LECTURE 4 SPICE MODELING OF MOSFETS

Size: px
Start display at page:

Download "LECTURE 4 SPICE MODELING OF MOSFETS"

Transcription

1 LECTURE 4 SPICE MODELING OF MOSFETS Objectives for Lecture 4* Understanding the element description for MOSFETs Understand the meaning and significance of the various parameters in SPICE model levels 1 through 3 for MOSFETS Understand the basic capacitance models Have a general notion of BSIM model parameters Become award of some newer models Understand the use and shortcomings of the models covered Assignment Kang and Leblebici pp and Digital Circuit Simulation Using Star-HSpice * *Lecture length minutes 1 1/7/98 1/11/01 THE MOSFET DESCRIPTION LINES Model and Element References Massobrio, G., and P. Antognetti, Semiconductor Device Modeling with SPICE, 2nd Edition, McGraw-Hill, Foty, D., MOSFET Modeling with SPICE Principles and Practice, Prentice Hall PTR, HSPICE Manual, Chapter 15 MOSFET Introduction, Avant!, What does SPICE stand for? Simulation Program with Integrated Circuit Emphasis The MOSFET Model and Element Description Lines Process and circuit parameters which apply to a particular class of MOSFETS with varying dimensions are described for that class of MOSFETs in a single.model line in which + is used to denote line continuation. 2 1/7/98 1/11/01

2 Element Line (Continued) The dimensions are given on the element description line. In both, it is critical to watch the units; they are basically illogical! The SPICE element description line for a MOSFET has the following form: Mxxxxxxx nd ng ns <nb> mname < L=val W=val AD=val AS=val PD=val + PS=val NRD=val NRS=val OFF IC=vds, vgs, vbs TEMP=val> All parameter value pairs between < and > are optional. Additional optional HSPICE parameters: < RDC=val RSC=val M=val DTEMP=val GEO=val DELVTO=val > TEMP=val is not used on element line in HSPICE and not used for level 4 or 5 (BSIM) models. Parameter Definitions: (Obsolete) cd /afs/engr.wisc.edu/apps/ hspice /97/docs/hspice/publish; open mosfet_introduction.man with viewer. Go to page /7/98 1/11/01 Level 1 (Shichman-Hodges) DC Model Equations V T Equation as derived previously. I D Equations as derived previously with linear mode equation times ( 1 + λv DS ) for continuity across linear-saturation boundary. Both use L eff in place of L where: L eff = L 2 LD Key Parameters: What do they represent? See Kang and Leblebici Table 4.1 NMOS, PMOS (obvious) MOSFET channel type KP process transconductance k VTO (note O, not 0) zero substrate-bias threshold voltage V T0 GAMMA substrate-bias or body-effect coefficient γ PHI twice the Fermi potential 2φ F LAMBDA channel length modulation λ 4 1/7/98 1/11/01

3 Level 1 (Continued) Additional Parameters: What do they represent? LD Lateral diffusion (If not present, may need to find L eff manually!) TPG Type of gate material: 0 Al, +1 opposite to substrate, 1 same as substrate. Default is +1. For the typical CMOS process, TPG = 1 for NMOS and 1 for PMOS. NSUB substrate impurity concentration N A, N D NSS Surface state density Used to define surface component of V T0. TOX Oxide Thickness t ox U0 (note 0, not O) Surface mobility µ 0 RD, RS Drain Resistance, Source Resistance RSH Drain and Source Sheet Resistance (Ω/ ) Derived Parameters. Note that if some parameters missing, others, if present, can be used to derive them. E. g., NSUB to derive PHI, and TOX and U0 to derive KP. Question: What parameters to derive GAMMA? If the derivable parameters are present in the model, they will be used; if not, derived if possible from other parameters (and defaults), else, defaulted. 5 1/7/98 1/11/01 Level 2 What about defaults and units? See Table 4.1. of Kang and Leblebici Other parameters in Level 1 are related to capacitance (later) or irrelevant to digital applications. Level 2 Analytical model that takes into account small geometry effects. Equations that use most of the parameters are given in the text. Parameters in addition to those for Level 1: 6 1/7/98 1/11/01 NFS Fast surface state density Used in modeling subthreshold conduction. NEFF Total channel charge coefficient Empirical fitting factor multiplied times NSUB in the calculation of the short channel effect on γ. Used only in Level 2. XJ Junction depth of source and drain. VMAX Maximum drift velocity for carriers used for modeling velocity saturation. DELTA Channel width effect on V T.

4 Level 2 (Continued) XQC Coefficient of channel charge share. Used to specify the portion of the channel charge attributed to the drain. Also, more importantly causes the Ward capacitive model to replace the Meyer capacitance model. Both have their disadvantages. Next three parameters produce a multiplicative surface mobility degradation factor to multiply times KP and appear in Level 2 only. UCRIT Critical electric field for mobility degradation. UEXP Exponent coefficient for mobility degradation. UTRA Transverse field coefficient for mobility degradation. Coefficient of V DS in denominator of the factor. See Table 4.1. of Kang and Leblebici 7 1/7/98 1/11/01 Level 3 More empirical and less analytical than Level 2; this permits improved convergence and simpler computations while sacrificing little accuracy. The parameters it has beyond those in Level 2 (Note that the following Level 2 parameters are deleted: NEFF, UCRIT, UEXP, and UTRA.) KAPPA Saturation field factor. An empirical factor in the equation for the channel length in saturation ETA Static feedback on V T. Models effect of V DS on V T, i. e., DIBL (Drain-Induced Barrier Lowering) THETA Mobility modulation. Models the effect of V GS on surface mobility See Table 4.1. of Kang and Leblebici 8 1/7/98 1/11/01

