Introduction. Reading: Chapter 1. Courtesy of Dr. Dansereau, Dr. Brown, Dr. Vranesic, Dr. Harris, and Dr. Choi.

Size: px
Start display at page:

Download "Introduction. Reading: Chapter 1. Courtesy of Dr. Dansereau, Dr. Brown, Dr. Vranesic, Dr. Harris, and Dr. Choi."

Transcription

1 Introduction Reading: Chapter 1 Courtesy of Dr. Dansereau, Dr. Brown, Dr. Vranesic, Dr. Harris, and Dr. Choi +1 (479) yrpeng@uark.edu

2 Why study logic design? Obvious reasons this course is part of the CSCE requirements it is the implementation basis for all modern computing devices building large things from small components provide a model of how a computer works More important reasons the inherent parallelism in hardware is often our first exposure to parallel computation it offers an interesting counterpoint to software design and is therefore useful in furthering our understanding of computation, in general 1/22/2018 CSCE2114: Digital Design 2

3 What will we learn in this class? The language of logic design Boolean algebra, logic minimization, state, timing, CAD tools The concept of state in digital systems analogous to variables and program counters in software systems How to specify/simulate/compile/realize our designs hardware description languages tools to simulate the workings of our designs logic compilers to synthesize the hardware blocks of our designs mapping onto programmable hardware Contrast with software design sequential and parallel implementations specify algorithm as well as computing/storage resources it will use 1/22/2018 CSCE2114: Digital Design 3

4 Applications of logic design Conventional computer design CPUs, busses, peripherals Networking and communications phones, modems, routers Embedded products in cars, toys, appliances, entertainment devices Scientific equipment testing, sensing, reporting The world of computing is much much bigger than just PCs! 1/22/2018 CSCE2114: Digital Design 4

5 A quick history lesson 1850: George Boole invents Boolean algebra maps logical propositions to symbols permits manipulation of logic statements using mathematics 1938: Claude Shannon links Boolean algebra to switches 1945: John von Neumann develops the stored program computer its switching elements are vacuum tubes (a big advance from relays) 1946: ENIAC... The world s first completely electronic computer 18,000 vacuum tubes several hundred multiplications per minute 1947: Shockley, Brittain, and Bardeen invent the transistor replaces vacuum tubes, gateway to modern electronics : Jack Kilby and Robert Noyce invent IC 1/22/2018 CSCE2114: Digital Design 5

6 What is logic design? What is design? given a specification of a problem, come up with a way of solving it choosing appropriately from a collection of available components while meeting some criteria for size, cost, power, beauty, elegance, etc. What is logic design? determining the collection of digital logic components to perform a specified control and/or data manipulation and/or communication function and the interconnections between them which logic components to choose? there are many implementation technologies (e.g., off-the-shelf fixed-function components, programmable devices, transistors on a chip, etc.) the design may need to be optimized and/or transformed to meet design constraints 1/22/2018 CSCE2114: Digital Design 6

7 What is digital hardware? Collection of devices that sense and/or control wires that carry a digital value (i.e., a physical quantity that can be interpreted as a 0 or 1 ) example: digital logic where voltage < 0.8v is a 0 and > 2.0v is a 1 example: pair of transmission wires where a 0 or 1 is distinguished by which wire has a higher voltage (differential) example: orientation of magnetization signifies a 0 or a 1 Primitive digital hardware devices logic computation devices (sense and drive) are two wires both 1 - make another be 1 (AND) is at least one of two wires 1 - make another be 1 (OR) is a wire 1 - then make another be 0 (NOT) memory devices (store) store a value recall a previously stored value 1/22/2018 CSCE2114: Digital Design 7

8 What is happening? Important trends in how industry does hardware design larger designs, shorter time to market, cheaper products Scale pervasive use of computer-aided design tools over hand methods multiple levels of design representation Time emphasis on abstract design representations programmable rather than fixed function components importance of sound design methodologies Cost higher levels of integration use of simulation to debug designs simulate and verify before you build 1/22/2018 CSCE2114: Digital Design 8

9 CSCE 2114: concepts/skills/abilities Understanding the basics of logic design (concepts) Understanding sound design methodologies (concepts) Modern specification methods (concepts) Familiarity with a full set of CAD tools (skills) Realize digital designs in an implementation technology (skills) Appreciation for the differences and similarities (abilities) in hardware and software design New ability: to accomplish the logic design task with the aid of computer-aided design tools and map a problem description into an implementation with programmable logic devices after validation via simulation and understanding of the advantages/disadvantages as compared to a software implementation 1/22/2018 CSCE2114: Digital Design 9

10 Invention of the Transistor Vacuum tubes ruled in first half of 20th century Large, expensive, power-hungry, unreliable 1947: first point contact transistor John Bardeen and Walter Brattain at Bell Labs Read Crystal Fire by Riordan, Hoddeson 1/22/2018 CSCE2114: Digital Design 10

11 Transistor Types Bipolar transistors npn or pnp silicon structure Small current into very thin base layer controls large currents between emitter and collector Base currents limit integration density Metal Oxide Semiconductor Field Effect Transistors nmos and pmos MOSFETS Voltage applied to insulated gate controls current between source and drain Low power allows very high integration 1/22/2018 CSCE2114: Digital Design 11

12 MOS Integrated Circuits 1970 s processors usually had only nmos transistors Inexpensive, but consume power while idle Intel bit SRAM Intel bit mproc 1980s-present: CMOS (Complementary MOS) processes for low idle power 1/22/2018 CSCE2114: Digital Design 12

