Systems with Digital Integrated Circuits

Size: px
Start display at page:

Download "Systems with Digital Integrated Circuits"

Transcription

1 Systems with Digital Integrated Circuits Introduction Sorin Hintea Basis of Electronics Departament

2 Commutative logic The operation of digital circuits is based on the use of switches capable of going through two distinct states and opposite each other Ideal switches have zero resistance in ON and infinite in OFF state In digital circuits are used, electronic switches made with MOS transistors These transistors are real circuit elements whose ON and OFF resistors are finite Conductive resistance other than 0 will cause the output response to be delayed The finite value resistance in the locked state will result in a final drain current through the blocked switch and therefore undesired power dissipation MOS transistor V G = GND V G = VDD 0 1 Cut-off conduction Systems with digital integrated circuits - Introduction 2

3 Proiectarea CID nivele de abstractizare Real Circuits Response Logic switches in real digital integrated circuits are built with MOS transistors which have an ON resistance of about10 kohms and OFF resistance of about 100 Mohms. These values are far from the ideal ones and cause power losses and delays of signal propagation through the circuits R v out v in C t p = ln(2) t= 0.69 RC Time behavior of digital circuit s output Systems with digital integrated circuits - Introduction 3

4 Ideal and real digital circuits Behaviour of real digital circuits V out (V) t p = 0.69 C L (R eqn +R eqp )/ t (sec) x Blue - ideal input signal; Black real output signal Time behavior of digital circuit s output Systems with digital integrated circuits - Introduction 4

5 Ideal and real digital circuits Delay in signals propagation - effect of circuit non idealities V in 50% t V out t phl t plh 90% 50% 10% t t f t r Systems with digital integrated circuits - Introduction 5

6 Digital Circuits Design First digital integrated circuits 1947 making the first transistor in the Bell Telephone labs 1949 first bipolar transistor by Schockley 1958 first integrated CMOS circuit 1962 first integrated TTL family circuit (Transistor- Transistor Logic) 1972 first 4 bits microprocessor 4004 made by INTEL Systems with digital integrated circuits - Introduction 6

7 Digital Circuits Design First digital integrated circuits In the 1970s, mostly nmosprocesses were used, cheaper but with high power consumption [Vadasz69] 1969 IEEE. Intel Museum. Reprinted with permission. From the 1980s to today, more and more CMOS processes are being used for their reduced power consumption Systems with digital integrated circuits - Introduction 7

8 The Moore s law In 1965, Gordon Moore noted that the number of transistors on a chip doubled every 18 to 24 months. So he predicted that semiconductor technology will evolve to double the number of transistors every 18 months, which is still true today LOG 2 OF THE NUMBER OF COMPONENTS PER INTEGRATED FUNCTION Electronics, April 19, Systems with digital integrated circuits - Introduction 8

9 The evolution of the number of chip transistors by 2010 Digital Circuits Evolution 1,000,000 K 1 Billion Transistors 100,000 10,000 1, i486 Pentium i Pentium III Pentium II Pentium Pro Source: Intel DupaRabaey, 2005 Projected Systems with digital integrated circuits - Introduction 9

10 The evolution of the number of chip transistors by 2010 in microprocessors industry Digital Circuits Evolution Transistors (MT) X growth in 1.96 years! 486 Pentium proc P Transistors 0.01 on Lead Microprocessors double every 2 years Year Rabaey, 2005 Systems with digital integrated circuits - Introduction 10

11 Evolution of microprocessors working frequency by 2010 Digital Circuits Evolution Frequency (Mhz) Doubles every 2 years P6 Pentium proc Year Lead Microprocessors frequency doubles every 2 years Rabaey, 2005 Systems with digital integrated circuits - Introduction 11

12 Increasing Microprocessors power dissipation until Digital Circuits Evolution Power (Watts) P6 Pentium proc Year Lead Microprocessors power continues to increase Rabaey, 2005 Systems with digital integrated circuits - Introduction 12

13 Power consumption will increases to unmanageable values Digital Circuits Evolution Power (Watts) Pentium proc 18KW 5KW 1.5KW 500W Year Power delivery and dissipation will be prohibitive Rabaey, 2005 Systems with digital integrated circuits - Introduction 13

14 Digital Circuits Evolution Intel Pentium Processor (IV) Systems with digital integrated circuits - Introduction 14

15 Digital Circuits Evolution Evaluating the results of a digital circuit design Systems with digital integrated circuits - Introduction 15

16 CMOS technology How to implement digital integrated circuits : Single die Wafer Going up to 12 (30cm) Systems with digital integrated circuits - Introduction 16

17 Some examples of digital integrated circuit parameters : Digital Circuits Evolution Chip Metal layers Line width Wafer cost Def./ cm 2 Area mm 2 Dies/ wafer Yield Die cost 386DX $ % $4 486 DX $ % $12 Power PC $ % $53 HP PA $ % $73 DEC Alpha $ % $149 Super Sparc $ % $272 Pentium $ % $417 Systems with digital integrated circuits - Introduction 17

18 Digital Circuits Design Principal design goals The design of a CID must follow the highest speed but also the power consumed This is alongside occupying a smaller surface than the implemented circuit As a measure of the quality of the switching circuits, the product of the delay time and the power consumed, a parameter called power-delay product (PDP) In general pentru o anumita tehnologie si o topologie data, PDP este constant In the case of CMOS circuits if the propagation time is to decrease, the transistors are resized by increasing the width of the channel; n this way, the surface of the transistor increases, which leads to the increase of the current and the power consumed, keeping the PDP constant Power-Delay Product (PDP)= E = Energy per operation = P av t p Systems with digital integrated circuits - Introduction 18

