SPICE Simulation Program with Integrated Circuit Emphasis

Size: px
Start display at page:

Download "SPICE Simulation Program with Integrated Circuit Emphasis"

Transcription

1 SPICE Simulation Program with Integrated Circuit Emphasis References: [1] CIC SPICE training manual [3] SPICE manual [2] DIC textbook Sep. 25,

2 SPICE: Introduction Simulation Program with Integrated Circuit Emphasis Developed by University of California at Berkeley A CAD tools to simulate circuits in steady-state, transient, and frequency domains. SBTSPICE, HSPICE, TSPICE, PSIPCE 2

3 HSPICE Simulation Flow Reference: CIC SPICE training manual 3

4 MOS SPICE Model LEVEL 1: Based on square law Long-Channel devices LEVEL 2: Velocity saturation Mobility degradation Drain-induced barrier lowering (DIBL) LEVEL 3: Semi-empirical model 4

5 MOS SPICE Model (cont.) BSIM3V3: Berkeley Short-Channel IGFET Model LEVEL 49 Over 200 parameters to model the 2nd-order effect 5

6 Netlist Structure Depend on spice model Circuit structure 6

7 Instance and Element Names C D E, F, G, H I J K L M Q R O, T, U V X Capacitor Diode Dependent Current and Voltage control source Current Source JFET or MESFET Mutual Inductor Scale Factors Inductor MOSFET f 1e-15 k 1e3 BJT p 1e-12 meg 1e6 Resistor n 1e-9 g 1e9 Transmission Line Voltage Source u 1e-6 T 1e12 Subcircuit Call m 1e-3 7

8 Device Description R1 A B 1k C1 C D 1p M1 D G S B nch l=1u w=3u +AD=3p PD=5u AS=3p PS=5u + NRS=1 NRD=1 8

9 Subcircuit Description and Recall Description (Ex: a inverter).subckt inv in out mp1 out in vdd vdd pch l=1u w=3u mn1 out in 0 0 nch l=1u w=1u.ends inv Recall x1 a b inv x2 c d inv 9

10 DC Analysis Type DC sweep & DC small signal anysis.dc sweep for power supply, temp., param...op specify time (s) at which operating point is to be calculated..tf calculate DC small-signal transfer function..pz performs pole/zero analysis Example:.dc vin

11 AC Analysis Type AC sweep & small signal analysis.ac calculate frequency-domain response.noise noise analysis Example:.ac dec 10 1k 100meg sweep Rl dec 2 5k 15k 11

12 Transient Analysis Type.tran calculate time-domain response.four fourier analysis.fft fast fourier transform Example:. tran 1n 100n 12

13 Pulse Voltage and Current Source Vin in 0 pulse (0V 5V 10ns 10ns 10ns 40ns 100ns) Sinusoidal Vin in 0 sin (0V 1V 100Meg 2ns 5e7) Piecewise Linear Source Vin in 0 pwl (60n 0V, 120n 0V, 130n 5V, 170n 5V +180n 0V, R 0) 13

14 Input control Statements.data.tran 1 n 100n sweep data=d1.data D1 width Length VDD Cap 10u 100u 2V 5p 50u 600u 10V 10p 50u 600u 10V 10p...enddata.alter.del lib XXX.lib TT.lib XXX.lib FF.alter.temp Rl 1 2 1k.param Wval=100u.end 14

15 .option list Output Format produces an element summary listing of the data to be printed..option node prints a node connection table..option acct reports job accounting and run-time statistics at the end of output listing..option opts prints the current settings of all control options..option nomod suppress the printout of model parameters. 15

16 Output Statement.print print numeric analysis results.probe allows save output variables only into the graph data files.meas print numeric results of measured specifications Example:.print Vdb(vout) V(node) par( V(out)/V(in) ).meas tran tprop trig V(in) val=2.5 rise=1 targ V(out) val=2.5 fall=1 xxx.ms# xxx.ma# xxx.mt# 16

17 Simulation step 17

18 AvanWaves (1) 18

19 AvanWaves (2) 19

20 AvanWaves (3) 20

21 AvanWaves (4) 21

22 AvanWaves (5) 22

23 AvanWaves (6) 23

24 Design Example Output buffer (inverter) Supply voltage 2.5 V VDD Output load 10 pf Operation frequency 500 MHz Rise time and fall time < 0.2 nsec Used the 1.2 µm CMOS process Vin Vout C L 24

25 Design Example (cont.) NMOS C V OX th0 = = 0.74 V 7 2 cm V µ 0 = 656 sec 1 T = = 2 nsec 500 MHz T tf = 2.2τ = 0.1 = 0.1 nsec 2 τ = R C = nsec on L F cm 2 R I on Dsat W L W L 3 VDD = IDsat = ma nmos nmos = = µ 1.2 µ 25

26 Design Example (cont.) ***** IO *****.MODEL NMOS NMOS LEVEL=2 LD=0.15U TOX=200.0E-10 VTO=0.74 KP=8.0E-05 + NSUB=5.37E+15 GAMMA=0.54 PHI=0.6 U0=656 UEXP=0.157 UCRIT= DELTA=2.34 VMAX=55261 XJ=0.25U LAMBDA=0.037 NFS=1E+12 NEFF= NSS=1E+11 TPG=1.0 RSH=70.00 PB= CGDO=3.4E-10 CGSO=4.3E-10 CJ= MJ=0.66 CJSW=8.0E-10 MJSW=0.24.MODEL PMOS PMOS LEVEL=2 LD=0.15U TOX=200.0E-10 VTO=-0.74 KP=2.70E-05 + NSUB=4.33E+15 GAMMA=0.58 PHI=0.6 U0=262 UEXP=0.324 UCRIT= DELTA=1.79 VMAX=25694 XJ=0.25U LAMBDA=0.061 NFS=1E+12 NEFF= NSS=1E+11 TPG=-1.0 RSH=121 PB= CGDO=4.3E-10 CGSO=4.3E-10 CJ= MJ=0.51 CJSW=1.35E-10 MJSW=

