# MOSFET & IC Basics - GATE Problems (Part - I)

Size: px
Start display at page:

Download "MOSFET & IC Basics - GATE Problems (Part - I)"

Transcription

1 MOSFET & IC Basics - GATE Problems (Part - I) 1. Channel current is reduced on application of a more positive voltage to the GATE of the depletion mode n channel MOSFET. (True/False) [GATE 1994: 1 Mark] Soln. The MOSFET is of depletion mode and n channel type. Like JFET, depletion mode MOSFET is normally ON device. i.e. has drain current when VGS = 0 V In depletion mode MOSFETs drain current can exceed IDSS (not like JFETs) if the gate voltage is of correct polarity to increase number of charge carriers in the channel. For n channel D MOSFET, ID is greater than IDSS when VGS is positive. Since with more +ve voltage the channel becomes more n type Thus, false 2. MOSFET can be used as a (a) Current controlled capacitor (b) Voltage controlled capacitor (c) Current controlled inductor (d) Voltage controlled inductor [GATE 2001: 1 Mark] Soln. The MOS capacitor is the heart of MOSFET. The capacitance of the device is defined as C = d Q d V Where dq is differential change in charge on one plate as a function of dv. Thus, it can be used as voltage controlled capacitor Option (b)

2 3. The effective channel length of a MOSFET in saturation decreases with increase in (a) Gate voltage (c) Source voltage (b) Drain voltage (d) Body voltage [GATE 2001: 1 Mark] Soln. In a MOSFET at the onset of saturation i.e. when drain to source voltage reaches VDSat the inversion layer charge at the drain end becomes zero (ideally). The channel is said to be pinched off at the drain end. If drain to source voltage VDS is increased even further beyond the saturation i.e. VDS > VDSat an even larger portion of the channel becomes pinched off, and effective channel length is reduced. (REF: Streetman) Option (b) 4. For an n channel enhancement type MOSFET, if the source is connected at a higher potential than that of the bulk (i.e. V SB > 0), the threshold voltage V T of the MOSFET will (a) Remain unchanged (b) Decrease (c) Change polarity (d) Increase [GATE 2003: 1 Mark] Soln. So for we considered that substrate or body is connected to source and held at ground. V SB 0 For n channel device VSB be +ve i.e. (change in threshold voltage) V T is always positive. So as VSB > 0, the VT will increase. REF: NEAMAN Option (d) 5. A MOS Capacitor made using p type substrate is in accumulation mode. The dominant charge in the channel is due to the presence of (a) Holes (c) Positively charged ions (b) Electrons (d) Negatively charged ions

3 Soln. MOS Capacitor is mode using p type substrate when gate is supplied with negative voltage i.e. VGS < 0. It will be in accumulation mode. In this case it attracts holes beneath the gate, therefore the charge in the channel is due to holes. Option (a) 6. The drain current of a MOSFET in saturation is given by I D = K (V GS V T ) 2, where K is a constant. The magnitude of the transconductance g m is (a) K(V GS V T ) 2 V DS (b) 2K(V GS V T ) Soln. Given, Drain current of MOSFET in saturation Since, I D = K (V GS V T ) 2 Transconductance (g m ) = I D V GS I D V GS = K. 2. (V gs V T ) Option (b) = 2K(V gs V T ) I D (c) V GS V DS (d) K(V GS V T ) 2 V GS [GATE 2008: 1 Mark] 7. At room temperature, a possible value for the mobility of electrons in the inversion layer of a silicon n channel MOSFET is (a) 450 cm 2 / V s (c) 1800 cm 2 / V s (b) 1350 cm 2 / V s (d) 3600 cm 2 / V s [GATE 2010: 1 Mark] Soln. The mobility of electrons is the standard value, it will be same for electrons in the inversion layer

4 Option (b) 8. In the circuit shown below. For the MOS transistors, μ n C OX = 100 μa/v 2 and the threshold voltage V T = 1 V. The voltage V X at the source of the upper transistor is 6 V W/L = 4 V x W/L = 1 (a) 1 V (b) 2 V (c) 3 V (d) 3.6 V [GATE 2011: 1 Mark] Soln. Assume, Top MOSFET as M1 Bottom MOSFET as M2 M1 is in saturation since V G > V T (Here VG is and VT is 1 V) Since MOSFET are connected in series the same current will flow through M2

5 6 V M 1 (W/L) 1 = 4 V x M 2 (W/L) 2 = 1 Drain current for M1 in saturation is I DS1 = 1 2 μ n C OX ( W L ) 1 (V GS1 V T ) 2 Similarly for M2 I DS2 = 1 2 μ n C OX ( W L ) (V GS2 V T ) 2 2 Since, I DS1 = I DS2 ( W L ) (V GS1 V T ) 2 = ( W 1 L ) (V GS2 V T ) 2 2 V GS1 = V G V x = 5 V x 4(5 V x V T ) 2 = 1. (V x V T ) 2 or, 2(5 V x V T ) = (V x V T ) or, V x = 3V Answer:- V x = 3V

