERISTICS UW LTC/LTC/LTC INPUT VOLTAGE (mv) PUT VOLTAGE (V) Comparator Response Time vs Input Overdrive T A = C mv mv mv mv RESPONSE TIME (µs) // G INPUT VOLTAGE (mv) PUT VOLTAGE (V) Comparator Response Time vs Input Overdrive T A = C mv mv mv mv RESPONSE TIME (µs) // G SINK CURRENT (ma) Comparator Short-Circuit Sink Current vs Supply Voltage T A = C CONNECTED TO V 9 SUPPLY VOLTAGE (V) // G SOURCE CURRENT (ma) Comparator Short-Circuit Source Current vs Supply Voltage CONNECTED TO = GND = V SUPPLY VOLTAGE (V) // G fd

6 LTC/LTC/LTC TYPICAL PERFOR A CE CHARACTERISTICS UW Comparator Response Time vs Load Capacitance with mv Input Overdrive Comparator Response Time at Low Supply Voltage RESPONSE TIME (µs) t PHL t PLH RESPONSE TIME (µs) mv OVERDRIVE mv OVERDRIVE LOAD CAPACITANCE (nf) SUPPLY VOLTAGE (V) // G // G Comparator Output Voltage High vs Load Current T A = C PUT VOLTAGE HIGH (V) V = V V = V V = V LOAD CURRENT (ma) // G fd

7 TYPICAL PERFOR A CE CHARACTERISTICS UW LTC/LTC/LTC PUT VOLTAGE LOW (V)..... Comparator Output Voltage Low vs Load Current T A = C V = V V = V V = V LOAD CURRENT (ma) // G POSITIVE-TO-NEGATIVE INPUT VOLTAGE (mv) LTC/LTC Hysteresis Control PUT HIGH PUT LOW V V (mv) // G9 LTC Supply Current vs Temperature SUPPLY CURRENT (µa) V = V = V V = V = GND = V V = V = GND = V TEMPERATURE ( C) // G fd

8 LTC/LTC/LTC TYPICAL PERFOR A CE CHARACTERISTICS UW ERENCE PUT VOLTAGE (V) Reference Output Voltage vs Output Load Current V CC = V SOURCE ERENCE PUT VOLTAGE (V) Reference Output Voltage vs Output Load Current (Sink) V CC = V SINK V CC = V PUT LOAD CURRENT (ma). PUT LOAD CURRENT (µa) // G // G Reference Voltage vs Temperature.. ERENCE VOLTAGE (V) TEMPERATURE ( C) // G fd

9 LTC/LTC/LTC PIN FUNCTIONS U U U GND LTC A LTC B A LTC B IN V V A B IN A IN B IN A A B V IN IN A IN B IN B // PD LTC GND (Pin ): Ground. Connect to for single supply operation. (Pin ): Negative Supply. Connect to ground for single supply operation. Potential should be more negative than GND. IN (Pin ): Noninverting Comparator Input. Input common mode range from to V.V. Input current typically pa at C. IN (Pin ): Inverting Comparator Input. Input common mode range from to V.V. Input current typically pa at C. (Pin ): Hysteresis Input. Connect to if not used. Input voltage range is from V to V mv. (Pin ): Reference Output..V with respect to. Can source up to µa and sink µa at C. Drive.µF bypass capacitor without oscillation. V (Pin ): Positive Supply. V to V. (Pin ): Comparator CMOS Output. Swings from GND to V. Output can source up to ma and sink ma. LTC A (Pin ): Comparator A CMOS Output. Swings from to V. Output can source up to ma and sink ma. (Pin ): Negative Supply. IN A (Pin ): Noninverting Input of Comparator A. Input common mode range from to V.V. Input current typically pa at C. IN A (Pin ): Inverting Input of Comparator A. Input common mode range from to V.V. Input current typically pa at C. IN B (Pin ): Inverting Input of Comparator B. Input common mode range from to V.V. Input current typically pa at C. IN B (Pin ): Noninverting Input of Comparator B. Input common mode range from to V.V. Input current typically pa at C. V (Pin ): Positive Supply. V to V. B (Pin ): Comparator B CMOS Output. Swings from to V. Output can source up to ma and sink ma. LTC A (Pin ): Comparator A CMOS Output. Swings from to V. Output can source up to ma and sink ma. (Pin ): Negative Supply. IN A (Pin ): Noninverting Input of Comparator A. Input common mode range from to V.V. Input current typically pa at C. IN B (Pin ): Inverting Input of Comparator B. Input common mode range from to V.V. Input current typically pa at C. (Pin ): Hysteresis Input. Connect to if not used. Input voltage range is from V to V mv. (Pin ): Reference Output..V with respect to. Can source up to µa and sink µa at C. Drive.µF bypass capacitor without oscillation. V (Pin ): Positive Supply. V to V. B (Pin ): Comparator B CMOS Output. Swings from to V. Output can source up to ma and sink ma. fd 9

10 LTC/LTC/LTC APPLICATIONS INFORMATION U W U U LTC/LTC/LTC are a family of micropower comparators with built-in.v reference. Features include programmable hysteresis (LTC/LTC), wide supply voltage range (V to V) and the ability of the reference to drive up to a.µf capacitor without oscillation. The comparators CMOS outputs can source up to ma and the supply current glitches, that normally occur when switching logic states, have been eliminated. Power Supplies The comparator family operates from a single V to V supply. The LTC includes a separate ground for the comparator output stage, allowing a split supply ranging from ±V to ±.V. Connecting to GND on the LTC will allow single supply operation. If the comparator output is required to source more than ma, or the supply source impedance is high, V should be bypassed with a.µf capacitor. Comparator Inputs The comparator inputs can swing from the negative supply to within.v max of the positive supply V. The inputs can be forced mv below or above V without damage and the typical input leakage current is only ±pa. Comparator Outputs The LTC comparator output swings between GND and V to assure TTL compatibility with a split supply. The LTC and LTC outputs swing between and V. The outputs are capable of sourcing up to ma and sinking up to ma while still maintaining microampere quiescent currents. The output stage does not generate crowbar switching currents during transitions which helps minimize parasitic feedback through the supply pins. Voltage Reference The internal bandgap reference has a voltage of.v referenced to. The reference accuracy is.% from C to C. It can source up to µa and sink up to µa with a V supply. The reference can drive a bypass capacitor of up to.µf without oscillation and by inserting a series resistor, capacitance values up to µf can be used (Figure ). Figure shows the resistor value required for different capacitor values to achieve critical damping. Bypassing the reference can help prevent false tripping of the comparators by preventing glitches on V or reference load transients from disturbing the reference output voltage. Figure shows the bypassed reference output with a square wave applied to the V pin. Resistors R and R set mv of hysteresis voltage band while R damps the reference response. Note that the comparator output doesn t trip. ERENCE PUT RESISTOR VALUE (kω) R C LTCX // F Figure. Damping the Reference Output.... CAPACITOR VALUE (µf) // F Figure. Damping Resistance vs Bypass Capacitor Value fd

11 APPLICATIONS INFORMATION U W U U IN IN V LTC/LTC/LTC up to %. If hysteresis is not wanted, the pin should be shorted to. Acceptable values for I range from.µa to µa. If.M is chosen for R, then the value of R is equal to the value of V HB. V TO V R k R.M R Ω C µf LTC GND V R = HB I ()(I ) R LTC V (. HB ) R = I R // F // Fa Figure. Programmable Hysteresis Figure a. Reference Transient Response Test Circuit mv/div V V V V Level Detector The LTC is ideal for use as a micropower level detector as shown in Figure. R and R form a voltage divider from V IN to the noninverting comparator input. R and R set the hysteresis voltage, and R and C bypass the reference output. The following design procedure can be used to select the component values:. Choose the V IN voltage trip level, in this example.v. ms/div // Fb V IN V Figure b. Reference and Comparator Output Transient Response Hysteresis Hysteresis can be added to the LTC by connecting a resistor (R) between the and pins and a second resistor (R) from to (Figure ). The difference between the upper and lower threshold voltages, or hysteresis voltage band (V HB ), is equal to twice the voltage difference between the and pins. When more hysteresis is added, the upper threshold increases the same amount as the low threshold decreases. The maximum voltage allowed between and pins is mv, producing a maximum hysteresis voltage band of mv. The hysteresis band could vary by R.M % R.M % R k % R.M % R Ω % C µf IN IN V LTC GND Figure. Glitch-Free Level Detector with Hysteresis // F fd

