Chapter 15 Integrated Circuits

Size: px
Start display at page:

Download "Chapter 15 Integrated Circuits"

Transcription

1 Chapter 15 Integrated Circuits SKEE1223 Digital Electronics Mun im/arif/izam FKE, Universiti Teknologi Malaysia December 8, 2015

2 Overview 1 Basic IC Characteristics Packaging Logic Families Datasheets 2 Important IC Parameters DC Supply Voltage Logic Levels Noise Margin Propagation Delay Fanout & Fanin Power 3 Variations of TTL 4 TTL vs CMOS Transistor Types TTL Operation & Evolution 5 CMOS Operation & Evolution

3 Packaging Integrated Circuits Known as IC or chip Packaging From 4-6 pins to hundreds Several packaging technologies available In ceramic or plastic These packages have metal leads that are the conductive wire that connect electricity from the outside world to the silicon inside the package Leads between packages are connected with small copper traces on a printed circuit board (PCB), and the package leads are soldered to the PCB

4 Packaging IC Levels of Integration Complexity Number of gates Example SSI 12 Individual gates MSI Flip-flops, registers LSI ,000 Microcontroller VLSI 10,000 1,000, microprocessor ULSI 1,000,000 i7 microprocessor

5 Logic Families Logic Families Logic Family : A collection of different IC s that have similar circuit characteristics The circuit design of the basic gate of each logic family is the same The most important parameters for evaluating and comparing logic families include: Logic Levels Power Dissipation Propagation delay Noise margin Fan-out ( loading )

6 Logic Families Example Logic Families RTL (resistor-transistor logic), DTL (diode-transistor logic) Earliest developed TTL (transistor-transistor logic) Still available, used occasionally 7400 series, refined over generations Most rugged least susceptible to electrical damage Consumes more power than CMOS not suitable for battery operated devices CMOS (complimentary metal-oxide semiconductor) Lowest power consumption Used to be slow, but fast today Most common logic family used in all microprocessors Easily damaged by static discharge & voltage spikes BiCMOS, ECL, GaAs Speedy, but use more power, more expensive or harder to use

7 , h H K H h, L w W / GN! =ds:r/l du H Symbol Parameter Min Ty p Max Unit V== SupplyRVoltage L, /, Td OperatingRdmbientRTemperatureRRange L, /, IOH OutputR=urrentR High L,xR/, g, md IOL OutputR=urrentR Low L, /,,gl,g/l L,,, SNL,LSXXJ SN/,LSXXN SN/,LSXX!!=R=HdRd=T:RISTI=SROV:RROP:RdTINGRT:MP:RdTUR:RRdNG:RMunlessRotherwiseRspecifiedi Limits Lg Lg HL HL LgL LgHL HL /,g Wg JRSU""IX =:RdMI= =ds:rwhhu W NRSU""IX PLdSTI= =ds:rw,wu w =eramic Plastic SOI=!RSU""IX SOI= Symbol Parameter Min Ty p Max Unit TestR=onditions VIH InputRHIGHRVoltage Hg V Input LOW Voltage L, g/ /, gw V V = md GuaranteedRInputRHIGHRVoltageRfor dllrinputs GuaranteedRInputRLOWRVoltageRfor dllrinputs VIK InputR=lampR!iodeRVoltage gwl gl V V== XRMINxRIIN XR WRmd Output HIGH Voltage Output LOW Voltage Input HIGH =urrent /, Hg/ hgl V /, ghl gl V IOL XRWg Rmd == OH IN IH orrvil perrtruthrtable H O d V== XRMdXxRVIN XRHg/RV g md V== XRMdXxRVIN XR/g RV IIL InputRLOWR=urrent g, md V== XRMdXxRVIN XR g,rv IOS ShortR=ircuitR=urrentRMNoteR i H md V== XRMdX == PowerRSupplyR=urrent TotalxROutputRLOW Note Y Not more than one output should be shorted at a timex nor for more than secondg d=r=hdrd=t:risti=srmtd XRHLy=i Limits perrtruthrtable Symbol Parameter Min Ty p Max Unit TestR=onditions tphl TurnuOnR!elayxRInputRtoROutput L ns,g, == == =L XR LRp" Datasheets Datasheets QUd!RHuINPUTRNdN!RGdT: SNL,./,LS :S!RcRhL RVolts QUd!RHuINPUTRNdN!RGdT: LOWRPOW:RRS=HOTTKY V== GUdRdNT::!ROP:RdTINGRRdNG:S VIL VOH VOL IIH I== OR!:RINGRIN"ORMdTION L, HgL hgl V V== XRMINxRIOH XRMdXxRVIN XRVIH L,x /, ghl g, V IOL XR,g Rmd V== XRV== MINx VIN XRVIL orrvih TotalxROutputRHIGH gw md V== XRMdX Pinouts Packages/Dimensions Voltages and Currents Noise Margin Power Dissipation Propagation Delay Speed-Power Product Fan-In, Fan-Out tplh TurnuOffR!elayxRInputRtoROutput Kg L ns V== XRLg RV

8 DC Supply Voltage DC Supply Voltage All digital ICs have at least two pins that are connected to the power rails. TTL CMOS Positive supply voltage V CC V DD Negative supply voltage GND or V EE V SS For TTL, V CC is +5 V ± 0.5 V. A TTL gate may be destroyed if the limit is exceeded. CMOS gates are tolerant to power supply voltage variations The power supply ranges from +1.8 V to +18 V. voltage, power consumption voltage, speed.

9 Logic Levels Logic Levels TTL and CMOS use voltages to represent logic levels. Ideally, a single voltage value is specified for each logic level. V CC (power) Logic 1 GND (ground) Logic 0 In reality, a range of voltages is specified for each logic level.

10 Logic Levels HIGH Level Electrical Parameters For a high-state gate driving a second gate, we define: Parameter V OH V IH I OH I IH Description High-level output voltage, the minimum voltage level that a logic gate will produce as a logic 1 output. High-level input voltage, the minimum voltage level that a logic gate will recognize as a logic 1 input. Voltage below this level will not be accepted as high. High-level output current, current that flows from an output in the logic 1 state under specified load conditions. High-level input current, current that flows into an input when a logic 1 voltage is applied to that input.

11 Logic Levels LOW Level Electrical Parameters For a low-state gate driving a second gate, we define: Parameter V OL V IL I OL I IL Description Low-level output voltage, the maximum voltage level that a logic gate will produce as a logic 0 output. Low-level input voltage, the maximum voltage level that a logic gate will recognize as a logic 0 input. Voltage below this level will not be accepted as low. Low-level output current, current that flows from an output in the logic 0 state under specified load conditions. Low-level input current, current that flows into an input when a logic 0 voltage is applied to that input.

12 Logic Levels TTL vs CMOS Logic Levels V CC = V V CC = 5 V High V OH = 4.9 V High V IH = 3.85 V V OH = 2.8 V V IH = 2.4 V Undefined Undefined V IL = 1.35 V V IL = 0.8 V Low V OL = 0.4 V Low V OL = 0.1 V TTL. CMOS.