13 Moore s Law Original (1965) Gordon Moore (Fairchild) The number of transistors on an IC would double every year. Revised (1975) Gordon Moore (Intel) A doubling every two years, rather than every year. Moore: "Cramming more components onto integrated circuits" Electronics, Vol. 38, No. 8, 1965 IEEE, IEDM Tech Digest (1975) 1/22/2018 CSCE2114: Digital Design 13

14 A Silicon Wafer 1/22/2018 CSCE2114: Digital Design 14

15 A printed circuit board 1/22/2018 CSCE2114: Digital Design 15

16 Moore s Law Moore's law suggests exponential growth (2x every 18 months) Is not about performance, not about chip size Hinted about the cost reduction Exponential transistor count Exponential complexity 1/22/2018 CSCE2114: Digital Design 16

17 1/22/2018 CSCE2114: Digital Design 17

18 The basic design loop Design concept Initial design Simulation Redesign Design correct? No Yes Successful design 1/22/2018 CSCE2114: Digital Design 18

19 A More Realistic Design Loop 1/22/2018 CSCE2114: Digital Design 19

20 Speed of MOS networks What influences the speed of CMOS networks? charging and discharging of voltages on wires and gates of transistors Capacitors hold charge capacitance is at gates of transistors and wire material Resistors slow movement of electrons resistance mostly due to transistors 1/22/2018 CSCE2114: Digital Design 20

21 Representation of digital designs Physical devices (transistors, relays) Switches Truth tables Boolean algebra Gates Waveforms Finite state behavior Register-transfer behavior Concurrent abstract specifications scope of CSCE /22/2018 CSCE2114: Digital Design 21

22 Digital vs. Analog Convenient to think of digital systems as having only discrete, digital, input/output values In reality, real electronic components exhibit continuous, analog, behavior Why do we make the digital abstraction anyway? switches operate this way easier to think about a small number of discrete values Why does it work? does not propagate small errors in values always resets to 0 or 1 1/22/2018 CSCE2114: Digital Design 22

23 Digital vs. Analog Signal Value Analog signal 3 2 Digital signal 1 0 Time 1/22/2018 CSCE2114: Digital Design 23

24 Binary Signal Signal Value 1 Binary signal Time 1/22/2018 CSCE2114: Digital Design 24

25 Number Systems Positional Number Systems Decimal, binary, octal, and hex Bases: 10, 2, 8, and 16 Integers and fractions Base conversion Ability to convert a number from one base to another Converting fractions may lead to errors Basic binary addition and subtraction 1/22/2018 CSCE2114: Digital Design 25

26 From physical world to binary world Technology State 0 State 1 Relay logic Circuit Open Circuit Closed CMOS logic volts volts Transistor transistor logic (TTL) volts volts Fiber Optics Light off Light on Dynamic RAM Discharged capacitor Charged capacitor Nonvolatile memory (erasable) Trapped electrons No trapped electrons Programmable ROM Fuse blown Fuse intact Bubble memory No magnetic bubble Bubble present Magnetic disk No flux reversal Flux reversal Compact disc No pit Pit 1/22/2018 CSCE2114: Digital Design 26

27 Binary Numbers Binary numbers are base 2 as opposed to base 10 typically used. Instead of decimal places such as 1s, 10s, 100s, 1000s, etc., binary uses powers of two to have 1s, 2s, 4s, 8s, 16s, 32s, 64s, etc. places. We will discuss binary numbers and binary arithmetic in a little more depth later. Examples: = = = = = = = /22/2018 CSCE2114: Digital Design 27

28 Evaluating Decimal: Decimal Numbers: 154 d = (1 x 10 2 ) + (5 x 10 1 ) + (4 x 10 0 ) = (1 x 100) + (5 x 10) + (4 x 1) = = d = (2 x 10 0 ) + (6 x 10-1 ) + (7 x 10-2 ) = (2 x 1) + (6 x 1/10) + (7 x 1/100) = = /22/2018 CSCE2114: Digital Design 28

29 Evaluating Binary: Binary Numbers: 110 b = (1 x 2 2 ) + (1 x 2 1 ) + (0 x 2 0 ) = (1 x 4) + (1 x 2) + (0 x 1) = = b = (1 x 2 0 ) + (0 x 2-1 ) + (1 x 2-2 ) = (1 x 1) + (0 x 1/2) + (1 x 1/4) = = /22/2018 CSCE2114: Digital Design 29

30 Evaluating Octal/Hex Numbers: Octal Numbers: 170 o = (1 x 8 2 ) + (7 x 8 1 ) + (0 x 8 0 ) = (1 x 64) + (7 x 8) + (0 x 1) = = 120 Hex Numbers: 1F0 h = (1 x 16 2 ) + (15 x 16 1 ) + (0 x 16 0 ) = (1 x 256) + (15 x 16) + (0 x 1) = = 496 1/22/2018 CSCE2114: Digital Design 30

31 Conversion Between Binary, Octal, and Hexadecimal Binary to Octal: Group binary digits into groups of three bits starting at the radix point. Convert each group of binary digits to octal equivalent. Binary to Hex: Group binary digits into groups of four bits starting at the radix point. Convert each group of binary digits to hex equivalent. Base: A B C D E F 1/22/2018 CSCE2114: Digital Design 31

32 Conversion Between Binary, Octal, and Hexadecimal Octal to Binary: Convert each octal digit to binary in order. Hexadecimal to Binary: Convert each hex digit to binary in order. Between Octal and Hexadecimal: Convert the octal or hex digits to binary, then to the desired radix. Base: A B C D E F 1/22/2018 CSCE2114: Digital Design 32

+1 (479)

+1 (479) Introduction to VLSI Design http://csce.uark.edu +1 (479) 575-6043 yrpeng@uark.edu Invention of the Transistor Vacuum tubes ruled in first half of 20th century Large, expensive, power-hungry, unreliable