6 9. In a MOSFET operating in the saturation region, the channel length modulation effect causes (a) An increase in the gate source capacitance (b) A decrease in the transconductance (c) A decrease in the unity gain cut off frequency (d) A decrease in the output resistance [GATE 2013: 1 Mark] Soln. For a MOSFET operating in saturation region the channel length modulation effect causes a decrease in output resistance. The drain characteristics becomes less flat. Option (d) 10. In IC technology, dry oxidation (using dry oxygen) as compared to wet oxidation (using steam or water vapour) produces (a) Superior quality oxide with a higher growth rate (b) Inferior quality oxide with a higher growth rate (c) Inferior quality oxide with a lower growth rate (d) Superior quality oxide with a lower growth rate [GATE 2013: 1 Mark] Soln. A superior quality oxide layer is formed with dry oxidation but with a lower growth rate. Option (d) 11. In following circuit employing pass transistor logic, all NMOS transistor are identical with a threshold voltage of 1V. Ignoring the body effect, the output out-put voltage at P, Q and R are P Q R

7 (a) 4 V, 3 V, 2 V (b),, Soln. Assume all NMOS are in saturation (c) 4 V, 4 V, 4 V (d), 4 V, 3 V [GATE 2014: 1 Mark] M 1 P M 2 Q M 3 R V DS (V GS V T ) For M1: (5 V P ) (5 V P 1) or, 5 V P > 4 V P Thus in saturation I D1 = k(v GS V T ) 2 or, I D1 = K(4 V P ) 2 (1) For M2: I D2 = K(5 V Q 1) 2 or, I D2 = K(4 V Q ) 2 (2) Since I D1 = I D2 (4 V P ) 2 = (4 V Q ) 2

8 or, V P = V Q and V P + V Q = 8 or, V P = V Q = 4V For M3: I D3 = K(5 V R 1) 2 or, I D2 = I D3 (4 V Q ) 2 = (4 V R ) 2 or, V R = V Q = 4V Thus, V P = V Q = V R = 4V Option (c) 12. If fixed positive charges are present in the gate oxide of an n channel enhancement type MOSFET, it will lead to (a) A decrease in the threshold voltage (b) Channel length modulation (c) An increase in substrate leakage current (d) An increase in accumulation capacitance [GATE 2014: 1 Mark] Soln. In n channel enhancement type MOSFET, a positive voltage is applied at the gate which creates channel between source and drain. In the problem it is given that fixed positive charges are present in the gate oxide, it will make easier to create the channel between source and drain. Hence the threshold voltage will decrease. Option (a) 13. In CMOS technology, shallow P well or N well regions can be formed using (a) Low pressure chemical vapour deposition (b) Low energy sputtering (c) Low temperature dry oxidation (d) Low energy ion implantation [GATE 2014: 1 Mark]

9 Soln. In triple well CMOS process a deep n well is first driven into the p type substrate, and is used as shielding frame against disturbances from the substrate and provides N channel MOSFET with better insulation from noise. The process used is low energy ion implantation. Option (d) 14. In MOSFET fabrication, the channel length is defined during the process of (a) Isolation oxide growth (b) Channel stop implantation (c) Poly silicon gate patterning (d) Lithography step leading to the contact pads [GATE 2014: 1 Mark] Soln. In MOSFET fabrication channel length is defined during Poly silicon gate patterning process. Option (c) 15. Which one of the following processes is preferred to from the gate dielectric (SiO 2 ) of MOSFETs? (a) Sputtering (c) Wet oxidation (b) Molecular beam epitaxy (d) Dry oxidation [GATE 2015: 1 Mark] Soln. In wet oxidation where water is used instead of oxidation process has significantly greater oxidation rate than dry oxidation. It is used to grow thick oxides such as masking oxides. Dry oxidation has a lower growth rate than wet oxidation although oxide film quality is better than wet oxide film. It is used in transistor gates and capacitances and especially in gate oxide in MOSFETs Option (d) 16. Consider the following statements for a metal oxide semiconductor field effect transistor (MOSFET): P: As channel length reduces, OFF state current increases. Q: As channel length reduces, output resistance increases. R: As channel length reduces, threshold voltage remains constant.