27 Design Example (cont.).temp 25 M0 Vout Vin VDD VDD pmos w=94u L=1.2u m=90 M1 Vout Vin 0 0 nmos W=94u L=1.2u m=30 Cl vout 0 10pF VDD VDD 0 2.5V Vin Vin 0 pulse( n 0.1n 0.1n 0.9n 2n).op.option post.tran 1n 30n.probe V(vout).meas tran tr trig V(vout) val=0.25 rise=2 targ V(vout) val=2.25 rise=2.meas tran tf trig V(vout) val=2.25 fall=2 targ V(vout) val=0.25 fall=2.meas tran rms_power RMS power.end 27

28 Design Example (cont.) Clock feedthrough 28

INTRODUCTION TO CIRCUIT SIMULATION USING SPICE

INTRODUCTION TO CIRCUIT SIMULATION USING SPICE LSI Circuits INTRODUCTION TO CIRCUIT SIMULATION USING SPICE Introduction: SPICE (Simulation Program with Integrated Circuit Emphasis) is a very powerful and probably the most widely used simulator for

More information

HSPICE. Chan-Ming Chang

HSPICE. Chan-Ming Chang HSPICE Chan-Ming Chang Outline Declaration Voltage source Circuit statement SUBCKT of circuit statement Measure Simulation Declaration ***** SPICE COURSE EXAMPLE INVERTER LJC *****.LIB 'mm018.l' tt.global

More information

Final for EE 421 Digital Electronics and ECG 621 Digital Integrated Circuit Design Fall, University of Nevada, Las Vegas

Final for EE 421 Digital Electronics and ECG 621 Digital Integrated Circuit Design Fall, University of Nevada, Las Vegas Final for EE 421 Digital Electronics and ECG 621 Digital Integrated Circuit Design Fall, University of Nevada, Las Vegas NAME: Show your work to get credit. Open book and closed notes. Unless otherwise

More information

A MOS VLSI Comparator

A MOS VLSI Comparator A MOS VLSI Comparator John Monforte School of Music University of Miami, Coral Gables, FL. USA Jayant Datta Department of Electrical Engineering University of Miami, Coral Gables, FL. USA ABSTRACT A comparator

More information

Introduction to Full-Custom Circuit Design with HSPICE and Laker

Introduction to Full-Custom Circuit Design with HSPICE and Laker Introduction to VLSI and SOC Design Introduction to Full-Custom Circuit Design with HSPICE and Laker Course Instructor: Prof. Lan-Da Van T.A.: Tsung-Che Lu Department of Computer Science National Chiao

More information

Chapter 19. Performing Cell Characterization

Chapter 19. Performing Cell Characterization Chapter 19 Most ASIC vendors use Star-Hspice to characterize their standard cell libraries and prepare data sheets by using the basic capabilities of the.measure statement. Input sweep parameters and the

More information

NMOS Inverter Lab ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING. NMOS Inverter Lab

NMOS Inverter Lab ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING. NMOS Inverter Lab ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING NMOS Inverter Lab Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee/ 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035

More information

Electronic CAD Practical work. Week 1: Introduction to transistor models. curve tracing of NMOS transfer characteristics

Electronic CAD Practical work. Week 1: Introduction to transistor models. curve tracing of NMOS transfer characteristics Electronic CAD Practical work Dr. Martin John Burbidge Lancashire UK Tel: +44 (0)1524 825064 Email: martin@mjb-rfelectronics-synthesis.com Martin Burbidge 2006 Week 1: Introduction to transistor models

More information

Modeling MOS Transistors. Prof. MacDonald

Modeling MOS Transistors. Prof. MacDonald Modeling MOS Transistors Prof. MacDonald 1 Modeling MOSFETs for simulation l Software is used simulate circuits for validation l Original program SPICE UC Berkeley Simulation Program with Integrated Circuit

More information

SPICE MODELING OF MOSFETS. Objectives for Lecture 4*

SPICE MODELING OF MOSFETS. Objectives for Lecture 4* LECTURE 4 SPICE MODELING OF MOSFETS Objectives for Lecture 4* Understanding the element description for MOSFETs Understand the meaning and significance of the various parameters in SPICE model levels 1

More information

LECTURE 4 SPICE MODELING OF MOSFETS

LECTURE 4 SPICE MODELING OF MOSFETS LECTURE 4 SPICE MODELING OF MOSFETS Objectives for Lecture 4* Understanding the element description for MOSFETs Understand the meaning and significance of the various parameters in SPICE model levels 1

More information

Lossy and Lossless Current-mode Integrators using CMOS Current Mirrors

Lossy and Lossless Current-mode Integrators using CMOS Current Mirrors International Journal of Engineering Research and Development e-issn: 2278-67X, p-issn: 2278-8X, www.ijerd.com Volume 9, Issue 3 (December 23), PP. 34-4 Lossy and Lossless Current-mode Integrators using