More information

EMT 251 Introduction to IC Design

EMT 251 Introduction to IC Design EMT 251 Introduction to IC Design (Pengantar Rekabentuk Litar Terkamir) Semester II 2011/2012 Introduction to IC design and Transistor Fundamental Some Keywords! Very-large-scale-integration (VLSI) is

More information

INTRODUCTION TO DIGITAL CONCEPT

INTRODUCTION TO DIGITAL CONCEPT COURSE / CODE DIGITAL SYSTEM FUNDAMENTALS (ECE 421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE 422) INTRODUCTION TO DIGITAL CONCEPT Digital and Analog Quantities Digital relates to data in the form of digits,

More information

CS Spring Introduction - 6. Concept of state in digital systems y Analogous to variables and program counters in software systems

CS Spring Introduction - 6. Concept of state in digital systems y Analogous to variables and program counters in software systems CS 5 - Spring 2 - Introduction - Welcome to CS 5: Components and Design Techniques for Digital Sstems Wh are we here? Course staff Rand Kat (Instructor), Po Yan (Head T) Teaching ssistants: Steve Fang,

More information

DIGITAL LOGIC DESIGN (ELE 241)

DIGITAL LOGIC DESIGN (ELE 241) DIGITAL LOGIC DESIGN (ELE 241) Lecture # 01 & 02 Ali Mustafa Instructor Introduction Ali Mustafa BSC Computer Engineering (Comsats Pakistan) MS Mobile Communication (University of Bradford England) Worked

More information

Digital Integrated Circuits

Digital Integrated Circuits Digital Integrated Circuits Yaping Dan ( 但亚平 ), PhD Office: Law School North 301 Tel: 34206045-3011 Email: yapingd@gmail.com Digital Integrated Circuits Introduction p-n junctions and MOSFETs The CMOS

More information

VLSI Design. Introduction

VLSI Design. Introduction VLSI Design Introduction Outline Introduction Silicon, pn-junctions and transistors A Brief History Operation of MOS Transistors CMOS circuits Fabrication steps for CMOS circuits Introduction Integrated

More information

CS302 - Digital Logic Design Glossary By

CS302 - Digital Logic Design Glossary By CS302 - Digital Logic Design Glossary By ABEL : Advanced Boolean Expression Language; a software compiler language for SPLD programming; a type of hardware description language (HDL) Adder : A digital

More information

ECE 2300 Digital Logic & Computer Organization

ECE 2300 Digital Logic & Computer Organization ECE 2300 Digital Logic & Computer Organization Spring 2018 CMOS Logic Lecture 4: 1 NAND Logic Gate X Y (X Y) = NAND Using De Morgan s Law: (X Y) = X +Y X X X +Y = Y Y Also a NAND We can build circuits

More information

Progress due to: Feature size reduction - 0.7X/3 years (Moore s Law). Increasing chip size - 16% per year. Creativity in implementing functions.

Progress due to: Feature size reduction - 0.7X/3 years (Moore s Law). Increasing chip size - 16% per year. Creativity in implementing functions. Introduction - Chapter 1 Evolution of IC Fabrication 1960 and 1990 integrated t circuits. it Progress due to: Feature size reduction - 0.7X/3 years (Moore s Law). Increasing chip size - 16% per year. Creativity

More information

Lecture 8. MOS Transistors; Cheap Computers; Everycircuit

Lecture 8. MOS Transistors; Cheap Computers; Everycircuit Lecture 8 MOS Transistors; Cheap Computers; Everycircuit Copyright 2017 by Mark Horowitz 1 Reading The rest of Chapter 4 in the reader For more details look at A&L 5.1 Digital Signals (goes in much more

More information

VLSI Design. Introduction

VLSI Design. Introduction Tassadaq Hussain VLSI Design Introduction Outcome of this course Problem Aims Objectives Outcomes Data Collection Theoretical Model Mathematical Model Validate Development Analysis and Observation Pseudo

More information

Student Lecture by: Giangiacomo Groppi Joel Cassell Pierre Berthelot September 28 th 2004

Student Lecture by: Giangiacomo Groppi Joel Cassell Pierre Berthelot September 28 th 2004 Student Lecture by: Giangiacomo Groppi Joel Cassell Pierre Berthelot September 28 th 2004 Lecture outline Historical introduction Semiconductor devices overview Bipolar Junction Transistor (BJT) Field

More information

Gates and and Circuits

Gates and and Circuits Chapter 4 Gates and Circuits Chapter Goals Identify the basic gates and describe the behavior of each Describe how gates are implemented using transistors Combine basic gates into circuits Describe the

More information

Figure.1. Schematic of 4-bit CLA JCHPS Special Issue 9: June Page 101

Figure.1. Schematic of 4-bit CLA JCHPS Special Issue 9: June Page 101 Delay Depreciation and Power efficient Carry Look Ahead Adder using CMOS T. Archana*, K. Arunkumar, A. Hema Malini Department of Electronics and Communication Engineering, Saveetha Engineering College,

More information

MICROPROCESSOR TECHNOLOGY

MICROPROCESSOR TECHNOLOGY MICROPROCESSOR TECHNOLOGY Assis. Prof. Hossam El-Din Moustafa Lecture 3 Ch.1 The Evolution of The Microprocessor 17-Feb-15 1 Chapter Objectives Introduce the microprocessor evolution from transistors to

More information

Introduction to VLSI ASIC Design and Technology

Introduction to VLSI ASIC Design and Technology Introduction to VLSI ASIC Design and Technology Paulo Moreira CERN - Geneva, Switzerland Paulo Moreira Introduction 1 Outline Introduction Is there a limit? Transistors CMOS building blocks Parasitics

More information

QUIZ. What do these bits represent?