19 Digital Circuits Design Evaluating the results of a digital circuit design Major targets: Working speed (delay time, working frequency) Power disipation Occupied area by a specified circuit Secondary targets Cost Reliability Scalability The energy required to achieve a function Systems with digital integrated circuits - Introduction 19

20 Digital Circuits Design Design abstraction levels in digital circuits SYSTEM MODULE + GATE CIRCUIT S n+ G DEVICE n+ D Systems with digital integrated circuits - Introduction 20

21 Digital Circuits Design In ce directie evolueaza proiectarea circuitelor digitale VLSI The technology evolves in the sense of decreasing the size by 0.7 / generation With each generation you can integrate 2 times more features on the chip; the cost of the chip does not increase significantly Cost per feature is down 2 times This has as a consequence a growing number of functions that must be projected by a growing number of human designers This requires a more efficient design method Such a method is to increase abstraction levels as well as scalability Passing from one generation to another is done by applying a constant of all dimensions in the old project Systems with digital integrated circuits - Introduction 21

Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, Digital EE141 Integrated Circuits 2nd Introduction

Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, Digital EE141 Integrated Circuits 2nd Introduction Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Introduction July 30, 2002 1 What is this book all about? Introduction to digital integrated circuits.

More information

Introduction. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Introduction. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Introduction July 30, 2002 1 What is this book all about? Introduction to digital integrated circuits.

More information

1 Digital EE141 Integrated Circuits 2nd Introduction

1 Digital EE141 Integrated Circuits 2nd Introduction Digital Integrated Circuits Introduction 1 What is this lecture about? Introduction to digital integrated circuits + low power circuits Issues in digital design The CMOS inverter Combinational logic structures

More information

PC accounts for 353 Cory will be created early next week (when the class list is completed) Discussions & Labs start in Week 3

PC accounts for 353 Cory will be created early next week (when the class list is completed) Discussions & Labs start in Week 3 EE141 Fall 2005 Lecture 2 Design Metrics Admin Page Everyone should have a UNIX account on Cory! This will allow you to run HSPICE! If you do not have an account, check: http://www-inst.eecs.berkeley.edu/usr/

More information

Introduction. Introduction. Digital Integrated Circuits A Design Perspective. Introduction. The First Computer

Introduction. Introduction. Digital Integrated Circuits A Design Perspective. Introduction. The First Computer Digital Integrated Circuits A Design Perspective Prentice Hall Electronics and VLSI Series ISBN 0-3-20764-4 [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan,

More information

ECE 484 VLSI Digital Circuits Fall Lecture 02: Design Metrics

ECE 484 VLSI Digital Circuits Fall Lecture 02: Design Metrics ECE 484 VLSI Digital Circuits Fall 2016 Lecture 02: Design Metrics Dr. George L. Engel Adapted from slides provided by Mary Jane Irwin (PSU) [Adapted from Rabaey s Digital Integrated Circuits, 2002, J.

More information

VLSI Design I; A. Milenkovic 1

VLSI Design I; A. Milenkovic 1 CPE/EE 427, CPE 527 VLSI Design I L02: Design Metrics Department of Electrical and Computer Engineering University of Alabama in Huntsville Aleksandar Milenkovic ( www.ece.uah.edu/~milenka ) www.ece.uah.edu/~milenka/cpe527-03f

More information

Digital Integrated Circuits (83-313) Lecture 3: Design Metrics

Digital Integrated Circuits (83-313) Lecture 3: Design Metrics Digital Integrated Circuits (83-313) Lecture 3: Design Metrics Semester B, 2016-17 Lecturer: Dr. Adam Teman TAs: Itamar Levi, Robert Giterman 2 April 2017 Disclaimer: This course was prepared, in its entirety,

More information

CPE/EE 427, CPE 527 VLSI Design I L01: Introduction, Design Metrics. What is this course all about?

CPE/EE 427, CPE 527 VLSI Design I L01: Introduction, Design Metrics. What is this course all about? CPE/EE 427, CPE 527 VLSI Design I L01: Introduction, Design Metrics Aleksandar Milenkovic ( www.ece.uah.edu/~milenka ) www.ece.uah.edu/~milenka/cpe527-05f What is this course all about? Introduction to

More information

VLSI Design I; A. Milenkovic 1

VLSI Design I; A. Milenkovic 1 What is this course all about? CPE/EE 427, CPE 527 VLSI Design I L0: Introduction, Design Metrics Aleksandar Milenkovic ( www.ece.uah.edu/~milenka ) www.ece.uah.edu/~milenka/cpe527-05f Introduction to

More information

Introduction to VLSI Design

Introduction to VLSI Design Introduction to VLSI Design Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, Jose Martinez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed out http://infopad.eecs.berkeley.edu/~icdesign/

More information

ECE 2300 Digital Logic & Computer Organization

ECE 2300 Digital Logic & Computer Organization ECE 2300 Digital Logic & Computer Organization Spring 2018 CMOS Logic Lecture 4: 1 NAND Logic Gate X Y (X Y) = NAND Using De Morgan s Law: (X Y) = X +Y X X X +Y = Y Y Also a NAND We can build circuits