10 Soln. P: S: As channel reduces, ON current increases. Which of the above statements are INCORRECT? (a) P and Q (b) P and S (c) Q and R (d) R and S [GATE 2016: 1 Mark] As channel length reduces, OFF state current increases. The drain current is in saturation since it does not increase, but when channel length is reduced the drain current will increase slightly. This effect is called drain induced banner lowering (DIBL). This state is the OFF state (High resistance state): So, it is TRUE Q: As channel length reduces output resistance increases. The output resistance reduces with channel length reduction So, TRUE R: As channel length reduces, threshold voltage remains constant. As channel length reduces. S: As channel reduces, ON current increases TRUE Option (c) 17. A long channel NMOS transistor is biased in the liner region V DS = 50 mv and is used as a resistance. Which one of the following statements is NOT correct? (a) If the device width W is increased, the resistance decrease. (b) If the threshold voltage is reduced, the resistance decreases. (c) If the device length L is increased, the resistance. (d) If V GS is increased, the resistance increases. [GATE 2016: 1 Mark] Soln. Liner region of NMOS is the region of low resistance (on region). The equation is

11 1 r ds(on) = μ n C OX. W L [V GS V T ] Thus, as per above equation A: TRUE B: TRUE C: TRUE D: FALSE Option (d) is correct 18. The figure shows the band diagram of a Metal Oxide Semiconductor (MOS). The surface region of this MOS is in E c φ s φ B E i E F (a) Inversion (b) Accumulation (c) Depletion (d) Flat band [GATE 2016: 1 Mark] Soln. The given band diagram of a Metal Oxide Semiconductor. Note that Fermi level of semiconductor is between intrinsic level and conduction level (near to EC) so the semiconductor is of n type.

12 Whenever surface potential ( φ s ) is larger than, QB surface is inverted. Thus the surface region of MOS is in inversion. Option (a)

### Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism;

Chapter 3 Field-Effect Transistors (FETs) 3.1 Introduction Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism; The concept has been known

### Depletion-mode operation ( 공핍형 ): Using an input gate voltage to effectively decrease the channel size of an FET

Ch. 13 MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor : I D D-mode E-mode V g The gate oxide is made of dielectric SiO 2 with e = 3.9 Depletion-mode operation ( 공핍형 ): Using an input gate voltage

### Lecture-45. MOS Field-Effect-Transistors Threshold voltage

Lecture-45 MOS Field-Effect-Transistors 7.4. Threshold voltage In this section we summarize the calculation of the threshold voltage and discuss the dependence of the threshold voltage on the bias applied

### MOSFET Terminals. The voltage applied to the GATE terminal determines whether current can flow between the SOURCE & DRAIN terminals.

MOSFET Terminals The voltage applied to the GATE terminal determines whether current can flow between the SOURCE & DRAIN terminals. For an n-channel MOSFET, the SOURCE is biased at a lower potential (often

### Semiconductor Physics and Devices

Metal-Semiconductor and Semiconductor Heterojunctions The Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) is one of two major types of transistors. The MOSFET is used in digital circuit, because

### Three Terminal Devices

Three Terminal Devices - field effect transistor (FET) - bipolar junction transistor (BJT) - foundation on which modern electronics is built - active devices - devices described completely by considering

### Solid State Devices- Part- II. Module- IV

Solid State Devices- Part- II Module- IV MOS Capacitor Two terminal MOS device MOS = Metal- Oxide- Semiconductor MOS capacitor - the heart of the MOSFET The MOS capacitor is used to induce charge at the

### Solid State Device Fundamentals

Solid State Device Fundamentals 4.4. Field Effect Transistor (MOSFET) ENS 463 Lecture Course by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 4N101b 1 Field-effect transistor (FET)

### ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha

ECE520 VLSI Design Lecture 2: Basic MOS Physics Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Wednesday 2:00-3:00PM or by appointment E-mail: pzarkesh@unm.edu Slide: 1 Review of Last Lecture Semiconductor

### Design cycle for MEMS

Design cycle for MEMS Design cycle for ICs IC Process Selection nmos CMOS BiCMOS ECL for logic for I/O and driver circuit for critical high speed parts of the system The Real Estate of a Wafer MOS Transistor

### Field Effect Transistors (FET s) University of Connecticut 136

Field Effect Transistors (FET s) University of Connecticut 136 Field Effect Transistors (FET s) FET s are classified three ways: by conduction type n-channel - conduction by electrons p-channel - conduction

### UNIT-VI FIELD EFFECT TRANSISTOR. 1. Explain about the Field Effect Transistor and also mention types of FET s.

UNIT-I FIELD EFFECT TRANSISTOR 1. Explain about the Field Effect Transistor and also mention types of FET s. The Field Effect Transistor, or simply FET however, uses the voltage that is applied to their

### INTRODUCTION: Basic operating principle of a MOSFET:

INTRODUCTION: Along with the Junction Field Effect Transistor (JFET), there is another type of Field Effect Transistor available whose Gate input is electrically insulated from the main current carrying

### 8. Characteristics of Field Effect Transistor (MOSFET)

1 8. Characteristics of Field Effect Transistor (MOSFET) 8.1. Objectives The purpose of this experiment is to measure input and output characteristics of n-channel and p- channel field effect transistors