5 CAPACITANCE MODELS Levels 1 through 3 use the Meyer capacitance model (see Kang and Leblebici Fig. 3.32) as the default for the channel capacitance with the option of the Ward model (see Kang and Leblebici Fig. 4.8) in Levels 2 and 3. For the source and drain capacitances, note the junction diode equation with reverse bias V with V T, the thermal voltage, I = V V T I S e 1 = I s for V 4V T and recall that: C j = C j ( 1 V φ 0 ) m where m = 1/2 for an abrupt junction and m = 1/3 for a graded junction. The parameters: IS Bulk junction saturation current. JS Bulk junction saturation current density (used with junction areas) 9 1/7/98 1/11/01 CAPACITANCE MODELS (Continued) PB φ 0 Bulk junction Potential (Built-in voltage) CJ Zero-bias bulk junction capacitance per m 2 MJ m Bulk junction grading coefficient CJSW Zero-bias perimeter capacitance per m MJSW m Perimeter capacitance grading coefficient FC Bulk junction forward bias coefficient - used in evaluating capacitance under strong forward bias. CGBO Gate-bulk overlap capacitance per meter of L; should be set to 0 if modeled as interconnect instead. CGDO Gate-drain overlap capacitance per meter of W GDSO Gate-source overlap capacitance per meter of W See Table 4.1. of Kang and Leblebici See scn06hp.l3 model (Obsolete). 10 1/7/98 1/11/01

6 MORE SPICE MODELS BSIM (LEVEL 4) An empirical model that includes: all of the typical small geometry effects the nonuniform doping profile for ion-implanted devices an automatic parameter extraction program which produces a consistent set of parameters L and W for the channel For BSIM parameters, see Foty Table 8.1 We will not look at these parameters in detail, but it is quite important to look at the form of the electrical parameters. Each electrical parameter P is represented by three process parameters P 0, P L, and P W associated with P: P P L W P = P L DL W DW L eff W eff 11 1/7/98 1/11/01 MORE SPICE MODELS BSIM (Continued) L and W are drawn dimensions and DL and DW are the net size changes in the drawn dimensions due to the entire sequence of fabrication steps. The differences shown give L eff and W eff. The equation for P allows for an adjustment of the electrical parameter as a function of the effective length and width of the channel. Parameter extraction uses devices of several sizes. P 0 is for long, wide MOS- FET. BSIM also uses a new approach to capacitance modeling that avoids the difficulties of errors and lack of charge conservation in the Meyer model and the errors and convergence problems in the Ward model. See Massobrio and Antognetti p. 219 for trios of parameters. Note that model file scn06hp.l13 has only numerical values identified by position; this is an alternate form of the model. 12 1/7/98 1/11/01

7 MORE SPICE MODELS HSPICE Level 28, BSIM2, BIM3 HSPICE Level 13 is BSIM HSPICE Level 28 a very popular modification of BSIM, but can only be used in HSPICE BSIM2 (HSPICE Level 39) typical model today for those not using HSPICE BSIM3 Version 3 (HSPICE Level 49) a complex new public domain model that is frequently used today. 13 1/7/98 1/11/01 WHICH MODEL SHOULD I USE? Level 1: At best, for quick estimates not requiring accuracy. Very poor for small geometry devices. Viewed as obsolete by some. Level 2: Due to convergence problems and slow computation rate, abandoned in favor of Level 3 or higher. Level 3: Good for MOSFETs down to about 2 microns. BSIM Level 4 (HSPICE Level 13): Good for small geometry MOSFETS with L down to 1 micron and t ox down to 150 Angstroms. Problems near V sat ; negative output conductance; discontinuity in current at V T. For submicron dimensions, replaced by BSIM2 and HSPICE Level 28. BSIM2 (HSPICE Level 39): Good for small geometry MOSFETs with L down to 0.2 micron and t ox down to 36 Angstroms. HSPICE Level 28: BSIM with its problems solved; good choice for HSPICE users. BSIM3 Version 3 (HSPICE Level 49): Most accurate, but complex. 14 1/7/98 1/11/01

8 SUMMARY Learned the element description line for a MOSFET Reviewed the first generation SPICE model parameters, levels 1, 2, and 3 Reviewed the device capacitances and associated parameters Obtained a sense of the form of the parameters for the BSIM model Obtained an awareness of some of the newer models Obtained a comparative viewpoint of the models and their use. 15 1/7/98 1/11/01

SPICE MODELING OF MOSFETS. Objectives for Lecture 4*

SPICE MODELING OF MOSFETS. Objectives for Lecture 4* LECTURE 4 SPICE MODELING OF MOSFETS Objectives for Lecture 4* Understanding the element description for MOSFETs Understand the meaning and significance of the various parameters in SPICE model levels 1

More information

Electronic CAD Practical work. Week 1: Introduction to transistor models. curve tracing of NMOS transfer characteristics

Electronic CAD Practical work. Week 1: Introduction to transistor models. curve tracing of NMOS transfer characteristics Electronic CAD Practical work Dr. Martin John Burbidge Lancashire UK Tel: +44 (0)1524 825064 Email: martin@mjb-rfelectronics-synthesis.com Martin Burbidge 2006 Week 1: Introduction to transistor models

More information

Final for EE 421 Digital Electronics and ECG 621 Digital Integrated Circuit Design Fall, University of Nevada, Las Vegas

Final for EE 421 Digital Electronics and ECG 621 Digital Integrated Circuit Design Fall, University of Nevada, Las Vegas Final for EE 421 Digital Electronics and ECG 621 Digital Integrated Circuit Design Fall, University of Nevada, Las Vegas NAME: Show your work to get credit. Open book and closed notes. Unless otherwise