13 Noise Margin Noise Margin If noise in the circuit is high enough it can push a logic 0 up or drop a logic 1 down into the indeterminate or illegal region Noise margin is maximum amount of noise that the circuit can withstand. 5V 5V High High level noise margin High V OH= 2.8V V IH = 2.4V Not allowed Undefined V OL= 0.4V 0V Low V OH V OL Low-level noise margin V V IH IL Low V IL = 0.8V 0V

14 Noise Margin Noise Margin Noise Margin for logic high is: Noise Margin for logic low is: V NH = V OH V IH V NL = V IL V OL

15 Propagation Delay Propagation Delay Propagation delay is the delay from a change in input to a change on the output. t PHL delay from an input is given to the time the output changes from high to low. t PLH delay from an input is given to the time the output changes from low to high. Input 50% Output 50% t PLH t PHL

16 Fanout & Fanin Fanout for TTL The fanout is the number of standard loads that an output can drive. Exceeding the fanout may result in incorrect circuit operation and may destroy the devices

17 Fanout & Fanin Fanout for CMOS Fanout is much higher for CMOS devices than for TTL devices. I IL and I IH are extremely small for CMOS (< 1µA). Calculating fanout as we did for TTL might yield fanout of 4000 for CMOS, compared to 10 for standard TTL. However, increased fanout results in increased delay due to input capacitance.

18 Fanout & Fanin Fan-In Number of input signals to a gate. Not an electrical property Function of the manufacturing process NAND gate with a fan in of 8.

19 Power Power Dissipation Static/quiescent Due to passive components No input signal Dynamic Due to charging and discharging capacitances through resistances Varies with operating frequency Example: 74LS-TTL power dissipation : 5 mw/gate, regardless of frequency 74HC-CMOS power dissipation : µw/gate static, but increase proportionally to frequency At 1 MHz, both consume about the same power

20 Power Speed-Power Product Speed (propagation delay) and power consumption are the two most important performance parameters of a digital IC. Speed-power product (SPP) a simple means for measuring and comparing the overall performance of an IC family (the smaller, the better). Example, an IC has: an average propagation delay of 10 ns an average power dissipation of 5 mw the speed-power product = (10 ns) x (5 mw) = 50 picojoules (pj)

21 Power SPP of Various Logic Families CMOS TTL 74HC S 74LS 74AS 74ALS 74F Propagation delay (ns) Power consumption (mw/gate) Static khz Max clock freq. (MHz) Speed-Power 100 khz(pj) Fan-Out: LS loads Same series >100 > Low-level input current (ma)

22 Wired-AND Open collector outputs connected together to a common pull-up resistor Any collector can pull the signal line low Logically an AND gate V CC A ABC B C

23 Tri-State Logic Usually used to bus multiple signals on the same wire Only one gate output is enabled, all others must be disabled Disabled gates look like high-impedance (Hi-Z) to bus and therefore do not interfere with other gates putting signals on the bus 32 Communications bus Device 1 (e.g., CPU) Device 2 (e.g., Memory) Device 3 (e.g., I/O)

24 Transistor Types TTL vs CMOS TTL Transistor-Transistor Logic Uses BJT (bipolar junction transistor) MOS Metal Oxide Semiconductor Uses FET (field effect transistor) MOS has three subfamilies PMOS (P-channel FET) NMOS (N-channel FET) CMOS (Complimentary, uses both types, most common)

25 TTL Operation & Evolution TTL Circuit Operation A standard TTL gate A B I CQ1 Q1 Q2 Q3 Q4 Y ON OFF OFF ON ON OFF OFF ON ON OFF OFF ON OFF ON ON OFF 0

26 TTL Operation & Evolution TTL Evolution

27 CMOS Circuit Operation CMOS Inverter Input Q1 Q2 Output 0 ON OFF 1 1 OFF ON 0

28 CMOS Evolution

29 CMOS Logic Trends Reduction in supply voltages 12V 5V 3.3V 2.5V 1.8V 1.5V Reduction in power dissipation results in Lower cost Higher integration Improved reliability Approximately double the number of transistors per chip every 18 months The famous Moore s Law observed by Gordon Moore in 1965

30 Moore s Law

31 SKEE

1 IC Logic Families and Characteristics

1 IC Logic Families and Characteristics 2141 Electronics and Instrumentation IC1 1 IC Logic Families and Characteristics 1.1 Introduction miniature, low-cost electronics circuits whose components are fabricated on a single, continuous piece

More information

Module-1: Logic Families Characteristics and Types. Table of Content

Module-1: Logic Families Characteristics and Types. Table of Content 1 Module-1: Logic Families Characteristics and Types Table of Content 1.1 Introduction 1.2 Logic families 1.3 Positive and Negative logic 1.4 Types of logic families 1.5 Characteristics of logic families

More information

Basic Characteristics of Digital ICs

Basic Characteristics of Digital ICs ECEN202 Section 2 Characteristics of Digital IC s Part 1: Specification of characteristics An introductory look at digital IC s: Logic families Basic construction and operation Operating characteristics

More information

The entire range of digital ICs is fabricated using either bipolar devices or MOS devices or a combination of the two. Bipolar Family DIODE LOGIC

The entire range of digital ICs is fabricated using either bipolar devices or MOS devices or a combination of the two. Bipolar Family DIODE LOGIC Course: B.Sc. Applied Physical Science (Computer Science) Year & Sem.: IInd Year, Sem - IIIrd Subject: Computer Science Paper No.: IX Paper Title: Computer System Architecture Lecture No.: 10 Lecture Title:

More information

4-bit counter circa bit counter circa 1990

4-bit counter circa bit counter circa 1990 Digital Logic 4-bit counter circa 1960 8-bit counter circa 1990 Logic gates Operates on logical values (TRUE = 1, FALSE = 0) NOT AND OR XOR 0-1 1-0 0 0 0 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 0 1 1 1 1 1 0 0 0

More information

4-bit counter circa bit counter circa 1990

4-bit counter circa bit counter circa 1990 Digital Logic 4-bit counter circa 1960 8-bit counter circa 1990 Logic gates Operates on logical values (TRUE = 1, FALSE = 0) NOT AND OR XOR 0-1 1-0 0 0 0 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 0 1 1 1 1 1 0 0 0

More information

Logic Families. A-PDF Split DEMO : Purchase from to remove the watermark. 5.1 Logic Families Significance and Types. 5.1.

Logic Families. A-PDF Split DEMO : Purchase from  to remove the watermark. 5.1 Logic Families Significance and Types. 5.1. A-PDF Split DEMO : Purchase from www.a-pdf.com to remove the watermark 5 Logic Families Digital integrated circuits are produced using several different circuit configurations and production technologies.

More information

IC Logic Families and Characteristics. Dr. Mohammad Najim Abdullah

IC Logic Families and Characteristics. Dr. Mohammad Najim Abdullah IC Logic Families and Characteristics Introduction miniature, low-cost electronics circuits whose components are fabricated on a single, continuous piece of semiconductor material to perform a high-level

More information

Digital Circuits and Operational Characteristics

Digital Circuits and Operational Characteristics Digital Circuits and Operational Characteristics 1. DC Supply Voltage TTL based devices work with a dc supply of +5 Volts. TTL offers fast switching speed, immunity from damage due to electrostatic discharges.