### UNIT-1 Bipolar Junction Transistors. Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press

UNIT-1 Bipolar Junction Transistors Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press Figure 6.1 A simplified structure of the npn transistor. Microelectronic Circuits, Sixth

### EE301 Electronics I , Fall

EE301 Electronics I 2018-2019, Fall 1. Introduction to Microelectronics (1 Week/3 Hrs.) Introduction, Historical Background, Basic Consepts 2. Rewiev of Semiconductors (1 Week/3 Hrs.) Semiconductor materials

### ECSE-6300 IC Fabrication Laboratory Lecture 9 MOSFETs. Lecture Outline

ECSE-6300 IC Fabrication Laboratory Lecture 9 MOSFETs Prof. Rensselaer Polytechnic Institute Troy, NY 12180 Office: CII-6229 Tel.: (518) 276-2909 e-mails: luj@rpi.edu http://www.ecse.rpi.edu/courses/s18/ecse

### ECSE-6300 IC Fabrication Laboratory Lecture 7 MOSFETs. Lecture Outline

ECSE-6300 IC Fabrication Laboratory Lecture 7 MOSFETs Prof. Rensselaer Polytechnic Institute Troy, NY 12180 Office: CII-6229 Tel.: (518) 276-2909 e-mails: luj@rpi.edu http://www.ecse.rpi.edu/courses/s16/ecse

### UNIT 3: FIELD EFFECT TRANSISTORS

FIELD EFFECT TRANSISTOR: UNIT 3: FIELD EFFECT TRANSISTORS The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There are

### Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced.

Unit 1 Basic MOS Technology Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced. Levels of Integration:- i) SSI:-

### FIELD EFFECT TRANSISTOR (FET) 1. JUNCTION FIELD EFFECT TRANSISTOR (JFET)

FIELD EFFECT TRANSISTOR (FET) The field-effect transistor (FET) is a three-terminal device used for a variety of applications that match, to a large extent, those of the BJT transistor. Although there

### MEASUREMENT AND INSTRUMENTATION STUDY NOTES UNIT-I

MEASUREMENT AND INSTRUMENTATION STUDY NOTES The MOSFET The MOSFET Metal Oxide FET UNIT-I As well as the Junction Field Effect Transistor (JFET), there is another type of Field Effect Transistor available

### ECE 340 Lecture 40 : MOSFET I

ECE 340 Lecture 40 : MOSFET I Class Outline: MOS Capacitance-Voltage Analysis MOSFET - Output Characteristics MOSFET - Transfer Characteristics Things you should know when you leave Key Questions How do

### ECE 340 Lecture 37 : Metal- Insulator-Semiconductor FET Class Outline:

ECE 340 Lecture 37 : Metal- Insulator-Semiconductor FET Class Outline: Metal-Semiconductor Junctions MOSFET Basic Operation MOS Capacitor Things you should know when you leave Key Questions What is the

### Integrated diodes. The forward voltage drop only slightly depends on the forward current. ELEKTRONIKOS ĮTAISAI

1 Integrated diodes pn junctions of transistor structures can be used as integrated diodes. The choice of the junction is limited by the considerations of switching speed and breakdown voltage. The forward

### Experiment 3. 3 MOSFET Drain Current Modeling. 3.1 Summary. 3.2 Theory. ELEC 3908 Experiment 3 Student#:

Experiment 3 3 MOSFET Drain Current Modeling 3.1 Summary In this experiment I D vs. V DS and I D vs. V GS characteristics are measured for a silicon MOSFET, and are used to determine the parameters necessary

### EE70 - Intro. Electronics

EE70 - Intro. Electronics Course website: ~/classes/ee70/fall05 Today s class agenda (November 28, 2005) review Serial/parallel resonant circuits Diode Field Effect Transistor (FET) f 0 = Qs = Qs = 1 2π

### NAME: Last First Signature

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE 130: IC Devices Spring 2003 FINAL EXAMINATION NAME: Last First Signature STUDENT

### FET. Field Effect Transistors ELEKTRONIKA KONTROL. Eka Maulana, ST, MT, M.Eng. Universitas Brawijaya. p + S n n-channel. Gate. Basic structure.