More information

CMOS voltage controlled floating resistor

CMOS voltage controlled floating resistor INT. J. ELECTRONICS, 1996, VOL. 81, NO. 5, 571± 576 CMOS voltage controlled floating resistor HASSAN O. ELWAN², SOLIMAN A. MAHMOUD² AHMED M. SOLIMAN² and A new CMOS floating linear resistor circuit with

More information

problem grade total

problem grade total Fall 2005 6.012 Microelectronic Devices and Circuits Prof. J. A. del Alamo Name: Recitation: November 16, 2005 Quiz #2 problem grade 1 2 3 4 total General guidelines (please read carefully before starting):

More information

Lecture 16: MOS Transistor models: Linear models, SPICE models. Context. In the last lecture, we discussed the MOS transistor, and

Lecture 16: MOS Transistor models: Linear models, SPICE models. Context. In the last lecture, we discussed the MOS transistor, and Lecture 16: MOS Transistor models: Linear models, SPICE models Context In the last lecture, we discussed the MOS transistor, and added a correction due to the changing depletion region, called the body

More information

INTRODUCTION TO CIRCUIT SIMULATION USING SPICE

INTRODUCTION TO CIRCUIT SIMULATION USING SPICE LSI Circuits INTRODUCTION TO CIRCUIT SIMULATION USING SPICE Introduction: SPICE (Simulation Program with Integrated Circuit Emphasis) is a very powerful and probably the most widely used simulator for

More information

Laboratory 1 Single-Stage MOSFET Amplifier Analysis and Design Due Date: Week of February 20, 2014, at the beginning of your lab section

Laboratory 1 Single-Stage MOSFET Amplifier Analysis and Design Due Date: Week of February 20, 2014, at the beginning of your lab section Laboratory 1 Single-Stage MOSFET Amplifier Analysis and Design Due Date: Week of February 20, 2014, at the beginning of your lab section Objective To analyze and design single-stage common source amplifiers.

More information

Computer Exercises Manual: Device Parameters in SPICE. Interactive MATLAB Animations for Understanding Semiconductor Devices

Computer Exercises Manual: Device Parameters in SPICE. Interactive MATLAB Animations for Understanding Semiconductor Devices Computer Exercises Manual: Device Parameters in SPICE This manual is provided as a PDF le { just click on cem.pdf to open it. This can be done from the CD (using Windows Explorer, click on the CD-drive

More information

EEC 118 Spring 2010 Lab #1: NMOS and PMOS Transistor Parameters

EEC 118 Spring 2010 Lab #1: NMOS and PMOS Transistor Parameters EEC 118 Spring 2010 Lab #1: NMOS and PMOS Transistor Parameters Dept. of Electrical and Computer Engineering University of California, Davis March 18, 2010 Reading: Rabaey Chapter 3 [1]. Reference: Kang

More information

Appendix 5 Model card parameters for built-in components

Appendix 5 Model card parameters for built-in components Appendix 5 Model card parameters for built-in components In this Appendix, names and default values of model card parameters are given for built-in analogue components. These are SPICE models of diode,

More information

Modeling MOS Transistors. Prof. MacDonald

Modeling MOS Transistors. Prof. MacDonald Modeling MOS Transistors Prof. MacDonald 1 Modeling MOSFETs for simulation l Software is used simulate circuits for validation l Original program SPICE UC Berkeley Simulation Program with Integrated Circuit

More information

Drive performance of an asymmetric MOSFET structure: the peak device

Drive performance of an asymmetric MOSFET structure: the peak device MEJ 499 Microelectronics Journal Microelectronics Journal 30 (1999) 229 233 Drive performance of an asymmetric MOSFET structure: the peak device M. Stockinger a, *, A. Wild b, S. Selberherr c a Institute

More information

VLSI Design I. The MOSFET model Wow!

VLSI Design I. The MOSFET model Wow! VLSI Design I The MOSFET model Wow! Are device models as nice as Cindy? Overview The large signal MOSFET model and second order effects. MOSFET capacitances. Introduction in fet process technology Goal:

More information

NAME: Last First Signature

NAME: Last First Signature UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE 130: IC Devices Spring 2003 FINAL EXAMINATION NAME: Last First Signature STUDENT

More information

Chapter 1. Introduction

Chapter 1. Introduction EECS3611 Analog Integrated Circuit esign Chapter 1 Introduction EECS3611 Analog Integrated Circuit esign Instructor: Prof. Ebrahim Ghafar-Zadeh, Prof. Peter Lian email: egz@cse.yorku.ca peterlian@cse.yorku.ca

More information

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha ECE520 VLSI Design Lecture 2: Basic MOS Physics Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Wednesday 2:00-3:00PM or by appointment E-mail: pzarkesh@unm.edu Slide: 1 Review of Last Lecture Semiconductor

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fundamentals 4.4. Field Effect Transistor (MOSFET) ENS 463 Lecture Course by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 4N101b 1 Field-effect transistor (FET)

More information

Conduction Characteristics of MOS Transistors (for fixed Vds)! Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor

Conduction Characteristics of MOS Transistors (for fixed Vds)! Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor Conduction Characteristics of MOS Transistors (for fixed Vds)! Topic 2 Basic MOS theory & SPICE simulation Peter Cheung Department of Electrical & Electronic Engineering Imperial College London (Weste&Harris,

More information

Topic 2. Basic MOS theory & SPICE simulation

Topic 2. Basic MOS theory & SPICE simulation Topic 2 Basic MOS theory & SPICE simulation Peter Cheung Department of Electrical & Electronic Engineering Imperial College London (Weste&Harris, Ch 2 & 5.1-5.3 Rabaey, Ch 3) URL: www.ee.ic.ac.uk/pcheung/

More information

Conduction Characteristics of MOS Transistors (for fixed Vds) Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor

Conduction Characteristics of MOS Transistors (for fixed Vds) Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor Conduction Characteristics of MOS Transistors (for fixed Vds) Topic 2 Basic MOS theory & SPICE simulation Peter Cheung Department of Electrical & Electronic Engineering Imperial College London (Weste&Harris,

More information

A MOS VLSI Comparator

A MOS VLSI Comparator A MOS VLSI Comparator John Monforte School of Music University of Miami, Coral Gables, FL. USA Jayant Datta Department of Electrical Engineering University of Miami, Coral Gables, FL. USA ABSTRACT A comparator

More information

Novel MOS-C oscillators using the current feedback op-amp

Novel MOS-C oscillators using the current feedback op-amp INT. J. ELECTRONICS, 2000, VOL. 87, NO. 3, 269± 280 Novel MOS-C oscillators using the current feedback op-amp SOLIMAN A. MAHMOUDy and AHMED M. SOLIMANyz Three new MOS-C oscillators using the current feedback

More information

Field Effect Transistors (FET s) University of Connecticut 136

Field Effect Transistors (FET s) University of Connecticut 136 Field Effect Transistors (FET s) University of Connecticut 136 Field Effect Transistors (FET s) FET s are classified three ways: by conduction type n-channel - conduction by electrons p-channel - conduction

More information

Experiment 3. 3 MOSFET Drain Current Modeling. 3.1 Summary. 3.2 Theory. ELEC 3908 Experiment 3 Student#:

Experiment 3. 3 MOSFET Drain Current Modeling. 3.1 Summary. 3.2 Theory. ELEC 3908 Experiment 3 Student#: Experiment 3 3 MOSFET Drain Current Modeling 3.1 Summary In this experiment I D vs. V DS and I D vs. V GS characteristics are measured for a silicon MOSFET, and are used to determine the parameters necessary

More information

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism;

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism; Chapter 3 Field-Effect Transistors (FETs) 3.1 Introduction Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism; The concept has been known

More information

Sub-Threshold Region Behavior of Long Channel MOSFET

Sub-Threshold Region Behavior of Long Channel MOSFET Sub-threshold Region - So far, we have discussed the MOSFET behavior in linear region and saturation region - Sub-threshold region is refer to region where Vt is less than Vt - Sub-threshold region reflects

More information

cost and reliability; power considerations were of secondary importance. In recent years. however, this has begun to change and increasingly power is

cost and reliability; power considerations were of secondary importance. In recent years. however, this has begun to change and increasingly power is CHAPTER-1 INTRODUCTION AND SCOPE OF WORK 1.0 MOTIVATION In the past, the major concern of the VLSI designer was area, performance, cost and reliability; power considerations were of secondary importance.

More information

Accurate active-feedback CM OS cascode current mirror with improved output swing

Accurate active-feedback CM OS cascode current mirror with improved output swing INT. J. ELECTRONICS, 1998, VOL. 84, NO. 4, 335±343 Accurate active-feedback CM OS cascode current mirror with improved output swing ALÇI ZEKÇI² and HAKAN KUNTMAN² An improved active-feedback CMOS cascode

More information

Channel Engineering for Submicron N-Channel MOSFET Based on TCAD Simulation

Channel Engineering for Submicron N-Channel MOSFET Based on TCAD Simulation Australian Journal of Basic and Applied Sciences, 2(3): 406-411, 2008 ISSN 1991-8178 Channel Engineering for Submicron N-Channel MOSFET Based on TCAD Simulation 1 2 3 R. Muanghlua, N. Vittayakorn and A.

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Metal-Semiconductor and Semiconductor Heterojunctions The Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) is one of two major types of transistors. The MOSFET is used in digital circuit, because

More information

Introduction to the Long Channel MOSFET. Dr. Lynn Fuller

Introduction to the Long Channel MOSFET. Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Introduction to the Long Channel MOSFET Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee Electrical and 82 Lomb Memorial Drive Rochester,

More information

MOSFET Terminals. The voltage applied to the GATE terminal determines whether current can flow between the SOURCE & DRAIN terminals.

MOSFET Terminals. The voltage applied to the GATE terminal determines whether current can flow between the SOURCE & DRAIN terminals. MOSFET Terminals The voltage applied to the GATE terminal determines whether current can flow between the SOURCE & DRAIN terminals. For an n-channel MOSFET, the SOURCE is biased at a lower potential (often

More information

Lecture-45. MOS Field-Effect-Transistors Threshold voltage

Lecture-45. MOS Field-Effect-Transistors Threshold voltage Lecture-45 MOS Field-Effect-Transistors 7.4. Threshold voltage In this section we summarize the calculation of the threshold voltage and discuss the dependence of the threshold voltage on the bias applied

More information

MOSFET FUNDAMENTALS OPERATION & MODELING

MOSFET FUNDAMENTALS OPERATION & MODELING MOSFET FUNDAMENTALS OPERATION & MODELING MOSFET MODELING AND OPERATION MOSFET Fundamentals MOSFET Physical Structure and Operation MOSFET Large Signal I-V Characteristics Subthreshold Triode Saturation

More information

Lecture 4. MOS transistor theory

Lecture 4. MOS transistor theory Lecture 4 MOS transistor theory 1.7 Introduction: A MOS transistor is a majority-carrier device, in which the current in a conducting channel between the source and the drain is modulated by a voltage

More information

MOS Field Effect Transistors

MOS Field Effect Transistors MOS Field Effect Transistors A gate contact gate interconnect n polysilicon gate source contacts W active area (thin oxide area) polysilicon gate contact metal interconnect drain contacts A bulk contact

More information

Session 10: Solid State Physics MOSFET

Session 10: Solid State Physics MOSFET Session 10: Solid State Physics MOSFET 1 Outline A B C D E F G H I J 2 MOSCap MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor: Al (metal) SiO2 (oxide) High k ~0.1 ~5 A SiO2 A n+ n+ p-type Si (bulk)