More information

Digital Integrated Circuits - Logic Families (Part II)

Digital Integrated Circuits - Logic Families (Part II) Digital Integrated Circuits - Logic Families (Part II) MOSFET Logic Circuits MOSFETs are unipolar devices. They are simple, small in size, inexpensive to fabricate and consume less power. MOS fabrication

More information

Logic Families. Describes Process used to implement devices Input and output structure of the device. Four general categories.

Logic Families. Describes Process used to implement devices Input and output structure of the device. Four general categories. Logic Families Characterizing Digital ICs Digital ICs characterized several ways Circuit Complexity Gives measure of number of transistors or gates Within single package Four general categories SSI - Small

More information

DIGITAL ELECTRONICS. Digital Electronics - B1 28/04/ DDC Storey 1. Group B: Digital circuits and devices

DIGITAL ELECTRONICS. Digital Electronics - B1 28/04/ DDC Storey 1. Group B: Digital circuits and devices Politecnico di Torino - ICT school Group B: Digital circuits and devices DIGITAL ELECTRONICS B DIGITAL CIRCUITS B.1 Logic devices B1 B2 B3 B4 Logic families Combinatorial circuits Basic sequential circuits

More information

Digital logic families

Digital logic families Digital logic families Digital logic families Digital integrated circuits are classified not only by their complexity or logical operation, but also by the specific circuit technology to which they belong.

More information

Digital Electronics Part II - Circuits

Digital Electronics Part II - Circuits Digital Electronics Part II - Circuits Dr. I. J. Wassell Gates from Transistors 1 Introduction Logic circuits are non-linear, consequently we will introduce a graphical technique for analysing such circuits

More information

Module-3: Metal Oxide Semiconductor (MOS) & Emitter coupled logic (ECL) families

Module-3: Metal Oxide Semiconductor (MOS) & Emitter coupled logic (ECL) families 1 Module-3: Metal Oxide Semiconductor (MOS) & Emitter coupled logic (ECL) families 1. Introduction 2. Metal Oxide Semiconductor (MOS) logic 2.1. Enhancement and depletion mode 2.2. NMOS and PMOS inverter

More information

Note that none of the above MAY be a VALID ANSWER.

Note that none of the above MAY be a VALID ANSWER. ECE 270 Learning Outcome 1-1 - Practice Exam / Solution LEARNING OUTCOME #1: an ability to analyze and design CMOS logic gates. Multiple Choice select the single most appropriate response for each question.

More information

Lecture 02: Logic Families. R.J. Harris & D.G. Bailey

Lecture 02: Logic Families. R.J. Harris & D.G. Bailey Lecture 02: Logic Families R.J. Harris & D.G. Bailey Objectives Show how diodes can be used to form logic gates (Diode logic). Explain the need for introducing transistors in the output (DTL and TTL).

More information

Microcontroller Systems. ELET 3232 Topic 13: Load Analysis

Microcontroller Systems. ELET 3232 Topic 13: Load Analysis Microcontroller Systems ELET 3232 Topic 13: Load Analysis 1 Objective To understand hardware constraints on embedded systems Define: Noise Margins Load Currents and Fanout Capacitive Loads Transmission

More information

TC74ACT74P,TC74ACT74F,TC74ACT74FN,TC74ACT74FT

TC74ACT74P,TC74ACT74F,TC74ACT74FN,TC74ACT74FT TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic TC74ACT74P/F/FN/FT TC74ACT74P,TC74ACT74F,TC74ACT74FN,TC74ACT74FT Dual D-Type Flip Flop with Preset and Clear The TC74ACT74 is an advanced high

More information

Practical Aspects Of Logic Gates

Practical Aspects Of Logic Gates Practical Aspects Of Logic Gates Introduction & Objectives Logic gates are physically implemented as Integrated Circuits (IC). Integrated circuits are implemented in several technologies. Two landmark

More information

MM74HC132 Quad 2-Input NAND Schmitt Trigger

MM74HC132 Quad 2-Input NAND Schmitt Trigger Quad 2-Input NAND Schmitt Trigger General Description The utilizes advanced silicon-gate CMOS technology to achieve the low power dissipation and high noise immunity of standard CMOS, as well as the capability

More information

Chapter 6 DIFFERENT TYPES OF LOGIC GATES

Chapter 6 DIFFERENT TYPES OF LOGIC GATES Chapter 6 DIFFERENT TYPES OF LOGIC GATES Lesson 8 NMOS gates Ch06L8-"Digital Principles and Design", Raj Kamal, Pearson Education, 2006 2 Outline NMOS (n-channel based MOSFETs based circuit) NMOS Features

More information

TC74ACT540P,TC74ACT540F,TC74ACT540FW,TC74ACT540FT TC74ACT541P,TC74ACT541F,TC74ACT541FW,TC74ACT541FT

TC74ACT540P,TC74ACT540F,TC74ACT540FW,TC74ACT540FT TC74ACT541P,TC74ACT541F,TC74ACT541FW,TC74ACT541FT TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic TC74ACT540,541P/F/FW/FT TC74ACT540P,TC74ACT540F,TC74ACT540FW,TC74ACT540FT TC74ACT541P,TC74ACT541F,TC74ACT541FW,TC74ACT541FT Octal Bus Buffer TC74ACT540P/F/FW/FT

More information

. HIGH SPEED .LOW POWER DISSIPATION .COMPATIBLE WITH TTL OUTPUTS M54/74HCT373 M54/74HCT533

. HIGH SPEED .LOW POWER DISSIPATION .COMPATIBLE WITH TTL OUTPUTS M54/74HCT373 M54/74HCT533 M54/74HCT373 M54/74HCT533 OCTAL D-TYPE LATCH WITH 3 STATE OUTPUT HCT373 NON INVERTING - HCT533 INVERTING. HIGH SPEED t PD = 17 ns (TYP.) AT V CC =5V.LOW POWER DISSIPATION ICC =4µA (MAX.) AT TA =25 C.COMPATIBLE

More information

INTEGRATED-CIRCUIT LOGIC FAMILIES

INTEGRATED-CIRCUIT LOGIC FAMILIES C H A P T E R 8 INTEGRATED-CIRCUIT LOGIC FAMILIES OUTLINE 8-1 Digital IC Terminology 8-2 The TTL Logic Family 8-3 TTL Data Sheets 8-4 TTL Series Characteristics 8-5 TTL Loading and Fan-Out 8-6 Other TTL

More information

Digital Electronics - B1 18/03/ /03/ DigElnB DDC. 18/03/ DigElnB DDC. 18/03/ DigElnB DDC

Digital Electronics - B1 18/03/ /03/ DigElnB DDC. 18/03/ DigElnB DDC. 18/03/ DigElnB DDC Politecnico di Torino - ICT school Group B: Digital circuits and devices DIGITL ELECTRONICS B DIGITL CIRCUITS B.1 Logic devices B1 B2 B3 B4 Logic families Combinatorial circuits Basic sequential circuits

More information

M74HCT573B1R 74HCT573 OCTAL TRI-STATE TRANS LATCH

M74HCT573B1R 74HCT573 OCTAL TRI-STATE TRANS LATCH DATA SHEET Logic Order code Manufacturer code Description 83-0034 M74HCT573B1R 74HCT573 OCTAL TRI-STATE TRANS LATCH Logic The enclosed information is believed to be correct, Information may change without