QUIZ. What do these bits represent? QUIZ What do these bits represent? 1001 0110 1 QUIZ What do these bits represent? Unsigned integer: 1101 1110 Signed integer (2 s complement): Fraction: IBM 437 character: Latin-1 character: Huffman-compressed

More information

Objective Questions. (a) Light (b) Temperature (c) Sound (d) all of these

Objective Questions. (a) Light (b) Temperature (c) Sound (d) all of these Objective Questions Module 1: Introduction 1. Which of the following is an analog quantity? (a) Light (b) Temperature (c) Sound (d) all of these 2. Which of the following is a digital quantity? (a) Electrical

More information

Integrated Circuit Technology (Course Code: EE662) Lecture 1: Introduction

Integrated Circuit Technology (Course Code: EE662) Lecture 1: Introduction Indian Institute of Technology Jodhpur, Year 2015 2016 Integrated Circuit Technology (Course Code: EE662) Lecture 1: Introduction Course Instructor: Shree Prakash Tiwari, Ph.D. Email: sptiwari@iitj.ac.in

More information

Propagation Delay, Circuit Timing & Adder Design. ECE 152A Winter 2012

Propagation Delay, Circuit Timing & Adder Design. ECE 152A Winter 2012 Propagation Delay, Circuit Timing & Adder Design ECE 152A Winter 2012 Reading Assignment Brown and Vranesic 2 Introduction to Logic Circuits 2.9 Introduction to CAD Tools 2.9.1 Design Entry 2.9.2 Synthesis

More information

Propagation Delay, Circuit Timing & Adder Design

Propagation Delay, Circuit Timing & Adder Design Propagation Delay, Circuit Timing & Adder Design ECE 152A Winter 2012 Reading Assignment Brown and Vranesic 2 Introduction to Logic Circuits 2.9 Introduction to CAD Tools 2.9.1 Design Entry 2.9.2 Synthesis

More information

Lecture Integrated circuits era

Lecture Integrated circuits era Lecture 1 1.1 Integrated circuits era Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell laboratories. In 1961, first IC was introduced. Levels of Integration:-

More information

Multiple Category Scope and Sequence: Scope and Sequence Report For Course Standards and Objectives, Content, Skills, Vocabulary

Multiple Category Scope and Sequence: Scope and Sequence Report For Course Standards and Objectives, Content, Skills, Vocabulary Multiple Category Scope and Sequence: Scope and Sequence Report For Course Standards and Objectives, Content, Skills, Vocabulary Wednesday, August 20, 2014, 1:16PM Unit Course Standards and Objectives

More information

Lecture 1 Introduction to Solid State Electronics

Lecture 1 Introduction to Solid State Electronics EE 471: Transport Phenomena in Solid State Devices Spring 2018 Lecture 1 Introduction to Solid State Electronics Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology

More information

Spiral 1 / Unit 8. Transistor Implementations CMOS Logic Gates

Spiral 1 / Unit 8. Transistor Implementations CMOS Logic Gates 18.1 Spiral 1 / Unit 8 Transistor Implementations CMOS Logic Gates 18.2 Spiral Content Mapping Spiral Theory Combinational Design Sequential Design System Level Design Implementation and Tools Project

More information

COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design

COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design PH-315 COMINATIONAL and SEUENTIAL LOGIC CIRCUITS Hardware implementation and software design A La Rosa I PURPOSE: To familiarize with combinational and sequential logic circuits Combinational circuits

More information

Associate In Applied Science In Electronics Engineering Technology Expiration Date:

Associate In Applied Science In Electronics Engineering Technology Expiration Date: PROGRESS RECORD Study your lessons in the order listed below. Associate In Applied Science In Electronics Engineering Technology Expiration Date: 1 2330A Current and Voltage 2 2330B Controlling Current

More information

Chapter 8. Chapter 9. Chapter 6. Chapter 10. Chapter 11. Chapter 7

Chapter 8. Chapter 9. Chapter 6. Chapter 10. Chapter 11. Chapter 7 5.5 Series and Parallel Combinations of 246 Complex Impedances 5.6 Steady-State AC Node-Voltage 247 Analysis 5.7 AC Power Calculations 256 5.8 Using Power Triangles 258 5.9 Power-Factor Correction 261

More information

420 Intro to VLSI Design

420 Intro to VLSI Design Dept of Electrical and Computer Engineering 420 Intro to VLSI Design Lecture 0: Course Introduction and Overview Valencia M. Joyner Spring 2005 Getting Started Syllabus About the Instructor Labs, Problem

More information

EE40 Lecture 35. Prof. Chang-Hasnain. 12/5/07 Reading: Ch 7, Supplementary Reader

EE40 Lecture 35. Prof. Chang-Hasnain. 12/5/07 Reading: Ch 7, Supplementary Reader EE4 Lecture 35 2/5/7 Reading: Ch 7, Supplementary Reader EE4 all 26 Slide Week 5 OUTLINE Need for Input Controlled Pull-Up CMOS Inverter nalysis CMOS Voltage Transfer Characteristic Combinatorial logic

More information

Design cycle for MEMS

Design cycle for MEMS Design cycle for MEMS Design cycle for ICs IC Process Selection nmos CMOS BiCMOS ECL for logic for I/O and driver circuit for critical high speed parts of the system The Real Estate of a Wafer MOS Transistor

More information

Unit level 4 Credit value 15. Introduction. Learning Outcomes

Unit level 4 Credit value 15. Introduction. Learning Outcomes Unit 20: Unit code Digital Principles T/615/1494 Unit level 4 Credit value 15 Introduction While the broad field of electronics covers many aspects, it is digital electronics which now has the greatest

More information

Approximate Hybrid Equivalent Circuits. Again, the impedance looking into the output terminals is infinite so that. conductance is zero.

