VLSI Design I. The MOSFET model Wow!

Size: px
Start display at page:

Download "VLSI Design I. The MOSFET model Wow!"

Transcription

1 VLSI Design I The MOSFET model Wow! Are device models as nice as Cindy? Overview The large signal MOSFET model and second order effects. MOSFET capacitances. Introduction in fet process technology Goal: You can use the large signal equivalent MOS device equation. You are familiar with second order effects like body effect, channel length modulation. You know the MOS capacitances. You know the basic steps in MOS fabrication. MicroLab, VLSI-2 (1/24)

2 Let s build a MOSFET There are lots of different recipes to choose from. Like most things in life, you get what you pay for: the ability to have good bipolar devices, radiation hardness, reduced latch-up and substrate noise, are all extra cost options. We ll consider a general process: bulk CMOS with a p-type substrate: Use <100> surface to minimize surface charge 500um slice of a silicon ingot that has been doped with an acceptor (typically boron) to increase the concentration of holes to /cm /cm 3. p-type Back is metalli lized to provide a good ground connection. Good for n-channel fets, but p-channel fets will need a n-type well (or tub) to live in! MicroLab, VLSI-2 (2/24)

3 Next, a thick (0.4um) layer of silicon dioxide, called field oxide,, is formed on the surface by oxidation in wet oxygen. This is then etched to expose surface where we want to make a mosfet: Now grow a thin (0.01um = 100 Å) layer of silicon dioxide, called gate oxide, on the surface by exposing the wafer to dry oxygen. p The gate oxide needs to be of high quality: uniform thickness, no defects! The thinner the gate oxide, the more oomph the fet will have (we ll see why soon) but the harder it is to make it defect free. p MicroLab, VLSI-2 (3/24)

4 On top of the thin oxide a 0.7um thick layer of polycrystalline silicon, called polysilicon or poly for short, is deposited by CVD. The poly layer is patterned and plasma etched (thin ox not covered by poly is etched away too!) exposing the surface where the source and drain junctions will be formed: gate oxide (only under poly) poly wires field oxide exposed surface for source and drain junctions p Poly has a high sheet resistance (25 ohms/square) which can be reduced by adding a layer of a silicided refractory metal such titanium (TiSi 2 ), tantalum (TaSi 2 ) or molybdenum (MoSi 2 ). These have sheet resistances of 1, 3 or 5 ohms per square, respectively. This is great for memory structures that have lots of poly wiring. MicroLab, VLSI-2 (4/24)

5 The entire surface is doped, either by diffusion or ion implantation, with phosphorus (an electron donor) ) which creates two n-type regions in the substrate. The phosphorus also penetrates the poly reducing its resistance and affecting the nfet s threshold. diffusions are self-aligned with poly n+ n+ n+ wires: ohms/sq. p Finally an intermediate oxide layer is grown and then reflowed to flatten its surface. Holes are etched in the oxide (where contacts to poly/diff are wanted) and aluminum deposited, patterned and etched. metal wires (0.08 ohms/square) diff contact ( ohms) 10 ohms) n- channel MOS field effect transistor! MicroLab, VLSI-2 (5/24)???

6 NFET Operation Picture shows configuration when Vgs < Vto S G D I ds ds = 0 n+ n+ p mobile holes, fixed negative ions depletion layer no mobile carriers, but fixed negative ions (slight intrusion into n+, but mostly in p area) Other symbols: G B mobile electrons, fixed positive ions (n+ means heavily doped with donors, doesn t imply positive charge!) Terminal with higher voltage is labelled D, the other is labelled S so Ids >= 0. S D B almost always ground MicroLab, VLSI-2 (6/24)

7 FET = field effect transistor The four terminals of a fet (gate, source, drain and bulk) connect to conducting surfaces that generate a complicated set of electric fields in the channel region which depend on the relative voltages of each terminal. Picture shows configuration when Vgb > Vto gate inversion happens here source E h E v drain bulk INVERSION: A sufficiently stron ong vertical field will attract enough electrons to the surface to create a conducting n-type channel between the source and drain. CONDUCTION: If a channel exists, a horizontal field will cause a drift current from the drain to the source. Expect Ids proportional to Vds*(W/L)? MicroLab, VLSI-2 (7/24)

8 Threshold voltage The gate voltage required to form the channel is called the threshold voltage.. Many factors affect the gate-source voltage at which the channel becomes conductive. Threshold voltage for source-bulk voltage zero: V = V + V TO t ms fb V TO ONQNU ONQNU Q b Q fc = 2φ F + + φms C C ox ox ε ox t ox 0.61V for n-channel -0.61V for p-channel kt 2 q N ln n A i 2ε q 2φ si N A kt q F NDN ln 2 n i A MicroLab, VLSI-2 (8/24)

9 Body effect (second order) As V sb increases, the depth of the depletion region increases, exposing more of the fixed acceptor (i.e. negative) ions in the substrate. Thus the second term in the threshold voltage equation on the previous slide increases from to 2ε qn si 2ε qn si A A 2Φ ( V + 2Φ ) sb F F the threshold voltage of the n-channel transistor is now: V ( V + 2Φ Φ ) tn = V tn0 + γ sb F 2 F γ = 2ε qn C si ox A As we ll see, this effect comes into play in series-connected fets where only one of the fets will have V sb = 0 and the other fets will have V sb > 0 and a higher threshold voltage. V t2 t2 > V t1 t1 T 2 T 1 V sb >0 V sb =0 MicroLab, VLSI-2 (9/24)

10 Basic DC equations MOS transistors have 3 regions of operation: cutoff region (subthreshold subthreshold) linear region (triode region) saturated region (active region) polysilicon gate S i O 2 source diffusion drain diffusion W L Cutoff or subthreshold region: V gs <= I ds = 0 <=V t There is still a small current described in the second order effects (weak inversion). Important to model for analog circuits: I V ds ds MicroLab, VLSI-2 (10/24)

11 Linear operating region V s V gs gs >V t 0 < V ds ds <V dsat Ids L Larger Vgs creates deeper channel which increases Ids channel length is almost always min allowable mobility (u > u n p ) Larger Vds increases drift current but also reduces vertical field component which in turn makes channel less deep. Channel will pinch-off, when V ds ds = V gs -V t = V dsat gs fet gain factor k=µc ox ox dsat I ds W µε = ox ( V V ) gs t V ds L t ox max value at V ds = V dsat, but then channel is pinched off (see next slide) 2 ds V 2 only linear when V ds is small, otherwise parabolic MicroLab, VLSI-2 (11/24)