More information

CMOS voltage controlled floating resistor

CMOS voltage controlled floating resistor INT. J. ELECTRONICS, 1996, VOL. 81, NO. 5, 571± 576 CMOS voltage controlled floating resistor HASSAN O. ELWAN², SOLIMAN A. MAHMOUD² AHMED M. SOLIMAN² and A new CMOS floating linear resistor circuit with

More information

MOS Inverters Dr. Lynn Fuller Webpage:

MOS Inverters Dr. Lynn Fuller Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING MOS Inverters Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Email: Lynn.Fuller@rit.edu

More information

Differential Amplifier with Current Source Bias and Active Load

Differential Amplifier with Current Source Bias and Active Load Technical Memo: Differential Amplifier with Current Source Bias and Active Load Introduction: From: Dr. Lynn Fuller, Professor, Electrical and Microelectronic Engineering, Rochester Institute of Technology

More information

Tsung-Chu Huang. Department of Electronic Engineering National Changhua University of Education /10/4-5 TCH NCUE

Tsung-Chu Huang. Department of Electronic Engineering National Changhua University of Education /10/4-5 TCH NCUE Digital IC Design Tsung-Chu Huang Department of Electronic Engineering National Changhua University of Education Email: tch@cc.ncue.edu.tw 2004/10/4-5 Page 1 Circuit Simulation Tools 1. Switch Level: Verilog,

More information

Introduction to LTSPICE Dr. Lynn Fuller Electrical and Microelectronic Engineering

Introduction to LTSPICE Dr. Lynn Fuller Electrical and Microelectronic Engineering ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Introduction to LTSPICE Dr. Lynn Fuller Electrical and 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Fax (585) 475-5041

More information

Lecture 7: SPICE Simulation

Lecture 7: SPICE Simulation Lecture 7: SPICE Simulation Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline Introduction to SPICE DC Analysis Transient Analysis Subcircuits Optimization

More information

EEEE 381 Electronics I

EEEE 381 Electronics I EEEE 381 Electronics I Lab #5: Two-Stage CMOS Op-Amp Oeriew In this lab we will expand on the work done in Lab #4, which introduced the actiely-loaded differential pair. A second stage that is comprised

More information

Mentor Graphics OPAMP Simulation Tutorial --Xingguo Xiong

Mentor Graphics OPAMP Simulation Tutorial --Xingguo Xiong Mentor Graphics OPAMP Simulation Tutorial --Xingguo Xiong In this tutorial, we will use Mentor Graphics tools to design and simulate the performance of a two-stage OPAMP. The two-stage OPAMP is shown below,

More information

Design and Simulation of RF CMOS Oscillators in Advanced Design System (ADS)

Design and Simulation of RF CMOS Oscillators in Advanced Design System (ADS) Design and Simulation of RF CMOS Oscillators in Advanced Design System (ADS) By Amir Ebrahimi School of Electrical and Electronic Engineering The University of Adelaide June 2014 1 Contents 1- Introduction...

More information

Introduction to Modeling MOSFETS in SPICE

Introduction to Modeling MOSFETS in SPICE ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Introduction to Modeling MOSFETS in SPICE Dr. Lynn Fuller Electrical and 82 Lomb Memorial Drive Rochester, NY 14623-5604 Dr. Fuller s Webpage:

More information

Laboratory 1 Single-Stage MOSFET Amplifier Analysis and Design Due Date: Week of February 20, 2014, at the beginning of your lab section

Laboratory 1 Single-Stage MOSFET Amplifier Analysis and Design Due Date: Week of February 20, 2014, at the beginning of your lab section Laboratory 1 Single-Stage MOSFET Amplifier Analysis and Design Due Date: Week of February 20, 2014, at the beginning of your lab section Objective To analyze and design single-stage common source amplifiers.

More information

DIGITAL CIRCUIT SIMULATION USING HSPICE

DIGITAL CIRCUIT SIMULATION USING HSPICE February 7, 2001 DIGITAL CIRCUIT SIMULATION USING HSPICE Charles R. Kime Dept. of Electrical and Computer Engineering University of Wisconsin Madison The pdf version of this document has extensive hyperlinks

More information

MOSFET Biasing Supplement for Laboratory Experiment 5 EE348L. Spring 2005

MOSFET Biasing Supplement for Laboratory Experiment 5 EE348L. Spring 2005 MOSFET Biasing Supplement for Laboratory Experiment 5 EE348L Spring 2005 B. Madhavan Spring 2005 B. Madhavan Page 1 of 10 EE348L, Spring 2005 5 Laboratory Assignment 5 biasing supplement 5.1 Biasing a

More information

Gunning Transceiver Logic Interface Bus Design Project

Gunning Transceiver Logic Interface Bus Design Project Gunning Transceiver Logic Interface Bus Design Project Group #14 EE 307 Winter 2007 February 23, 2007 Robert Hursig rhursig@calpoly.edu Tommy Oleksyn toleksyn@calpoly.edu http://www.drdphd.com/02_14.pdf

More information

NGSPICE- Usage and Examples

NGSPICE- Usage and Examples NGSPICE- Usage and Examples Debapratim Ghosh deba21pratim@gmail.com Electronic Systems Group Department of Electrical Engineering Indian Institute of Technology Bombay February 2013 Debapratim Ghosh Dept.