More information

LECTURE 09 LARGE SIGNAL MOSFET MODEL

LECTURE 09 LARGE SIGNAL MOSFET MODEL Lecture 9 Large Signal MOSFET Model (5/14/18) Page 9-1 LECTURE 9 LARGE SIGNAL MOSFET MODEL LECTURE ORGANIZATION Outline Introduction to modeling Operation of the MOS transistor Simple large signal model

More information

Physical Modeling of Submicron MOSFET's by Using a Modified SPICE MOS3 Model: Application to 0.5 jim LDD MOSFET's

Physical Modeling of Submicron MOSFET's by Using a Modified SPICE MOS3 Model: Application to 0.5 jim LDD MOSFET's 545 SIMULATION OF SEMICONDUCTOR DEICES AND PROCESSES ol. 4 Edited by W.Fichtner,D.Aemmer - Zurich (Switzerland) September 12-14,1991 - Hartung-Gorre Physical Modeling of Submicron MOSFET's by Using a Modified

More information

Characterization of Variable Gate Oxide Thickness MOSFET with Non-Uniform Oxide Thicknesses for Sub-Threshold Leakage Current Reduction

Characterization of Variable Gate Oxide Thickness MOSFET with Non-Uniform Oxide Thicknesses for Sub-Threshold Leakage Current Reduction 2012 International Conference on Solid-State and Integrated Circuit (ICSIC 2012) IPCSIT vol. 32 (2012) (2012) IACSIT Press, Singapore Characterization of Variable Gate Oxide Thickness MOSFET with Non-Uniform

More information

Two Dimensional Analytical Threshold Voltages Modeling for Short-Channel MOSFET

Two Dimensional Analytical Threshold Voltages Modeling for Short-Channel MOSFET Two Dimensional Analytical Threshold Voltages Modeling for Short-Channel MOSFET Sanjeev kumar Singh, Vishal Moyal Electronics & Telecommunication, SSTC-SSGI, Bhilai, Chhatisgarh, India Abstract- The aim

More information

Three Terminal Devices

Three Terminal Devices Three Terminal Devices - field effect transistor (FET) - bipolar junction transistor (BJT) - foundation on which modern electronics is built - active devices - devices described completely by considering

More information

Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs)

Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) Device Structure N-Channel MOSFET Providing electrons Pulling electrons (makes current flow) + + + Apply positive voltage to gate: Drives away

More information

Typical NMOS Modeling Using a Skewing Method

Typical NMOS Modeling Using a Skewing Method The 4th International Conference on Integrated Circuits, Design, and Verification Mo Chi Minh City, Vietnam (Nov. 15, 2013) Typical NMOS Modeling Using a Skewing Method - An NMOS Modeling Method for RF

More information

INTRODUCTION: Basic operating principle of a MOSFET:

INTRODUCTION: Basic operating principle of a MOSFET: INTRODUCTION: Along with the Junction Field Effect Transistor (JFET), there is another type of Field Effect Transistor available whose Gate input is electrically insulated from the main current carrying

More information

EE301 Electronics I , Fall

EE301 Electronics I , Fall EE301 Electronics I 2018-2019, Fall 1. Introduction to Microelectronics (1 Week/3 Hrs.) Introduction, Historical Background, Basic Consepts 2. Rewiev of Semiconductors (1 Week/3 Hrs.) Semiconductor materials

More information

EECE 481. MOS Basics Lecture 2

EECE 481. MOS Basics Lecture 2 EECE 481 MOS Basics Lecture 2 Reza Molavi Dept. of ECE University of British Columbia reza@ece.ubc.ca Slides Courtesy : Dr. Res Saleh (UBC), Dr. D. Sengupta (AMD), Dr. B. Razavi (UCLA) 1 PN Junction and

More information

FUNDAMENTALS OF MODERN VLSI DEVICES

FUNDAMENTALS OF MODERN VLSI DEVICES 19-13- FUNDAMENTALS OF MODERN VLSI DEVICES YUAN TAUR TAK H. MING CAMBRIDGE UNIVERSITY PRESS Physical Constants and Unit Conversions List of Symbols Preface page xi xiii xxi 1 INTRODUCTION I 1.1 Evolution

More information

Digital Integrated Circuits EECS 312

Digital Integrated Circuits EECS 312 14 12 10 8 6 Fujitsu VP2000 IBM 3090S Pulsar 4 IBM 3090 IBM RY6 CDC Cyber 205 IBM 4381 IBM RY4 2 IBM 3081 Apache Fujitsu M380 IBM 370 Merced IBM 360 IBM 3033 Vacuum Pentium II(DSIP) 0 1950 1960 1970 1980

More information

Analog IC Design. Lecture 1,2: Introduction & MOS transistors. Henrik Sjöland. Dept. of Electrical and Information Technology

Analog IC Design. Lecture 1,2: Introduction & MOS transistors. Henrik Sjöland. Dept. of Electrical and Information Technology Analog IC Design Lecture 1,2: Introduction & MOS transistors Henrik.Sjoland@eit.lth.se Part 1: Introduction Analogue IC Design (7.5hp, lp2) CMOS Technology Analog building blocks in CMOS Single- and multiple

More information

Sub-threshold Leakage Current Reduction Using Variable Gate Oxide Thickness (VGOT) MOSFET

Sub-threshold Leakage Current Reduction Using Variable Gate Oxide Thickness (VGOT) MOSFET Microelectronics and Solid State Electronics 2013, 2(2): 24-28 DOI: 10.5923/j.msse.20130202.02 Sub-threshold Leakage Current Reduction Using Variable Gate Oxide Thickness (VGOT) MOSFET Keerti Kumar. K