12 Saturated operating region V s V gs >V t V dsat <V ds Ids Voltage at channel end remains essentially constant at V dsat so drift current also remains constant: device is in saturation. Electrons arriving from source are injected into drain depletion region and accelerated towards drain by field proportional to V ds -V dsat usually reaching the drift velocity limit. I ds W µ ε 2L t ( sat ) = ox ( V V ) gs t ox 2 this is just I ds from previous slide evaluated at V ds = V dsat ds dsat MicroLab, VLSI-2 (12/24)

13 Channel-length length modulation (second order) V s V gs >V t V dsat <V ds Ids L = L - dl dl This looks just like a fet with a channel length of L < L. Shorter L implies greater I ds... ds As V ds increases, dl get larger As V ds increases the effective channel length gets shorter so I ds (sat) increases. dl is proportional to V ds V dsat but most people approximate channel length modulation as a linear effect: I ds W 2L µ ε t ( sat ) ox ( V V ) 2 = ( 1 + λv ) ox gs t ds MicroLab, VLSI-2 (13/24)

14 NFET Ids curves Put it together and what have you got? plot of Ids vs. Vds for Vgs = 0,1, 2, 3, 4 and 5V Can you find the following in the plot? I ds vs. V ds when V gs = 0V I ds vs. V ds when V gs = 5V value of V t value of V dsat evidence of body effect evidence of channel length modulation MicroLab, VLSI-2 (14/24)

15 SPICE Models There are different models used in circuit simulators: level 1 is our simple model including the most important second order effects described level 2 model is based on device physics level 3 is a semi-empirical empirical model allowing to match equations to the real circuit: : example BSIM model from Berkeley models subthreshold characteristics summary of the main SPICE DC parameters used in all three models at the end of this chapter. M nfet W=1u L=0.5u AS=1p AD=1p PS=3u PD=3u...MODEL nfet NMOS +TOX=1E-8 +CGB0=345p CGS0=138p CGD0=138p +CJ=775u CJSW=344p MJ=0.35 MJSW=0.26 PB= MicroLab, VLSI-2 (15/24)

16 MOSFET Capacitance Estimation the dynamic response of MOS systems strongly depends on the parasitic capacitances associated with the MOS device. The total load capacitance on the output of a CMOS gate is the sum of: gate capacitance (of other inputs connected to out) diffusion capacitance (of drain/source regions) routing capacitances (output to other inputs) gate C gd drain C db substrate C gs C gb source C sb gate source C gs C gb channel depletion layer C gd t ox drain C sb C db substrate MicroLab, VLSI-2 (16/24)

17 MOSFET gate capacitances Cg = Cgd + Cgs + Cgb Oxide-related capacitances come in two forms: overlap capacitance (extrinsic) since gate slightly overhangs diffusions and bulk: C(overlap) = W L D C ox ox C(overlap) = 2L CGB0 channel-charge charge related capacitances (intrinsic): cut-off: Cgb = C ox W L Cgs = Cgd = 0 linear: for both Cgs and Cgd for Cgb saturation: amount of overlap Cgb = 0 Cgs = Cgd = 0.5 C ox W L Cgb = 0 Cgd = 0 Cgs = 0.67 C ox W L shielded by channel equally shared between S and D note capacitive coupling of gate and drain/source channel pinched off channel shortened ox for SPICE Cgs = W CGS0 Cgd = W CGD0 Cgb = 2L CGB0 ox MicroLab, VLSI-2 (17/24)

18 MOSFET diffusion capacitances Junction capacitances C db and C sb are a function of the applied terminal voltages and diffusion dimensions: source/drain diffusion x j channel sidewall faces channel bottom junction faces p-type substrate zero-bias C/unit area of bottom junction area of diffusion negative for reverse biased C diff built-in in junction potential C ja = Vj 1 Vb Mj C jsw P + Vj 1 Vb grading coeff. sidewalls face p+ channel stop zero-bias C/unit length of sidewall junction perimeter of diffusion Mjsw grading coeff. junction voltage MicroLab, VLSI-2 (18/24)

19 P-channel MOSFETs S G D p+ p+ n p threshold voltage is negative since we need attract holes to form inversion layer B PFET is built inside its own substrate : a n-type well or tub diffused into p-type bulk substrate. Don t forget well contacts! Other symbols: G Terminal with lower voltage is labelled D, the other is labelled S S off: V gs > V t lin: V gs >V t, V ds sat: V gs >V t, V ds gs ds >V gs -V t ds <V gs -V t B D n-well always connected to Vdd to keep pn junction back-biased biased MicroLab, VLSI-2 (19/24)

20 Depletion-mode MOSFETs S G D n+ n+ p channel doped with donors B to give negative threshold voltage, i.e., depletion fets are always on. This mosfet is always conducting but, like ordinary enhancement fets, it will conduct more current as V gs increases. One can build logic circuits with only n-channel devices (NMOS): enhancement fets for pulldowns and depletion fets as static pullups.. Since NMOS logic dissipates DC power it s been largely replaced by CMOS. MicroLab, VLSI-2 (20/24)

21 Coming Up... Next topic Static characteristics of MOS inverters: input and output voltages, noise margins, power dissipation. Readings for next time Weste: sections 2 thru 2.23 except (fet ( models), 3 thru (process technology) and 4.3 through (capacitances) CBT: Study the chip fabrication text of the university of Manchester at the MicroLab VLSI course web link. MicroLab, VLSI-2 (21/24)

22 Useful Constants sym value units description ε E-12 F/m permittivity ε ox 3.9 ε 0 F/m permittivity of SiO 2 ε Si 11.7 ε 0 F/m permittivity of silicon V T 25.8 mv kt/q (@300 K) q E C charge of electron k 1.381E-23 J/ K Boltzmann s constant n i 1.45E10 cm cm -3 intrinsic carrier concentration MicroLab, VLSI-2 (22/24)