12 LTC/LTC/LTC APPLICATIONS INFORMATION U W U U. Calculate the required resistive divider ratio. Ratio = V /V IN Ratio =.V/.V =.. Choose the required hysteresis voltage band at the input V HBIN, in this example mv. Calculate the hysteresis voltage band referred to the comparator input V HB. V HB = (V HBIN )(Ratio) V HB = (mv)(.) V HB =.mv. Choose the values for R and R to set the hysteresis. R =.M R(kΩ) = V HB = k. Choose the values for R and R to set the trip point. V R. V = = =. M IBIAS µ A V R = R IN V V HB. V R =. M mv V. R =. M Low Voltage Operation It is important to note that the voltage references internal to the LTC and LTC can exceed the common mode range of the comparators at low supply voltages. The input common mode range of the LTC/LTC/ LTC comparators is guaranteed to extend up to (V -.V). Therefore, if one of the comparator inputs is at the.v reference voltage, the minimum supply voltage is.v for a valid output reading. The guaranteed minimum operating voltage for the LTC/LTC/LTC is V (or ±V). However, both the reference and comparator(s) will function with a supply voltage as low as.v, but performance will degrade as the voltage goes below V. The voltage reference temperature coefficient will degrade slightly, and the comparators will have less output drive with an increase in propagation delay. At the reduced supply voltages, the input common mode range of the comparator(s) will still typically extend from the negative supply to approximately.v below the positive supply. fd

13 LTC/LTC/LTC TYPICAL APPLICATIONS U -Bit µa A/D Converter V M.kHz V LT.V N9 k k* E IN V TO V C / LTC k C / LTC pf.m STATUS k.µf POLYSTYRENE *TRW-IRC MRT/ppm/ C N9 M C VNLL CONV COMMAND Q D Q C CLK C C C DATA // TA.kHz Watch Crystal Oscillator V M.kHz k / LTC.M pf // TA fd

14 LTC/LTC/LTC PACKAGE DESCRIPTIO U DD Package -Lead Plastic DFN (mm mm) (Reference LTC DWG # --9). ±. R =. TYP. ±.. ±.. ±.. ±. ( SIDES). ±.. BSC. ±. ( SIDES) PACKAGE LINE RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS PIN TOP MARK (NOTE ).. ±. ( SIDES). ±.... ±. ( SIDES). ±.. BSC. ±. ( SIDES) BOTTOM VIEW EXPOSED PAD NOTE:. DRAWING TO BE MADE A JEDEC PACKAGE LINE M-9 VARIATION OF (WEED-). DRAWING NOT TO SCALE. ALL DIMENSIONS ARE IN MILLIMETERS. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED.mm ON ANY SIDE. EXPOSED PAD SHALL BE SOLDER PLATED. SHADED AREA IS ONLY A ERENCE FOR PIN LOCATION ON TOP AND BOTTOM OF PACKAGE (DD) DFN MS Package -Lead Plastic MSOP (Reference LTC DWG # --).9 ±. (. ±.). (.) MIN.. (..). ±. (. ±.) TYP GAUGE PLANE. (.). (.) DETAIL A. (.) BSC RECOMMENDED SOLDER PAD LAY NOTE:. DIMENSIONS IN MILLIMETER/(INCH). DRAWING NOT TO SCALE TYP. ±. (. ±.) DETAIL A SEATING PLANE. ±. (. ±.) (NOTE ).9 ±. (.9 ±.). (.) MAX.. (.9.) TYP. (.) BSC. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED.mm (.") PER SIDE. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS. INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED.mm (.") PER SIDE. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE.mm (.") MAX. (.). ±. (. ±.) (NOTE ). (.). ±. (. ±.) MSOP (MS) fd

15 LTC/LTC/LTC PACKAGE DESCRIPTION U N Package -Lead PDIP (Narrow.) (LTC DWG # --).* (.) MAX. ±.* (. ±.).. (..).. (..). ±. (. ±.).. (..) ( ). (.) TYP. (.) BSC NOTE: INCHES. DIMENSIONS ARE MILLIMETERS *THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED. INCH (.mm). (.) MIN. ±. (. ±.). (.) MIN N S Package -Lead Plastic Small Outline (Narrow.) (LTC DWG # --). BSC. ±..9.9 (..) NOTE. MIN. ±... (.9.9).. (..9) NOTE. ±. TYP RECOMMENDED SOLDER PAD LAY.. (..).. (..) TYP..9 (..).. (..)....9 (..) (..) NOTE: INCHES TYP. DIMENSIONS IN (MILLIMETERS). DRAWING NOT TO SCALE. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED." (.mm). (.) BSC Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. SO fd

16 LTC/LTC/LTC TYPICAL APPLICATION U khz V/F Converter V.V TO V LM k* INPUT V TO V.M* khz TRIM k.µf C / LTC.µF pf Q Q LT-. LT-. Q.µF Q k = HP- = N = N Q Q k M TYP Hz TRIM pf** Q * = % METAL FILM ** = POLYSTYRENE Q M.M.µF C f khz TO khz C / LTC // TA RELATED PARTS PART NUMBER DESCRIPTION COMMENTS LTC.V Reference with Micropower Quad Comparators % Accuracy,.µA Maximum Current, Ref Output Drives.µF LTC/LTC.V Reference with Quad Comparator % Accuracy,.µA Maximum Current, Ref Output Drives.µF with Adjustable Hysteresis LTC.V Reference with Nanopower Comparator DFN Package.µA Quiescent Current (Typical), Reference with Adjustable Hysteresis Drives.µF LTC.V Reference with Micropower Amplifier and Comparator DFN Package.% Accuracy, Rail-to-Rail Out, Low Offset Amplifier LTC/LTC.V Reference with Dual Comparators % Accuracy, Open-Drain Out, Reference Drives.µF with Adjustable Hysteresis LTC99. Reference with Comparator with Adjustable Thesholds Li-Ion Low Battery Monitor, SOT, % Accuracy LT-. Reference with Low Voltage Dual Comparators SOT,.V to.v Supply Range, ±% Over Temperature LT-/LT- Linear Technology Corporation McCarthy Blvd., Milpitas, CA 9- () -9 FAX: () - fd LT REV D PRINTED IN USA LINEAR TECHNOLOGY CORPORATION 99

LTC1443/LTC1444/LTC1445 Ultralow Power Quad Comparators with Reference Description. Features. Applications. Typical Application

LTC1443/LTC1444/LTC1445 Ultralow Power Quad Comparators with Reference Description. Features. Applications. Typical Application Features n Ultralow Quiescent Current:.µA Max n Reference Output Drives.µF Capacitor n Adjustable Hysteresis (LTC/LTC) n Wide Supply Range Single: V to V Dual: ±V to ±.V n Input Voltage Range Includes

More information

FEATURES TYPICAL APPLICATIO. LTC1443/LTC1444/LTC1445 Ultralow Power Quad Comparators with Reference DESCRIPTIO APPLICATIO S

FEATURES TYPICAL APPLICATIO. LTC1443/LTC1444/LTC1445 Ultralow Power Quad Comparators with Reference DESCRIPTIO APPLICATIO S LTC/LTC/LTC ltralow Power Quad Comparators with Reference FEATRES ltralow Quiescent Current:.µA Max Reference Output Drives.µF Capacitor Adjustable Hysteresis (LTC/LTC) Wide Supply Range Single: V to V

More information

APPLICATIONS TYPICAL APPLICATION. LTC1841/LTC1842/LTC1843 Ultralow Power Dual Comparators with Reference DESCRIPTION FEATURES

APPLICATIONS TYPICAL APPLICATION. LTC1841/LTC1842/LTC1843 Ultralow Power Dual Comparators with Reference DESCRIPTION FEATURES LTC/LTC/LTC3 ltralow Power Dual Comparators with Reference FEATRES ltralow Quiescent Current: 3.µA Typ Open-Drain Outputs Typically Sink Greater Than ma Wide Supply Range: (LTC) Single: V to V Dual: ±V