More information

Architecture of Computers and Parallel Systems Part 9: Digital Circuits

Architecture of Computers and Parallel Systems Part 9: Digital Circuits Architecture of Computers and Parallel Systems Part 9: Digital Circuits Ing. Petr Olivka petr.olivka@vsb.cz Department of Computer Science FEI VSB-TUO Architecture of Computers and Parallel Systems Part

More information

SN75374 QUADRUPLE MOSFET DRIVER

SN75374 QUADRUPLE MOSFET DRIVER SLRS28 SEPTEMBER 1988 Quadruple Circuits Capable of Driving High-Capacitance Loads at High Speeds Output Supply Voltage Range From 5 V to 24 V Low Standby Power Dissipation V CC3 Supply Maximizes Output

More information

MM74HC132 Quad 2-Input NAND Schmitt Trigger

MM74HC132 Quad 2-Input NAND Schmitt Trigger Quad 2-Input NAND Schmitt Trigger General Description The MM74HC132 utilizes advanced silicon-gate CMOS technology to achieve the low power dissipation and high noise immunity of standard CMOS, as well

More information

FACT Descriptions and Family Characteristics

FACT Descriptions and Family Characteristics November 1988 Revised January 2000 FACT Descriptions and Family Characteristics Fairchild Semiconductor Advanced CMOS Technology FACT Logic Fairchild Semiconductor introduced FACT (Fairchild Advanced CMOS

More information

. HIGH SPEED .LOW POWER DISSIPATION .COMPATIBLE WITH TTL OUTPUTS M54/74HCT564 M54/74HCT574

. HIGH SPEED .LOW POWER DISSIPATION .COMPATIBLE WITH TTL OUTPUTS M54/74HCT564 M54/74HCT574 M54/74HCT564 M54/74HCT574 OCTAL D-TYPE FLIP FLOP WITH 3 STATE OUTPUT HCT564 INVERTING - HCT574 NON INVERTING. HIGH SPEED f MAX = 62 MHz (TYP.) AT V CC =5V.LOW POWER DISSIPATION ICC =4µA (MAX.) AT TA =25

More information

M74HCT241B1R 74HCT241 OCTAL TRI-STATE BUFFER (DIL20) M74HCT244B1R 74HCT244 OCTAL TRI-STATE BUFFER (DIL20)

M74HCT241B1R 74HCT241 OCTAL TRI-STATE BUFFER (DIL20) M74HCT244B1R 74HCT244 OCTAL TRI-STATE BUFFER (DIL20) DATA SHEET Order code Manufacturer code Description 83-0030 M74HCT241B1R 74HCT241 OCTAL TRI-STATE BUFFER (DIL20) 83-0032 M74HCT244B1R 74HCT244 OCTAL TRI-STATE BUFFER (DIL20) The enclosed information is

More information

QS54/74FCT373T, 2373T. High-Speed CMOS Bus Interface 8-Bit Latches MDSL QUALITY SEMICONDUCTOR, INC. 1 DECEMBER 28, 1998

QS54/74FCT373T, 2373T. High-Speed CMOS Bus Interface 8-Bit Latches MDSL QUALITY SEMICONDUCTOR, INC. 1 DECEMBER 28, 1998 Q QUALITY SEMICONDUCTOR, INC. QS54/74FCT373T, 2373T High-Speed CMOS Bus Interface 8-Bit Latches QS54/74FCT373T QS54/74FCT2373T FEATURES/BENEFITS Pin and function compatible to the 74F373 74FCT373 and 74ABT373

More information

IC Logic Families. Wen-Hung Liao, Ph.D. 5/16/2001

IC Logic Families. Wen-Hung Liao, Ph.D. 5/16/2001 IC Logic Families Wen-Hung Liao, Ph.D. 5/16/2001 Digital IC Terminology Voltage Parameters: V IH (min): high-level input voltage, the minimum voltage level required for a logic 1 at an input. V IL (max):

More information

Quad 2-Input NAND Gate High-Voltage Silicon-Gate CMOS

Quad 2-Input NAND Gate High-Voltage Silicon-Gate CMOS TECHNICAL DATA Quad 2-Input NAND Gate High-oltage Silicon-Gate CMOS The NAND gates provide the system designer with direct emplementation of the NAND function. Operating oltage Range:.0 to 18 Maximum input

More information

Logic families (TTL, CMOS)

Logic families (TTL, CMOS) Logic families (TTL, CMOS) When you work with digital IC's, you should be familiar, not only with their logical operation, but also with such operational properties as voltage levels, noise immunity, power

More information

TC74ACT139P,TC74ACT139F,TC74ACT139FN,TC74ACT139FT

TC74ACT139P,TC74ACT139F,TC74ACT139FN,TC74ACT139FT TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic TC74ACT39P/F/FN/FT TC74ACT39P,TC74ACT39F,TC74ACT39FN,TC74ACT39FT Dual 2-to-4 Line Decoder The TC74ACT39 is an advanced high speed CMOS 2 to 4

More information

. HIGH SPEED .LOW POWER DISSIPATION .COMPATIBLE WITH TTL OUTPUTS M54HCT30 M74HCT30 8 INPUT NAND GATE. tpd = 15 ns (TYP.

. HIGH SPEED .LOW POWER DISSIPATION .COMPATIBLE WITH TTL OUTPUTS M54HCT30 M74HCT30 8 INPUT NAND GATE. tpd = 15 ns (TYP. M54HCT30 M74HCT30 8 INPUT NAND GATE. HIGH SPEED tpd = 15 ns (TYP.) AT VCC =5V.LOW POWER DISSIPATION I CC =1µA (MAX.) AT T A =25 C.COMPATIBLE WITH TTL OUTPUTS VIH = 2V (MIN.) VIL = 0.8V (MAX) OUTPUT DRIVE

More information

Practice Homework Problems for Module 1

Practice Homework Problems for Module 1 Practice Homework Problems for Module 1 1. Unsigned base conversions (LO 1-1). (a) (2C9E) 16 to base 2 (b) (1101001) 2 to base 10 (c) (1101001) 2 to base 16 (d) (8576) 10 to base 16 (e) (A27F) 16 to base

More information

MM74HCU04 Hex Inverter

MM74HCU04 Hex Inverter MM74HCU04 Hex Inverter General Description The MM74HCU04 inverters utilize advanced silicon-gate CMOS technology to achieve operating speeds similar to LS-TTL gates with the low power consumption of standard

More information

Classification of Digital Circuits

Classification of Digital Circuits Classification of Digital Circuits Combinational logic circuits. Output depends only on present input. Sequential circuits. Output depends on present input and present state of the circuit. Combinational

More information

. HIGH SPEED .LOW POWER DISSIPATION .HIGH NOISE IMMUNITY M54/74HC374 M54/74HC534

. HIGH SPEED .LOW POWER DISSIPATION .HIGH NOISE IMMUNITY M54/74HC374 M54/74HC534 M54/74HC374 M54/74HC534 OCTAL D-TYPE FLIP FLOP WITH 3 STATE OUTPUT HC374 NON INVERTING - HC534 INVERTING. HIGH SPEED f MAX = 77 MHz (TYP.) AT V CC =5V.LOW POWER DISSIPATION ICC =4µA (MAX.) AT TA =25 C.HIGH