More information

Integrated Circuit Technology (Course Code: EE662) Lecture 1: Introduction

Integrated Circuit Technology (Course Code: EE662) Lecture 1: Introduction Indian Institute of Technology Jodhpur, Year 2015 2016 Integrated Circuit Technology (Course Code: EE662) Lecture 1: Introduction Course Instructor: Shree Prakash Tiwari, Ph.D. Email: sptiwari@iitj.ac.in

More information

EMT 251 Introduction to IC Design

EMT 251 Introduction to IC Design EMT 251 Introduction to IC Design (Pengantar Rekabentuk Litar Terkamir) Semester II 2011/2012 Introduction to IC design and Transistor Fundamental Some Keywords! Very-large-scale-integration (VLSI) is

More information

VLSI I (Introduction to VLSI Design) EE 382M-ECD (#14970)

VLSI I (Introduction to VLSI Design) EE 382M-ECD (#14970) VLSI I (Introduction to VLSI Design) EE 382M-ECD (#14970) Spring 2004 Jacob A. Abraham Electrical and Computer Engineering 1 Example System-on-a-Chip (SoC) for Mobile Applications Source: ARM 2 2004, J.

More information

Practical Information

Practical Information EE241 - Spring 2010 Advanced Digital Integrated Circuits TuTh 3:30-5pm 293 Cory Practical Information Instructor: Borivoje Nikolić 550B Cory Hall, 3-9297, bora@eecs Office hours: M 10:30am-12pm Reader:

More information

Digital Integrated Circuits

Digital Integrated Circuits Digital Integrated Circuits Yaping Dan ( 但亚平 ), PhD Office: Law School North 301 Tel: 34206045-3011 Email: yapingd@gmail.com Digital Integrated Circuits Introduction p-n junctions and MOSFETs The CMOS

More information

Lecture 8. MOS Transistors; Cheap Computers; Everycircuit

Lecture 8. MOS Transistors; Cheap Computers; Everycircuit Lecture 8 MOS Transistors; Cheap Computers; Everycircuit Copyright 2017 by Mark Horowitz 1 Reading The rest of Chapter 4 in the reader For more details look at A&L 5.1 Digital Signals (goes in much more

More information

420 Intro to VLSI Design

420 Intro to VLSI Design Dept of Electrical and Computer Engineering 420 Intro to VLSI Design Lecture 0: Course Introduction and Overview Valencia M. Joyner Spring 2005 Getting Started Syllabus About the Instructor Labs, Problem

More information

Low Power VLSI Circuit Synthesis: Introduction and Course Outline

Low Power VLSI Circuit Synthesis: Introduction and Course Outline Low Power VLSI Circuit Synthesis: Introduction and Course Outline Ajit Pal Professor Department of Computer Science and Engineering Indian Institute of Technology Kharagpur INDIA -721302 Agenda Why Low

More information

Practical Information

Practical Information EE241 - Spring 2013 Advanced Digital Integrated Circuits MW 2-3:30pm 540A/B Cory Practical Information Instructor: Borivoje Nikolić 509 Cory Hall, 3-9297, bora@eecs Office hours: M 11-12, W 3:30pm-4:30pm

More information

Chapter 3 Digital Logic Structures

Chapter 3 Digital Logic Structures Chapter 3 Digital Logic Structures Transistor: Building Block of Computers Microprocessors contain millions of transistors Intel Pentium 4 (2000): 48 million IBM PowerPC 750FX (2002): 38 million IBM/Apple

More information

CS4617 Computer Architecture

CS4617 Computer Architecture 1/26 CS4617 Computer Architecture Lecture 2 Dr J Vaughan September 10, 2014 2/26 Amdahl s Law Speedup = Execution time for entire task without using enhancement Execution time for entire task using enhancement

More information

Second-Generation PDP Address Driver IC

Second-Generation PDP Address Driver IC Second-Generation PDP Address Driver IC Seiji Noguchi Hitoshi Sumida Kazuhiro Kawamura 1. Introduction Fig.1 Overview of the process flow Color PDPs (plasma display panels) are used in household TV sets

More information

Basic Characteristics of Digital ICs

Basic Characteristics of Digital ICs ECEN202 Section 2 Characteristics of Digital IC s Part 1: Specification of characteristics An introductory look at digital IC s: Logic families Basic construction and operation Operating characteristics

More information

Introduction to VLSI ASIC Design and Technology

Introduction to VLSI ASIC Design and Technology Introduction to VLSI ASIC Design and Technology Paulo Moreira CERN - Geneva, Switzerland Paulo Moreira Introduction 1 Outline Introduction Is there a limit? Transistors CMOS building blocks Parasitics

More information

ELCN100 Electronic Lab. Instruments and Measurements Spring Lecture 01: Introduction

ELCN100 Electronic Lab. Instruments and Measurements Spring Lecture 01: Introduction ELCN100 Electronic Lab. Instruments and Measurements Spring 2018 Lecture 01: Introduction Dr. Hassan Mostafa حسن مصطفى د. hmostafa@uwaterloo.ca LAB 1 Cairo University Course Outline Course objectives To

More information

CMOS Technology for Computer Architects

CMOS Technology for Computer Architects CMOS Technology for Computer Architects Lecture 1: Introduction Iakovos Mavroidis Giorgos Passas Manolis Katevenis FORTH-ICS (University of Crete) Course Contents Implementation of high-performance digital

More information

Lecture 16. Complementary metal oxide semiconductor (CMOS) CMOS 1-1

Lecture 16. Complementary metal oxide semiconductor (CMOS) CMOS 1-1 Lecture 16 Complementary metal oxide semiconductor (CMOS) CMOS 1-1 Outline Complementary metal oxide semiconductor (CMOS) Inverting circuit Properties Operating points Propagation delay Power dissipation

More information

Assoc. Prof. Dr. MONTREE SIRIPRUCHYANUN

Assoc. Prof. Dr. MONTREE SIRIPRUCHYANUN 1 Assoc. Prof. Dr. MONTREE SIRIPRUCHYANUN Dept. of Teacher Training in Electrical Engineering 1 King Mongkut s Institute of Technology North Bangkok 1929 Bulky, expensive and required high supply voltages.