More information

The default account setup for the class should allow you to run HSPICE without any further configuration. To verify this, type:

The default account setup for the class should allow you to run HSPICE without any further configuration. To verify this, type: UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences HW #1: Circuit Simulation NTU IC541CA (Spring 2004) 1 Objective The objective of this homework

More information

problem grade total

problem grade total Fall 2005 6.012 Microelectronic Devices and Circuits Prof. J. A. del Alamo Name: Recitation: November 16, 2005 Quiz #2 problem grade 1 2 3 4 total General guidelines (please read carefully before starting):

More information

CHAPTER 6 DESIGN OF VOLTAGE CONTROLLED OSCILLATOR (VCO) USING 45 NM VLSI TECHNOLOGY

CHAPTER 6 DESIGN OF VOLTAGE CONTROLLED OSCILLATOR (VCO) USING 45 NM VLSI TECHNOLOGY CHAPTER 6 DESIGN OF VOLTAGE CONTROLLED OSCILLATOR (VCO) USING 45 NM VLSI TECHNOLOGY Oscillators are required to generate the carrying signals for radio frequency transmission, but also for the main clocks

More information

Experiment 2 Introduction to PSpice

Experiment 2 Introduction to PSpice Experiment 2 Introduction to PSpice W.T. Yeung and R.T. Howe UC Berkeley EE 105 Fall 2004 1.0 Objective One of the CAD tools you will be using as a circuit designer is SPICE, a Berkeleydeveloped industry-standard

More information

WinSpice. The steps to performing a circuit simulation with WinSpice are:

WinSpice. The steps to performing a circuit simulation with WinSpice are: WinSpice Tutorial 1 A. Introduction WinSpice SPICE is short for Simulation Program with Integrated Circuit Emphasis. SPICE is a general-purpose circuit simulation program for nonlinear dc, nonlinear transient,

More information

The basic inverter circuit or common-source amplifier using a resistive load is shown in Figure 1. source s

The basic inverter circuit or common-source amplifier using a resistive load is shown in Figure 1. source s of 0 MOS FET Inverter Amplifier The basic inverter circuit or common-source amplifier using a resistive load is shown in Figure. g d Io gate R L drain in in rds R L out out in source s Figure Common-source

More information

THE SPICE BOOK. Andrei Vladimirescu. John Wiley & Sons, Inc. New York Chichester Brisbane Toronto Singapore

THE SPICE BOOK. Andrei Vladimirescu. John Wiley & Sons, Inc. New York Chichester Brisbane Toronto Singapore THE SPICE BOOK Andrei Vladimirescu John Wiley & Sons, Inc. New York Chichester Brisbane Toronto Singapore CONTENTS Introduction SPICE THE THIRD DECADE 1 1.1 THE EARLY DAYS OF SPICE 1 1.2 SPICE IN THE 1970s

More information

MOSFET: Mxxx nd ng ns nb modelname W=value L=value Ad As Pd Ps

MOSFET: Mxxx nd ng ns nb modelname W=value L=value Ad As Pd Ps ELE447 Lab 1: Introduction to HSPICE In this lab, you will learn how to use HSPICE for simulating the electronic circuits. To be able to simulate a circuit using HSPICE, we need to write a text file that

More information

Conduction Characteristics of MOS Transistors (for fixed Vds)! Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor

Conduction Characteristics of MOS Transistors (for fixed Vds)! Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor Conduction Characteristics of MOS Transistors (for fixed Vds)! Topic 2 Basic MOS theory & SPICE simulation Peter Cheung Department of Electrical & Electronic Engineering Imperial College London (Weste&Harris,

More information

Topic 2. Basic MOS theory & SPICE simulation

Topic 2. Basic MOS theory & SPICE simulation Topic 2 Basic MOS theory & SPICE simulation Peter Cheung Department of Electrical & Electronic Engineering Imperial College London (Weste&Harris, Ch 2 & 5.1-5.3 Rabaey, Ch 3) URL: www.ee.ic.ac.uk/pcheung/

More information

Conduction Characteristics of MOS Transistors (for fixed Vds) Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor

Conduction Characteristics of MOS Transistors (for fixed Vds) Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor Conduction Characteristics of MOS Transistors (for fixed Vds) Topic 2 Basic MOS theory & SPICE simulation Peter Cheung Department of Electrical & Electronic Engineering Imperial College London (Weste&Harris,

More information

Simulation Using WinSPICE

Simulation Using WinSPICE Simulation Using WinSPICE David W. Graham Lane Department of Computer Science and Electrical Engineering West Virginia University David W. Graham 2007 Why Simulation? Theoretical calculations only go so

More information

Common Gate Stage Cascode Stage. Claudio Talarico, Gonzaga University

Common Gate Stage Cascode Stage. Claudio Talarico, Gonzaga University Common Gate Stage Cascode Stage Claudio Talarico, Gonzaga University Common Gate Stage The overdrive due to V B must be consistent with the current pulled by the DC source I B careful with signs: v gs

More information

Lab 3: Circuit Simulation with PSPICE

Lab 3: Circuit Simulation with PSPICE Page 1 of 11 Laboratory Goals Introduce text-based PSPICE as a design tool Create transistor circuits using PSPICE Simulate output response for the designed circuits Introduce the Curve Tracer functionality.

More information

Ota-C Based Proportional-Integral-Derivative (PID) Controller and Calculating Optimum Parameter Tolerances

Ota-C Based Proportional-Integral-Derivative (PID) Controller and Calculating Optimum Parameter Tolerances Turk Elec Engin, O., NO.2 2001, c TÜBİTAK Ota-C Based roportional-integral-derivative (ID) Controller and Calculating Optimum arameter Tolerances Cevat ERDA, Ali TOKER, Cevdet ACAR İstanbul Technical University,

More information

Appendix 5 Model card parameters for built-in components

Appendix 5 Model card parameters for built-in components Appendix 5 Model card parameters for built-in components In this Appendix, names and default values of model card parameters are given for built-in analogue components. These are SPICE models of diode,

More information

PSpice Simulation. The target of computer-aided analysis is to determine the circuit currents and voltages everywhere in the circuit.