More information

Lecture 16. Complementary metal oxide semiconductor (CMOS) CMOS 1-1

Lecture 16. Complementary metal oxide semiconductor (CMOS) CMOS 1-1 Lecture 16 Complementary metal oxide semiconductor (CMOS) CMOS 1-1 Outline Complementary metal oxide semiconductor (CMOS) Inverting circuit Properties Operating points Propagation delay Power dissipation

More information

MM74HC00 Quad 2-Input NAND Gate

MM74HC00 Quad 2-Input NAND Gate Quad 2-Input NAND Gate General Description The MM74HC00 NAND gates utilize advanced silicon-gate CMOS technology to achieve operating speeds similar to LS-TTL gates with the low power consumption of standard

More information

Propagation Delay, Circuit Timing & Adder Design. ECE 152A Winter 2012

Propagation Delay, Circuit Timing & Adder Design. ECE 152A Winter 2012 Propagation Delay, Circuit Timing & Adder Design ECE 152A Winter 2012 Reading Assignment Brown and Vranesic 2 Introduction to Logic Circuits 2.9 Introduction to CAD Tools 2.9.1 Design Entry 2.9.2 Synthesis

More information

Propagation Delay, Circuit Timing & Adder Design

Propagation Delay, Circuit Timing & Adder Design Propagation Delay, Circuit Timing & Adder Design ECE 152A Winter 2012 Reading Assignment Brown and Vranesic 2 Introduction to Logic Circuits 2.9 Introduction to CAD Tools 2.9.1 Design Entry 2.9.2 Synthesis

More information

APPENDIX C IC INTERFACING AND SYSTEM DESIGN ISSUES

APPENDIX C IC INTERFACING AND SYSTEM DESIGN ISSUES APPENDIX C IC INTERFACING AND SYSTEM DESIGN ISSUES OVERVIEW This appendix provides an overview of IC technology and AVR interfacing. In addition, we look at the microcontroller-based system as a whole

More information

TC74AC14P,TC74AC14F,TC74AC14FN,TC74AC14FT

TC74AC14P,TC74AC14F,TC74AC14FN,TC74AC14FT Hex Schmitt Inverter TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic TC74AC14P/F/FN/FT TC74AC14P,TC74AC14F,TC74AC14FN,TC74AC14FT The TC74AC14 is an advanced high speed CMOS SCHMITT INVERTER

More information

. HIGH SPEED .LOW POWER DISSIPATION .COMPATIBLE WITH TTL OUTPUTS M54/74HCT245/640/643 M54/74HCT245/640/643

. HIGH SPEED .LOW POWER DISSIPATION .COMPATIBLE WITH TTL OUTPUTS M54/74HCT245/640/643 M54/74HCT245/640/643 M54/74HCT245/640/643 M54/74HCT245/640/643 OCTAL BUS TRANSCEIVER (3-STATE): HCT245 NON INVERTING HCT640 INVERTING, HCT643 INVERTING/NON INVERTING. HIGH SPEED t PD = 10 ns (TYP.) at V CC =5V.LOW POWER DISSIPATION

More information

Chapter 6 DIFFERENT TYPES OF LOGIC GATES

Chapter 6 DIFFERENT TYPES OF LOGIC GATES Chapter 6 DIFFERENT TYPES OF LOGIC GATES Lesson 9 CMOS gates Ch06L9-"Digital Principles and Design", Raj Kamal, Pearson Education, 2006 2 Outline CMOS (n-channel based MOSFETs based circuit) CMOS Features

More information

36 Logic families and

36 Logic families and Unit 4 Outcomes 1. Demonstrate an understanding of logic families and their terms used in their specifications 2. Demonstrate an understanding of time division multiplex (TDM) 3. Demonstrate an understanding

More information

MM74HC14 Hex Inverting Schmitt Trigger

MM74HC14 Hex Inverting Schmitt Trigger MM74HC14 Hex Inverting Schmitt Trigger Features Typical propagation delay: 13ns Wide power supply range: 2V 6V Low quiescent current: 20µA maximum (74HC Series) Low input current: 1µA maximum Fanout of

More information

ECE 334: Electronic Circuits Lecture 10: Digital CMOS Circuits

ECE 334: Electronic Circuits Lecture 10: Digital CMOS Circuits Faculty of Engineering ECE 334: Electronic Circuits Lecture 10: Digital CMOS Circuits CMOS Technology Complementary MOS, or CMOS, needs both PMOS and NMOS FET devices for their logic gates to be realized

More information

CD40174BMS. CMOS Hex D -Type Flip-Flop. Features. Pinout. Applications. Functional Diagram. Description. December 1992

CD40174BMS. CMOS Hex D -Type Flip-Flop. Features. Pinout. Applications. Functional Diagram. Description. December 1992 SEMICONDUCTOR CD17BMS December 199 CMOS Hex D -Type Flip-Flop Features Pinout High Voltage Type (V Rating) 5V, and 15V Parametric Ratings CD17BMS TOP VIEW Standardized, Symmetrical Output Characteristics

More information

ENG2410 Digital Design CMOS Technology. Fall 2017 S. Areibi School of Engineering University of Guelph

ENG2410 Digital Design CMOS Technology. Fall 2017 S. Areibi School of Engineering University of Guelph ENG2410 Digital Design CMOS Technology Fall 2017 S. reibi School of Engineering University of Guelph The Transistor Revolution First transistor Bell Labs, 1948 Bipolar logic 1960 s Intel 4004 processor

More information

. HIGH SPEED .LOW POWER DISSIPATION .HIGH NOISE IMMUNITY M74HC646 M74HC648

. HIGH SPEED .LOW POWER DISSIPATION .HIGH NOISE IMMUNITY M74HC646 M74HC648 M74HC646 M74HC648 HC646 OCTAL BUS TRANSCEIVER/REGISTER (3-STATE) HC648 OCTAL BUS TRANSCEIVER/REGISTER (3-STATE, INV.). HIGH SPEED fmax = 73 MHz (TYP.) AT VCC =5V.LOW POWER DISSIPATION I CC =4µA (MAX.)