23 Alcatel 0,5um Process Parameters sym param nmos V t0 t ox N A pmos units description VTO V threshold voltage TOX 1E-8 1E-8 m thin oxide thickness NSUB 4E16 4E16 cm cm -3 substrate doping density µ U cm 2 /Vs charge mobility k KP A/V 2 fet gain factor γ GAMMA V bulk threshold param. COX F/m 2 oxide capacitance C ox λ α/l V -1 channel length α modulat.1e 1e-8 2e-8 V - 1 m -1 channel length mod fact. φ 0 2φ F C gb0 C gs0 C gd0 C j C jsw M j M jsw PB V built in junction potent. PHI V surface inversion pot. CGB0 3.45E-10 dito F/m overlapping cap per 2L CGS0 1.38E dito F/m overlapping cap per W CGD0 1.38E dito F/m overlapping cap per W CJ 7.75E E-4 F/m 2 zero-bias cap / unit A CJSW 3.44E E-10 F/m zero-bias cap per unit P MJ grading coeff for bottom jsw MJSW grading coeff sidewall MicroLab, VLSI-2 (23/24)

24 Exercises: VLSI-2 Ex vlsi2.1 (difficulty: easy): Calculate the missing parameters on the previous transparency like intrinsic transconductance k, bulk threshold parameter γ and oxide capacitance C ox of an nfet (Alatel 0.5µm process) Result: k =100µA/V n 2, k =24.9µA/V p 2, γ=0.334v 0.5, C ox =3.45E-7 F/cm 2 (see Weste pp48ff) Ex vlsi2.2 (difficulty: easy): Calculate the threshold voltage shift due to the body effect of an nfet at V sb = 2.2V (Alcatel 0.5µm process) Result: dv tn = 0.282V (see Weste pp55) Ex vlsi2.3 (difficulty: easy): Calculate the transconductance β n of an nfet (Alatel 0.5µm process), W=1 µm, L= 0.5 µm Result: β n =200 µα/v2 (see Weste pp53) Ex vlsi2.4 (difficulty: easy): Calculate the capacitances of an nfet with Vsb=Vdb Vdb=3V, W=1µm, L=0.5µm, A=1µm 2, P=3µm (Alatel 0.5µm process) Result: C gate =2.35fF, C drain =C source =1.2fF (see Weste pp ) 191) Weste pp99: 2.10: Have a look at ex 8, 9 MicroLab, VLSI-2 (24/24)

problem grade total

problem grade total Fall 2005 6.012 Microelectronic Devices and Circuits Prof. J. A. del Alamo Name: Recitation: November 16, 2005 Quiz #2 problem grade 1 2 3 4 total General guidelines (please read carefully before starting):

More information

CMOS Technology. 1. Why CMOS 2. Qualitative MOSFET model 3. Building a MOSFET 4. CMOS logic gates. Handouts: Lecture Slides. metal ndiff.

CMOS Technology. 1. Why CMOS 2. Qualitative MOSFET model 3. Building a MOSFET 4. CMOS logic gates. Handouts: Lecture Slides. metal ndiff. CMOS Technology 1. Why CMOS 2. Qualitative MOSFET model 3. Building a MOSFET 4. CMOS logic gates poly pdiff metal ndiff Handouts: Lecture Slides L03 - CMOS Technology 1 Building Bits from Atoms V in V

More information

Electronic CAD Practical work. Week 1: Introduction to transistor models. curve tracing of NMOS transfer characteristics

Electronic CAD Practical work. Week 1: Introduction to transistor models. curve tracing of NMOS transfer characteristics Electronic CAD Practical work Dr. Martin John Burbidge Lancashire UK Tel: +44 (0)1524 825064 Email: martin@mjb-rfelectronics-synthesis.com Martin Burbidge 2006 Week 1: Introduction to transistor models

More information

MOS Field Effect Transistors

MOS Field Effect Transistors MOS Field Effect Transistors A gate contact gate interconnect n polysilicon gate source contacts W active area (thin oxide area) polysilicon gate contact metal interconnect drain contacts A bulk contact

More information

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha ECE520 VLSI Design Lecture 2: Basic MOS Physics Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Wednesday 2:00-3:00PM or by appointment E-mail: pzarkesh@unm.edu Slide: 1 Review of Last Lecture Semiconductor

More information

Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced.

Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced. Unit 1 Basic MOS Technology Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced. Levels of Integration:- i) SSI:-

More information

NAME: Last First Signature

NAME: Last First Signature UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE 130: IC Devices Spring 2003 FINAL EXAMINATION NAME: Last First Signature STUDENT

More information

Field Effect Transistors (FET s) University of Connecticut 136

Field Effect Transistors (FET s) University of Connecticut 136 Field Effect Transistors (FET s) University of Connecticut 136 Field Effect Transistors (FET s) FET s are classified three ways: by conduction type n-channel - conduction by electrons p-channel - conduction

More information

Lecture 16: MOS Transistor models: Linear models, SPICE models. Context. In the last lecture, we discussed the MOS transistor, and

Lecture 16: MOS Transistor models: Linear models, SPICE models. Context. In the last lecture, we discussed the MOS transistor, and Lecture 16: MOS Transistor models: Linear models, SPICE models Context In the last lecture, we discussed the MOS transistor, and added a correction due to the changing depletion region, called the body

More information

LECTURE 09 LARGE SIGNAL MOSFET MODEL

LECTURE 09 LARGE SIGNAL MOSFET MODEL Lecture 9 Large Signal MOSFET Model (5/14/18) Page 9-1 LECTURE 9 LARGE SIGNAL MOSFET MODEL LECTURE ORGANIZATION Outline Introduction to modeling Operation of the MOS transistor Simple large signal model

More information

Three Terminal Devices

Three Terminal Devices Three Terminal Devices - field effect transistor (FET) - bipolar junction transistor (BJT) - foundation on which modern electronics is built - active devices - devices described completely by considering

More information

UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences.

UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences. UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences Discussion #9 EE 05 Spring 2008 Prof. u MOSFETs The standard MOSFET structure is shown

More information

Department of Electrical Engineering IIT Madras

Department of Electrical Engineering IIT Madras Department of Electrical Engineering IIT Madras Sample Questions on Semiconductor Devices EE3 applicants who are interested to pursue their research in microelectronics devices area (fabrication and/or

More information

Experiment 3. 3 MOSFET Drain Current Modeling. 3.1 Summary. 3.2 Theory. ELEC 3908 Experiment 3 Student#:

Experiment 3. 3 MOSFET Drain Current Modeling. 3.1 Summary. 3.2 Theory. ELEC 3908 Experiment 3 Student#: Experiment 3 3 MOSFET Drain Current Modeling 3.1 Summary In this experiment I D vs. V DS and I D vs. V GS characteristics are measured for a silicon MOSFET, and are used to determine the parameters necessary

More information

ECSE-6300 IC Fabrication Laboratory Lecture 7 MOSFETs. Lecture Outline

ECSE-6300 IC Fabrication Laboratory Lecture 7 MOSFETs. Lecture Outline ECSE-6300 IC Fabrication Laboratory Lecture 7 MOSFETs Prof. Rensselaer Polytechnic Institute Troy, NY 12180 Office: CII-6229 Tel.: (518) 276-2909 e-mails: luj@rpi.edu http://www.ecse.rpi.edu/courses/s16/ecse

More information

Sub-Threshold Region Behavior of Long Channel MOSFET

Sub-Threshold Region Behavior of Long Channel MOSFET Sub-threshold Region - So far, we have discussed the MOSFET behavior in linear region and saturation region - Sub-threshold region is refer to region where Vt is less than Vt - Sub-threshold region reflects

More information

ECSE-6300 IC Fabrication Laboratory Lecture 9 MOSFETs. Lecture Outline

ECSE-6300 IC Fabrication Laboratory Lecture 9 MOSFETs. Lecture Outline ECSE-6300 IC Fabrication Laboratory Lecture 9 MOSFETs Prof. Rensselaer Polytechnic Institute Troy, NY 12180 Office: CII-6229 Tel.: (518) 276-2909 e-mails: luj@rpi.edu http://www.ecse.rpi.edu/courses/s18/ecse

More information

Solid State Devices- Part- II. Module- IV

Solid State Devices- Part- II. Module- IV Solid State Devices- Part- II Module- IV MOS Capacitor Two terminal MOS device MOS = Metal- Oxide- Semiconductor MOS capacitor - the heart of the MOSFET The MOS capacitor is used to induce charge at the

More information

Basic Fabrication Steps

Basic Fabrication Steps Basic Fabrication Steps and Layout Somayyeh Koohi Department of Computer Engineering Adapted with modifications from lecture notes prepared by author Outline Fabrication steps Transistor structures Transistor

More information

ECE 5745 Complex Digital ASIC Design Topic 2: CMOS Devices

ECE 5745 Complex Digital ASIC Design Topic 2: CMOS Devices ECE 5745 Complex Digital ASIC Design Topic 2: CMOS Devices Christopher Batten School of Electrical and Computer Engineering Cornell University http://www.csl.cornell.edu/courses/ece5950 Simple Transistor

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Metal-Semiconductor and Semiconductor Heterojunctions The Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) is one of two major types of transistors. The MOSFET is used in digital circuit, because

More information

Lecture-45. MOS Field-Effect-Transistors Threshold voltage

Lecture-45. MOS Field-Effect-Transistors Threshold voltage Lecture-45 MOS Field-Effect-Transistors 7.4. Threshold voltage In this section we summarize the calculation of the threshold voltage and discuss the dependence of the threshold voltage on the bias applied

More information

MOSFET & IC Basics - GATE Problems (Part - I)

MOSFET & IC Basics - GATE Problems (Part - I) MOSFET & IC Basics - GATE Problems (Part - I) 1. Channel current is reduced on application of a more positive voltage to the GATE of the depletion mode n channel MOSFET. (True/False) [GATE 1994: 1 Mark]

More information

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism;

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism; Chapter 3 Field-Effect Transistors (FETs) 3.1 Introduction Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism; The concept has been known

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fundamentals 4.4. Field Effect Transistor (MOSFET) ENS 463 Lecture Course by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 4N101b 1 Field-effect transistor (FET)

More information

Session 10: Solid State Physics MOSFET

Session 10: Solid State Physics MOSFET Session 10: Solid State Physics MOSFET 1 Outline A B C D E F G H I J 2 MOSCap MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor: Al (metal) SiO2 (oxide) High k ~0.1 ~5 A SiO2 A n+ n+ p-type Si (bulk)

More information

Modeling MOS Transistors. Prof. MacDonald

Modeling MOS Transistors. Prof. MacDonald Modeling MOS Transistors Prof. MacDonald 1 Modeling MOSFETs for simulation l Software is used simulate circuits for validation l Original program SPICE UC Berkeley Simulation Program with Integrated Circuit

More information

Lecture 4. MOS transistor theory

Lecture 4. MOS transistor theory Lecture 4 MOS transistor theory 1.7 Introduction: A MOS transistor is a majority-carrier device, in which the current in a conducting channel between the source and the drain is modulated by a voltage

More information

INTRODUCTION TO MOS TECHNOLOGY

INTRODUCTION TO MOS TECHNOLOGY INTRODUCTION TO MOS TECHNOLOGY 1. The MOS transistor The most basic element in the design of a large scale integrated circuit is the transistor. For the processes we will discuss, the type of transistor

More information

MOS Field-Effect Transistors (MOSFETs)

MOS Field-Effect Transistors (MOSFETs) 6 MOS Field-Effect Transistors (MOSFETs) A three-terminal device that uses the voltages of the two terminals to control the current flowing in the third terminal. The basis for amplifier design. The basis

More information

MOSFET Terminals. The voltage applied to the GATE terminal determines whether current can flow between the SOURCE & DRAIN terminals.