More information

LTC1798 Series Micropower Low Dropout References FEATURES DESCRIPTION APPLICATIONS TYPICAL APPLICATION

LTC1798 Series Micropower Low Dropout References FEATURES DESCRIPTION APPLICATIONS TYPICAL APPLICATION Micropower Low Dropout References FEATURES n mv Max Dropout at ma Output Current n µa Typical Quiescent Current n.% Max Initial Accuracy n No Output Capacitor Required n Output Sources ma, Sinks ma n ppm/

More information

LTC Bit Rail-to-Rail Micropower DAC in MSOP Package FEATURES

LTC Bit Rail-to-Rail Micropower DAC in MSOP Package FEATURES 12-Bit Rail-to-Rail Micropower DAC in MSOP Package FEATURES Buffered True Rail-to-Rail Voltage Output Maximum DNL Error:.5LSB 12-Bit Resolution Supply Operation: 3V to 5V Output Swings from V to V REF

More information

Distributed by: www.jameco.com --- The content and copyrights of the attached material are the property of its owner. Precision, Rail-to-Rail, Zero-Drift, Resistor-Programmable Instrumentation Amplifier

More information

FEATURES TYPICAL APPLICATIO. LT µA, 14nV/ Hz, Rail-to-Rail Output Precision Op Amp with Shutdown DESCRIPTIO APPLICATIO S

FEATURES TYPICAL APPLICATIO. LT µA, 14nV/ Hz, Rail-to-Rail Output Precision Op Amp with Shutdown DESCRIPTIO APPLICATIO S FEATURES 3µV Maximum Offset Voltage pa Maximum Input Bias Current 3µA Supply Current Rail-to-Rail Output Swing µa Supply Current in Shutdown db Minimum Voltage Gain (V S = ±V).µV/ C Maximum V OS Drift

More information

LT MHz, 30V/µs 16-Bit Accurate A V 2 Op Amp. Description. Features. Applications. Typical Application

LT MHz, 30V/µs 16-Bit Accurate A V 2 Op Amp. Description. Features. Applications. Typical Application Features n Stable in Gain A (A = ) n MHz Gain Bandwidth Product n /μs Slew Rate n Settling Time: 8ns ( Step, ) n Specified at and Supplies n Low Distortion, 9.dB for khz, P-P n Maximum Input Offset oltage:

More information

DESCRIPTIO TYPICAL APPLICATIO. LT1803/LT1804/LT1805 Single/Dual/Quad 100V/µs, 85MHz, Rail-to-Rail Input and Output Op Amps FEATURES APPLICATIO S

DESCRIPTIO TYPICAL APPLICATIO. LT1803/LT1804/LT1805 Single/Dual/Quad 100V/µs, 85MHz, Rail-to-Rail Input and Output Op Amps FEATURES APPLICATIO S FEATURES Slew Rate: V/µs Gain Bandwidth Product: 8MHz Input Common Mode Range Includes Both Rails Output Swings Rail-to-Rail Low Quiescent Current: 3mA Max per Amplifier Large Output Current: 42mA Voltage

More information

DESCRIPTIO APPLICATIO S TYPICAL APPLICATIO LTC1921 Dual 48V Supply and Fuse Monitor FEATURES

DESCRIPTIO APPLICATIO S TYPICAL APPLICATIO LTC1921 Dual 48V Supply and Fuse Monitor FEATURES LTC9 Dual Supply and Fuse Monitor FEATRES Withstands Transient Voltages p to V/V Requires No Precision External Components Independently Monitors Two Supplies for ndervoltage Faults:.V ±V MAX Overvoltage

More information

FEATURES TYPICAL APPLICATIO. LT1194 Video Difference Amplifier DESCRIPTIO APPLICATIO S

FEATURES TYPICAL APPLICATIO. LT1194 Video Difference Amplifier DESCRIPTIO APPLICATIO S FEATURES Differential or Single-Ended Gain Block: ± (db) db Bandwidth: MHz Slew Rate: /µs Low Cost Output Current: ±ma Settling Time: ns to.% CMRR at MHz: db Differential Gain Error:.% Differential Phase

More information

FEATURES DESCRIPTIO APPLICATIO S LTC1451 LTC1452/LTC Bit Rail-to-Rail Micropower DACs in SO-8 TYPICAL APPLICATIO

FEATURES DESCRIPTIO APPLICATIO S LTC1451 LTC1452/LTC Bit Rail-to-Rail Micropower DACs in SO-8 TYPICAL APPLICATIO 12-Bit Rail-to-Rail Micropower DACs in SO-8 FEATRES 12-Bit Resolution Buffered True Rail-to-Rail Voltage Output 3V Operation (LTC1453), I CC : 250µA Typ 5V Operation (), I CC : 400µA Typ 3V to 5V Operation

More information

LT Dual 200MHz, 30V/µs 16-Bit Accurate A V 2 Op Amp DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION

LT Dual 200MHz, 30V/µs 16-Bit Accurate A V 2 Op Amp DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION FEATURES n Stable in Gain A (A = ) n MHz Gain Bandwidth Product n /μs Slew Rate n Settling Time: 8ns (μ, Step) n Specifi ed at and Supplies n Maximum Input Offset oltage: μ n Low Distortion: 9. for khz,

More information

DESCRIPTIO TYPICAL APPLICATIO. LTC1383 5V Low Power RS232 Transceiver FEATURES APPLICATIO S

DESCRIPTIO TYPICAL APPLICATIO. LTC1383 5V Low Power RS232 Transceiver FEATURES APPLICATIO S LTC V Low Power RS Transceiver FEATRES Operates from a Single V Supply Low Supply Current: I CC = µa ESD Protection Over ±kv Available in -Pin SOIC Narrow Package ses Small Capacitors: Operates to kbaud

More information

FEATURES TYPICAL APPLICATIO. LT1635 Micropower Rail-to-Rail Op Amp and Reference DESCRIPTIO APPLICATIO S

FEATURES TYPICAL APPLICATIO. LT1635 Micropower Rail-to-Rail Op Amp and Reference DESCRIPTIO APPLICATIO S LT5 Micropower Rail-to-Rail Op Amp and Reference FEATRES Guaranteed Operation at.v Op Amp and Reference on Single Chip Micropower: µa Supply Current Industrial Temperature Range SO- Packages Rail-to-Rail

More information

DESCRIPTIO FEATURES LT1787/LT1787HV Precision, High Side Current Sense Amplifiers APPLICATIO S TYPICAL APPLICATIO

DESCRIPTIO FEATURES LT1787/LT1787HV Precision, High Side Current Sense Amplifiers APPLICATIO S TYPICAL APPLICATIO Precision, High Side Current Sense Amplifiers FEATURES Input Offset Voltage: µv (Max) upply Operation (LTHV) -Bit Dynamic Range Operating Current: µa User-Selectable External Sense Resistor Bidirectional

More information

LTC1515 Series Step-Up/Step-Down Switched Capacitor DC/DC Converters with Reset DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION

LTC1515 Series Step-Up/Step-Down Switched Capacitor DC/DC Converters with Reset DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION LTC Series Step-p/Step-Down Switched Capacitor DC/DC Converters with Reset FEATRES Adjustable/Selectable 3V, 3.3V or V Output Voltages V to V Input Voltage Range p to ma Output Current Only Three External

More information

APPLICATIO S BLOCK DIAGRA. LTC2602/LTC2612/LTC2622 Dual 16-/14-/12-Bit Rail-to-Rail DACs in 8-Lead MSOP FEATURES DESCRIPTIO

APPLICATIO S BLOCK DIAGRA. LTC2602/LTC2612/LTC2622 Dual 16-/14-/12-Bit Rail-to-Rail DACs in 8-Lead MSOP FEATURES DESCRIPTIO LTC262/LTC2612/LTC2622 Dual 16-/14-/12-Bit Rail-to-Rail DACs in 8-Lead MSOP FEATURES Smallest Pin-Compatible Dual DACs: LTC262: 16-Bits LTC2612: 14-Bits LTC2622: 12-Bits Guaranteed 16-Bit Monotonic Over