More information

EE4800 CMOS Digital IC Design & Analysis. Lecture 1 Introduction Zhuo Feng

EE4800 CMOS Digital IC Design & Analysis. Lecture 1 Introduction Zhuo Feng EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng 1.1 Prof. Zhuo Feng Office: EERC 730 Phone: 487-3116 Email: zhuofeng@mtu.edu Class Website http://www.ece.mtu.edu/~zhuofeng/ee4800fall2010.html

More information

ENG2410 Digital Design CMOS Technology. Fall 2017 S. Areibi School of Engineering University of Guelph

ENG2410 Digital Design CMOS Technology. Fall 2017 S. Areibi School of Engineering University of Guelph ENG2410 Digital Design CMOS Technology Fall 2017 S. reibi School of Engineering University of Guelph The Transistor Revolution First transistor Bell Labs, 1948 Bipolar logic 1960 s Intel 4004 processor

More information

Lecture 13 CMOS Power Dissipation

Lecture 13 CMOS Power Dissipation EE 471: Transport Phenomena in Solid State Devices Spring 2018 Lecture 13 CMOS Power Dissipation Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology Hoboken,

More information

Trends and Challenges in VLSI Technology Scaling Towards 100nm

Trends and Challenges in VLSI Technology Scaling Towards 100nm Trends and Challenges in VLSI Technology Scaling Towards 100nm Stefan Rusu Intel Corporation stefan.rusu@intel.com September 2001 Stefan Rusu 9/2001 2001 Intel Corp. Page 1 Agenda VLSI Technology Trends

More information

Introduction. Reading: Chapter 1. Courtesy of Dr. Dansereau, Dr. Brown, Dr. Vranesic, Dr. Harris, and Dr. Choi.

Introduction. Reading: Chapter 1. Courtesy of Dr. Dansereau, Dr. Brown, Dr. Vranesic, Dr. Harris, and Dr. Choi. Introduction Reading: Chapter 1 Courtesy of Dr. Dansereau, Dr. Brown, Dr. Vranesic, Dr. Harris, and Dr. Choi http://csce.uark.edu +1 (479) 575-6043 yrpeng@uark.edu Why study logic design? Obvious reasons

More information

Lecture Integrated circuits era

Lecture Integrated circuits era Lecture 1 1.1 Integrated circuits era Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell laboratories. In 1961, first IC was introduced. Levels of Integration:-

More information

NOVEL OSCILLATORS IN SUBTHRESHOLD REGIME

NOVEL OSCILLATORS IN SUBTHRESHOLD REGIME NOVEL OSCILLATORS IN SUBTHRESHOLD REGIME Neeta Pandey 1, Kirti Gupta 2, Rajeshwari Pandey 3, Rishi Pandey 4, Tanvi Mittal 5 1, 2,3,4,5 Department of Electronics and Communication Engineering, Delhi Technological

More information

Pramoda N V Department of Electronics and Communication Engineering, MCE Hassan Karnataka India

Pramoda N V Department of Electronics and Communication Engineering, MCE Hassan Karnataka India Advanced Low Power CMOS Design to Reduce Power Consumption in CMOS Circuit for VLSI Design Pramoda N V Department of Electronics and Communication Engineering, MCE Hassan Karnataka India Abstract: Low

More information

Logic and Computer Design Fundamentals. Chapter 6 Selected Design Topics. Part 1 The Design Space

Logic and Computer Design Fundamentals. Chapter 6 Selected Design Topics. Part 1 The Design Space Logic and Computer Design Fundamentals Chapter 6 Selected Design Topics Part 1 The Design Space Charles Kime & Thomas Kaminski 2008 Pearson Education, Inc. (Hyperlinks are active in View Show mode) Overview

More information

6.012 Microelectronic Devices and Circuits

6.012 Microelectronic Devices and Circuits MIT, Spring 2009 6.012 Microelectronic Devices and Circuits Charles G. Sodini Jing Kong Shaya Famini, Stephanie Hsu, Ming Tang Lecture 1 6.012 Overview Contents: Overview of 6.012 Reading Assignment: Howe

More information

Chapter 6 DIFFERENT TYPES OF LOGIC GATES

Chapter 6 DIFFERENT TYPES OF LOGIC GATES Chapter 6 DIFFERENT TYPES OF LOGIC GATES Lesson 8 NMOS gates Ch06L8-"Digital Principles and Design", Raj Kamal, Pearson Education, 2006 2 Outline NMOS (n-channel based MOSFETs based circuit) NMOS Features

More information

DIGITAL INTEGRATED CIRCUITS A DESIGN PERSPECTIVE 2 N D E D I T I O N

DIGITAL INTEGRATED CIRCUITS A DESIGN PERSPECTIVE 2 N D E D I T I O N DIGITAL INTEGRATED CIRCUITS A DESIGN PERSPECTIVE 2 N D E D I T I O N Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic CONTENTS PART I: THE FABRICS Chapter 1: Introduction (32 pages) 1.1 A Historical