MOSFET Terminals. The voltage applied to the GATE terminal determines whether current can flow between the SOURCE & DRAIN terminals. MOSFET Terminals The voltage applied to the GATE terminal determines whether current can flow between the SOURCE & DRAIN terminals. For an n-channel MOSFET, the SOURCE is biased at a lower potential (often

More information

MOSFET FUNDAMENTALS OPERATION & MODELING

MOSFET FUNDAMENTALS OPERATION & MODELING MOSFET FUNDAMENTALS OPERATION & MODELING MOSFET MODELING AND OPERATION MOSFET Fundamentals MOSFET Physical Structure and Operation MOSFET Large Signal I-V Characteristics Subthreshold Triode Saturation

More information

Digital Electronics. By: FARHAD FARADJI, Ph.D. Assistant Professor, Electrical and Computer Engineering, K. N. Toosi University of Technology

Digital Electronics. By: FARHAD FARADJI, Ph.D. Assistant Professor, Electrical and Computer Engineering, K. N. Toosi University of Technology K. N. Toosi University of Technology Chapter 7. Field-Effect Transistors By: FARHAD FARADJI, Ph.D. Assistant Professor, Electrical and Computer Engineering, K. N. Toosi University of Technology http://wp.kntu.ac.ir/faradji/digitalelectronics.htm

More information

EE301 Electronics I , Fall

EE301 Electronics I , Fall EE301 Electronics I 2018-2019, Fall 1. Introduction to Microelectronics (1 Week/3 Hrs.) Introduction, Historical Background, Basic Consepts 2. Rewiev of Semiconductors (1 Week/3 Hrs.) Semiconductor materials

More information

ECE4902 B2015 HW Set 1

ECE4902 B2015 HW Set 1 ECE4902 B2015 HW Set 1 Due in class Tuesday November 3. To make life easier on the graders: Be sure your NAME and ECE MAILBOX NUMBER are prominently displayed on the upper right of what you hand in. When

More information

LECTURE 4 SPICE MODELING OF MOSFETS

LECTURE 4 SPICE MODELING OF MOSFETS LECTURE 4 SPICE MODELING OF MOSFETS Objectives for Lecture 4* Understanding the element description for MOSFETs Understand the meaning and significance of the various parameters in SPICE model levels 1

More information

SPICE MODELING OF MOSFETS. Objectives for Lecture 4*

SPICE MODELING OF MOSFETS. Objectives for Lecture 4* LECTURE 4 SPICE MODELING OF MOSFETS Objectives for Lecture 4* Understanding the element description for MOSFETs Understand the meaning and significance of the various parameters in SPICE model levels 1

More information

Notes. (Subject Code: 7EC5)

Notes. (Subject Code: 7EC5) COMPUCOM INSTITUTE OF TECHNOLOGY & MANAGEMENT, JAIPUR (DEPARTMENT OF ELECTRONICS & COMMUNICATION) Notes VLSI DESIGN NOTES (Subject Code: 7EC5) Prepared By: MANVENDRA SINGH Class: B. Tech. IV Year, VII

More information

MOS TRANSISTOR THEORY

MOS TRANSISTOR THEORY MOS TRANSISTOR THEORY Introduction A MOS transistor is a majority-carrier device, in which the current in a conducting channel between the source and the drain is modulated by a voltage applied to the

More information

EE 5611 Introduction to Microelectronic Technologies Fall Thursday, September 04, 2014 Lecture 02

EE 5611 Introduction to Microelectronic Technologies Fall Thursday, September 04, 2014 Lecture 02 EE 5611 Introduction to Microelectronic Technologies Fall 2014 Thursday, September 04, 2014 Lecture 02 1 Lecture Outline Review on semiconductor materials Review on microelectronic devices Example of microelectronic

More information

Week 9a OUTLINE. MOSFET I D vs. V GS characteristic Circuit models for the MOSFET. Reading. resistive switch model small-signal model

Week 9a OUTLINE. MOSFET I D vs. V GS characteristic Circuit models for the MOSFET. Reading. resistive switch model small-signal model Week 9a OUTLINE MOSFET I vs. V GS characteristic Circuit models for the MOSFET resistive switch model small-signal model Reading Rabaey et al.: Chapter 3.3.2 Hambley: Chapter 12 (through 12.5); Section

More information

Session 2 MOS Transistor for RF Circuits

Session 2 MOS Transistor for RF Circuits Session 2 MOS Transistor for RF Circuits Session Speaker Chandramohan P. Session Contents MOS transistor basics MOS equivalent circuit Single stage amplifiers Opamp design Session objectives To understand

More information

6.012 Microelectronic Devices and Circuits

6.012 Microelectronic Devices and Circuits Page 1 of 13 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.012 Microelectronic Devices and Circuits Final Eam Closed Book: Formula sheet provided;

More information

Learning Outcomes. Spiral 2-6. Current, Voltage, & Resistors DIODES

Learning Outcomes. Spiral 2-6. Current, Voltage, & Resistors DIODES 26.1 26.2 Learning Outcomes Spiral 26 Semiconductor Material MOS Theory I underst why a diode conducts current under forward bias but does not under reverse bias I underst the three modes of operation

More information

EE70 - Intro. Electronics

EE70 - Intro. Electronics EE70 - Intro. Electronics Course website: ~/classes/ee70/fall05 Today s class agenda (November 28, 2005) review Serial/parallel resonant circuits Diode Field Effect Transistor (FET) f 0 = Qs = Qs = 1 2π

More information

Lecture 020 ECE4430 Review II (1/5/04) Page 020-1

Lecture 020 ECE4430 Review II (1/5/04) Page 020-1 Lecture 020 ECE4430 Review II (1/5/04) Page 020-1 LECTURE 020 ECE 4430 REVIEW II (READING: GHLM - Chap. 2) Objective The objective of this presentation is: 1.) Identify the prerequisite material as taught

More information

Lecture 020 ECE4430 Review II (1/5/04) Page 020-1

Lecture 020 ECE4430 Review II (1/5/04) Page 020-1 Lecture 020 ECE4430 Review II (1/5/04) Page 020-1 LECTURE 020 ECE 4430 REVIEW II (READING: GHLM - Chap. 2) Objective The objective of this presentation is: 1.) Identify the prerequisite material as taught

More information

Introduction to the Long Channel MOSFET. Dr. Lynn Fuller

Introduction to the Long Channel MOSFET. Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Introduction to the Long Channel MOSFET Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee Electrical and 82 Lomb Memorial Drive Rochester,

More information

CHAPTER 2 LITERATURE REVIEW

CHAPTER 2 LITERATURE REVIEW CHAPTER 2 LITERATURE REVIEW 2.1 Introduction of MOSFET The structure of the MOS field-effect transistor (MOSFET) has two regions of doping opposite that of the substrate, one at each edge of the MOS structure

More information

Laboratory 1 Single-Stage MOSFET Amplifier Analysis and Design Due Date: Week of February 20, 2014, at the beginning of your lab section

Laboratory 1 Single-Stage MOSFET Amplifier Analysis and Design Due Date: Week of February 20, 2014, at the beginning of your lab section Laboratory 1 Single-Stage MOSFET Amplifier Analysis and Design Due Date: Week of February 20, 2014, at the beginning of your lab section Objective To analyze and design single-stage common source amplifiers.