More information

3: MOS Transistors. Non idealities

3: MOS Transistors. Non idealities 3: MOS Transistors Non idealities Inversion Major cause of non-idealities/complexities: Who controls channel (and how)? Large Body(Substrate) Source Voltage V G V SB - - - - - - - - n+ n+ - - - - - - -

More information

EE70 - Intro. Electronics

EE70 - Intro. Electronics EE70 - Intro. Electronics Course website: ~/classes/ee70/fall05 Today s class agenda (November 28, 2005) review Serial/parallel resonant circuits Diode Field Effect Transistor (FET) f 0 = Qs = Qs = 1 2π

More information

MOS TRANSISTOR THEORY

MOS TRANSISTOR THEORY MOS TRANSISTOR THEORY Introduction A MOS transistor is a majority-carrier device, in which the current in a conducting channel between the source and the drain is modulated by a voltage applied to the

More information

Fundamentos de Electrónica Lab Guide

Fundamentos de Electrónica Lab Guide Fundamentos de Electrónica Lab Guide Field Effect Transistor MOS-FET IST-2016/2017 2 nd Semester I-Introduction These are the objectives: a. n-type MOSFET characterization from the I(U) characteristics.

More information

Department of Electrical Engineering IIT Madras

Department of Electrical Engineering IIT Madras Department of Electrical Engineering IIT Madras Sample Questions on Semiconductor Devices EE3 applicants who are interested to pursue their research in microelectronics devices area (fabrication and/or

More information

Design cycle for MEMS

Design cycle for MEMS Design cycle for MEMS Design cycle for ICs IC Process Selection nmos CMOS BiCMOS ECL for logic for I/O and driver circuit for critical high speed parts of the system The Real Estate of a Wafer MOS Transistor

More information

MOSFET short channel effects

MOSFET short channel effects MOSFET short channel effects overview Five different short channel effects can be distinguished: velocity saturation drain induced barrier lowering (DIBL) impact ionization surface scattering hot electrons

More information

A Novel Approach for Velocity Saturation Calculations of 90nm N-channel MOSFET

A Novel Approach for Velocity Saturation Calculations of 90nm N-channel MOSFET A Novel Approach for Velocity Saturation Calculations of 90nm N-channel MOSFET Rino Takahashi 1, a, Hitoshi Aoki 2,b, Nobukazu Tsukiji, Masashi Higashino, Shohei Shibuya, Keita Kurihara, Haruo Kobayashi

More information

SPICE Simulation Program with Integrated Circuit Emphasis

SPICE Simulation Program with Integrated Circuit Emphasis SPICE Simulation Program with Integrated Circuit Emphasis References: [1] CIC SPICE training manual [3] SPICE manual [2] DIC textbook Sep. 25, 2004 1 SPICE: Introduction Simulation Program with Integrated

More information

4: Transistors Non idealities

4: Transistors Non idealities 4: Transistors Non idealities Inversion Major cause of non-idealities/complexities: Who controls channel (and how)? Large Body(Substrate) Source Voltage V G V SB - - - - - - - - n+ n+ - - - - - - - - -

More information

Lab 5: MOSFET I-V Characteristics

Lab 5: MOSFET I-V Characteristics 1. Learning Outcomes Lab 5: MOSFET I-V Characteristics In this lab, students will determine the MOSFET I-V characteristics of both a P-Channel MOSFET and an N- Channel MOSFET. Also examined is the effect

More information

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 3, 2010

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 3, 2010 Low Power CMOS Inverter design at different Technologies Vijay Kumar Sharma 1, Surender Soni 2 1 Department of Electronics & Communication, College of Engineering, Teerthanker Mahaveer University, Moradabad

More information

Digital Electronics. By: FARHAD FARADJI, Ph.D. Assistant Professor, Electrical and Computer Engineering, K. N. Toosi University of Technology

Digital Electronics. By: FARHAD FARADJI, Ph.D. Assistant Professor, Electrical and Computer Engineering, K. N. Toosi University of Technology K. N. Toosi University of Technology Chapter 7. Field-Effect Transistors By: FARHAD FARADJI, Ph.D. Assistant Professor, Electrical and Computer Engineering, K. N. Toosi University of Technology http://wp.kntu.ac.ir/faradji/digitalelectronics.htm

More information

Semiconductor Devices

Semiconductor Devices Semiconductor Devices Modelling and Technology Source Electrons Gate Holes Drain Insulator Nandita DasGupta Amitava DasGupta SEMICONDUCTOR DEVICES Modelling and Technology NANDITA DASGUPTA Professor Department

More information

Assignment 1 SOLUTIONS

Assignment 1 SOLUTIONS ELEC5509 Assignment 1 SOLUTIONS September 2013 The nmos technology used in ELEC4609 provides enhancement MOSFETs with VT = 0.7V and depletion MOSFETs with VTd = -3.0V. The gate oxide thickness t ox = 50nm

More information

Substrate Bias Effects on Drain Induced Barrier Lowering (DIBL) in Short Channel NMOS FETs

Substrate Bias Effects on Drain Induced Barrier Lowering (DIBL) in Short Channel NMOS FETs Australian Journal of Basic and Applied Sciences, 3(3): 1640-1644, 2009 ISSN 1991-8178 Substrate Bias Effects on Drain Induced Barrier Lowering (DIBL) in Short Channel NMOS FETs 1 1 1 1 2 A. Ruangphanit,

More information

Gunning Transceiver Logic Interface Bus Design Project

Gunning Transceiver Logic Interface Bus Design Project Gunning Transceiver Logic Interface Bus Design Project Group #14 EE 307 Winter 2007 February 23, 2007 Robert Hursig rhursig@calpoly.edu Tommy Oleksyn toleksyn@calpoly.edu http://www.drdphd.com/02_14.pdf

More information

MOS Inverters Dr. Lynn Fuller Webpage:

MOS Inverters Dr. Lynn Fuller Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING MOS Inverters Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Email: Lynn.Fuller@rit.edu

More information

Chapter 2. MOSFETs. 2.1 Why MOSFET?