More information

Digital Microelectronic Circuits ( ) Terminology and Design Metrics. Lecture 2: Presented by: Adam Teman

Digital Microelectronic Circuits ( ) Terminology and Design Metrics. Lecture 2: Presented by: Adam Teman Digital Microelectronic Circuits (361-1-3021 ) Presented by: Adam Teman Lecture 2: Terminology and Design Metrics 1 Last Week Introduction» Moore s Law» History of Computers Circuit analysis review» Thevenin,

More information

Digital Electronics Part II - Circuits

Digital Electronics Part II - Circuits Digital Electronics Part II - Circuits Dr. I. J. Wassell Gates from Transistors 1 Introduction Logic circuits are non-linear, consequently we will introduce a graphical technique for analysing such circuits

More information

Digital logic families

Digital logic families Digital logic families Digital logic families Digital integrated circuits are classified not only by their complexity or logical operation, but also by the specific circuit technology to which they belong.

More information

Power Spring /7/05 L11 Power 1

Power Spring /7/05 L11 Power 1 Power 6.884 Spring 2005 3/7/05 L11 Power 1 Lab 2 Results Pareto-Optimal Points 6.884 Spring 2005 3/7/05 L11 Power 2 Standard Projects Two basic design projects Processor variants (based on lab1&2 testrigs)

More information

EE 331 Devices and Circuits I. Lecture 1 March 31, 2014

EE 331 Devices and Circuits I. Lecture 1 March 31, 2014 EE 331 Devices and Circuits I Lecture 1 March 31, 2014 Four Main Topics (Welcome to the Real World!) Physics of conduction in semiconductors (Chap 2) Solid state diodes physics, applications, and analysis

More information

Design of Low-Power High-Performance 2-4 and 4-16 Mixed-Logic Line Decoders

Design of Low-Power High-Performance 2-4 and 4-16 Mixed-Logic Line Decoders Design of Low-Power High-Performance 2-4 and 4-16 Mixed-Logic Line Decoders B. Madhuri Dr.R. Prabhakar, M.Tech, Ph.D. bmadhusingh16@gmail.com rpr612@gmail.com M.Tech (VLSI&Embedded System Design) Vice

More information

A High-Speed Variation-Tolerant Interconnect Technique for Sub-Threshold Circuits Using Capacitive Boosting

A High-Speed Variation-Tolerant Interconnect Technique for Sub-Threshold Circuits Using Capacitive Boosting A High-Speed Variation-Tolerant Interconnect Technique for Sub-Threshold Circuits Using Capacitive Boosting Jonggab Kil Intel Corporation 1900 Prairie City Road Folsom, CA 95630 +1-916-356-9968 jonggab.kil@intel.com

More information

Chapter 15 Integrated Circuits

Chapter 15 Integrated Circuits Chapter 15 Integrated Circuits SKEE1223 Digital Electronics Mun im/arif/izam FKE, Universiti Teknologi Malaysia December 8, 2015 Overview 1 Basic IC Characteristics Packaging Logic Families Datasheets

More information

6.012 Microelectronic Devices and Circuits

6.012 Microelectronic Devices and Circuits MIT, Spring 2003 6.012 Microelectronic Devices and Circuits Jesús del Alamo Dimitri Antoniadis, Judy Hoyt, Charles Sodini Pablo Acosta, Susan Luschas, Jorg Scholvin, Niamh Waldron Lecture 1 6.012 overview

More information

POWER DELIVERY SYSTEMS

POWER DELIVERY SYSTEMS www.silabs.com Smart. Connected. Energy-Friendly. CMOS ISOLATED GATE S ENHANCE POWER DELIVERY SYSTEMS CMOS Isolated Gate Drivers (ISOdrivers) Enhance Power Delivery Systems Fully integrated isolated gate

More information

12-nm Novel Topologies of LPHP: Low-Power High- Performance 2 4 and 4 16 Mixed-Logic Line Decoders

12-nm Novel Topologies of LPHP: Low-Power High- Performance 2 4 and 4 16 Mixed-Logic Line Decoders 12-nm Novel Topologies of LPHP: Low-Power High- Performance 2 4 and 4 16 Mixed-Logic Line Decoders Mr.Devanaboina Ramu, M.tech Dept. of Electronics and Communication Engineering Sri Vasavi Institute of

More information

Design and Analysis of CMOS based Low Power Carry Select Full Adder

Design and Analysis of CMOS based Low Power Carry Select Full Adder Design and Analysis of CMOS based Low Power Carry Select Full Adder Mayank Sharma 1, Himanshu Prakash Rajput 2 1 Department of Electronics & Communication Engineering Hindustan College of Science & Technology,

More information

Low Power Design for Systems on a Chip. Tutorial Outline

Low Power Design for Systems on a Chip. Tutorial Outline Low Power Design for Systems on a Chip Mary Jane Irwin Dept of CSE Penn State University (www.cse.psu.edu/~mji) Low Power Design for SoCs ASIC Tutorial Intro.1 Tutorial Outline Introduction and motivation

More information

Architecture of Computers and Parallel Systems Part 9: Digital Circuits

Architecture of Computers and Parallel Systems Part 9: Digital Circuits Architecture of Computers and Parallel Systems Part 9: Digital Circuits Ing. Petr Olivka petr.olivka@vsb.cz Department of Computer Science FEI VSB-TUO Architecture of Computers and Parallel Systems Part

More information

Homework 10 posted just for practice. Office hours next week, schedule TBD. HKN review today. Your feedback is important!