More information

LTC1664 Micropower Quad 10-Bit DAC. Applications. Block Diagram

LTC1664 Micropower Quad 10-Bit DAC. Applications. Block Diagram LTC Micropower Quad -Bit DAC Features n Tiny: DACs in the Board Space of an SO- n Micropower: µa per DAC Plus µa Sleep Mode for Extended Battery Life n Wide.V to.v Supply Range n Rail-to-Rail Voltage Outputs

More information

Distributed by: www.jameco.com -8-83-4242 The content and copyrights of the attached material are the property of its owner. FEATRES Regulates While Sourcing or Sinking Current Provides Termination for

More information

FEATURES APPLICATIONS TYPICAL APPLICATION LT1466L/LT1467L Micropower Dual/Quad Precision Rail-to-Rail Input and Output Op Amps

FEATURES APPLICATIONS TYPICAL APPLICATION LT1466L/LT1467L Micropower Dual/Quad Precision Rail-to-Rail Input and Output Op Amps Micropower Dual/Quad Precision Rail-to-Rail Input and Output Op Amps FEATRES Rail-to-Rail Input and Output Low Supply Current: 75µA Max 39µV V OS(MAX) for V CM = V to V + High Common Mode Rejection Ratio:

More information

DESCRIPTIO APPLICATIO S TYPICAL APPLICATIO. LT MHz, 1000V/µs Gain Selectable Amplifier FEATURES

DESCRIPTIO APPLICATIO S TYPICAL APPLICATIO. LT MHz, 1000V/µs Gain Selectable Amplifier FEATURES LT MHz, /µs Gain Selectable Amplifier FEATURES Internal Gain Setting Resistors Pin Configurable as a Difference Amplifier, Inverting and Noninverting Amplifier Difference Amplifier: Gain Range to CMRR

More information

FEATURES DESCRIPTIO APPLICATIO S TYPICAL APPLICATIO. LTC1046 Inductorless 5V to 5V Converter

FEATURES DESCRIPTIO APPLICATIO S TYPICAL APPLICATIO. LTC1046 Inductorless 5V to 5V Converter LTC Inductorless V to V Converter FEATRES ma Output Current Plug-In Compatible with ICL/LTC R OT = Ω Maximum µa Maximum No Load Supply Current at V Boost Pin (Pin ) for Higher Switching Frequency 9% Minimum

More information

Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820

Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820 Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820 FEATURES True single-supply operation Output swings rail-to-rail Input voltage range extends below ground Single-supply capability from 5

More information

FEATURES DESCRIPTIO Low Noise Voltage: 0.95nV/ Hz (100kHz) Gain Bandwidth Product: LT6200/LT MHz AV = 1 LT MHz LT

FEATURES DESCRIPTIO Low Noise Voltage: 0.95nV/ Hz (100kHz) Gain Bandwidth Product: LT6200/LT MHz AV = 1 LT MHz LT LT62/LT62- LT62-1/LT621 16MHz, Rail-to-Rail Input and Output,.9nV/ Hz Low Noise, Op Amp Family FEATURES Low Noise Voltage:.9nV/ Hz (1kHz) Gain Bandwidth Product: LT62/LT621 16MHz A V = 1 LT62-8MHz A V

More information

DESCRIPTIO. LT685 High Speed Comparator FEATURES APPLICATIO S TYPICAL APPLICATIO

DESCRIPTIO. LT685 High Speed Comparator FEATURES APPLICATIO S TYPICAL APPLICATIO High Speed Comparator FEATRES ltrafast (5.5ns typ) Complementary ECL Output 50Ω Line Driving Capability Low Offset Voltage Output Latch Capability External Hysteresis Control Pin Compatible with Am685

More information

FEATURES TYPICAL APPLICATIO. LTC1382 5V Low Power RS232 Transceiver with Shutdown DESCRIPTIO APPLICATIO S

FEATURES TYPICAL APPLICATIO. LTC1382 5V Low Power RS232 Transceiver with Shutdown DESCRIPTIO APPLICATIO S FEATRES Operates from a Single V Supply Low Supply Current: I CC = µa I CC =.µa in Shutdown Mode ESD Protection Over ±1kV ses Small Capacitors:.1µF Operates to 1kBaud Output Overvoltage Does Not Force

More information

DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION. LT1498/LT MHz, 6V/µs, Dual/Quad Rail-to-Rail Input and Output Precision C-Load Op Amps

DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION. LT1498/LT MHz, 6V/µs, Dual/Quad Rail-to-Rail Input and Output Precision C-Load Op Amps MHz, 6V/µs, Dual/Quad Rail-to-Rail Input and Output Precision C-Load Op Amps FEATRES Rail-to-Rail Input and Output 475µV Max V OS from V + to V Gain-Bandwidth Product: MHz Slew Rate: 6V/µs Low Supply Current

More information

SGM ns, Low-Power, 3V/5V, Rail-to-Rail Input Single-Supply Comparator

SGM ns, Low-Power, 3V/5V, Rail-to-Rail Input Single-Supply Comparator 45ns, Low-Power, 3V/5V, Rail-to-Rail GENERAL DESCRIPTION The is a single high-speed comparator optimized for systems powered from a 3V or 5V supply. The device features high-speed response, low-power consumption,

More information

FEATURES APPLICATIONS TYPICAL APPLICATION. LTC1451 LTC1452/LTC Bit Rail-to-Rail Micropower DACs in SO-8 DESCRIPTION

FEATURES APPLICATIONS TYPICAL APPLICATION. LTC1451 LTC1452/LTC Bit Rail-to-Rail Micropower DACs in SO-8 DESCRIPTION 12-Bit Rail-to-Rail Micropower DACs in SO-8 FEATRES 12-Bit Resolution Buffered True Rail-to-Rail Voltage Output 3V Operation (LTC1453), I CC : 250µA Typ 5V Operation (), I CC : 400µA Typ 3V to 5V Operation

More information

LT1009 Series 2.5V Reference FEATURES DESCRIPTION APPLICATIONS TYPICAL APPLICATION

LT1009 Series 2.5V Reference FEATURES DESCRIPTION APPLICATIONS TYPICAL APPLICATION LT9 Series.5V Reference FEATURES n Maximum Initial Tolerance:.% n Guaranteed Temperature Stability n Maximum.6Ω Dynamic Impedance n Wide Operating Current Range n Directly Interchangeable with LM6 for

More information

V ON = 2.64V V OFF = 1.98V V ON = 0.93V V OFF = 0.915V V ON = 3.97V V OFF = 2.97V. V ON = 2.79V V OFF = 2.73V 100k 1.62k 66.5k. 6.04k.

V ON = 2.64V V OFF = 1.98V V ON = 0.93V V OFF = 0.915V V ON = 3.97V V OFF = 2.97V. V ON = 2.79V V OFF = 2.73V 100k 1.62k 66.5k. 6.04k. FEATURES Fully Sequence and Monitor Four Supplies Six with Minimal External Circuitry Cascadable for Additional Supplies Power Off in Reverse Order or Simultaneously Charge Pump Drives External MOSFETs

More information

FEATURES DESCRIPTIO. LT ns, Low Power, Single Supply, Ground-Sensing Comparator APPLICATIO S TYPICAL APPLICATIO

FEATURES DESCRIPTIO. LT ns, Low Power, Single Supply, Ground-Sensing Comparator APPLICATIO S TYPICAL APPLICATIO FEATURES Low Power: 45µA Fast: 6ns at 2mV Overdrive 85ns at 5mV Overdrive Low Offset Voltage:.8mV Operates Off Single or Dual ± Supplies Input Common Mode Extends to Negative Supply No Minimum Input Slew

More information

LMV761/LMV762 Low Voltage, Precision Comparator with Push-Pull Output

LMV761/LMV762 Low Voltage, Precision Comparator with Push-Pull Output LMV761/LMV762 Low Voltage, Precision Comparator with Push-Pull Output General Description The LMV761/762 are precision comparators intended for applications requiring low noise and low input offset voltage.