FET Field Effect Transistors ELEKTRONIKA KONTROL Basic structure Gate G Source S n n-channel Cross section p + p + p + G Depletion region Drain D Eka Maulana, ST, MT, M.Eng. Universitas Brawijaya S Channel

### INTRODUCTION TO MOS TECHNOLOGY

INTRODUCTION TO MOS TECHNOLOGY 1. The MOS transistor The most basic element in the design of a large scale integrated circuit is the transistor. For the processes we will discuss, the type of transistor

### MOS Capacitance and Introduction to MOSFETs

ECE-305: Fall 2016 MOS Capacitance and Introduction to MOSFETs Professor Peter Bermel Electrical and Computer Engineering Purdue University, West Lafayette, IN USA pbermel@purdue.edu 11/4/2016 Pierret,

### Organic Electronics. Information: Information: 0331a/ 0442/

Organic Electronics (Course Number 300442 ) Spring 2006 Organic Field Effect Transistors Instructor: Dr. Dietmar Knipp Information: Information: http://www.faculty.iubremen.de/course/c30 http://www.faculty.iubremen.de/course/c30

### Session 10: Solid State Physics MOSFET

Session 10: Solid State Physics MOSFET 1 Outline A B C D E F G H I J 2 MOSCap MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor: Al (metal) SiO2 (oxide) High k ~0.1 ~5 A SiO2 A n+ n+ p-type Si (bulk)

### EE 5611 Introduction to Microelectronic Technologies Fall Thursday, September 04, 2014 Lecture 02

EE 5611 Introduction to Microelectronic Technologies Fall 2014 Thursday, September 04, 2014 Lecture 02 1 Lecture Outline Review on semiconductor materials Review on microelectronic devices Example of microelectronic

### Unit III FET and its Applications. 2 Marks Questions and Answers

Unit III FET and its Applications 2 Marks Questions and Answers 1. Why do you call FET as field effect transistor? The name field effect is derived from the fact that the current is controlled by an electric

### Q1. Explain the construction and principle of operation of N-Channel and P-Channel Junction Field Effect Transistor (JFET).

Q. Explain the construction and principle of operation of N-Channel and P-Channel Junction Field Effect Transistor (JFET). Answer: N-Channel Junction Field Effect Transistor (JFET) Construction: Drain(D)

### value of W max for the device. The at band voltage is -0.9 V. Problem 5: An Al-gate n-channel MOS capacitor has a doping of N a = cm ;3. The oxi

Prof. Jasprit Singh Fall 2001 EECS 320 Homework 10 This homework is due on December 6 Problem 1: An n-type In 0:53 Ga 0:47 As epitaxial layer doped at 10 16 cm ;3 is to be used as a channel in a FET. A

### Lecture 4. MOS transistor theory

Lecture 4 MOS transistor theory 1.7 Introduction: A MOS transistor is a majority-carrier device, in which the current in a conducting channel between the source and the drain is modulated by a voltage

### Conduction Characteristics of MOS Transistors (for fixed Vds)! Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor

Conduction Characteristics of MOS Transistors (for fixed Vds)! Topic 2 Basic MOS theory & SPICE simulation Peter Cheung Department of Electrical & Electronic Engineering Imperial College London (Weste&Harris,

### Topic 2. Basic MOS theory & SPICE simulation

Topic 2 Basic MOS theory & SPICE simulation Peter Cheung Department of Electrical & Electronic Engineering Imperial College London (Weste&Harris, Ch 2 & 5.1-5.3 Rabaey, Ch 3) URL: www.ee.ic.ac.uk/pcheung/

### Conduction Characteristics of MOS Transistors (for fixed Vds) Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor

Conduction Characteristics of MOS Transistors (for fixed Vds) Topic 2 Basic MOS theory & SPICE simulation Peter Cheung Department of Electrical & Electronic Engineering Imperial College London (Weste&Harris,

### Digital Electronics. By: FARHAD FARADJI, Ph.D. Assistant Professor, Electrical and Computer Engineering, K. N. Toosi University of Technology

K. N. Toosi University of Technology Chapter 7. Field-Effect Transistors By: FARHAD FARADJI, Ph.D. Assistant Professor, Electrical and Computer Engineering, K. N. Toosi University of Technology http://wp.kntu.ac.ir/faradji/digitalelectronics.htm

### COLLECTOR DRAIN BASE GATE EMITTER. Applying a voltage to the Gate connection allows current to flow between the Drain and Source connections.

MOSFETS Although the base current in a transistor is usually small (< 0.1 ma), some input devices (e.g. a crystal microphone) may be limited in their output. In order to overcome this, a Field Effect Transistor

### Introduction to MOSFET MOSFET (Metal Oxide Semiconductor Field Effect Transistor)

Microelectronic Circuits Introduction to MOSFET MOSFET (Metal Oxide Semiconductor Field Effect Transistor) Slide 1 MOSFET Construction MOSFET (Metal Oxide Semiconductor Field Effect Transistor) Slide 2

### FET(Field Effect Transistor)

Field Effect Transistor: Construction and Characteristic of JFETs. Transfer Characteristic. CS,CD,CG amplifier and analysis of CS amplifier MOSFET (Depletion and Enhancement) Type, Transfer Characteristic,

### MODULE-2: Field Effect Transistors (FET)

FORMAT-1B Definition: MODULE-2: Field Effect Transistors (FET) FET is a three terminal electronic device used for variety of applications that match with BJT. In FET, an electric field is established by

### MOS Field Effect Transistors

MOS Field Effect Transistors A gate contact gate interconnect n polysilicon gate source contacts W active area (thin oxide area) polysilicon gate contact metal interconnect drain contacts A bulk contact

### Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs)

Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) Device Structure N-Channel MOSFET Providing electrons Pulling electrons (makes current flow) + + + Apply positive voltage to gate: Drives away

### Metal-Oxide-Silicon (MOS) devices PMOS. n-type

Metal-Oxide-Silicon (MOS devices Principle of MOS Field Effect Transistor transistor operation Metal (poly gate on oxide between source and drain Source and drain implants of opposite type to substrate.