More information

MM74HC86 Quad 2-Input Exclusive OR Gate

MM74HC86 Quad 2-Input Exclusive OR Gate MM74HC86 Quad 2-Input Exclusive OR Gate Features Typical Propagation Delay: 9ns Wide Operating oltage Range: 2 6 Low Input Current: 1mA Maximum Low Quiescent Current: 20mA Max. (74 Series) Output Drive

More information

TC74AC00P,TC74AC00F,TC74AC00FN,TC74AC00FT

TC74AC00P,TC74AC00F,TC74AC00FN,TC74AC00FT TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic TC74AC00P/F/FN/FT TC74AC00P,TC74AC00F,TC74AC00FN,TC74AC00FT Quad 2-Input NAND Gate The TC74AC00 is an advanced high speed CMOS 2-INPUT NAND GATE

More information

TC74AC367P,TC74AC367F,TC74AC367FN,TC74AC367FT

TC74AC367P,TC74AC367F,TC74AC367FN,TC74AC367FT TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic TC74AC367P/F/FN/FT TC74AC367P,TC74AC367F,TC74AC367FN,TC74AC367FT Hex Bus Buffer (3-state) The TC74AC367 is an advanced high speed CMOS HEX BUS

More information

M74HCT574TTR OCTAL D-TYPE FLIP FLOP WITH 3 STATE OUTPUT NON INVERTING

M74HCT574TTR OCTAL D-TYPE FLIP FLOP WITH 3 STATE OUTPUT NON INVERTING OCTAL D-TYPE FLIP FLOP WITH 3 STATE OUTPUT NON INVERTING HIGH SPEED: f MAX = 50MHz (TYP.) at V CC = 4.5V LOW POWER DISSIPATION: I CC = 4µA(MAX.) at T A =25 C COMPATIBLE WITH TTL OUTPUTS : V IH = 2V (MIN.)

More information

Applications Suitable for use where low power consumption and a high degree of noise tolerance are required. BU4S01G2 BU4S11G2 BU4SU69G2 BU4S71G2

Applications Suitable for use where low power consumption and a high degree of noise tolerance are required. BU4S01G2 BU4S11G2 BU4SU69G2 BU4S71G2 TECHNICAL NOTE General-purpose CMOS Logic IC Series (BUS Series) Single Gate CMOS Logic ICs BUSG, BUSG, BUSU9G, BUS7G, BUS8G, BUS8G Description The BUSxxxG are ch logic ICs encapsulated in

More information

Department of EECS. University of California, Berkeley. Logic gates. September 1 st 2001

Department of EECS. University of California, Berkeley. Logic gates. September 1 st 2001 Department of EECS University of California, Berkeley Logic gates Bharathwaj Muthuswamy and W. G. Oldham September 1 st 2001 1. Introduction This lab introduces digital logic. You use commercially available

More information

. HIGH SPEED .LOW POWER DISSIPATION .HIGH NOISE IMMUNITY M54HC00 M74HC00 QUAD 2-INPUT NAND GATE. tpd = 6 ns (TYP.) AT VCC =5V

. HIGH SPEED .LOW POWER DISSIPATION .HIGH NOISE IMMUNITY M54HC00 M74HC00 QUAD 2-INPUT NAND GATE. tpd = 6 ns (TYP.) AT VCC =5V M54HC00 M74HC00 QUAD 2-INPUT NAND GATE. HIGH SPEED tpd = 6 ns (TYP.) AT VCC =5V.LOW POWER DISSIPATION I CC =1µA (MAX.) AT T A =25 C.HIGH NOISE IMMUNITY VNIH =VNIL =28%VCC (MIN.) OUTPUTS DRIVE CAPABILITY

More information

Multiplexer for Capacitive sensors

Multiplexer for Capacitive sensors DATASHEET Multiplexer for Capacitive sensors Multiplexer for Capacitive Sensors page 1/7 Features Very well suited for multiple-capacitance measurement Low-cost CMOS Low output impedance Rail-to-rail digital

More information

UNIVERSAL SINK DRIVER. Supply. Voltage reference. Thermal protection. Short-circuit to V cc protection. Short-circuit to GND detection

UNIVERSAL SINK DRIVER. Supply. Voltage reference. Thermal protection. Short-circuit to V cc protection. Short-circuit to GND detection NJM UNIERSAL SINK DRIER GENERAL DESCRIPTION NJM is a bipolar universal high-current highly protected low side driver with transparent input and ma continuous -current sink capability. A high-level input

More information

. HIGH SPEED .LOW POWER DISSIPATION .OUTPUT DRIVE CAPABILITY M54HCT165 M74HCT165 8 BIT PISO SHIFT REGISTER. t PD = 17 ns (TYP.

. HIGH SPEED .LOW POWER DISSIPATION .OUTPUT DRIVE CAPABILITY M54HCT165 M74HCT165 8 BIT PISO SHIFT REGISTER. t PD = 17 ns (TYP. M54HCT165 M74HCT165 8 BIT PISO SHIFT REGISTER. HIGH SPEED t PD = 17 ns (TYP.) AT V CC =5V.LOW POWER DISSIPATION ICC =4µA (MAX.) AT TA =25 C.OUTPUT DRIVE CAPABILITY 10 LSTTL LOADS BALANCED PROPAGATION DELAYS

More information

. HIGH SPEED .LOW POWER DISSIPATION .COMPATIBLE WITH TTL OUTPUTS M54HCT139 M74HCT139 DUAL 2 TO 4 DECODER/DEMULTIPLEXER. tpd = 17 ns (TYP.

. HIGH SPEED .LOW POWER DISSIPATION .COMPATIBLE WITH TTL OUTPUTS M54HCT139 M74HCT139 DUAL 2 TO 4 DECODER/DEMULTIPLEXER. tpd = 17 ns (TYP. M54HCT139 M74HCT139 DUAL 2 TO 4 DECODER/DEMULTIPLEXER. HIGH SPEED tpd = 17 ns (TYP.) AT VCC =5V.LOW POWER DISSIPATION I CC =4µA (MAX.) AT T A =25 C.COMPATIBLE WITH TTL OUTPUTS VIH = 2V (MIN.) VIL = 0.8V

More information

Abu Dhabi Men s College, Electronics Department. Logic Families

Abu Dhabi Men s College, Electronics Department. Logic Families bu Dhabi Men s College, Electronics Department Logic Families There are several different families of logic gates. Each family has its capabilities and limitations, its advantages and disadvantages. The

More information

ISO-9001 AS9120certi cation ClassQ Military

ISO-9001 AS9120certi cation ClassQ Military Datasheet RochesterElectronics ManufacturedComponents Rochester branded components are manufactured using eitherdie/wafers purchasedfrom theoriginalsuppliers orrochesterwafers recreated from the originalip.

More information

CD4069, CD4069-SMD Inverter Circuits

CD4069, CD4069-SMD Inverter Circuits CD4069, CD4069-SMD Inverter Circuits General Description The CD4069UB consists of six inverter circuits and is manufactured using complementary MOS (CMOS) to achieve wide power supply operating range,

More information

Embedded Systems. Oscillator and I/O Hardware. Eng. Anis Nazer First Semester

Embedded Systems. Oscillator and I/O Hardware. Eng. Anis Nazer First Semester Embedded Systems Oscillator and I/O Hardware Eng. Anis Nazer First Semester 2016-2017 Oscillator configurations Three possible configurations for Oscillator (a) using a crystal oscillator (b) using an

More information

74ACT373 OCTAL D-TYPE LATCH WITH 3 STATE OUTPUT NON INVERTING

74ACT373 OCTAL D-TYPE LATCH WITH 3 STATE OUTPUT NON INVERTING OCTAL D-TYPE LATCH WITH 3 STATE OUTPUT NON INVERTING HIGH SPEED: t PD = 6 ns (TYP.) at V CC =5V LOW POWER DISSIPATION: I CC =8µA (MAX.) at T A =25 o C COMPATIBLE WITH TTL OUTPUTS V IH =2V(MIN),V IL = 0.8V