More information

LTC2935 Ultra-Low Power Supervisor with Power-Fail Output, Selectable Thresholds FEATURES

LTC2935 Ultra-Low Power Supervisor with Power-Fail Output, Selectable Thresholds FEATURES Ultra-Low Power Supervisor with Power-Fail Output, Selectable Thresholds FEATURES n 5nA Quiescent Current n ±1.5% (Max) Accuracy over Temperature n Integrated Precision Attenuators n Eight Pin-Selectable

More information

DESCRIPTIO FEATURES TYPICAL APPLICATIO. LT1469 Dual 90MHz, 22V/µs 16-Bit Accurate Operational Amplifier APPLICATIO S

DESCRIPTIO FEATURES TYPICAL APPLICATIO. LT1469 Dual 90MHz, 22V/µs 16-Bit Accurate Operational Amplifier APPLICATIO S FEATURES 9MHz Gain Bandwidth, f = khz Maximum Input Offset Voltage: 5µV Settling Time: 9ns (A V =, 5µV, V Step) V/µs Slew Rate Low Distortion: 96.5dB for khz, V P-P Maximum Input Offset Voltage Drift:

More information

FEATURES DESCRIPTIO APPLICATIO S. LT1636 Over-The-Top Micropower Rail-to-Rail Input and Output Op Amp TYPICAL APPLICATIO

FEATURES DESCRIPTIO APPLICATIO S. LT1636 Over-The-Top Micropower Rail-to-Rail Input and Output Op Amp TYPICAL APPLICATIO Over-The-Top Micropower Rail-to-Rail Input and Output Op Amp FEATRES Rail-to-Rail Input and Output Micropower: 5µA I Q, 44V Supply MSOP Package Over-The-Top TM : Input Common Mode Range Extends 44V Above

More information

Quad 7 ns Single Supply Comparator AD8564

Quad 7 ns Single Supply Comparator AD8564 Quad 7 ns Single Supply Comparator AD8564 FEATURES 5 V single-supply operation 7 ns propagation delay Low power Separate input and output sections TTL/CMOS logic-compatible outputs Wide output swing TSSOP,

More information

APPLICATIO S TYPICAL APPLICATIO. LTC2051/LTC2052 Dual/Quad Zero-Drift Operational Amplifiers FEATURES DESCRIPTIO

APPLICATIO S TYPICAL APPLICATIO. LTC2051/LTC2052 Dual/Quad Zero-Drift Operational Amplifiers FEATURES DESCRIPTIO LTC/LTC Dual/Quad Zero-Drift Operational Amplifiers FEATRES Maximum Offset Voltage of μv Maximum Offset Voltage Drift of nv/ C Small Footprint, Low Profile MS/GN Packages Single Supply Operation:.V to

More information

V ON = 0.93V V OFF = 0.91V V ON = 2.79V V OFF = 2.73V V ON = 4.21V V OFF = 3.76V V ON = 3.32V V OFF = 2.80V. 45.3k 6.04k 1.62k. 3.09k. 7.68k 1.

V ON = 0.93V V OFF = 0.91V V ON = 2.79V V OFF = 2.73V V ON = 4.21V V OFF = 3.76V V ON = 3.32V V OFF = 2.80V. 45.3k 6.04k 1.62k. 3.09k. 7.68k 1. FEATURES Fully Sequence Four Supplies Six with Minimal External Circuitry Cascadable for Additional Supplies Power Off in Reverse Order or Simultaneously Charge Pump Drives External MOSFETs Drives Power

More information

DESCRIPTION FEATURES. LT1490/LT1491 Dual and Quad Micropower Rail-to-Rail Input and Output Op Amps APPLICATIONS TYPICAL APPLICATION

DESCRIPTION FEATURES. LT1490/LT1491 Dual and Quad Micropower Rail-to-Rail Input and Output Op Amps APPLICATIONS TYPICAL APPLICATION FEATRES Rail-to-Rail Input and Output Single Supply Input Range:.4V to 44V Micropower: µa/amplifier Max Specified on 3V, 5V and ±5V Supplies High Output Current: ma Output Drives,pF with Output Compensation

More information

LT6230/LT / LT6231/LT MHz, Rail-to-Rail Output, 1.1nV/ Hz, 3.5mA Op Amp Family DESCRIPTIO FEATURES APPLICATIO S TYPICAL APPLICATIO

LT6230/LT / LT6231/LT MHz, Rail-to-Rail Output, 1.1nV/ Hz, 3.5mA Op Amp Family DESCRIPTIO FEATURES APPLICATIO S TYPICAL APPLICATIO FEATURES Low Noise Voltage:.nV/ Hz Low Supply Current: 3.mA/Amp Max Low Offset Voltage: 3µV Max Gain Bandwidth Product: LT623: 2MHz; A V LT623-: 4MHz; A V Wide Supply Range: 3V to 2.6V Output Swings Rail-to-Rail

More information

Single/Dual/Quad, Micropower, Ultra-Low-Voltage, Rail-to-Rail I/O Comparators

Single/Dual/Quad, Micropower, Ultra-Low-Voltage, Rail-to-Rail I/O Comparators 9-; Rev ; / Single/Dual/Quad, Micropower, General Description The MAX9 MAX9 single/dual/quad micropower comparators feature rail-to-rail inputs and outputs, and fully specified single-supply operation

More information

LT1206 TA mA/60MHz Current Feedback Amplifi er DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION

LT1206 TA mA/60MHz Current Feedback Amplifi er DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION LT26 2mA/6MHz Current Feedback Amplifi er FEATURES 2mA Minimum Output Drive Current 6MHz Bandwidth, A V = 2, R L = Ω 9V/µs Slew Rate, A V = 2, R L = Ω.2% Differential Gain, A V = 2, R L = Ω.7 Differential

More information

LT1780/LT1781 Low Power 5V RS232 Dual Driver/Receiver with ±15kV ESD Protection DESCRIPTIO

LT1780/LT1781 Low Power 5V RS232 Dual Driver/Receiver with ±15kV ESD Protection DESCRIPTIO FEATRES ma Max Supply Current ESD Protection to IEC -- Level ±1kV Air Gap, ±kv Contact ses Small Capacitors:.1µF kbaud Operation for R L = 3k, C L = pf kbaud Operation for R L = 3k, C L = pf Outputs Withstand

More information

DESCRIPTIO FEATURES TYPICAL APPLICATIO. LT1080/LT1081 Advanced Low Power 5V RS232 Dual Driver/Receiver APPLICATIO S

DESCRIPTIO FEATURES TYPICAL APPLICATIO. LT1080/LT1081 Advanced Low Power 5V RS232 Dual Driver/Receiver APPLICATIO S Advanced Low Power V RS Dual Driver/Receiver FEATRES Superior to CMOS Improved Speed: Operates over kbaud Improved Protection: Outputs Can Be Forced to ±0V without Damage Three-State Outputs Are High Impedance

More information

DESCRIPTIO FEATURES APPLICATIO S. LT1129/LT /LT Micropower Low Dropout Regulators with Shutdown TYPICAL APPLICATIO

DESCRIPTIO FEATURES APPLICATIO S. LT1129/LT /LT Micropower Low Dropout Regulators with Shutdown TYPICAL APPLICATIO Micropower Low Dropout Regulators with Shutdown FEATRES.4V Dropout Voltage 7mA Output Current µa Quiescent Current No Protection Diodes Needed Adjustable Output from 3.8V to 3V 3.3V and V Fixed Output

More information

APPLICATIO S TYPICAL APPLICATIO. LT3020/LT / LT /LT mA, Low Voltage, Very Low Dropout Linear Regulator DESCRIPTIO FEATURES

APPLICATIO S TYPICAL APPLICATIO. LT3020/LT / LT /LT mA, Low Voltage, Very Low Dropout Linear Regulator DESCRIPTIO FEATURES LT32/LT32-1.2/ LT32-1.5/LT32-1.8 1mA, Low Voltage, Very Low Dropout Linear Regulator FEATURES V IN Range:.9V to 1V Minimum Input Voltage:.9V Dropout Voltage: 15mV Typical Output Current: 1mA Adjustable

More information

Low Power, Wide Supply Range, Low Cost Unity-Gain Difference Amplifier AD8276

Low Power, Wide Supply Range, Low Cost Unity-Gain Difference Amplifier AD8276 Low Power, Wide Supply Range, Low Cost Unity-Gain Difference Amplifier AD87 FEATURES Wide input range Rugged input overvoltage protection Low supply current: μa maximum Low power dissipation:. mw at VS