### ECE 5745 Complex Digital ASIC Design Topic 2: CMOS Devices

ECE 5745 Complex Digital ASIC Design Topic 2: CMOS Devices Christopher Batten School of Electrical and Computer Engineering Cornell University http://www.csl.cornell.edu/courses/ece5950 Simple Transistor

### IENGINEERS-CONSULTANTS QUESTION BANK SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU ELECTRONICS ENGINEERING EC 101 UNIT 3 (JFET AND MOSFET)

ELECTRONICS ENGINEERING EC 101 UNIT 3 (JFET AND MOSFET) LONG QUESTIONS (10 MARKS) 1. Draw the construction diagram and explain the working of P-Channel JFET. Also draw the characteristics curve and transfer

### MOS TRANSISTOR THEORY

MOS TRANSISTOR THEORY Introduction A MOS transistor is a majority-carrier device, in which the current in a conducting channel between the source and the drain is modulated by a voltage applied to the

### Field Effect Transistors

Chapter 5: Field Effect Transistors Slide 1 FET FET s (Field Effect Transistors) are much like BJT s (Bipolar Junction Transistors). Similarities: Amplifiers Switching devices Impedance matching circuits

### Lecture Integrated circuits era

Lecture 1 1.1 Integrated circuits era Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell laboratories. In 1961, first IC was introduced. Levels of Integration:-

### Bipolar Junction Transistor (BJT) Basics- GATE Problems

Bipolar Junction Transistor (BJT) Basics- GATE Problems One Mark Questions 1. The break down voltage of a transistor with its base open is BV CEO and that with emitter open is BV CBO, then (a) BV CEO =

### UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences.

UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences Discussion #9 EE 05 Spring 2008 Prof. u MOSFETs The standard MOSFET structure is shown

### PESIT Bangalore South Campus

INTERNAL ASSESSMENT TEST 2 Date : 19/09/2016 Max Marks: 40 Subject & Code : Analog and Digital Electronics (15CS32) Section: III A and B Name of faculty: Deepti.C Time : 8:30 am-10:00 am Note: Answer five

### Chapter 6: Field-Effect Transistors

Chapter 6: Field-Effect Transistors Islamic University of Gaza Dr. Talal Skaik MOSFETs MOSFETs have characteristics similar to JFETs and additional characteristics that make then very useful. There are

### Lecture (10) MOSFET. By: Dr. Ahmed ElShafee. Dr. Ahmed ElShafee, ACU : Fall 2016, Electronic Circuits II

Lecture (10) MOSFET By: Dr. Ahmed ElShafee ١ Dr. Ahmed ElShafee, ACU : Fall 2017, Electronic Circuits II Introduction The MOSFET (metal oxide semiconductor field effect transistor) is another category

### Chapter 5: Field Effect Transistors

Chapter 5: Field Effect Transistors Slide 1 FET FET s (Field Effect Transistors) are much like BJT s (Bipolar Junction Transistors). Similarities: Amplifiers Switching devices Impedance matching circuits

### EE105 Fall 2015 Microelectronic Devices and Circuits: MOSFET Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH)

EE105 Fall 2015 Microelectronic Devices and Circuits: MOSFET Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 7-1 Simplest Model of MOSFET (from EE16B) 7-2 CMOS Inverter 7-3 CMOS NAND

### 55:041 Electronic Circuits

55:041 Electronic Circuits MOSFETs Sections of Chapter 3 &4 A. Kruger MOSFETs, Page-1 Basic Structure of MOS Capacitor Sect. 3.1 Width = 1 10-6 m or less Thickness = 50 10-9 m or less ` MOS Metal-Oxide-Semiconductor

### Prof. Paolo Colantonio a.a

Prof. Paolo Colantonio a.a. 20 2 Field effect transistors (FETs) are probably the simplest form of transistor, widely used in both analogue and digital applications They are characterised by a very high

### INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 3, 2010

Low Power CMOS Inverter design at different Technologies Vijay Kumar Sharma 1, Surender Soni 2 1 Department of Electronics & Communication, College of Engineering, Teerthanker Mahaveer University, Moradabad