Homework 10 posted just for practice. Office hours next week, schedule TBD. HKN review today. Your feedback is important! EE141 Fall 2005 Lecture 26 Memory (Cont.) Perspectives Administrative Stuff Homework 10 posted just for practice No need to turn in Office hours next week, schedule TBD. HKN review today. Your feedback

More information

ISSCC 2003 / SESSION 1 / PLENARY / 1.1

ISSCC 2003 / SESSION 1 / PLENARY / 1.1 ISSCC 2003 / SESSION 1 / PLENARY / 1.1 1.1 No Exponential is Forever: But Forever Can Be Delayed! Gordon E. Moore Intel Corporation Over the last fifty years, the solid-state-circuits industry has grown

More information

BICMOS Technology and Fabrication

BICMOS Technology and Fabrication 12-1 BICMOS Technology and Fabrication 12-2 Combines Bipolar and CMOS transistors in a single integrated circuit By retaining benefits of bipolar and CMOS, BiCMOS is able to achieve VLSI circuits with

More information

EE 330 Fall Sheng-Huang (Alex) Lee and Dan Congreve

EE 330 Fall Sheng-Huang (Alex) Lee and Dan Congreve EE 330 Fall 2009 Integrated Electronics Lecture Instructor: Lab Instructors: Web Site: Lecture: MWF 9:00 Randy Geiger 2133 Coover rlgeiger@iastate.edu 294-7745 Sheng-Huang (Alex) Lee and Dan Congreve http://class.ece.iastate.edu/ee330/

More information

Design of High Performance Arithmetic and Logic Circuits in DSM Technology

Design of High Performance Arithmetic and Logic Circuits in DSM Technology Design of High Performance Arithmetic and Logic Circuits in DSM Technology Salendra.Govindarajulu 1, Dr.T.Jayachandra Prasad 2, N.Ramanjaneyulu 3 1 Associate Professor, ECE, RGMCET, Nandyal, JNTU, A.P.Email:

More information

Power dissipation in CMOS

Power dissipation in CMOS DC Current in For V IN < V TN, N O is cut off and I DD = 0. For V TN < V IN < V DD /2, N O is saturated. For V DD /2 < V IN < V DD +V TP, P O is saturated. For V IN > V DD + V TP, P O is cut off and I

More information

Silicon VLSI Technology. Fundamentals, Practice and Modeling. Class Notes For Instructors. J. D. Plummer, M. D. Deal and P. B.

Silicon VLSI Technology. Fundamentals, Practice and Modeling. Class Notes For Instructors. J. D. Plummer, M. D. Deal and P. B. Silicon VLSI Technology Fundamentals, ractice, and Modeling Class otes For Instructors J. D. lummer, M. D. Deal and. B. Griffin These notes are intended to be used for lectures based on the above text.

More information

Chapter 7 Introduction to 3D Integration Technology using TSV

Chapter 7 Introduction to 3D Integration Technology using TSV Chapter 7 Introduction to 3D Integration Technology using TSV Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Outline Why 3D Integration An Exemplary TSV Process

More information

EE 434 Lecture 2. Basic Concepts

EE 434 Lecture 2. Basic Concepts EE 434 Lecture 2 Basic Concepts Review from Last Time Semiconductor Industry is One of the Largest Sectors in the World Economy and Growing All Initiatives Driven by Economic Opportunities and Limitations

More information

Digital Design and System Implementation. Overview of Physical Implementations

Digital Design and System Implementation. Overview of Physical Implementations Digital Design and System Implementation Overview of Physical Implementations CMOS devices CMOS transistor circuit functional behavior Basic logic gates Transmission gates Tri-state buffers Flip-flops

More information

Lecture 1, Introduction and Background

Lecture 1, Introduction and Background EE 338L CMOS Analog Integrated Circuit Design Lecture 1, Introduction and Background With the advances of VLSI (very large scale integration) technology, digital signal processing is proliferating and

More information

Progress due to: Feature size reduction - 0.7X/3 years (Moore s Law). Increasing chip size - 16% per year. Creativity in implementing functions.

Progress due to: Feature size reduction - 0.7X/3 years (Moore s Law). Increasing chip size - 16% per year. Creativity in implementing functions. Introduction - Chapter 1 Evolution of IC Fabrication 1960 and 1990 integrated t circuits. it Progress due to: Feature size reduction - 0.7X/3 years (Moore s Law). Increasing chip size - 16% per year. Creativity

More information

Lecture 1 Introduction to Solid State Electronics

Lecture 1 Introduction to Solid State Electronics EE 471: Transport Phenomena in Solid State Devices Spring 2018 Lecture 1 Introduction to Solid State Electronics Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology

More information

1 Introduction COPYRIGHTED MATERIAL

1 Introduction COPYRIGHTED MATERIAL Introduction The scaling of semiconductor process technologies has been continuing for more than four decades. Advancements in process technologies are the fuel that has been moving the semiconductor industry.

More information

! Review: MOS IV Curves and Switch Model. ! MOS Device Layout. ! Inverter Layout. ! Gate Layout and Stick Diagrams. ! Design Rules. !

! Review: MOS IV Curves and Switch Model. ! MOS Device Layout. ! Inverter Layout. ! Gate Layout and Stick Diagrams. ! Design Rules. ! ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 3: January 21, 2017 MOS Fabrication pt. 2: Design Rules and Layout Lecture Outline! Review: MOS IV Curves and Switch Model! MOS Device Layout!