More information

Distributed by: www.jameco.com --- The content and copyrights of the attached material are the property of its owner. FEATRES Supply Current µa (Max per Amplifier) Guaranteed Over Temperature Offset Voltage

More information

FEATURES U U PRECO DITIO I G APPLICATIO S TYPICAL APPLICATIO. LT1033 3A Negative Adjustable Regulator DESCRIPTIO

FEATURES U U PRECO DITIO I G APPLICATIO S TYPICAL APPLICATIO. LT1033 3A Negative Adjustable Regulator DESCRIPTIO NOT RECOMMENDED FOR NEW DESIGNS Contact Linear Technology for Potential Replacement FEATRES Guaranteed 1% Initial Voltage Tolerance Guaranteed.15%/V Line Regulation Guaranteed.2%/ W Thermal Regulation

More information

DESCRIPTIO. LTC1446/LTC1446L Dual 12-Bit Rail-to-Rail Micropower DACs in SO-8

DESCRIPTIO. LTC1446/LTC1446L Dual 12-Bit Rail-to-Rail Micropower DACs in SO-8 Dual 12-Bit Rail-to-Rail Micropower DACs in SO-8 FEATRES Dual DACs with 12-Bit Resolution SO-8 Package Rail-to-Rail Output Amplifiers 3V Operation (LTC1446L): I CC = 65µA Typ 5V Operation (LTC1446): I

More information

Quad Supply Monitor with Adjustable Tolerance (5V, 3.3V, 2.5V, 1.8V) R3 10k POWER V1 COMP1 16 COMP2 COMP V REF RST 8.

Quad Supply Monitor with Adjustable Tolerance (5V, 3.3V, 2.5V, 1.8V) R3 10k POWER V1 COMP1 16 COMP2 COMP V REF RST 8. FEATURES Simultaneously Monitors Four Supplies User Selectable Combinations of V,.V, V,.V,.V,.V and/or ±Adjustable Voltage Thresholds Guaranteed Threshold Accuracy: ±.% of Monitored Voltage Over Temperature

More information

FEATURES DESCRIPTIO APPLICATIO S TYPICAL APPLICATIO. LT1024 Dual, Matched Picoampere, Microvolt Input, Low Noise Op Amp

FEATURES DESCRIPTIO APPLICATIO S TYPICAL APPLICATIO. LT1024 Dual, Matched Picoampere, Microvolt Input, Low Noise Op Amp FEATURES Guaranteed Offset Voltage: 5µV Max Guaranteed Bias Current: 5 C: pa Max 55 C to 5 C: 7pA Max Guaranteed Drift:.5µV/ C Max Low Noise,.Hz to Hz:.5µV P-P Guaranteed Supply Current: 6µA Max Guaranteed

More information

FEATURES DESCRIPTIO APPLICATIO S. LTC2050/LTC2050HV Zero-Drift Operational Amplifiers in SOT-23 TYPICAL APPLICATION

FEATURES DESCRIPTIO APPLICATIO S. LTC2050/LTC2050HV Zero-Drift Operational Amplifiers in SOT-23 TYPICAL APPLICATION FEATRES Maximum Offset Voltage of µv Maximum Offset Voltage Drift of nv/ C Noise:.µV P-P (.Hz to Hz Typ) Voltage Gain: db (Typ) PSRR: db (Typ) CMRR: db (Typ) Supply Current:.8mA (Typ) Supply Operation:.7V

More information

DESCRIPTIO APPLICATIO S. LTC5531 Precision 300MHz to 7GHz RF Detector with Shutdown and Offset Adjustment FEATURES TYPICAL APPLICATIO

DESCRIPTIO APPLICATIO S. LTC5531 Precision 300MHz to 7GHz RF Detector with Shutdown and Offset Adjustment FEATURES TYPICAL APPLICATIO LTC553 Precision 3MHz to 7GHz RF Detector with Shutdown and Offset Adjustment FEATURES Temperature Compensated Internal Schottky Diode RF Detector Wide Input Frequency Range: 3MHz to 7GHz* Wide Input Power

More information

SGM ns, Low-Power, 3V/5V, Rail-to-Rail Input Single-Supply Comparator

SGM ns, Low-Power, 3V/5V, Rail-to-Rail Input Single-Supply Comparator 150ns, Low-Power, 3V/5V, Rail-to-Rail GENERAL DESCRIPTION The is a single high-speed comparator optimized for systems powered from a 3V or 5V supply. The device features high-speed response, low-power

More information

DESCRIPTIO. LT1413 Single Supply, Dual Precision Op Amp

DESCRIPTIO. LT1413 Single Supply, Dual Precision Op Amp Single Supply, Dual Precision Op Amp FEATRES Single Supply Operation: Input Goes Below Ground Output Swings to Ground Sinking Current No Pull-Down Resistors Needed Phase Reversal Protection At V, V Low

More information

APPLICATIO S TYPICAL APPLICATIO. LT V Single Supply Video Difference Amplifier FEATURES DESCRIPTIO

APPLICATIO S TYPICAL APPLICATIO. LT V Single Supply Video Difference Amplifier FEATURES DESCRIPTIO FEATRES Differential or Single-Ended Gain Block Wide Supply Range V to.v Output Swings Rail-to-Rail Input Common Mode Range Includes Ground V/µs Slew Rate db Bandwidth = 7MHz, A V = ± CMRR at MHz: >db

More information

Ultrafast 7 ns Single Supply Comparator AD8561

Ultrafast 7 ns Single Supply Comparator AD8561 a FEATURES 7 ns Propagation Delay at 5 V Single Supply Operation: 3 V to V Low Power Latch Function TSSOP Packages APPLICATIONS High Speed Timing Clock Recovery and Clock Distribution Line Receivers Digital

More information

Distributed by: www.jameco.com --- The content and copyrights of the attached material are the property of its owner. LTC Micropower Quad -Bit DAC FEATRES Tiny: DACs in the Board Space of an SO- Micropower:

More information

Low-Power Single/Dual-Supply Quad Comparator with Reference FEATURES

Low-Power Single/Dual-Supply Quad Comparator with Reference FEATURES Low-Power Single/Dual-Supply Quad Comparator with Reference FEATURES Ultra-Low Quiescent Current: 5.μA (max), All comparators plus Reference Single or Dual Power Supplies: Single: +.5V to +V Dual: ±.5V

More information

TYPICAL APPLICATIO. LT MHz, 250V/µs, A V 4 Operational Amplifier DESCRIPTIO FEATURES APPLICATIO S

TYPICAL APPLICATIO. LT MHz, 250V/µs, A V 4 Operational Amplifier DESCRIPTIO FEATURES APPLICATIO S 5MHz, 5V/µs, A V Operational Amplifier FEATRES Gain-Bandwidth: 5MHz Gain of Stable Slew Rate: 5V/µs Input Noise Voltage: nv/ Hz C-Load TM Op Amp Drives Capacitive Loads Maximum Input Offset Voltage: µv

More information

Improved Second Source to the EL2020 ADEL2020

Improved Second Source to the EL2020 ADEL2020 Improved Second Source to the EL ADEL FEATURES Ideal for Video Applications.% Differential Gain. Differential Phase. db Bandwidth to 5 MHz (G = +) High Speed 9 MHz Bandwidth ( db) 5 V/ s Slew Rate ns Settling

More information

LTC2934 Ultra-Low Power Adjustable Supervisor with Power-Fail Output DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION

LTC2934 Ultra-Low Power Adjustable Supervisor with Power-Fail Output DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION FEATURES n 5nA Quiescent Current n ±1.5% (Max) Accuracy over Temperature n Operates Down to 1.6V Supply n Adjustable Reset Threshold n Adjustable Power-Fail Threshold n Early Warning Power-Fail Output

More information

Dual Picoampere Input Current Bipolar Op Amp AD706. Data Sheet. Figure 1. Input Bias Current vs. Temperature

Dual Picoampere Input Current Bipolar Op Amp AD706. Data Sheet. Figure 1. Input Bias Current vs. Temperature Data Sheet Dual Picoampere Input Current Bipolar Op Amp Rev. F Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by