PSpice Simulation. The target of computer-aided analysis is to determine the circuit currents and voltages everywhere in the circuit. PSpice Simulation The target of computer-aided analysis is to determine the circuit currents and voltages everywhere in the circuit. For PSpice, the circuit is described by a text file called the netlist.

More information

Mentor Analog Simulators

Mentor Analog Simulators ENGR-434 Spice Netlist Syntax Details Introduction Rev 5/25/11 As you may know, circuit simulators come in several types. They can be broadly grouped into those that simulate a circuit in an analog way,

More information

MOSFET Amplifier Design

MOSFET Amplifier Design MOSFET Amplifier Design Introduction In this lab, you will design a basic 2-stage amplifier using the same 4007 chip as in lab 2. As a reminder, the PSpice model parameters are: NMOS: LEVEL=1, VTO=1.4,

More information

Circuit Simulation Using SPICE ECE222

Circuit Simulation Using SPICE ECE222 Circuit Simulation Using SPICE ECE222 Circuit Design Flow Idea Conception Specification Initial Circuit Design Circuit Simulation Meet Spec? Modify Circuit Design Circuit Implementation 2 Circuit Simulation

More information

Lab 6: MOSFET AMPLIFIER

Lab 6: MOSFET AMPLIFIER Lab 6: MOSFET AMPLIFIER NOTE: This is a "take home" lab. You are expected to do the lab on your own time (still working with your lab partner) and then submit your lab reports. Lab instructors will be

More information

Laboratory Experiment 5 EE348L. Spring 2005

Laboratory Experiment 5 EE348L. Spring 2005 Laboratory Experiment 5 EE348L Spring 2005 B. Madhavan Spring 2005 B. Madhavan Page 1 of 29 EE348L, Spring 2005 B. Madhavan - 2 of 29- EE348L, Spring 2005 Table of Contents 5 Experiment #5: MOSFETs...5

More information

1.0 Folded-Cascode OTA

1.0 Folded-Cascode OTA 1.0 Folded-Cascode OTA DD DD IL IB o bias M2 i M1 M2 bias o i M1 IL (a) Telescopic Cascode (b) Folded Cascode g m2 gs2 G1 D1 S2 D2 i g m1 i g ds1 g mb2 bs2 g ds2 g IL o S1 (c) Equivalent Circuit of Telescopic

More information

SmartSpice Circuit Design Using Local and Global Optimization

SmartSpice Circuit Design Using Local and Global Optimization Application Note SmartSpice Circuit Design Using Local and Global Optimization Introduction The SmartSpice optimizer capability performs variable and parameter optimization of circuits. In the context

More information

ECEN3250 Lab 9 CMOS Logic Inverter

ECEN3250 Lab 9 CMOS Logic Inverter Lab 9 CMOS Logic Inverter ECE Department University of Colorado, Boulder 1 Prelab Read Section 4.10 (4th edition Section 5.8), and the Lab procedure Do and turn in Exercise 4.41 (page 342) Do PSpice (.dc)

More information

ECE520 VLSI Design. Lecture 5: Basic CMOS Inverter. Payman Zarkesh-Ha

ECE520 VLSI Design. Lecture 5: Basic CMOS Inverter. Payman Zarkesh-Ha ECE520 VLSI Design Lecture 5: Basic CMOS Inverter Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Wednesday 2:00-3:00PM or by appointment E-mail: pzarkesh@unm.edu Slide: 1 Review of Last Lecture

More information

Introduction to SwitcherCAD

Introduction to SwitcherCAD Introduction to SwitcherCAD 1 PREFACE 1.1 What is SwitcherCAD? SwitcherCAD III is a new Spice based program that was developed for modelling board level switching regulator systems. The program consists

More information

Novel MOS-C oscillators using the current feedback op-amp

Novel MOS-C oscillators using the current feedback op-amp INT. J. ELECTRONICS, 2000, VOL. 87, NO. 3, 269± 280 Novel MOS-C oscillators using the current feedback op-amp SOLIMAN A. MAHMOUDy and AHMED M. SOLIMANyz Three new MOS-C oscillators using the current feedback

More information

CMOS High Frequency/Low Voltage Fult-Wave Rectifier

CMOS High Frequency/Low Voltage Fult-Wave Rectifier CMOS High Frequency/Low Voltage Fult-Wave Rectifier Adisak Monpapassorn Department of Electronic Engineering, South-East Asia University, Bangkok 10160, Thailand Abstract A CMOS high frequency/low voltage

More information

Computer Exercises Manual: Device Parameters in SPICE. Interactive MATLAB Animations for Understanding Semiconductor Devices

Computer Exercises Manual: Device Parameters in SPICE. Interactive MATLAB Animations for Understanding Semiconductor Devices Computer Exercises Manual: Device Parameters in SPICE This manual is provided as a PDF le { just click on cem.pdf to open it. This can be done from the CD (using Windows Explorer, click on the CD-drive

More information

EEEE 381 Electronics I

EEEE 381 Electronics I EEEE 381 Electrnics I Lab #4: MOSFET Differential Pair with Active Lad Overview The differential amplifier is a fundamental building blck in electrnic design. The bjective f this lab is t examine the vltage

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits MOSFETs Sections of Chapter 3 &4 A. Kruger MOSFETs, Page-1 Basic Structure of MOS Capacitor Sect. 3.1 Width = 1 10-6 m or less Thickness = 50 10-9 m or less ` MOS Metal-Oxide-Semiconductor

More information

HSPICE (from Avant!) offers a more robust, commercial version of SPICE. PSPICE is a popular version of SPICE, available from Orcad (now Cadence).