Chapter 2. MOSFETs. 2.1 Why MOSFET? Chapter 2 MOSFETs 2.1 Why MOSFET? Much of this book is concerned with the application of the so-called Metal- Oxide-Semiconductor Field-Effect Transistor (MOSFET) toward implementing signal processing

More information

MOSFET & IC Basics - GATE Problems (Part - I)

MOSFET & IC Basics - GATE Problems (Part - I) MOSFET & IC Basics - GATE Problems (Part - I) 1. Channel current is reduced on application of a more positive voltage to the GATE of the depletion mode n channel MOSFET. (True/False) [GATE 1994: 1 Mark]

More information

MOSFET Parasitic Elements

MOSFET Parasitic Elements MOSFET Parasitic Elements Three MITs of the ay Components of the source resistance and their influence on g m and R d Gate-induced drain leakage (GIL) and its effect on lowest possible leakage current

More information

Lab 6: MOSFET AMPLIFIER

Lab 6: MOSFET AMPLIFIER Lab 6: MOSFET AMPLIFIER NOTE: This is a "take home" lab. You are expected to do the lab on your own time (still working with your lab partner) and then submit your lab reports. Lab instructors will be

More information

The EKV MOSFET Model for Circuit Simulation

The EKV MOSFET Model for Circuit Simulation The EKV MOSFET Model for Circuit Simulation October, 1998 Matthias Bucher, Fabien Théodoloz, François Krummenacher Electronics Laboratories (LEG) Swiss Federal Institute of Technology, Lausanne (EPFL),

More information

(0.9 Voo) /85/ $ IEEE. An Efficient Timing Model for CMOS Combinational Logic Gates

(0.9 Voo) /85/ $ IEEE. An Efficient Timing Model for CMOS Combinational Logic Gates 636 IEEE TRANSACTION S ON COMPUTER-AI D E D D E S IGN, VOL. CAO-4, NO.4, OCTOBER 1985 An Efficient Timing Model for CMOS Combinational Logic Gates CHUNG- YU WU, JEN-SHENG HWANG, CHIH CHANG, AND CHING-CHU

More information

Contents. Contents... v. Preface... xiii. Chapter 1 Introduction...1. Chapter 2 Significant Physical Effects In Modern MOSFETs...

Contents. Contents... v. Preface... xiii. Chapter 1 Introduction...1. Chapter 2 Significant Physical Effects In Modern MOSFETs... Contents Contents... v Preface... xiii Chapter 1 Introduction...1 1.1 Compact MOSFET Modeling for Circuit Simulation...1 1.2 The Trends of Compact MOSFET Modeling...5 1.2.1 Modeling new physical effects...5

More information

UNIT 3: FIELD EFFECT TRANSISTORS

UNIT 3: FIELD EFFECT TRANSISTORS FIELD EFFECT TRANSISTOR: UNIT 3: FIELD EFFECT TRANSISTORS The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There are

More information

Charge-Based Continuous Equations for the Transconductance and Output Conductance of Graded-Channel SOI MOSFET s

Charge-Based Continuous Equations for the Transconductance and Output Conductance of Graded-Channel SOI MOSFET s Charge-Based Continuous Equations for the Transconductance and Output Conductance of Graded-Channel SOI MOSFET s Michelly de Souza 1 and Marcelo Antonio Pavanello 1,2 1 Laboratório de Sistemas Integráveis,

More information

MOS Field-Effect Transistors (MOSFETs)

MOS Field-Effect Transistors (MOSFETs) 6 MOS Field-Effect Transistors (MOSFETs) A three-terminal device that uses the voltages of the two terminals to control the current flowing in the third terminal. The basis for amplifier design. The basis

More information

Leakage Currents: Sources and Solutions for Low-Power CMOS VLSI Martin Martinez IEEE Student Member No Lamar University 04/2007

Leakage Currents: Sources and Solutions for Low-Power CMOS VLSI Martin Martinez IEEE Student Member No Lamar University 04/2007 Leakage Currents: Sources and Solutions for Low-Power CMOS VLSI Martin Martinez IEEE Student Member No. 80364730 Lamar University 04/2007 1 Table of Contents Section Page Title Page 1 Table of Contents

More information

EFFECT OF THRESHOLD VOLTAGE AND CHANNEL LENGTH ON DRAIN CURRENT OF SILICON N-MOSFET

EFFECT OF THRESHOLD VOLTAGE AND CHANNEL LENGTH ON DRAIN CURRENT OF SILICON N-MOSFET EFFECT OF THRESHOLD VOLTAGE AND CHANNEL LENGTH ON DRAIN CURRENT OF SILICON N-MOSFET A.S.M. Bakibillah Nazibur Rahman Dept. of Electrical & Electronic Engineering, American International University Bangladesh

More information

6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers

6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers 6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers Michael Perrott Massachusetts Institute of Technology Copyright 2003 by Michael H. Perrott Broadband Communication

More information

NEW ALL-PASS FILTER CIRCUIT COMPENSATING FOR C-CDBA NON-IDEALITIES

NEW ALL-PASS FILTER CIRCUIT COMPENSATING FOR C-CDBA NON-IDEALITIES Journal of Circuits, Systems, and Computers Vol. 19, No. 2 (2010) 381 391 #.c World Scienti c Publishing Company DOI: 10.1142/S0218126610006128 NEW ALL-PASS FILTER CIRCUIT COMPENSATING FOR C-CDBA NON-IDEALITIES