More information

DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION. LT1039A/LT1039A-16 Triple RS232 Driver/Receiver with Shutdown

DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION. LT1039A/LT1039A-16 Triple RS232 Driver/Receiver with Shutdown FEATRES On-Chip ESD Protection: ±15kV Human Body Model ±15kV IEC-00-4-2 Air Gap Test** ±8kV IEC-00-4-2 Contact Test 125kBd Operation with 3kΩ/2500pF Load 250kBd Operation with 3kΩ/00pF Load Operates from

More information

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820 a FEATURES True Single Supply Operation Output Swings Rail-to-Rail Input Voltage Range Extends Below Ground Single Supply Capability from V to V Dual Supply Capability from. V to 8 V Excellent Load Drive

More information

Precision, Low Power, Micropower Dual Operational Amplifier OP290

Precision, Low Power, Micropower Dual Operational Amplifier OP290 Precision, Low Power, Micropower Dual Operational Amplifier OP9 FEATURES Single-/dual-supply operation:. V to 3 V, ±.8 V to ±8 V True single-supply operation; input and output voltage Input/output ranges

More information

FEATURES DESCRIPTIO. LTC Linear Phase, DC Accurate, Low Power, 10th Order Lowpass Filter APPLICATIO S TYPICAL APPLICATIO

FEATURES DESCRIPTIO. LTC Linear Phase, DC Accurate, Low Power, 10th Order Lowpass Filter APPLICATIO S TYPICAL APPLICATIO Linear Phase, DC Accurate, Low Power, 0th Order Lowpass Filter FEATRES One External R Sets Cutoff Frequency Root Raised Cosine Response ma Supply Current with a Single Supply p to khz Cutoff on a Single

More information

SGM MHz, 48μA, Rail-to-Rail I/O CMOS Operational Amplifier

SGM MHz, 48μA, Rail-to-Rail I/O CMOS Operational Amplifier PRODUCT DESCRIPTION The is a low cost, single rail-to-rail input and output voltage feedback amplifier. It has a wide input common mode voltage range and output voltage swing, and takes the minimum operating

More information

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820 a FEATURES True Single Supply Operation Output Swings Rail-to-Rail Input Voltage Range Extends Below Ground Single Supply Capability from + V to + V Dual Supply Capability from. V to 8 V Excellent Load

More information

MP8103 Dual Ultra Low Power 1.8V, 600kHz Op Amp

MP8103 Dual Ultra Low Power 1.8V, 600kHz Op Amp The Future of Analog IC Technology DESCRIPTION The MP813 is a single supply, dual rail-to-rail output operational amplifier. This amplifier provides 6KHz bandwidth while consuming an incredibly low 14µA

More information

LMC6762 Dual MicroPower Rail-To-Rail Input CMOS Comparator with Push-Pull Output

LMC6762 Dual MicroPower Rail-To-Rail Input CMOS Comparator with Push-Pull Output LMC6762 Dual MicroPower Rail-To-Rail Input CMOS Comparator with Push-Pull Output General Description The LMC6762 is an ultra low power dual comparator with a maximum supply current of 10 µa/comparator.

More information

150 μv Maximum Offset Voltage Op Amp OP07D

150 μv Maximum Offset Voltage Op Amp OP07D 5 μv Maximum Offset Voltage Op Amp OP7D FEATURES Low offset voltage: 5 µv max Input offset drift:.5 µv/ C max Low noise:.25 μv p-p High gain CMRR and PSRR: 5 db min Low supply current:. ma Wide supply

More information

DESCRIPTIO APPLICATIO S. LTC5530 Precision 300MHz to 7GHz RF Detector with Shutdown and Gain Adjustment FEATURES TYPICAL APPLICATIO

DESCRIPTIO APPLICATIO S. LTC5530 Precision 300MHz to 7GHz RF Detector with Shutdown and Gain Adjustment FEATURES TYPICAL APPLICATIO Precision 3MHz to 7GHz RF Detector with Shutdown and Gain Adjustment FEATURES Temperature Compensated Internal Schottky Diode RF Detector Wide Input Frequency Range: 3MHz to 7GHz* Wide Input Power Range:

More information

FEATURES DESCRIPTIO TYPICAL APPLICATIO. LM / LM /LM Micropower Voltage Reference APPLICATIO S

FEATURES DESCRIPTIO TYPICAL APPLICATIO. LM / LM /LM Micropower Voltage Reference APPLICATIO S Micropower Voltage Reference FEATRES 2µA to 2mA Operating Range Guaranteed % Initial Voltage Tolerance Guaranteed Ω Dynamic Impedance Very Low Power Consumption APPLICATIO S Portable Meter References Portable

More information

DESCRIPTIO FEATURES APPLICATIO S TYPICAL APPLICATIO. LT1813/LT1814 Dual/Quad 3mA, 100MHz, 750V/µs Operational Amplifiers

DESCRIPTIO FEATURES APPLICATIO S TYPICAL APPLICATIO. LT1813/LT1814 Dual/Quad 3mA, 100MHz, 750V/µs Operational Amplifiers / LT8 FEATRES MHz Gain Bandwidth Product 75V/µs Slew Rate 3.6mA Maximum Supply Current per Amplifier Tiny 3mm x 3mm x.8mm DFN Package 8nV/ Hz Input Noise Voltage nity-gain Stable.5mV Maximum Input Offset

More information

1.0V Micropower, SOT23, Operational Amplifier

1.0V Micropower, SOT23, Operational Amplifier 19-3; Rev ; 1/ 1.V Micropower, SOT3, Operational Amplifier General Description The micropower, operational amplifier is optimized for ultra-low supply voltage operation. The amplifier consumes only 9µA

More information

FEATURES DESCRIPTIO TYPICAL APPLICATIO. LT3027 Dual 100mA, Low Dropout, Low Noise, Micropower Regulator with. Independent Inputs APPLICATIO S

FEATURES DESCRIPTIO TYPICAL APPLICATIO. LT3027 Dual 100mA, Low Dropout, Low Noise, Micropower Regulator with. Independent Inputs APPLICATIO S FEATURES Low Noise: 2µV RMS (1Hz to 1kHz) Low Quiescent Current: 25µA/Channel Independent Inputs Wide Input Voltage Range: 1.8V to 2V Output Current: 1mA/Channel Very Low Shutdown Current:

More information

APPLICATIONS LT1351. Operational Amplifier DESCRIPTION FEATURES TYPICAL APPLICATION

APPLICATIONS LT1351. Operational Amplifier DESCRIPTION FEATURES TYPICAL APPLICATION FEATRES 3MHz Gain Bandwidth V/µs Slew Rate 5µA Supply Current Available in Tiny MSOP Package C-Load TM Op Amp Drives All Capacitive Loads nity-gain Stable Power Saving Shutdown Feature Maximum Input Offset

More information

LTC6081/LTC6082 Precision Dual/Quad CMOS Rail-to-Rail Input/ Output Amplifi ers DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION

LTC6081/LTC6082 Precision Dual/Quad CMOS Rail-to-Rail Input/ Output Amplifi ers DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION FEATURES Maximum Offset Voltage: 7μV (2 C) Maximum Offset Drift:.8μV/ C Maximum Input Bias: pa (2 C) 4pA (T A 8 C) Open Loop Voltage Gain: 2dB Typ Gain Bandwidth Product: 3.6MHz CMRR: db Min PSRR: 98dB

More information

FEATURES TYPICAL APPLICATIO LTC MHz to 3GHz RF Power Detector. in SC70 Package DESCRIPTIO APPLICATIO S

FEATURES TYPICAL APPLICATIO LTC MHz to 3GHz RF Power Detector. in SC70 Package DESCRIPTIO APPLICATIO S 300MHz to 3GHz RF Power Detector in SC70 Package FEATRES Temperature Compensated Internal Schottky Diode RF Detector Wide Input Frequency Range: 300MHz to 3GHz Wide Input Power Range: 30dBm to 6dBm Buffered

More information

VID Controlled High Current 4-Phase DC/DC Converter (Simplified Block Diagram) 4.5V TO 22V V OS TG1 INTV CC SW1 LTC1629 BG1 PGND SGND TG2 EAIN SW2