### 55:041 Electronic Circuits

55:041 Electronic Circuits Mosfet Review Sections of Chapter 3 &4 A. Kruger Mosfet Review, Page-1 Basic Structure of MOS Capacitor Sect. 3.1 Width 1 10-6 m or less Thickness 50 10-9 m or less ` MOS Metal-Oxide-Semiconductor

### Electronic Circuits. Junction Field-effect Transistors. Dr. Manar Mohaisen Office: F208 Department of EECE

Electronic Circuits Junction Field-effect Transistors Dr. Manar Mohaisen Office: F208 Email: manar.subhi@kut.ac.kr Department of EECE Review of the Precedent Lecture Explain the Operation Class A Power

### Microelectronics Circuit Analysis and Design. MOS Capacitor Under Bias: Electric Field and Charge. Basic Structure of MOS Capacitor 9/25/2013

Microelectronics Circuit Analysis and Design Donald A. Neamen Chapter 3 The Field Effect Transistor In this chapter, we will: Study and understand the operation and characteristics of the various types

### Field Effect Transistors

Field Effect Transistors LECTURE NO. - 41 Field Effect Transistors www.mycsvtunotes.in JFET MOSFET CMOS Field Effect transistors - FETs First, why are we using still another transistor? BJTs had a small

### 4.1 Device Structure and Physical Operation

10/12/2004 4_1 Device Structure and Physical Operation blank.doc 1/2 4.1 Device Structure and Physical Operation Reading Assignment: pp. 235-248 Chapter 4 covers Field Effect Transistors ( ) Specifically,

### I E I C since I B is very small

Figure 2: Symbols and nomenclature of a (a) npn and (b) pnp transistor. The BJT consists of three regions, emitter, base, and collector. The emitter and collector are usually of one type of doping, while

### Introduction to VLSI ASIC Design and Technology

Introduction to VLSI ASIC Design and Technology Paulo Moreira CERN - Geneva, Switzerland Paulo Moreira Introduction 1 Outline Introduction Is there a limit? Transistors CMOS building blocks Parasitics

### Lecture 16: MOS Transistor models: Linear models, SPICE models. Context. In the last lecture, we discussed the MOS transistor, and

Lecture 16: MOS Transistor models: Linear models, SPICE models Context In the last lecture, we discussed the MOS transistor, and added a correction due to the changing depletion region, called the body

### Week 7: Common-Collector Amplifier, MOS Field Effect Transistor

EE 2110A Electronic Circuits Week 7: Common-Collector Amplifier, MOS Field Effect Transistor ecture 07-1 Topics to coer Common-Collector Amplifier MOS Field Effect Transistor Physical Operation and I-V

### LECTURE 09 LARGE SIGNAL MOSFET MODEL

Lecture 9 Large Signal MOSFET Model (5/14/18) Page 9-1 LECTURE 9 LARGE SIGNAL MOSFET MODEL LECTURE ORGANIZATION Outline Introduction to modeling Operation of the MOS transistor Simple large signal model

### TECHNO INDIA BATANAGAR (DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING) QUESTION BANK- 2018

TECHNO INDIA BATANAGAR (DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING) QUESTION BANK- 2018 Paper Setter Detail Name Designation Mobile No. E-mail ID Raina Modak Assistant Professor 6290025725 raina.modak@tib.edu.in

### Difference between BJTs and FETs. Junction Field Effect Transistors (JFET)

Difference between BJTs and FETs Transistors can be categorized according to their structure, and two of the more commonly known transistor structures, are the BJT and FET. The comparison between BJTs

### problem grade total

Fall 2005 6.012 Microelectronic Devices and Circuits Prof. J. A. del Alamo Name: Recitation: November 16, 2005 Quiz #2 problem grade 1 2 3 4 total General guidelines (please read carefully before starting):

### IFB270 Advanced Electronic Circuits

IFB270 Advanced Electronic Circuits Chapter 9: FET amplifiers and switching circuits Prof. Manar Mohaisen Department of EEC Engineering Review of the Precedent Lecture Review of basic electronic devices

### Module-3: Metal Oxide Semiconductor (MOS) & Emitter coupled logic (ECL) families

1 Module-3: Metal Oxide Semiconductor (MOS) & Emitter coupled logic (ECL) families 1. Introduction 2. Metal Oxide Semiconductor (MOS) logic 2.1. Enhancement and depletion mode 2.2. NMOS and PMOS inverter

### Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 3 Field Effect Transistors Lecture-7 High Frequency

### Optimization of Threshold Voltage for 65nm PMOS Transistor using Silvaco TCAD Tools

IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 6, Issue 1 (May. - Jun. 2013), PP 62-67 Optimization of Threshold Voltage for 65nm PMOS Transistor

### 4: Transistors Non idealities

4: Transistors Non idealities Inversion Major cause of non-idealities/complexities: Who controls channel (and how)? Large Body(Substrate) Source Voltage V G V SB - - - - - - - - n+ n+ - - - - - - - - -