Approximate Hybrid Equivalent Circuits. Again, the impedance looking into the output terminals is infinite so that. conductance is zero. Again, the impedance looking into the output terminals is infinite so that conductance is zero. Hence, the four h-parameters of an ideal transistor connected in CE transistor are The hybrid equivalent

More information

Introduction (concepts and definitions)

Introduction (concepts and definitions) Objectives: Introduction (digital system design concepts and definitions). Advantages and drawbacks of digital techniques compared with analog. Digital Abstraction. Synchronous and Asynchronous Systems.

More information

Lecture #1. Course Overview

Lecture #1. Course Overview Lecture #1 OUTLINE Course overview Introduction: integrated circuits Analog vs. digital signals Lecture 1, Slide 1 Course Overview EECS 40: One of five EECS core courses (with 20, 61A, 61B, and 61C) introduces

More information

Number of Lessons:155 #14B (P) Electronics Technology with Digital and Microprocessor Laboratory Completion Time: 42 months

Number of Lessons:155 #14B (P) Electronics Technology with Digital and Microprocessor Laboratory Completion Time: 42 months PROGRESS RECORD Study your lessons in the order listed below. Number of Lessons:155 #14B (P) Electronics Technology with Digital and Microprocessor Laboratory Completion Time: 42 months 1 2330A Current

More information

EE19D Digital Electronics. Lecture 1: General Introduction

EE19D Digital Electronics. Lecture 1: General Introduction EE19D Digital Electronics Lecture 1: General Introduction 1 What are we going to discuss? Some Definitions Digital and Analog Quantities Binary Digits, Logic Levels and Digital Waveforms Introduction to

More information

Gates and Circuits 1

Gates and Circuits 1 1 Gates and Circuits Chapter Goals Identify the basic gates and describe the behavior of each Describe how gates are implemented using transistors Combine basic gates into circuits Describe the behavior

More information

Architecture of Computers and Parallel Systems Part 9: Digital Circuits

Architecture of Computers and Parallel Systems Part 9: Digital Circuits Architecture of Computers and Parallel Systems Part 9: Digital Circuits Ing. Petr Olivka petr.olivka@vsb.cz Department of Computer Science FEI VSB-TUO Architecture of Computers and Parallel Systems Part

More information

INTRODUCTION TO MOS TECHNOLOGY

INTRODUCTION TO MOS TECHNOLOGY INTRODUCTION TO MOS TECHNOLOGY 1. The MOS transistor The most basic element in the design of a large scale integrated circuit is the transistor. For the processes we will discuss, the type of transistor

More information

DIGITAL ELECTRONICS INTRODUCTION. August 2012

DIGITAL ELECTRONICS INTRODUCTION. August 2012 AM 5-401 DIGITAL ELECTRONICS INTRODUCTION August 2012 DISTRIBUTION RESTRICTION: Approved for public release. Distribution is unlimited. DEPARTMENT OF THE ARMY MILITARY AUXILIARY RADIO SYSTEM FORT HUACHUCA

More information

ECE 124 Digital Circuits and Systems Winter 2011 Introduction Calendar Description:

ECE 124 Digital Circuits and Systems Winter 2011 Introduction Calendar Description: ECE 124 Digital Circuits and Systems Winter 2011 Introduction Calendar Description: Number systems. Switching algebra. Hardware description languages. Simplification of Boolean functions. Combinational

More information

Chapter 1: Digital logic

Chapter 1: Digital logic Chapter 1: Digital logic I. Overview In PHYS 252, you learned the essentials of circuit analysis, including the concepts of impedance, amplification, feedback and frequency analysis. Most of the circuits

More information

Semiconductor Devices

Semiconductor Devices Semiconductor Devices - 2014 Lecture Course Part of SS Module PY4P03 Dr. P. Stamenov School of Physics and CRANN, Trinity College, Dublin 2, Ireland Hilary Term, TCD 3 th of Feb 14 MOSFET Unmodified Channel

More information

Device Technologies. Yau - 1

Device Technologies. Yau - 1 Device Technologies Yau - 1 Objectives After studying the material in this chapter, you will be able to: 1. Identify differences between analog and digital devices and passive and active components. Explain

More information

ECE Digital Logic Lecture 2. Digital Design Circuit Types: Combinational vs. Sequential

ECE Digital Logic Lecture 2. Digital Design Circuit Types: Combinational vs. Sequential ECE 74 - Digital Logic Lecture Circuit Types: Combinational vs. equential Lecture Transistors, witches, CMO Basic Logic Gates Boolean Equations Truth Table: w/o time or previous values Circuit Components:

More information

Lecture 1, Introduction and Background

Lecture 1, Introduction and Background EE 338L CMOS Analog Integrated Circuit Design Lecture 1, Introduction and Background With the advances of VLSI (very large scale integration) technology, digital signal processing is proliferating and

More information

A HIGH SPEED & LOW POWER 16T 1-BIT FULL ADDER CIRCUIT DESIGN BY USING MTCMOS TECHNIQUE IN 45nm TECHNOLOGY

A HIGH SPEED & LOW POWER 16T 1-BIT FULL ADDER CIRCUIT DESIGN BY USING MTCMOS TECHNIQUE IN 45nm TECHNOLOGY A HIGH SPEED & LOW POWER 16T 1-BIT FULL ADDER CIRCUIT DESIGN BY USING MTCMOS TECHNIQUE IN 45nm TECHNOLOGY Jasbir kaur 1, Neeraj Singla 2 1 Assistant Professor, 2 PG Scholar Electronics and Communication

More information

VLSI Designed Low Power Based DPDT Switch

VLSI Designed Low Power Based DPDT Switch International Journal of Electronics and Communication Engineering. ISSN 0974-2166 Volume 8, Number 1 (2015), pp. 81-86 International Research Publication House http://www.irphouse.com VLSI Designed Low

More information

Course Outcome of M.Tech (VLSI Design)

Course Outcome of M.Tech (VLSI Design) Course Outcome of M.Tech (VLSI Design) PVL108: Device Physics and Technology The students are able to: 1. Understand the basic physics of semiconductor devices and the basics theory of PN junction. 2.