More information

UNIT-VI FIELD EFFECT TRANSISTOR. 1. Explain about the Field Effect Transistor and also mention types of FET s.

UNIT-VI FIELD EFFECT TRANSISTOR. 1. Explain about the Field Effect Transistor and also mention types of FET s. UNIT-I FIELD EFFECT TRANSISTOR 1. Explain about the Field Effect Transistor and also mention types of FET s. The Field Effect Transistor, or simply FET however, uses the voltage that is applied to their

More information

8. Characteristics of Field Effect Transistor (MOSFET)

8. Characteristics of Field Effect Transistor (MOSFET) 1 8. Characteristics of Field Effect Transistor (MOSFET) 8.1. Objectives The purpose of this experiment is to measure input and output characteristics of n-channel and p- channel field effect transistors

More information

Conduction Characteristics of MOS Transistors (for fixed Vds)! Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor

Conduction Characteristics of MOS Transistors (for fixed Vds)! Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor Conduction Characteristics of MOS Transistors (for fixed Vds)! Topic 2 Basic MOS theory & SPICE simulation Peter Cheung Department of Electrical & Electronic Engineering Imperial College London (Weste&Harris,

More information

Topic 2. Basic MOS theory & SPICE simulation

Topic 2. Basic MOS theory & SPICE simulation Topic 2 Basic MOS theory & SPICE simulation Peter Cheung Department of Electrical & Electronic Engineering Imperial College London (Weste&Harris, Ch 2 & 5.1-5.3 Rabaey, Ch 3) URL: www.ee.ic.ac.uk/pcheung/

More information

Conduction Characteristics of MOS Transistors (for fixed Vds) Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor

Conduction Characteristics of MOS Transistors (for fixed Vds) Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor Conduction Characteristics of MOS Transistors (for fixed Vds) Topic 2 Basic MOS theory & SPICE simulation Peter Cheung Department of Electrical & Electronic Engineering Imperial College London (Weste&Harris,

More information

Design Simulation and Analysis of NMOS Characteristics for Varying Oxide Thickness

Design Simulation and Analysis of NMOS Characteristics for Varying Oxide Thickness MIT International Journal of Electronics and Communication Engineering, Vol. 4, No. 2, August 2014, pp. 81 85 81 Design Simulation and Analysis of NMOS Characteristics for Varying Oxide Thickness Alpana

More information

EECE 481. MOS Basics Lecture 2

EECE 481. MOS Basics Lecture 2 EECE 481 MOS Basics Lecture 2 Reza Molavi Dept. of ECE University of British Columbia reza@ece.ubc.ca Slides Courtesy : Dr. Res Saleh (UBC), Dr. D. Sengupta (AMD), Dr. B. Razavi (UCLA) 1 PN Junction and

More information

Advantage of Having Large Numbers of Function on a Single Chip. Less Area occupied Less power Consumption Higher Speed Higher Reliability Economical

Advantage of Having Large Numbers of Function on a Single Chip. Less Area occupied Less power Consumption Higher Speed Higher Reliability Economical VLSI DESIGN(UNIT 1) Introduction Some History Invention of the transistor (BJT) 1947 Single-transistor integrated circuit 1958 Invention of CMOS logic gates 1963 First microprocessor (Intel 4004)1970 Very

More information

EC0306 INTRODUCTION TO VLSI DESIGN

EC0306 INTRODUCTION TO VLSI DESIGN EC0306 INTRODUCTION TO VLSI DESIGN UNIT I INTRODUCTION TO MOS CIRCUITS Why VLSI? Integration improves the design: o lower parasitics = higher speed; o lower power; o physically smaller. Integration reduces

More information

EE105 Fall 2015 Microelectronic Devices and Circuits: MOSFET Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH)

EE105 Fall 2015 Microelectronic Devices and Circuits: MOSFET Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH) EE105 Fall 2015 Microelectronic Devices and Circuits: MOSFET Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 7-1 Simplest Model of MOSFET (from EE16B) 7-2 CMOS Inverter 7-3 CMOS NAND

More information

FET. Field Effect Transistors ELEKTRONIKA KONTROL. Eka Maulana, ST, MT, M.Eng. Universitas Brawijaya. p + S n n-channel. Gate. Basic structure.

FET. Field Effect Transistors ELEKTRONIKA KONTROL. Eka Maulana, ST, MT, M.Eng. Universitas Brawijaya. p + S n n-channel. Gate. Basic structure. FET Field Effect Transistors ELEKTRONIKA KONTROL Basic structure Gate G Source S n n-channel Cross section p + p + p + G Depletion region Drain D Eka Maulana, ST, MT, M.Eng. Universitas Brawijaya S Channel

More information

Chapter 2 : Semiconductor Materials & Devices (II) Feb

Chapter 2 : Semiconductor Materials & Devices (II) Feb Chapter 2 : Semiconductor Materials & Devices (II) 1 Reference 1. SemiconductorManufacturing Technology: Michael Quirk and Julian Serda (2001) 3. Microelectronic Circuits (5/e): Sedra & Smith (2004) 4.

More information

MOSFETS: Gain & non-linearity

MOSFETS: Gain & non-linearity MOFET: ain & non-linearity source gate Polysilicon wire Heavily doped (n-type or p-type) diffusions W Inter-layer io 2 insulation Very thin (

More information

Why Scaling? CPU speed Chip size R, C CPU can increase speed by reducing occupying area.