More information

TC74HC540AP,TC74HC540AF,TC74HC540AFW TC74HC541AP,TC74HC541AF,TC74HC541AFW

TC74HC540AP,TC74HC540AF,TC74HC540AFW TC74HC541AP,TC74HC541AF,TC74HC541AFW TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic TC74HC540,541AP/AF/AFW TC74HC540AP,TC74HC540AF,TC74HC540AFW TC74HC541AP,TC74HC541AF,TC74HC541AFW Octal Bus Buffer TC74HC540AP/AF/AFW TC74HC541AP/AF/AFW

More information

Quad 2-input AND gate

Quad 2-input AND gate Quad 2-input AND gate BU40B / BU40BF / BU40BF The BU40B, BU40BF, and BU40BF are dual-input positive-logic AND gates with four circuits mounted on a single chip. An inverter-type buffer is added to the

More information

MM74HC00 Quad 2-Input NAND Gate

MM74HC00 Quad 2-Input NAND Gate MM74HC00 Quad 2-Input NAND Gate Features Typical propagation delay: 8 Wide power supply range: 2 6 Low quiescent current: 20µA maximum (74HC Series) Low input current: 1µA maximum Fanout of 10 LS-TTL loads

More information

. HIGH SPEED .LOW POWER DISSIPATION .COMPATIBLE WITH TTL OUTPUTS M54HCT74 M74HCT74 DUAL D TYPE FLIP FLOP WITH PRESET AND CLEAR

. HIGH SPEED .LOW POWER DISSIPATION .COMPATIBLE WITH TTL OUTPUTS M54HCT74 M74HCT74 DUAL D TYPE FLIP FLOP WITH PRESET AND CLEAR M54HCT74 M74HCT74 DUAL D TYPE FLIP FLOP WITH PRESET AND CLEAR. HIGH SPEED fmax = 53 MHz (TYP.) AT VCC =5V.LOW POWER DISSIPATION I CC =2µA (MAX.) AT T A =25 C.COMPATIBLE WITH TTL OUTPUTS VIH = 2V (MIN.)

More information

FST Bit Low Power Bus Switch

FST Bit Low Power Bus Switch 2-Bit Low Power Bus Switch General Description The FST3306 is a 2-bit ultra high-speed CMOS FET bus switch with TTL-compatible active LOW control inputs. The low on resistance of the switch allows inputs

More information

MADR TR. Quad Driver for GaAs FET or PIN Diode Switches and Attenuators Rev. 4. Functional Schematic. Features.

MADR TR. Quad Driver for GaAs FET or PIN Diode Switches and Attenuators Rev. 4. Functional Schematic. Features. Features High Voltage CMOS Technology Four Channel Positive Voltage Control CMOS device using TTL input levels Low Power Dissipation Low Cost Lead-Free SOIC-16 Plastic Package Halogen-Free Green Mold Compound

More information

. HIGH SPEED .LOW POWER DISSIPATION .HIGH NOISE IMMUNITY M54HC175 M74HC175 QUAD D-TYPE FLIP-FLOP WITH CLEAR. tpd = 13 ns (TYP.

. HIGH SPEED .LOW POWER DISSIPATION .HIGH NOISE IMMUNITY M54HC175 M74HC175 QUAD D-TYPE FLIP-FLOP WITH CLEAR. tpd = 13 ns (TYP. M54HC175 M74HC175 QUAD D-TYPE FLIP-FLOP WITH CLEAR. HIGH SPEED tpd = 13 (TYP.) AT VCC =5V.LOW POWER DISSIPATION I CC =4µA (MAX.) AT T A =25 C.HIGH NOISE IMMUNITY VNIH =VNIL =28%VCC (MIN.) OUTPUT DRIVE

More information

NTE74HC40105 Integrated Circuit TTL High Speed CMOS, 4 Bit x 16 Word FIFO Register

NTE74HC40105 Integrated Circuit TTL High Speed CMOS, 4 Bit x 16 Word FIFO Register NTE74HC40105 Integrated Circuit TTL High Speed CMOS, 4 Bit x 16 Word FIFO Register Description: The NTE74HC40105 is a high speed silicon gate CMOS device in a 16 Lead DIP type package that is compatible,

More information

UNISONIC TECHNOLOGIES CO., LTD CD4069

UNISONIC TECHNOLOGIES CO., LTD CD4069 UNISONIC TECHNOLOGIES CO., LTD CD4069 INVERTER CIRCUITS DESCRIPTION The UTC CD4069 consists of six inverter circuits and is manufactured using complementary MOS (CMOS) to achieve wide power supply operating

More information

74AC20M DUAL 4-INPUT NAND GATE

74AC20M DUAL 4-INPUT NAND GATE DUAL 4-INPUT NAND GATE HIGH SPEED: t PD = 4 ns (TYP.) at V CC =5V LOW POWER DISSIPATION: I CC =4µA (MAX.) at T A =25 o C HIGH NOISE IMMUNITY: V NIH =V NIL = 28% V CC (MIN.) 50Ω TRANSMISSION LINE DRIVING

More information

UTC UNISONIC TECHNOLOGIES CO. LTD 1 INVERTER CIRCUITS

UTC UNISONIC TECHNOLOGIES CO. LTD 1 INVERTER CIRCUITS UTC CD469 INERTER CIRCUITS DESCRIPTION The UTC CD469 consists of six inverter circuits and is manufactured using complementary MOS (CMOS) to achieve wide power supply operating range, low power consumption,

More information

CD74HC534, CD74HCT534, CD74HC564, CD74HCT564

CD74HC534, CD74HCT534, CD74HC564, CD74HCT564 Data sheet acquired from Harris Semiconductor SCHS188 January 1998 CD74HC534, CD74HCT534, CD74HC564, CD74HCT564 High Speed CMOS Logic Octal D-Type Flip-Flop, Three-State Inverting Positive-Edge Triggered

More information

CD4069UBC Inverter Circuits

CD4069UBC Inverter Circuits CD4069UBC Inverter Circuits General Description The CD4069UB consists of six inverter circuits and is manufactured using complementary MOS (CMOS) to achieve wide power supply operating range, low power

More information

Place answers on the supplied BUBBLE SHEET only nothing written here will be graded.