### Lecture 020 ECE4430 Review II (1/5/04) Page 020-1

Lecture 020 ECE4430 Review II (1/5/04) Page 020-1 LECTURE 020 ECE 4430 REVIEW II (READING: GHLM - Chap. 2) Objective The objective of this presentation is: 1.) Identify the prerequisite material as taught

### Low Power Realization of Subthreshold Digital Logic Circuits using Body Bias Technique

Indian Journal of Science and Technology, Vol 9(5), DOI: 1017485/ijst/2016/v9i5/87178, Februaru 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Low Power Realization of Subthreshold Digital Logic

### Lecture 020 ECE4430 Review II (1/5/04) Page 020-1

Lecture 020 ECE4430 Review II (1/5/04) Page 020-1 LECTURE 020 ECE 4430 REVIEW II (READING: GHLM - Chap. 2) Objective The objective of this presentation is: 1.) Identify the prerequisite material as taught

### ! PN Junction. ! MOS Transistor Topology. ! Threshold. ! Operating Regions. " Resistive. " Saturation. " Subthreshold (next class)

ESE370: ircuit-level Modeling, Design, and Optimization for Digital Systems Today! PN Junction! MOS Transistor Topology! Threshold Lec 7: September 16, 2015 MOS Transistor Operating Regions Part 1! Operating

### Department of Electrical Engineering IIT Madras

Department of Electrical Engineering IIT Madras Sample Questions on Semiconductor Devices EE3 applicants who are interested to pursue their research in microelectronics devices area (fabrication and/or

### Session 2 MOS Transistor for RF Circuits

Session 2 MOS Transistor for RF Circuits Session Speaker Chandramohan P. Session Contents MOS transistor basics MOS equivalent circuit Single stage amplifiers Opamp design Session objectives To understand

### In this lecture we will begin a new topic namely the Metal-Oxide-Semiconductor Field Effect Transistor.

Solid State Devices Dr. S. Karmalkar Department of Electronics and Communication Engineering Indian Institute of Technology, Madras Lecture - 38 MOS Field Effect Transistor In this lecture we will begin

### BJT Amplifier. Superposition principle (linear amplifier)

BJT Amplifier Two types analysis DC analysis Applied DC voltage source AC analysis Time varying signal source Superposition principle (linear amplifier) The response of a linear amplifier circuit excited

### Electronic Circuits for Mechatronics ELCT 609 Lecture 6: MOS-FET Transistor

Electronic Circuits for Mechatronics ELCT 609 Lecture 6: MOS-FET Transistor Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 Introduction Why we call it Transistor? The name came as an

### Introduction to Electronic Devices

Introduction to Electronic Devices (Course Number 300331) Fall 2006 Field Effect Transistors (FETs) Dr. Dietmar Knipp Assistant Professor of Electrical Engineering Information: http://www.faculty.iubremen.de/dknipp/

### 3: MOS Transistors. Non idealities

3: MOS Transistors Non idealities Inversion Major cause of non-idealities/complexities: Who controls channel (and how)? Large Body(Substrate) Source Voltage V G V SB - - - - - - - - n+ n+ - - - - - - -

### Summary. Electronics II Lecture 5(b): Metal-Oxide Si FET MOSFET. A/Lectr. Khalid Shakir Dept. Of Electrical Engineering

Summary Electronics II Lecture 5(b): Metal-Oxide Si FET MOSFET A/Lectr. Khalid Shakir Dept. Of Electrical Engineering College of Engineering Maysan University Page 1-21 Summary The MOSFET The metal oxide

### Electronic Circuits II - Revision

Electronic Circuits II - Revision -1 / 16 - T & F # 1 A bypass capacitor in a CE amplifier decreases the voltage gain. 2 If RC in a CE amplifier is increased, the voltage gain is reduced. 3 4 5 The load

### Lecture 15. Field Effect Transistor (FET) Wednesday 29/11/2017 MOSFET 1-1

Lecture 15 Field Effect Transistor (FET) Wednesday 29/11/2017 MOSFET 1-1 Outline MOSFET transistors Introduction to MOSFET MOSFET Types epletion-type MOSFET Characteristics Comparison between JFET and

### SKP Engineering College

SKP Engineering College Tiruvannamalai 606611 A Course Material on VLSI Design N.Anbuselvan Assistant Professor Electronics and Communication Engineering Department By Electronics and Communication Engineering

### 3-D Modelling of the Novel Nanoscale Screen-Grid Field Effect Transistor (SGFET)

3-D Modelling of the Novel Nanoscale Screen-Grid Field Effect Transistor (SGFET) Pei W. Ding, Kristel Fobelets Department of Electrical Engineering, Imperial College London, U.K. J. E. Velazquez-Perez