Why Scaling? CPU speed Chip size R, C CPU can increase speed by reducing occupying area. Why Scaling? Higher density : Integration of more transistors onto a smaller chip : reducing the occupying area and production cost Higher Performance : Higher current drive : smaller metal to metal capacitance

More information

INTRODUCTION: Basic operating principle of a MOSFET:

INTRODUCTION: Basic operating principle of a MOSFET: INTRODUCTION: Along with the Junction Field Effect Transistor (JFET), there is another type of Field Effect Transistor available whose Gate input is electrically insulated from the main current carrying

More information

2.8 - CMOS TECHNOLOGY

2.8 - CMOS TECHNOLOGY CMOS Technology (6/7/00) Page 1 2.8 - CMOS TECHNOLOGY INTRODUCTION Objective The objective of this presentation is: 1.) Illustrate the fabrication sequence for a typical MOS transistor 2.) Show the physical

More information

Depletion-mode operation ( 공핍형 ): Using an input gate voltage to effectively decrease the channel size of an FET

Depletion-mode operation ( 공핍형 ): Using an input gate voltage to effectively decrease the channel size of an FET Ch. 13 MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor : I D D-mode E-mode V g The gate oxide is made of dielectric SiO 2 with e = 3.9 Depletion-mode operation ( 공핍형 ): Using an input gate voltage

More information

MEASUREMENT AND INSTRUMENTATION STUDY NOTES UNIT-I

MEASUREMENT AND INSTRUMENTATION STUDY NOTES UNIT-I MEASUREMENT AND INSTRUMENTATION STUDY NOTES The MOSFET The MOSFET Metal Oxide FET UNIT-I As well as the Junction Field Effect Transistor (JFET), there is another type of Field Effect Transistor available

More information

Chapter 4. CMOS Cascode Amplifiers. 4.1 Introduction. 4.2 CMOS Cascode Amplifiers

Chapter 4. CMOS Cascode Amplifiers. 4.1 Introduction. 4.2 CMOS Cascode Amplifiers Chapter 4 CMOS Cascode Amplifiers 4.1 Introduction A single stage CMOS amplifier cannot give desired dc voltage gain, output resistance and transconductance. The voltage gain can be made to attain higher

More information

Digital Integrated Circuits A Design Perspective. The Devices. Digital Integrated Circuits 2nd Devices

Digital Integrated Circuits A Design Perspective. The Devices. Digital Integrated Circuits 2nd Devices Digital Integrated Circuits A Design Perspective The Devices The Diode The diodes are rarely explicitly used in modern integrated circuits However, a MOS transistor contains at least two reverse biased

More information

FUNDAMENTALS OF MODERN VLSI DEVICES

FUNDAMENTALS OF MODERN VLSI DEVICES 19-13- FUNDAMENTALS OF MODERN VLSI DEVICES YUAN TAUR TAK H. MING CAMBRIDGE UNIVERSITY PRESS Physical Constants and Unit Conversions List of Symbols Preface page xi xiii xxi 1 INTRODUCTION I 1.1 Evolution

More information

Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs)

Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) Device Structure N-Channel MOSFET Providing electrons Pulling electrons (makes current flow) + + + Apply positive voltage to gate: Drives away

More information

CMOS Analog Design. Introduction. Prof. Dr. Bernhard Hoppe LECTURE NOTES. Prof. Dr. Hoppe CMOS Analog Design 2

CMOS Analog Design. Introduction. Prof. Dr. Bernhard Hoppe LECTURE NOTES. Prof. Dr. Hoppe CMOS Analog Design 2 CMOS Analog Design LECTURE NOTES Prof. Dr. Bernhard Hoppe Introduction Prof. Dr. Hoppe CMOS Analog Design 2 Analog Integrated Circuits Design Steps: 1. Definition 2. Implementation 3. Simulation 4. Geometrical

More information

Introduction to VLSI ASIC Design and Technology

Introduction to VLSI ASIC Design and Technology Introduction to VLSI ASIC Design and Technology Paulo Moreira CERN - Geneva, Switzerland Paulo Moreira Introduction 1 Outline Introduction Is there a limit? Transistors CMOS building blocks Parasitics

More information

UNIT-1 Bipolar Junction Transistors. Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press

UNIT-1 Bipolar Junction Transistors. Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press UNIT-1 Bipolar Junction Transistors Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press Figure 6.1 A simplified structure of the npn transistor. Microelectronic Circuits, Sixth

More information

ECE 340 Lecture 37 : Metal- Insulator-Semiconductor FET Class Outline:

ECE 340 Lecture 37 : Metal- Insulator-Semiconductor FET Class Outline: ECE 340 Lecture 37 : Metal- Insulator-Semiconductor FET Class Outline: Metal-Semiconductor Junctions MOSFET Basic Operation MOS Capacitor Things you should know when you leave Key Questions What is the

More information

Lecture 24 - The Si surface and the Metal-Oxide-Semiconductor Structure (cont.) The Long Metal-Oxide-Semiconductor Field-Effect Transistor

Lecture 24 - The Si surface and the Metal-Oxide-Semiconductor Structure (cont.) The Long Metal-Oxide-Semiconductor Field-Effect Transistor 6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 24-1 Lecture 24 - The Si surface and the Metal-Oxide-Semiconductor Structure (cont.) The Long Metal-Oxide-Semiconductor Field-Effect

More information

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 3, 2010

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 3, 2010 Low Power CMOS Inverter design at different Technologies Vijay Kumar Sharma 1, Surender Soni 2 1 Department of Electronics & Communication, College of Engineering, Teerthanker Mahaveer University, Moradabad

More information

UNIT 3: FIELD EFFECT TRANSISTORS

UNIT 3: FIELD EFFECT TRANSISTORS FIELD EFFECT TRANSISTOR: UNIT 3: FIELD EFFECT TRANSISTORS The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There are

More information

Improved Inverter: Current-Source Pull-Up. MOS Inverter with Current-Source Pull-Up. What else could be connected between the drain and V DD?

Improved Inverter: Current-Source Pull-Up. MOS Inverter with Current-Source Pull-Up. What else could be connected between the drain and V DD? Improved Inverter: Current-Source Pull-Up MOS Inverter with Current-Source Pull-Up What else could be connected between the drain and? Replace resistor with current source I SUP roc i D v IN v OUT Find

More information

Week 7: Common-Collector Amplifier, MOS Field Effect Transistor

Week 7: Common-Collector Amplifier, MOS Field Effect Transistor EE 2110A Electronic Circuits Week 7: Common-Collector Amplifier, MOS Field Effect Transistor ecture 07-1 Topics to coer Common-Collector Amplifier MOS Field Effect Transistor Physical Operation and I-V

More information

Chapter 2. MOSFETs. 2.1 Why MOSFET?