More information

Electrical Engineering 40 Introduction to Microelectronic Circuits

Electrical Engineering 40 Introduction to Microelectronic Circuits Electrical Engineering 40 Introduction to Microelectronic Circuits Instructor: Prof. Andy Neureuther EECS Department University of California, Berkeley Lecture 1, Slide 1 Introduction Instructor: Prof.

More information

ECE/CoE 0132: FETs and Gates

ECE/CoE 0132: FETs and Gates ECE/CoE 0132: FETs and Gates Kartik Mohanram September 6, 2017 1 Physical properties of gates Over the next 2 lectures, we will discuss some of the physical characteristics of integrated circuits. We will

More information

Experiment (1) Principles of Switching

Experiment (1) Principles of Switching Experiment (1) Principles of Switching Introduction When you use microcontrollers, sometimes you need to control devices that requires more electrical current than a microcontroller can supply; for this,

More information

LOGIC FAMILY LOGIC FAMILY

LOGIC FAMILY LOGIC FAMILY In computer engineering, a logic family may refer to one of two related concepts. A logic family of monolithic digital integrated circuit devices is a group of electronic logic gates constructed using

More information

Chapter 1, Introduction

Chapter 1, Introduction Introduction to Semiconductor Manufacturing Technology Chapter 1, Introduction hxiao89@hotmail.com 1 Objective After taking this course, you will able to Use common semiconductor terminology Describe a

More information

Contents. Acknowledgments. About the Author

Contents. Acknowledgments. About the Author Contents Figures Tables Preface xi vii xiii Acknowledgments About the Author xv xvii Chapter 1. Basic Mathematics 1 Addition 1 Subtraction 2 Multiplication 2 Division 3 Exponents 3 Equations 5 Subscripts

More information

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) 4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) The Metal Oxide Semitonductor Field Effect Transistor (MOSFET) has two modes of operation, the depletion mode, and the enhancement mode.

More information

Digital Integrated Circuits 1: Fundamentals

Digital Integrated Circuits 1: Fundamentals Digital Integrated Circuits 1: Fundamentals Atsushi Takahashi Department of Information and Communications Engineering School of Engineering Tokyo Institute of Technology 1 VLSI and Computer System VLSI

More information

1 FUNDAMENTAL CONCEPTS What is Noise Coupling 1

1 FUNDAMENTAL CONCEPTS What is Noise Coupling 1 Contents 1 FUNDAMENTAL CONCEPTS 1 1.1 What is Noise Coupling 1 1.2 Resistance 3 1.2.1 Resistivity and Resistance 3 1.2.2 Wire Resistance 4 1.2.3 Sheet Resistance 5 1.2.4 Skin Effect 6 1.2.5 Resistance

More information

Lecture 4 - Digital Representations III + Transistors

Lecture 4 - Digital Representations III + Transistors Lecture 4 - Digital Representations III + Transistors Video: Seems like a natural extension from images no? We just have a new dimension (time) Each frame is just an image made up of pixels Display n frames

More information

Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced.

Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced. Unit 1 Basic MOS Technology Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced. Levels of Integration:- i) SSI:-

More information

Assoc. Prof. Dr. MONTREE SIRIPRUCHYANUN

Assoc. Prof. Dr. MONTREE SIRIPRUCHYANUN 1 Assoc. Prof. Dr. MONTREE SIRIPRUCHYANUN Dept. of Teacher Training in Electrical Engineering 1 King Mongkut s Institute of Technology North Bangkok 1929 Bulky, expensive and required high supply voltages.

More information

Power Efficiency of Half Adder Design using MTCMOS Technique in 35 Nanometre Regime

Power Efficiency of Half Adder Design using MTCMOS Technique in 35 Nanometre Regime IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 12 May 2015 ISSN (online): 2349-6010 Power Efficiency of Half Adder Design using MTCMOS Technique in 35 Nanometre

More information

Digital Electronics Part II - Circuits

Digital Electronics Part II - Circuits Digital Electronics Part II - Circuits Dr. I. J. Wassell Gates from Transistors 1 Introduction Logic circuits are non-linear, consequently we will introduce a graphical technique for analysing such circuits

More information

Unit 3 Digital Circuits (Logic)

Unit 3 Digital Circuits (Logic) Unit 3 Digital Circuits (Logic) 1 2 A Brief History COMPUTERS AND SWITCHING TECHNOLOGY 3 Mechanical Computers Primarily gearbased Difference Engine and Analytic Engine designed and partially implemented

More information

Lecture 1. Tinoosh Mohsenin

Lecture 1. Tinoosh Mohsenin Lecture 1 Tinoosh Mohsenin Today Administrative items Syllabus and course overview Digital systems and optimization overview 2 Course Communication Email Urgent announcements Web page http://www.csee.umbc.edu/~tinoosh/cmpe650/

More information

Physical electronics, various electronics devices, ICs form the core of Electronics and Telecommunication branch. This part includes