HSPICE (from Avant!) offers a more robust, commercial version of SPICE. PSPICE is a popular version of SPICE, available from Orcad (now Cadence). Electronics II: SPICE Lab ECE 09.403/503 Team Size: 2-3 Electronics II Lab Date: 3/9/2017 Lab Created by: Chris Frederickson, Adam Fifth, and Russell Trafford Introduction SPICE (Simulation Program for

More information

Design and Implementation of a Low Power

Design and Implementation of a Low Power VLSI DESIGN 1996, Vol. 4, No. 1, pp. 75-81 Reprints available directly from the publisher Photocopying permitted by license only (C) 1996 OPA (Overseas Publishers Association) Amsterdam B.V. Published

More information

Lab 5: MOSFET I-V Characteristics

Lab 5: MOSFET I-V Characteristics 1. Learning Outcomes Lab 5: MOSFET I-V Characteristics In this lab, students will determine the MOSFET I-V characteristics of both a P-Channel MOSFET and an N- Channel MOSFET. Also examined is the effect

More information

Elad Alon HW #1: Circuit Simulation EECS 141 Due Thursday, Aug. 30th, 5pm, box in 240 Cory

Elad Alon HW #1: Circuit Simulation EECS 141 Due Thursday, Aug. 30th, 5pm, box in 240 Cory UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences Last modified on August 20, 2012 by Elad Alon Elad Alon HW #1: Circuit Simulation EECS 141 Due

More information

SPICE for Power Electronics and Electric Power

SPICE for Power Electronics and Electric Power SPICE for Power Electronics and Electric Power Third Edition Muhammad H. Rashid Life Fellow IEEE /^0\ \Cf*' CRC Press I Taylor & Francis eis Crou Group Boca Raton London New York CRC Press is an imprint

More information

EECE 488: Short HSPICE Tutorial. Last updated by: Mohammad Beikahmadi January 2013

EECE 488: Short HSPICE Tutorial. Last updated by: Mohammad Beikahmadi January 2013 EECE 488: Short HSPICE Tutorial Last updated by: Mohammad Beikahmadi January 2013 SPICE? Simulation Program with Integrated Circuit Emphasis An open source analog circuit simulator Predicts circuit behavior,

More information

HDL CODE TO REALIZE ALL THE LOGIC GATES

HDL CODE TO REALIZE ALL THE LOGIC GATES Experiment 1 HDL CODE TO REALIZE ALL THE LOGIC GATES Aim: To write VHDL code for all basic gates, simulate and verify functionality, synthesize. Tools Required: 1. FPG Advantage i. Simulator: Modelsim

More information

INF4420. Outline. Switched capacitor circuits. Switched capacitor introduction. MOSFET as an analog switch 1 / 26 2 / 26.

INF4420. Outline. Switched capacitor circuits. Switched capacitor introduction. MOSFET as an analog switch 1 / 26 2 / 26. INF4420 Switched capacitor circuits Spring 2012 Jørgen Andreas Michaelsen (jorgenam@ifi.uil.no) 1 / 26 Outline Switched capacitor introduction MOSFET as an analog switch 2 / 26 Introduction Discrete time

More information

SPICE FOR POWER ELECTRONICS AND ELECTRIC POWER

SPICE FOR POWER ELECTRONICS AND ELECTRIC POWER SPICE FOR POWER ELECTRONICS AND ELECTRIC POWER SECOND EDITION MUHAMMAD H. RASHID University of West Florida Pensacola, Florida, U.S.A. HASAN M. RASHID University of Florida Gainesville, Florida, U.S.A.

More information

HIP V, 10A Half Bridge Power MOSFET Array. Description. Features. Ordering Information. Symbol. Packages FN

HIP V, 10A Half Bridge Power MOSFET Array. Description. Features. Ordering Information. Symbol. Packages FN TM April 998 6V, A Half Bridge Power MOSFET Array Features Two A Power MOS N-Channel Transistors Output Voltage to 6V r DS(ON)......3Ω Max Per Transistor at = V r DS(ON).......Ω Max Per Transistor at =

More information

Field Effect Transistors (FET s) University of Connecticut 136

Field Effect Transistors (FET s) University of Connecticut 136 Field Effect Transistors (FET s) University of Connecticut 136 Field Effect Transistors (FET s) FET s are classified three ways: by conduction type n-channel - conduction by electrons p-channel - conduction

More information

A NEW DIFFERENTIAL CONFIGURATION SUITABLE FOR REALIZATION OF HIGH CMRR, ALL-PASS/NOTCH FILTERS

A NEW DIFFERENTIAL CONFIGURATION SUITABLE FOR REALIZATION OF HIGH CMRR, ALL-PASS/NOTCH FILTERS A NEW DIFFEENTIAL CONFIGUATION SUITABLE FO EALIZATION OF HIGH CM, ALL-PASS/NOTCH FILTES SHAHAM MINAEI, İ.CEM GÖKNA, OGUZHAN CICEKOGLU. Dogus University, Department of Electronics and Communication Engineering,