Place answers on the supplied BUBBLE SHEET only nothing written here will be graded. ECE 270 Learning Outcome 1-1 - Practice Exam B OUTCOME #1: an ability to analyze and design CMOS logic gates. Multiple Choice select the single most appropriate response for each question. Note that none

More information

74ACT541TTR OCTAL BUS BUFFER WITH 3 STATE OUTPUTS (NON INVERTED)

74ACT541TTR OCTAL BUS BUFFER WITH 3 STATE OUTPUTS (NON INVERTED) OCTAL BUS BUFFER WITH 3 STATE OUTPUTS (NON INVERTED) HIGH SPEED: t PD = 4ns (TYP.) at V CC = 5V LOW POWER DISSIPATION: I CC = 4µA(MAX.) at T A =25 C COMPATIBLE WITH TTL OUTPUTS V IH = 2V (MIN.), V IL =

More information

Digital Integrated CircuitDesign

Digital Integrated CircuitDesign Digital Integrated CircuitDesign Lecture 11 BiCMOS PMOS rray Q1 NMOS rray Y NMOS rray Q2 dib brishamifar EE Department IUST Contents Introduction BiCMOS Devices BiCMOS Inverters BiCMOS Gates BiCMOS Drivers

More information

SN55451B, SN55452B, SN55453B, SN55454B SN75451B, SN75452B, SN75453B, SN75454B DUAL PERIPHERAL DRIVERS

SN55451B, SN55452B, SN55453B, SN55454B SN75451B, SN75452B, SN75453B, SN75454B DUAL PERIPHERAL DRIVERS PERIPHERAL DRIVERS FOR HIGH-CURRENT SWITCHING AT VERY HIGH SPEEDS Characterized for Use to 00 ma High-Voltage Outputs No Output Latch-Up at 0 V (After Conducting 00 ma) High-Speed Switching Circuit Flexibility

More information

. HIGH SPEED .LOW POWER DISSIPATION .HIGH NOISE IMMUNITY M54HC51 M74HC51 DUAL 2 WIDE 2 INPUT AND/OR INVERT GATE. tpd = 10 ns (TYP.

. HIGH SPEED .LOW POWER DISSIPATION .HIGH NOISE IMMUNITY M54HC51 M74HC51 DUAL 2 WIDE 2 INPUT AND/OR INVERT GATE. tpd = 10 ns (TYP. M54HC51 M74HC51 DUAL 2 WIDE 2 INPUT AND/OR INVERT GATE. HIGH SPEED tpd = 10 ns (TYP.) AT VCC =5V.LOW POWER DISSIPATION I CC =1µA (MAX.) AT T A =25 C.HIGH NOISE IMMUNITY VNIH =VNIL =28%VCC (MIN.) OUTPUT

More information

High Voltage CMOS Logic. <Logic Gate> General-purpose CMOS Logic IC Series (BU4S,BU4000B Series)

High Voltage CMOS Logic. <Logic Gate> General-purpose CMOS Logic IC Series (BU4S,BU4000B Series) General-purpose CMOS Logic IC Series (BUS,BUB Series) High Voltage CMOS Logic ICs BUB/F,BUB/F/FV,BUB/F,BU7B/F, BUB/F/FV,BU9B/F/FV,BU9UB/F/FV,BUB/F/FV No.9EAT Description BUB series ICs are

More information

M74HCT244TTR OCTAL BUS BUFFER WITH 3 STATE OUTPUTS (NON INVERTED)

M74HCT244TTR OCTAL BUS BUFFER WITH 3 STATE OUTPUTS (NON INVERTED) OCTAL BUS BUFFER WITH 3 STATE OUTPUTS (NON INVERTED) HIGH SPEED: t PD = 15 ns (TYP.) at V CC = 4.5V LOW POWER DISSIPATION: I CC = 4µA(MAX.) at T A =25 C COMPATIBLE WITH TTL OUTPUTS : V IH = 2V (MIN.) V

More information

. HIGH SPEED .LOW POWER DISSIPATION .HIGH NOISE IMMUNITY M54/M74HC192 M54/M74HC193

. HIGH SPEED .LOW POWER DISSIPATION .HIGH NOISE IMMUNITY M54/M74HC192 M54/M74HC193 M54/M74HC192 M54/M74HC193 HC192 - SYNCHRONOUS UP/DOWN DECADE COUNTER HC193 - SYNCHRONOUS UP/DOWN BINARY COUNTER. HIGH SPEED fmax = 54 MHz (TYP.) AT VCC =5V.LOW POWER DISSIPATION I CC =4µA (MAX.) AT T A

More information

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package. DECADE COUNTER; 4-BIT BINARY COUNTER The SN54/ and SN54/ are high-speed 4-bit ripple type counters partitioned into two sectio. Each counter has a divide-by-two section and either a divide-by-five () or

More information

M74HCT04. Hex inverter. Features. Description

M74HCT04. Hex inverter. Features. Description Hex inverter Features High speed: t PD = 11 ns (typ.) at =4.5V Low power dissipation: I CC = 1 μa (max.) at T A =25 C Compatible with TTL outputs: V IH = 2 V (min.) V IL = 0.8 V (max) Balanced propagation

More information

. HIGH SPEED .LOW POWER DISSIPATION .HIGH NOISE IMMUNITY M54/M74HC4518 M54/M74HC4520 HC4518 DUAL DECADE COUNTER HC4520 DUAL 4 BIT BINARY COUNTER

. HIGH SPEED .LOW POWER DISSIPATION .HIGH NOISE IMMUNITY M54/M74HC4518 M54/M74HC4520 HC4518 DUAL DECADE COUNTER HC4520 DUAL 4 BIT BINARY COUNTER M54/M74HC4518 M54/M74HC4520 HC4518 DUAL DECADE COUNTER HC4520 DUAL 4 BIT BINARY COUNTER. HIGH SPEED fmax = 55 MHz (TYP.) at VCC = 5V.LOW POWER DISSIPATION I CC =4µA (MAX.) AT T A =25 C.HIGH NOISE IMMUNITY

More information

. HIGH SPEED .LOW POWER DISSIPATION .HIGH NOISE IMMUNITY M54/74HC245/640/643 M54/74HC245/640/643

. HIGH SPEED .LOW POWER DISSIPATION .HIGH NOISE IMMUNITY M54/74HC245/640/643 M54/74HC245/640/643 M54/74HC245/640/643 M54/74HC245/640/643 OCTAL BUS TRANSCEIVER (3-STATE): HC245 NON INVERTING HC640 INVERTING, HC643 INVERTING/NON INVERTING. HIGH SPEED t PD = 10 ns (TYP.) at V CC =5V.LOW POWER DISSIPATION

More information

. HIGH SPEED .LOW POWER DISSIPATION .HIGH NOISE IMMUNITY M54HC240/241/244 M74HC240/241/244

. HIGH SPEED .LOW POWER DISSIPATION .HIGH NOISE IMMUNITY M54HC240/241/244 M74HC240/241/244 M54/241/244 M74/241/244 OCTAL BUS BUFFER WITH 3 STATE OUTPUTS : INVERTED - HC241/244 NON INVERTED. HIGH SPEED t PD = 10 ns (TYP.) at V CC =5V.LOW POWER DISSIPATION ICC =4µA (MAX.) at TA =25 o C.HIGH NOISE

More information

. HIGH SPEED .LOW POWER DISSIPATION .HIGH NOISE IMMUNITY M54HC107 M74HC107 DUAL J-K FLIP FLOP WITH CLEAR. fmax = 75 MHz (TYP.

. HIGH SPEED .LOW POWER DISSIPATION .HIGH NOISE IMMUNITY M54HC107 M74HC107 DUAL J-K FLIP FLOP WITH CLEAR. fmax = 75 MHz (TYP. M54HC107 M74HC107 DUAL J-K FLIP FLOP WITH CLEAR. HIGH SPEED fmax = 75 MHz (TYP.) AT VCC =5V.LOW POWER DISSIPATION I CC =2µA (MAX.) AT T A =25 C.HIGH NOISE IMMUNITY VNIH =VNIL =28%VCC (MIN.) OUTPUT DRIVE

More information