Physical electronics, various electronics devices, ICs form the core of Electronics and Telecommunication branch. This part includes Paper-1 Syllabus for Electronics & Telecommunication Engineering: This part is for both objective and conventional type papers: 1) Materials and Components Materials and Components are the vertebral column

More information

UNIT-III POWER ESTIMATION AND ANALYSIS

UNIT-III POWER ESTIMATION AND ANALYSIS UNIT-III POWER ESTIMATION AND ANALYSIS In VLSI design implementation simulation software operating at various levels of design abstraction. In general simulation at a lower-level design abstraction offers

More information

Digital Electronics Course Objectives

Digital Electronics Course Objectives Digital Electronics Course Objectives In this course, we learning is reported using Standards Referenced Reporting (SRR). SRR seeks to provide students with grades that are consistent, are accurate, and

More information

MTLE-6120: Advanced Electronic Properties of Materials. Semiconductor transistors for logic and memory. Reading: Kasap

MTLE-6120: Advanced Electronic Properties of Materials. Semiconductor transistors for logic and memory. Reading: Kasap MTLE-6120: Advanced Electronic Properties of Materials 1 Semiconductor transistors for logic and memory Reading: Kasap 6.6-6.8 Vacuum tube diodes 2 Thermionic emission from cathode Electrons collected

More information

Chapter 2 : Semiconductor Materials & Devices (II) Feb

Chapter 2 : Semiconductor Materials & Devices (II) Feb Chapter 2 : Semiconductor Materials & Devices (II) 1 Reference 1. SemiconductorManufacturing Technology: Michael Quirk and Julian Serda (2001) 3. Microelectronic Circuits (5/e): Sedra & Smith (2004) 4.

More information

Chapter 19 Study Questions Name: Class:

Chapter 19 Study Questions Name: Class: Chapter 19 Study Questions Name: Class: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. All electronic devices transmit information using

More information

Chapter # 1: Introduction

Chapter # 1: Introduction Chapter # : Randy H. Katz University of California, erkeley May 993 ฉ R.H. Katz Transparency No. - The Elements of Modern Design Representations, Circuit Technologies, Rapid Prototyping ehaviors locks

More information

Logic diagram: a graphical representation of a circuit

Logic diagram: a graphical representation of a circuit LOGIC AND GATES Introduction to Logic (1) Logic diagram: a graphical representation of a circuit Each type of gate is represented by a specific graphical symbol Truth table: defines the function of a gate

More information

BICMOS Technology and Fabrication

BICMOS Technology and Fabrication 12-1 BICMOS Technology and Fabrication 12-2 Combines Bipolar and CMOS transistors in a single integrated circuit By retaining benefits of bipolar and CMOS, BiCMOS is able to achieve VLSI circuits with

More information

Electrical, Electronic and Communications Engineering Technology/Technician CIP Task Grid

Electrical, Electronic and Communications Engineering Technology/Technician CIP Task Grid Secondary Task List 100 SAFETY 101 Describe OSHA safety regulations. 102 Identify, select, and demonstrate proper hand tool use for electronics work. 103 Recognize the types and usages of fire extinguishers.

More information

1. The decimal number 62 is represented in hexadecimal (base 16) and binary (base 2) respectively as

1. The decimal number 62 is represented in hexadecimal (base 16) and binary (base 2) respectively as BioE 1310 - Review 5 - Digital 1/16/2017 Instructions: On the Answer Sheet, enter your 2-digit ID number (with a leading 0 if needed) in the boxes of the ID section. Fill in the corresponding numbered

More information

Digital Applications (CETT 1415) Credit: 4 semester credit hours (3 hours lecture, 4 hours lab) Prerequisite: CETT 1403 & CETT 1405

Digital Applications (CETT 1415) Credit: 4 semester credit hours (3 hours lecture, 4 hours lab) Prerequisite: CETT 1403 & CETT 1405 Digital Applications () Credit: 4 semester credit hours (3 hours lecture, 4 hours lab) Prerequisite: CETT 1403 & CETT 1405 Course Description This course covers digital techniques and numbering systems,

More information

EE320L Electronics I. Laboratory. Laboratory Exercise #6. Current-Voltage Characteristics of Electronic Devices. Angsuman Roy

EE320L Electronics I. Laboratory. Laboratory Exercise #6. Current-Voltage Characteristics of Electronic Devices. Angsuman Roy EE320L Electronics I Laboratory Laboratory Exercise #6 Current-Voltage Characteristics of Electronic Devices By Angsuman Roy Department of Electrical and Computer Engineering University of Nevada, Las

More information

Lecture Introduction

Lecture Introduction Lecture 1 6.012 Introduction 1. Overview of 6.012 Outline 2. Key conclusions of 6.012 Reading Assignment: Howe and Sodini, Chapter 1 6.012 Electronic Devices and Circuits-Fall 200 Lecture 1 1 Overview

More information

Lecture 02: Digital Logic Review

Lecture 02: Digital Logic Review CENG 3420 Lecture 02: Digital Logic Review Bei Yu byu@cse.cuhk.edu.hk CENG3420 L02 Digital Logic. 1 Spring 2017 Review: Major Components of a Computer CENG3420 L02 Digital Logic. 2 Spring 2017 Review:

More information

Introduction to Digital Electronics

Introduction to Digital Electronics Introduction to Digital Electronics Board of Studies Prof. H. N. Verma Vice- Chancellor Jaipur National University, Jaipur Dr. Rajendra Takale Prof. and Head Academics SBPIM, Pune Prof. M. K. Ghadoliya

More information

Lecture Wrap up. December 13, 2005

Lecture Wrap up. December 13, 2005 6.012 Microelectronic Devices and Circuits Fall 2005 Lecture 26 1 Lecture 26 6.012 Wrap up December 13, 2005 Contents: 1. 6.012 wrap up Announcements: Final exam TA review session: December 16, 7:30 9:30