More information

A Brief Handout for Introduction to

A Brief Handout for Introduction to A Brief Handout for Introduction to Electric cal Engineering Course This handout is a compilation of PSPICE, A Brief Primer, Department of Electrical and Systems Engineering, University of Pennsylvania

More information

Circuit Simulation with SPICE OPUS

Circuit Simulation with SPICE OPUS Circuit Simulation with SPICE OPUS Theory and Practice Tadej Tuma Arpäd Bürmen Birkhäuser Boston Basel Berlin Contents Abbreviations About SPICE OPUS and This Book xiii xv 1 Introduction to Circuit Simulation

More information

PSpice Tutorial. (usage of simulator ) (common sense) constant. L. Pacher

PSpice Tutorial. (usage of simulator ) (common sense) constant. L. Pacher PSpice Tutorial (usage of simulator ) (common sense) constant L. Pacher SPICE Simulation Program with Integrated Circuits Emphasis Berkeley University open source code (initially coded in FORTRAN, rewritten

More information

Differential Difference Current Conveyor Based Cascadable Voltage Mode First Order All Pass Filters

Differential Difference Current Conveyor Based Cascadable Voltage Mode First Order All Pass Filters Differential Difference Current Conveyor Based Cascadable ltage Mode First Order All Pass Filters P..S. MURALI KRISHNA, NAEEN KUMAR, AIRENI SRINIASULU, R.K.LAL Department of Electronics & Communication

More information

Laboratory Experiment 6 EE348L. Spring 2005

Laboratory Experiment 6 EE348L. Spring 2005 Laboratory Experiment 6 EE348L Spring 2005 B. Madhavan Spring 2005 B. Madhavan Page 1 of 22 EE348L, Spring 2005 B. Madhavan 2 of 22 EE348L, Spring 2005 Table of Contents 6 Experiment #6: MOSFETs Continued...5

More information

1.3 An Introduction to WinSPICE

1.3 An Introduction to WinSPICE Chapter 1 Introduction to CMOS Design 23 After the GDS file is generated, we can use the Gds2Tlc program to convert the GDS file back into TLC files. In the setups we must specify a directory where the

More information

VLSI Design I. The MOSFET model Wow!

VLSI Design I. The MOSFET model Wow! VLSI Design I The MOSFET model Wow! Are device models as nice as Cindy? Overview The large signal MOSFET model and second order effects. MOSFET capacitances. Introduction in fet process technology Goal:

More information

Spring Microelectronic Devices and Circuits Prof.J.A.delAlamo. Design Project - April 20, Driver for Long Interconnect and Output Pad

Spring Microelectronic Devices and Circuits Prof.J.A.delAlamo. Design Project - April 20, Driver for Long Interconnect and Output Pad Spring 2001 6.012 Microelectronic Devices and Circuits Prof.J.A.delAlamo Design Project - April 20, 2001 Driver for Long Interconnect and Output Pad Due: May 9, 2001 at recitation (late project reports

More information

dc Bias Point Calculations

dc Bias Point Calculations dc Bias Point Calculations Find all of the node voltages assuming infinite current gains 9V 9V 10kΩ 9V 100kΩ 1kΩ β = 270kΩ 10kΩ β = 1kΩ 1 dc Bias Point Calculations Find all of the node voltages assuming

More information

Intelligent Systems Group Department of Electronics. An Evolvable, Field-Programmable Full Custom Analogue Transistor Array (FPTA)

Intelligent Systems Group Department of Electronics. An Evolvable, Field-Programmable Full Custom Analogue Transistor Array (FPTA) Department of Electronics n Evolvable, Field-Programmable Full Custom nalogue Transistor rray (FPT) Outline What`s Behind nalog? Evolution Substrate custom made configurable transistor array (FPT) Ways

More information

Introduction to PSpice

Introduction to PSpice Electric Circuit I Lab Manual 4 Session # 5 Introduction to PSpice 1 PART A INTRODUCTION TO PSPICE Objective: The objective of this experiment is to be familiar with Pspice (learn how to connect circuits,

More information

Lecture 4. The CMOS Inverter. DC Transfer Curve: Load line. DC Operation: Voltage Transfer Characteristic. Noise in Digital Integrated Circuits

Lecture 4. The CMOS Inverter. DC Transfer Curve: Load line. DC Operation: Voltage Transfer Characteristic. Noise in Digital Integrated Circuits Noise in Digital Integrated Circuits Lecture 4 The CMOS Inverter i(t) v(t) V DD Peter Cheung Department of Electrical & Electronic Engineering Imperial College London URL: www.ee.ic.ac.uk/pcheung/ E-mail:

More information

EEC 216 W08 Problem Set #1 Solutions

EEC 216 W08 Problem Set #1 Solutions EEC 216 W08 Problem Set #1 Solutions Rajeevan Amirtharajah Dept. of Electrical and Computer Engineering University of California, Davis February 11, 2008 Problem 1 1.1 Figure 1 shows the layout for a minimum-sized

More information

EECE 488: Short HSPICE. Tutorial. Last updated by: Mohammad Beikahmadi January Original presentation by: Jack Shiah

EECE 488: Short HSPICE. Tutorial. Last updated by: Mohammad Beikahmadi January Original presentation by: Jack Shiah EECE 488: Short HSPICE Tutorial Last updated by: Mohammad Beikahmadi January 2012 Original presentation by: Jack Shiah SPICE? Simulation Program with Integrated Circuit Emphasis An open source analog circuit