More information

CS/EE 181a 2010/11 Lecture 1

CS/EE 181a 2010/11 Lecture 1 CS/EE 181a 2010/11 Lecture 1 CS/EE 181 is about designing digital CMOS systems. Functional Specification Approximate domain of CS181 Circuit Specification Simulation Architectural Specification Abstract

More information

Manufacturing Case Studies: Copy Exactly (CE!) and the two-year cycle at Intel

Manufacturing Case Studies: Copy Exactly (CE!) and the two-year cycle at Intel Manufacturing Case Studies: Copy Exactly (CE!) and the two-year cycle at Intel Paolo A. Gargini Director Technology Strategy Intel Fellow 1 Agenda 2-year cycle Copy Exactly Conclusions 2 I see no reason

More information

Sleepy Keeper Approach for Power Performance Tuning in VLSI Design

Sleepy Keeper Approach for Power Performance Tuning in VLSI Design International Journal of Electronics and Communication Engineering. ISSN 0974-2166 Volume 6, Number 1 (2013), pp. 17-28 International Research Publication House http://www.irphouse.com Sleepy Keeper Approach

More information

Reading. Lecture 17: MOS transistors digital. Context. Digital techniques:

Reading. Lecture 17: MOS transistors digital. Context. Digital techniques: Reading Lecture 17: MOS transistors digital Today we are going to look at the analog characteristics of simple digital devices, 5. 5.4 And following the midterm, we will cover PN diodes again in forward

More information

Lecture 1 Introduction to Electronic

Lecture 1 Introduction to Electronic Lecture 1 Introduction to Electronic Present by : Thawatchai Thongleam Faculty of Science and Technology Nakhon Pathom Rajabhat Uniersity Electronic Engineering Lecture 1 Introduction to Electronic Lecture

More information

Digital Systems. CMOS Logic Structures. Sorin Hintea Departamentul de Bazele Electronicii

Digital Systems. CMOS Logic Structures. Sorin Hintea Departamentul de Bazele Electronicii Digital Systems CMOS Logic Structures Sorin Hintea Departamentul de Bazele Electronicii Outline CMOS logic structures CMOS technology CMOS inverter: structure, behavior, electrical parameters Noise margin;

More information

Semiconductor Devices

Semiconductor Devices Semiconductor Devices - 2014 Lecture Course Part of SS Module PY4P03 Dr. P. Stamenov School of Physics and CRANN, Trinity College, Dublin 2, Ireland Hilary Term, TCD 3 th of Feb 14 MOSFET Unmodified Channel

More information

UNIT-1 Fundamentals of Low Power VLSI Design

UNIT-1 Fundamentals of Low Power VLSI Design UNIT-1 Fundamentals of Low Power VLSI Design Need for Low Power Circuit Design: The increasing prominence of portable systems and the need to limit power consumption (and hence, heat dissipation) in very-high

More information

VLSI Design. Introduction

VLSI Design. Introduction Tassadaq Hussain VLSI Design Introduction Outcome of this course Problem Aims Objectives Outcomes Data Collection Theoretical Model Mathematical Model Validate Development Analysis and Observation Pseudo

More information

18nm FinFET. Lecture 30. Perspectives. Administrivia. Power Density. Power will be a problem. Transistor Count

18nm FinFET. Lecture 30. Perspectives. Administrivia. Power Density. Power will be a problem. Transistor Count 18nm FinFET Double-gate structure + raised source/drain Lecture 30 Perspectives Gate Silicon Fin Source BOX Gate X. Huang, et al, 1999 IEDM, p.67~70 Drain Si fin - Body! I d [ua/um] 400-1.50 V 350 300-1.25

More information

VLSI Design. Introduction

VLSI Design. Introduction VLSI Design Introduction Outline Introduction Silicon, pn-junctions and transistors A Brief History Operation of MOS Transistors CMOS circuits Fabrication steps for CMOS circuits Introduction Integrated

More information

VLSI: An Introduction

VLSI: An Introduction Chapter 1 UEEA2223/UEEG4223 Integrated Circuit Design VLSI: An Introduction Prepared by Dr. Lim Soo King 02 Jan 2011. Chapter 1 VLSI Design: An Introduction... 1 1.0 Introduction... 1 1.0.1 Early Computing

More information

Module-3: Metal Oxide Semiconductor (MOS) & Emitter coupled logic (ECL) families

Module-3: Metal Oxide Semiconductor (MOS) & Emitter coupled logic (ECL) families 1 Module-3: Metal Oxide Semiconductor (MOS) & Emitter coupled logic (ECL) families 1. Introduction 2. Metal Oxide Semiconductor (MOS) logic 2.1. Enhancement and depletion mode 2.2. NMOS and PMOS inverter

More information

Lecture 0: Introduction

Lecture 0: Introduction Introduction to CMOS VLSI Design Lecture : Introduction David Harris Steven Levitan Harvey Mudd College University of Pittsburgh Spring 24 Fall 28 Administrivia Professor Steven Levitan TA: Bo Zhao Syllabus

More information

ELEC-H-473 Microprocessor architectures. Lecture 01 Dragomir Milojevic

ELEC-H-473 Microprocessor architectures. Lecture 01 Dragomir Milojevic ELEC-H-473 Microprocessor architectures Lecture 01 Dragomir Milojevic dmilojev@ulb.ac.be General information 1. Agenda Lectures 2 ECTS = 12 sessions, 2h/session Monday from 10.00 to 12.00 (C3.122); CONFLICT