More information

Lecture 16. Complementary metal oxide semiconductor (CMOS) CMOS 1-1

Lecture 16. Complementary metal oxide semiconductor (CMOS) CMOS 1-1 Lecture 16 Complementary metal oxide semiconductor (CMOS) CMOS 1-1 Outline Complementary metal oxide semiconductor (CMOS) Inverting circuit Properties Operating points Propagation delay Power dissipation

More information

Digital Logic Circuits

Digital Logic Circuits Digital Logic Circuits Let s look at the essential features of digital logic circuits, which are at the heart of digital computers. Learning Objectives Understand the concepts of analog and digital signals

More information

Digital Electronic Concepts

Digital Electronic Concepts Western Technical College 10662137 Digital Electronic Concepts Course Outcome Summary Course Information Description Career Cluster Instructional Level Total Credits 4.00 Total Hours 108.00 This course

More information

Transistors, Gates and Busses 3/21/01 Lecture #

Transistors, Gates and Busses 3/21/01 Lecture # Transistors, Gates and Busses 3/2/ Lecture #8 6.7 The goal for today is to understand a bit about how a computer actually works: how it stores, adds, and communicates internally! How transistors make gates!

More information

Intro to Electricity. Introduction to Transistors. Example Circuit Diagrams. Water Analogy

Intro to Electricity. Introduction to Transistors. Example Circuit Diagrams. Water Analogy Introduction to Transistors Transistors form the basic building blocks of all computer hardware. Invented by William Shockley, John Bardeen and Walter Brattain in 1947, replacing previous vaccuumtube technology

More information

Abu Dhabi Men s College, Electronics Department. Logic Families

Abu Dhabi Men s College, Electronics Department. Logic Families bu Dhabi Men s College, Electronics Department Logic Families There are several different families of logic gates. Each family has its capabilities and limitations, its advantages and disadvantages. The

More information

In this lecture we will begin a new topic namely the Metal-Oxide-Semiconductor Field Effect Transistor.

In this lecture we will begin a new topic namely the Metal-Oxide-Semiconductor Field Effect Transistor. Solid State Devices Dr. S. Karmalkar Department of Electronics and Communication Engineering Indian Institute of Technology, Madras Lecture - 38 MOS Field Effect Transistor In this lecture we will begin

More information

Datorstödd Elektronikkonstruktion

Datorstödd Elektronikkonstruktion Datorstödd Elektronikkonstruktion [Computer Aided Design of Electronics] Zebo Peng, Petru Eles and Gert Jervan Embedded Systems Laboratory IDA, Linköping University http://www.ida.liu.se/~tdts80/~tdts80

More information

Digital Electronics 8. Multiplexer & Demultiplexer

Digital Electronics 8. Multiplexer & Demultiplexer 1 Module -8 Multiplexers and Demultiplexers 1 Introduction 2 Principles of Multiplexing and Demultiplexing 3 Multiplexer 3.1 Types of multiplexer 3.2 A 2 to 1 multiplexer 3.3 A 4 to 1 multiplexer 3.4 Multiplex

More information

Physics 364, Fall 2012, reading due your answers to by 11pm on Thursday

Physics 364, Fall 2012, reading due your answers to by 11pm on Thursday Physics 364, Fall 2012, reading due 2012-10-25. Email your answers to ashmansk@hep.upenn.edu by 11pm on Thursday Course materials and schedule are at http://positron.hep.upenn.edu/p364 Assignment: (a)

More information

Chapter 3. H/w s/w interface. hardware software Vijaykumar ECE495K Lecture Notes: Chapter 3 1

Chapter 3. H/w s/w interface. hardware software Vijaykumar ECE495K Lecture Notes: Chapter 3 1 Chapter 3 hardware software H/w s/w interface Problems Algorithms Prog. Lang & Interfaces Instruction Set Architecture Microarchitecture (Organization) Circuits Devices (Transistors) Bits 29 Vijaykumar

More information

Intel s High-k/Metal Gate Announcement. November 4th, 2003

Intel s High-k/Metal Gate Announcement. November 4th, 2003 Intel s High-k/Metal Gate Announcement November 4th, 2003 1 What are we announcing? Intel has made significant progress in future transistor materials Two key parts of this new transistor are: The gate

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION 1.1 Historical Background Recent advances in Very Large Scale Integration (VLSI) technologies have made possible the realization of complete systems on a single chip. Since complete

More information

Introduction to Digital Logic Missouri S&T University CPE 2210 Electric Circuits

Introduction to Digital Logic Missouri S&T University CPE 2210 Electric Circuits Introduction to Digital Logic Missouri S&T University CPE 2210 Electric Circuits Egemen K. Çetinkaya Egemen K. Çetinkaya Department of Electrical & Computer Engineering Missouri University of Science and

More information

Veer Narmad South Gujarat University, Surat

Veer Narmad South Gujarat University, Surat Unit I: Passive circuit elements (With effect from June 2017) Syllabus for: F Y B Sc (Electronics) Semester- 1 PAPER I: Basic Electrical Circuits Resistors, resistor types, power ratings, resistor colour

More information

ME 4447 / 6405 Student Lecture. Transistors. Abiodun Otolorin Michael Abraham Waqas Majeed

ME 4447 / 6405 Student Lecture. Transistors. Abiodun Otolorin Michael Abraham Waqas Majeed ME 4447 / 6405 Student Lecture Transistors Abiodun Otolorin Michael Abraham Waqas Majeed Lecture Overview Transistor? History Underlying Science Properties Types of transistors Bipolar Junction Transistors

More information