VID Controlled High Current 4-Phase DC/DC Converter (Simplified Block Diagram) 4.5V TO 22V V OS TG1 INTV CC SW1 LTC1629 BG1 PGND SGND TG2 EAIN SW2 FEATRES Fully Compliant with the Intel RM 8. ID Specification Programs Regulator Output oltage from.0 to.8 in m Steps Programs an Entire Family of Linear Technology DC/DC Converters with 0.8 References

More information

Precision Micropower Single Supply Operational Amplifier OP777

Precision Micropower Single Supply Operational Amplifier OP777 a FEATURES Low Offset Voltage: 1 V Max Low Input Bias Current: 1 na Max Single-Supply Operation: 2.7 V to 3 V Dual-Supply Operation: 1.35 V to 15 V Low Supply Current: 27 A/Amp Unity Gain Stable No Phase

More information

SGM8521/2/4 150kHz, 5.5μA, Rail-to-Rail I/O, CMOS Operational Amplifiers

SGM8521/2/4 150kHz, 5.5μA, Rail-to-Rail I/O, CMOS Operational Amplifiers //4 0kHz,.μA, Rail-to-Rail I/O, GENERAL DESCRIPTION The (single), SGM8 (dual) and SGM84 (quad) are low cost, rail-to-rail input and output voltage feedback amplifiers. They have a wide input common mode

More information

SGM321/SGM358/SGM324 1MHz, 60μA, Rail-to-Rail I/O CMOS Operational Amplifiers

SGM321/SGM358/SGM324 1MHz, 60μA, Rail-to-Rail I/O CMOS Operational Amplifiers /SGM358/SGM324 1MHz, 60μA, Rail-to-Rail I/O CMOS Operational Amplifiers GENERAL DESCRIPTION The (single), SGM358 (dual) and SGM324 (quad) are low cost, rail-to-rail input and output voltage feedback amplifiers.

More information

SGM8140 Low Power, Vibration Sensor and PIR Sensor Analog Front End (AFE)

SGM8140 Low Power, Vibration Sensor and PIR Sensor Analog Front End (AFE) SGM814 PRODUCT DESCRIPTION The SGM814 is a PIR sensor and vibration sensor analog front end which consists of 2 independent building block circuits. One is a dual rail-to-rail input and output operational

More information

Dual Picoampere Input Current Bipolar Op Amp AD706

Dual Picoampere Input Current Bipolar Op Amp AD706 Dual Picoampere Input Current Bipolar Op Amp FEATURES High DC Precision V Max Offset Voltage.5 V/ C Max Offset Drift 2 pa Max Input Bias Current.5 V p-p Voltage Noise,. Hz to Hz 75 A Supply Current Available

More information

Low-Power Single/Dual-Supply Dual Comparator with Reference. A 5V, Low-Parts-Count, High-Accuracy Window Detector

Low-Power Single/Dual-Supply Dual Comparator with Reference. A 5V, Low-Parts-Count, High-Accuracy Window Detector Low-Power Single/Dual-Supply Dual Comparator with Reference FEATURES Ultra-Low Quiescent Current: 4μA (max), Both Comparators plus Reference Single or Dual Power Supplies: Single: +.5V to +11V Dual: ±1.5V

More information

DESCRIPTION FEATURES. LTC1550/LTC1551 Low Noise, Switched Capacitor Regulated Voltage Inverters APPLICATIONS TYPICAL APPLICATION

DESCRIPTION FEATURES. LTC1550/LTC1551 Low Noise, Switched Capacitor Regulated Voltage Inverters APPLICATIONS TYPICAL APPLICATION LTC55/LTC55 Low Noise, Switched Capacitor Regulated Voltage Inverters FEATRES Regulated Negative Voltage from a Single Positive Supply Low Output Ripple: Less Than mv P-P Typ High Charge Pump Frequency:

More information

MIC7300 A17. General Description. Features. Applications. Ordering Information. Pin Configurations. Functional Configuration.

MIC7300 A17. General Description. Features. Applications. Ordering Information. Pin Configurations. Functional Configuration. MIC7300 High-Output Drive Rail-to-Rail Op Amp General Description The MIC7300 is a high-performance CMOS operational amplifier featuring rail-to-rail input and output with strong output drive capability.

More information

nanopower Op Amp in a Tiny 6-Bump WLP

nanopower Op Amp in a Tiny 6-Bump WLP EVALUATION KIT AVAILABLE MAX4464 General Description The MAX4464 is an ultra-small (6-bump WLP) op amp that draws only 75nA of supply current. It operates from a single +.8V to +5.5V supply and features

More information

MCP6021/1R/2/3/4. Rail-to-Rail Input/Output, 10 MHz Op Amps. Features. Description. Typical Applications. Package Types.

MCP6021/1R/2/3/4. Rail-to-Rail Input/Output, 10 MHz Op Amps. Features. Description. Typical Applications. Package Types. Rail-to-Rail Input/Output, 10 MHz Op Amps Features Rail-to-Rail Input/Output Wide Bandwidth: 10 MHz (typ.) Low Noise: 8.7 nv/ Hz, at 10 khz (typ.) Low Offset Voltage: - Industrial Temperature: ±500 µv

More information

High Common-Mode Voltage, Programmable Gain Difference Amplifier AD628

High Common-Mode Voltage, Programmable Gain Difference Amplifier AD628 High Common-Mode Voltage, Programmable Gain Difference Amplifier AD628 FEATURES FUNCTIONAL BLOCK DIAGRAM High common-mode input voltage range ±20 V at VS = ±5 V Gain range 0. to 00 Operating temperature

More information

SGM8621/2/3/4 3MHz, Rail-to-Rail I/O CMOS Operational Amplifiers

SGM8621/2/3/4 3MHz, Rail-to-Rail I/O CMOS Operational Amplifiers SGM8621/2/3/4 3MHz, Rail-to-Rail I/O PRODUCT DESCRIPTION The SGM8621 (single), SGM8622 (dual), SGM8623 (single with shutdown) and SGM8624 (quad) are low noise, low voltage, and low power operational amplifiers,

More information

DESCRIPTIO. APPLICATIO S Desktop and Notebook Computers Handheld Devices Network Servers Core, I/O Monitor TYPICAL APPLICATIO

DESCRIPTIO. APPLICATIO S Desktop and Notebook Computers Handheld Devices Network Servers Core, I/O Monitor TYPICAL APPLICATIO FEATRES Monitors Two Inputs Simultaneously Three Threshold Selections for V, 3.3V or 2.V Supplies Low Voltage Adjustable Input (.V) Three Supply Tolerances (%, 7.%, %) Guaranteed Threshold Accuracy: ±.%

More information

General-Purpose CMOS Rail-to-Rail Amplifiers AD8541/AD8542/AD8544

General-Purpose CMOS Rail-to-Rail Amplifiers AD8541/AD8542/AD8544 General-Purpose CMOS Rail-to-Rail Amplifiers AD854/AD8542/AD8544 FEATURES Single-supply operation: 2.7 V to 5.5 V Low supply current: 45 μa/amplifier Wide bandwidth: MHz No phase reversal Low input currents:

More information

DESCRIPTIO FEATURES APPLICATIO S. LT GHz to 2.7GHz Receiver Front End TYPICAL APPLICATIO

DESCRIPTIO FEATURES APPLICATIO S. LT GHz to 2.7GHz Receiver Front End TYPICAL APPLICATIO 1.GHz to 2.GHz Receiver Front End FEATURES 1.V to 5.25V Supply Dual LNA Gain Setting: +13.5dB/ db at Double-Balanced Mixer Internal LO Buffer LNA Input Internally Matched Low Supply Current: 23mA Low Shutdown

More information

FEATURES DESCRIPTIO APPLICATIO S. LT1120 Micropower Regulator with Comparator and Shutdown TYPICAL APPLICATIO

FEATURES DESCRIPTIO APPLICATIO S. LT1120 Micropower Regulator with Comparator and Shutdown TYPICAL APPLICATIO LT Micropower Regulator with Comparator and Shutdown FEATRES μa Supply Current ma Output Current.V Reference Voltage Reference Output Sources ma and Sinks ma Open Collector Comparator Sinks ma Logic Shutdown.V

More information