More information

Technology-Independent CMOS Op Amp in Minimum Channel Length

Technology-Independent CMOS Op Amp in Minimum Channel Length Technology-Independent CMOS Op Amp in Minimum Channel Length A Thesis Presented to The Academic Faculty by Susanta Sengupta In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

More information

8. Characteristics of Field Effect Transistor (MOSFET)

8. Characteristics of Field Effect Transistor (MOSFET) 1 8. Characteristics of Field Effect Transistor (MOSFET) 8.1. Objectives The purpose of this experiment is to measure input and output characteristics of n-channel and p- channel field effect transistors

More information

CONTENTS. 2.2 Schrodinger's Wave Equation 31. PART I Semiconductor Material Properties. 2.3 Applications of Schrodinger's Wave Equation 34

CONTENTS. 2.2 Schrodinger's Wave Equation 31. PART I Semiconductor Material Properties. 2.3 Applications of Schrodinger's Wave Equation 34 CONTENTS Preface x Prologue Semiconductors and the Integrated Circuit xvii PART I Semiconductor Material Properties CHAPTER 1 The Crystal Structure of Solids 1 1.0 Preview 1 1.1 Semiconductor Materials

More information

Power MOSFET Zheng Yang (ERF 3017,

Power MOSFET Zheng Yang (ERF 3017, ECE442 Power Semiconductor Devices and Integrated Circuits Power MOSFET Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Evolution of low-voltage (

More information

CHAPTER 2 LITERATURE REVIEW

CHAPTER 2 LITERATURE REVIEW CHAPTER 2 LITERATURE REVIEW 2.1 Introduction of MOSFET The structure of the MOS field-effect transistor (MOSFET) has two regions of doping opposite that of the substrate, one at each edge of the MOS structure

More information

EEC 216 Lecture #8: Leakage. Rajeevan Amirtharajah University of California, Davis

EEC 216 Lecture #8: Leakage. Rajeevan Amirtharajah University of California, Davis EEC 216 Lecture #8: Leakage Rajeevan Amirtharajah University of California, Davis Outline Announcements Review: Low Power Interconnect Finish Lecture 7 Leakage Mechanisms Circuit Styles for Low Leakage

More information

c 2017 Maryam Hajimiri

c 2017 Maryam Hajimiri c 2017 Maryam Hajimiri TRANSIENT CIRCUIT SIMULATION OF MOSFETS USING LATENCY INSERTION METHOD BY MARYAM HAJIMIRI THESIS Submitted in partial fulfillment of the requirements for the degree of Master of

More information

ECE 340 Lecture 40 : MOSFET I

ECE 340 Lecture 40 : MOSFET I ECE 340 Lecture 40 : MOSFET I Class Outline: MOS Capacitance-Voltage Analysis MOSFET - Output Characteristics MOSFET - Transfer Characteristics Things you should know when you leave Key Questions How do

More information

Design Simulation and Analysis of NMOS Characteristics for Varying Oxide Thickness

Design Simulation and Analysis of NMOS Characteristics for Varying Oxide Thickness MIT International Journal of Electronics and Communication Engineering, Vol. 4, No. 2, August 2014, pp. 81 85 81 Design Simulation and Analysis of NMOS Characteristics for Varying Oxide Thickness Alpana

More information

EE105 Fall 2015 Microelectronic Devices and Circuits: MOSFET Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH)

EE105 Fall 2015 Microelectronic Devices and Circuits: MOSFET Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH) EE105 Fall 2015 Microelectronic Devices and Circuits: MOSFET Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 7-1 Simplest Model of MOSFET (from EE16B) 7-2 CMOS Inverter 7-3 CMOS NAND

More information

MOS Transistor Theory

MOS Transistor Theory MOS Transistor Theory So far, we have viewed a MOS transistor as an ideal switch (digital operation) Reality: less than ideal EE 261 Krish Chakrabarty 1 MOS Transistor Theory Study conducting channel between

More information

Performance Evaluation of MISISFET- TCAD Simulation

Performance Evaluation of MISISFET- TCAD Simulation Performance Evaluation of MISISFET- TCAD Simulation Tarun Chaudhary Gargi Khanna Rajeevan Chandel ABSTRACT A novel device n-misisfet with a dielectric stack instead of the single insulator of n-mosfet

More information

Week 7: Common-Collector Amplifier, MOS Field Effect Transistor

Week 7: Common-Collector Amplifier, MOS Field Effect Transistor EE 2110A Electronic Circuits Week 7: Common-Collector Amplifier, MOS Field Effect Transistor ecture 07-1 Topics to coer Common-Collector Amplifier MOS Field Effect Transistor Physical Operation and I-V

More information

Digital Integrated Circuits A Design Perspective. The Devices. Digital Integrated Circuits 2nd Devices

Digital Integrated Circuits A Design Perspective. The Devices. Digital Integrated Circuits 2nd Devices Digital Integrated Circuits A Design Perspective The Devices The Diode The diodes are rarely explicitly used in modern integrated circuits However, a MOS transistor contains at least two reverse biased

More information

Chapter 2 : Semiconductor Materials & Devices (II) Feb

Chapter 2 : Semiconductor Materials & Devices (II) Feb Chapter 2 : Semiconductor Materials & Devices (II) 1 Reference 1. SemiconductorManufacturing Technology: Michael Quirk and Julian Serda (2001) 3. Microelectronic Circuits (5/e): Sedra & Smith (2004) 4.

More information

Output Waveform Evaluation of Basic Pass Transistor Structure*

Output Waveform Evaluation of Basic Pass Transistor Structure* Output Waveform Evaluation of Basic Pass Transistor Structure* S. Nikolaidis, H. Pournara, and A. Chatzigeorgiou Department of Physics, Aristotle University of Thessaloniki Department of Applied Informatics,

More information