More information

Chapter 8. Chapter 9. Chapter 6. Chapter 10. Chapter 11. Chapter 7

Chapter 8. Chapter 9. Chapter 6. Chapter 10. Chapter 11. Chapter 7 5.5 Series and Parallel Combinations of 246 Complex Impedances 5.6 Steady-State AC Node-Voltage 247 Analysis 5.7 AC Power Calculations 256 5.8 Using Power Triangles 258 5.9 Power-Factor Correction 261

More information

A Short SPICE Tutorial

A Short SPICE Tutorial A Short SPICE Tutorial Kenneth H. Carpenter Department of Electrical and Computer Engineering Kanas State University September 15, 2003 - November 10, 2004 1 Introduction SPICE is an acronym for Simulation

More information

Fundamentos de Electrónica Lab Guide

Fundamentos de Electrónica Lab Guide Fundamentos de Electrónica Lab Guide Field Effect Transistor MOS-FET IST-2016/2017 2 nd Semester I-Introduction These are the objectives: a. n-type MOSFET characterization from the I(U) characteristics.

More information

NEW ALL-PASS FILTER CIRCUIT COMPENSATING FOR C-CDBA NON-IDEALITIES

NEW ALL-PASS FILTER CIRCUIT COMPENSATING FOR C-CDBA NON-IDEALITIES Journal of Circuits, Systems, and Computers Vol. 19, No. 2 (2010) 381 391 #.c World Scienti c Publishing Company DOI: 10.1142/S0218126610006128 NEW ALL-PASS FILTER CIRCUIT COMPENSATING FOR C-CDBA NON-IDEALITIES

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits Mosfet Review Sections of Chapter 3 &4 A. Kruger Mosfet Review, Page-1 Basic Structure of MOS Capacitor Sect. 3.1 Width 1 10-6 m or less Thickness 50 10-9 m or less ` MOS Metal-Oxide-Semiconductor

More information

Basic Analog Electronic Circuits Dr. Lynn Fuller

Basic Analog Electronic Circuits Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 146235604 Tel (585) 4752035 Email: Lynn.Fuller@rit.edu

More information

EC 6411 CIRCUITS AND SIMULATION INTEGRATED LABORATORY LABORATORY MANUAL INDEX EXPT.NO NAME OF THE EXPERIMENT PAGE NO 1 HALF WAVE AND FULL WAVE RECTIFIER 3 2 FIXED BIAS AMPLIFIER CIRCUIT USING BJT 3 BJT

More information

EE 230 Lab Lab 9. Prior to Lab

EE 230 Lab Lab 9. Prior to Lab MOS transistor characteristics This week we look at some MOS transistor characteristics and circuits. Most of the measurements will be done with our usual lab equipment, but we will also use the parameter

More information

Simulation Program with Integrated Circuits Emphasis = SPICE

Simulation Program with Integrated Circuits Emphasis = SPICE What is in the name? Computer Club short course on SPICE, April 2002 SPICE Short Course By Dr. Muhammad Elrabaa Simulation Program with Integrated Circuits Emphasis = SPICE What does it do? SPICE is used

More information

Differential Amplifier Design

Differential Amplifier Design Fall - 2009 EE114 - Design Project Differential Amplifier Design Submitted by Piyush Keshri (0559 4497) Jeffrey Tu (0554 4565) On November 20th, 2009 EE114 - Design Project Stanford University Page No.

More information

ECE 532 Hspice Tutorial

ECE 532 Hspice Tutorial SCT 2.03.2004 E-Mail: sterry2@utk.edu ECE 532 Hspice Tutorial I. The purpose of this tutorial is to gain experience using the Hspice circuit simulator from the Unix environment. After completing this assignment,

More information

Integrated Circuit Amplifiers. Comparison of MOSFETs and BJTs

Integrated Circuit Amplifiers. Comparison of MOSFETs and BJTs Integrated Circuit Amplifiers Comparison of MOSFETs and BJTs 17 Typical CMOS Device Parameters 0.8 µm 0.25 µm 0.13 µm Parameter NMOS PMOS NMOS PMOS NMOS PMOS t ox (nm) 15 15 6 6 2.7 2.7 C ox (ff/µm 2 )

More information

Accurate active-feedback CM OS cascode current mirror with improved output swing

Accurate active-feedback CM OS cascode current mirror with improved output swing INT. J. ELECTRONICS, 1998, VOL. 84, NO. 4, 335±343 Accurate active-feedback CM OS cascode current mirror with improved output swing ALÇI ZEKÇI² and HAKAN KUNTMAN² An improved active-feedback CMOS cascode

More information

A brief introduction on HSPICE. Siavash Kananian Sharif University of Technology Electronics III

A brief introduction on HSPICE. Siavash Kananian Sharif University of Technology Electronics III A brief introduction on HSPICE Siavash Kananian Sharif University of Technology Electronics III Electronics III - Fall 2011 What is Spice? Simulation Program with Integrated Circuit Emphasis General purpose

More information

Yuan-Piao Lee Te-Hsiu Chen Chienkuo Technology University, ChungHua, Taiwan, ROC

Yuan-Piao Lee Te-Hsiu Chen Chienkuo Technology University, ChungHua, Taiwan, ROC Select the MODEL set HSPICE simulation results Yuan-Piao Lee Te-Hsiu Chen Chienkuo Technology University, ChungHua, Taiwan, ROC ABSTRACT To the the HSPICE design of circuit is quite convenient, this paper

More information