More information

Low-Power VLSI. Seong-Ook Jung VLSI SYSTEM LAB, YONSEI University School of Electrical & Electronic Engineering

Low-Power VLSI. Seong-Ook Jung VLSI SYSTEM LAB, YONSEI University School of Electrical & Electronic Engineering Low-Power VLSI Seong-Ook Jung 2013. 5. 27. sjung@yonsei.ac.kr VLSI SYSTEM LAB, YONSEI University School of Electrical & Electronic Engineering Contents 1. Introduction 2. Power classification & Power performance

More information

+1 (479)

+1 (479) Introduction to VLSI Design http://csce.uark.edu +1 (479) 575-6043 yrpeng@uark.edu Invention of the Transistor Vacuum tubes ruled in first half of 20th century Large, expensive, power-hungry, unreliable

More information

Chapter 1, Introduction

Chapter 1, Introduction Introduction to Semiconductor Manufacturing Technology Chapter 1, Introduction hxiao89@hotmail.com 1 Objective After taking this course, you will able to Use common semiconductor terminology Describe a

More information

EECS150 - Digital Design Lecture 15 - CMOS Implementation Technologies. Overview of Physical Implementations

EECS150 - Digital Design Lecture 15 - CMOS Implementation Technologies. Overview of Physical Implementations EECS150 - Digital Design Lecture 15 - CMOS Implementation Technologies Mar 12, 2013 John Wawrzynek Spring 2013 EECS150 - Lec15-CMOS Page 1 Overview of Physical Implementations Integrated Circuits (ICs)

More information

EECS150 - Digital Design Lecture 9 - CMOS Implementation Technologies

EECS150 - Digital Design Lecture 9 - CMOS Implementation Technologies EECS150 - Digital Design Lecture 9 - CMOS Implementation Technologies Feb 14, 2012 John Wawrzynek Spring 2012 EECS150 - Lec09-CMOS Page 1 Overview of Physical Implementations Integrated Circuits (ICs)

More information

Kenneth R. Laker, University of Pennsylvania, updated 20Jan15

Kenneth R. Laker, University of Pennsylvania, updated 20Jan15 http://www.seas.upenn.edu/~ese570/ 1 TOPICS The Course Industry Trends Digital CMOS Basics Some VLSI Fundamentals Illustrative Design Example 2 1. Apply principles of hierarchical digital CMOS VLSI, from

More information

Noise Aware Decoupling Capacitors for Multi-Voltage Power Distribution Systems

Noise Aware Decoupling Capacitors for Multi-Voltage Power Distribution Systems Noise Aware Decoupling Capacitors for Multi-Voltage Power Distribution Systems Mikhail Popovich and Eby G. Friedman Department of Electrical and Computer Engineering University of Rochester, Rochester,

More information

! Review: MOS IV Curves and Switch Model. ! MOS Device Layout. ! Inverter Layout. ! Gate Layout and Stick Diagrams. ! Design Rules. !

! Review: MOS IV Curves and Switch Model. ! MOS Device Layout. ! Inverter Layout. ! Gate Layout and Stick Diagrams. ! Design Rules. ! ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 3: January 21, 2016 MOS Fabrication pt. 2: Design Rules and Layout Lecture Outline! Review: MOS IV Curves and Switch Model! MOS Device Layout!

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 3: January 21, 2016 MOS Fabrication pt. 2: Design Rules and Layout Penn ESE 570 Spring 2016 Khanna Adapted from GATech ESE3060 Slides Lecture

More information

Digital Integrated Circuits - Logic Families (Part II)

Digital Integrated Circuits - Logic Families (Part II) Digital Integrated Circuits - Logic Families (Part II) MOSFET Logic Circuits MOSFETs are unipolar devices. They are simple, small in size, inexpensive to fabricate and consume less power. MOS fabrication

More information

CMOS VLSI IC Design. A decent understanding of all tasks required to design and fabricate a chip takes years of experience

CMOS VLSI IC Design. A decent understanding of all tasks required to design and fabricate a chip takes years of experience CMOS VLSI IC Design A decent understanding of all tasks required to design and fabricate a chip takes years of experience 1 Commonly used keywords INTEGRATED CIRCUIT (IC) many transistors on one chip VERY

More information

EECS150 - Digital Design Lecture 2 - CMOS

EECS150 - Digital Design Lecture 2 - CMOS EECS150 - Digital Design Lecture 2 - CMOS August 29, 2002 John Wawrzynek Fall 2002 EECS150 - Lec02-CMOS Page 1 Outline Overview of Physical Implementations CMOS devices Announcements/Break CMOS transistor

More information

Chapter 2 Combinational Circuits

Chapter 2 Combinational Circuits Chapter 2 Combinational Circuits SKEE2263 Digital Systems Mun im/ismahani/izam {munim@utm.my,e-izam@utm.my,ismahani@fke.utm.my} February 23, 26 Why CMOS? Most logic design today is done on CMOS circuits

More information

Design of an Energy Efficient, Low Power Dissipation Full Subtractor Using GDI Technique

Design of an Energy Efficient, Low Power Dissipation Full Subtractor Using GDI Technique Design of an Energy Efficient, Low Power Dissipation Full Subtractor Using GDI Technique ABSTRACT: Rammohan Kurugunta M.Tech Student, Department of ECE, Intel Engineering College, Anantapur, Andhra Pradesh,

More information