Chapter 2. MOSFETs. 2.1 Why MOSFET? Chapter 2 MOSFETs 2.1 Why MOSFET? Much of this book is concerned with the application of the so-called Metal- Oxide-Semiconductor Field-Effect Transistor (MOSFET) toward implementing signal processing

More information

FIELD EFFECT TRANSISTOR (FET) 1. JUNCTION FIELD EFFECT TRANSISTOR (JFET)

FIELD EFFECT TRANSISTOR (FET) 1. JUNCTION FIELD EFFECT TRANSISTOR (JFET) FIELD EFFECT TRANSISTOR (FET) The field-effect transistor (FET) is a three-terminal device used for a variety of applications that match, to a large extent, those of the BJT transistor. Although there

More information

Active Technology for Communication Circuits

Active Technology for Communication Circuits EECS 242: Active Technology for Communication Circuits UC Berkeley EECS 242 Copyright Prof. Ali M Niknejad Outline Comparison of technology choices for communication circuits Si npn, Si NMOS, SiGe HBT,

More information

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011 Basic Electronics Introductory Lecture Course for Technology and Instrumentation in Particle Physics 2011 Chicago, Illinois June 9-14, 2011 Presented By Gary Drake Argonne National Laboratory Session 3

More information

MTLE-6120: Advanced Electronic Properties of Materials. Semiconductor transistors for logic and memory. Reading: Kasap

MTLE-6120: Advanced Electronic Properties of Materials. Semiconductor transistors for logic and memory. Reading: Kasap MTLE-6120: Advanced Electronic Properties of Materials 1 Semiconductor transistors for logic and memory Reading: Kasap 6.6-6.8 Vacuum tube diodes 2 Thermionic emission from cathode Electrons collected

More information

Design cycle for MEMS

Design cycle for MEMS Design cycle for MEMS Design cycle for ICs IC Process Selection nmos CMOS BiCMOS ECL for logic for I/O and driver circuit for critical high speed parts of the system The Real Estate of a Wafer MOS Transistor

More information

Lecture 15. Field Effect Transistor (FET) Wednesday 29/11/2017 MOSFET 1-1

Lecture 15. Field Effect Transistor (FET) Wednesday 29/11/2017 MOSFET 1-1 Lecture 15 Field Effect Transistor (FET) Wednesday 29/11/2017 MOSFET 1-1 Outline MOSFET transistors Introduction to MOSFET MOSFET Types epletion-type MOSFET Characteristics Comparison between JFET and

More information

Unit III FET and its Applications. 2 Marks Questions and Answers

Unit III FET and its Applications. 2 Marks Questions and Answers Unit III FET and its Applications 2 Marks Questions and Answers 1. Why do you call FET as field effect transistor? The name field effect is derived from the fact that the current is controlled by an electric

More information

Student Lecture by: Giangiacomo Groppi Joel Cassell Pierre Berthelot September 28 th 2004

Student Lecture by: Giangiacomo Groppi Joel Cassell Pierre Berthelot September 28 th 2004 Student Lecture by: Giangiacomo Groppi Joel Cassell Pierre Berthelot September 28 th 2004 Lecture outline Historical introduction Semiconductor devices overview Bipolar Junction Transistor (BJT) Field

More information

Topic 3. CMOS Fabrication Process

Topic 3. CMOS Fabrication Process Topic 3 CMOS Fabrication Process Peter Cheung Department of Electrical & Electronic Engineering Imperial College London URL: www.ee.ic.ac.uk/pcheung/ E-mail: p.cheung@ic.ac.uk Lecture 3-1 Layout of a Inverter

More information

6.776 High Speed Communication Circuits Lecture 6 MOS Transistors, Passive Components, Gain- Bandwidth Issue for Broadband Amplifiers

6.776 High Speed Communication Circuits Lecture 6 MOS Transistors, Passive Components, Gain- Bandwidth Issue for Broadband Amplifiers 6.776 High Speed Communication Circuits Lecture 6 MOS Transistors, Passive Components, Gain- Bandwidth Issue for Broadband Amplifiers Massachusetts Institute of Technology February 17, 2005 Copyright 2005

More information

In this lecture we will begin a new topic namely the Metal-Oxide-Semiconductor Field Effect Transistor.

In this lecture we will begin a new topic namely the Metal-Oxide-Semiconductor Field Effect Transistor. Solid State Devices Dr. S. Karmalkar Department of Electronics and Communication Engineering Indian Institute of Technology, Madras Lecture - 38 MOS Field Effect Transistor In this lecture we will begin

More information

Field Effect Transistors

Field Effect Transistors Field Effect Transistors LECTURE NO. - 41 Field Effect Transistors www.mycsvtunotes.in JFET MOSFET CMOS Field Effect transistors - FETs First, why are we using still another transistor? BJTs had a small

More information

Organic Electronics. Information: Information: 0331a/ 0442/

Organic Electronics. Information: Information:  0331a/ 0442/ Organic Electronics (Course Number 300442 ) Spring 2006 Organic Field Effect Transistors Instructor: Dr. Dietmar Knipp Information: Information: http://www.faculty.iubremen.de/course/c30 http://www.faculty.iubremen.de/course/c30

More information

Advanced MOSFET Basics. Dr. Lynn Fuller

Advanced MOSFET Basics. Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Advanced MOSFET Basics Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035

More information

UNIT 3 Transistors JFET

UNIT 3 Transistors JFET UNIT 3 Transistors JFET Mosfet Definition of BJT A bipolar junction transistor is a three terminal semiconductor device consisting of two p-n junctions which is able to amplify or magnify a signal. It

More information

Chapter 1. Introduction

Chapter 1. Introduction EECS3611 Analog Integrated Circuit esign Chapter 1 Introduction EECS3611 Analog Integrated Circuit esign Instructor: Prof. Ebrahim Ghafar-Zadeh, Prof. Peter Lian email: egz@cse.yorku.ca peterlian@cse.yorku.ca

More information

Figure 1. The energy band model of the most important two intrinsic semiconductors, silicon and germanium

Figure 1. The energy band model of the most important two intrinsic semiconductors, silicon and germanium Analog Integrated ircuits Fundamental Building Blocks 1. The pn junction The pn junctions are realized by metallurgical connection of two semiconductor materials, one with acceptor or p type doping (excess

More information

Common Gate Stage Cascode Stage. Claudio Talarico, Gonzaga University

Common Gate Stage Cascode Stage. Claudio Talarico, Gonzaga University Common Gate Stage Cascode Stage Claudio Talarico, Gonzaga University Common Gate Stage The overdrive due to V B must be consistent with the current pulled by the DC source I B careful with signs: v gs

More information