Basic Analog Electronic Circuits Dr. Lynn Fuller

Size: px
Start display at page:

Download "Basic Analog Electronic Circuits Dr. Lynn Fuller"

Transcription

1 ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Dr. Lynn Fuller Webpage: 82 Lomb Memorial Drive Rochester, NY Tel (585) MicroE webpage: Basic_Analog_Circuits.ppt Page 1

2 OUTLINE Introduction Op Amp Comparator Bistable Multivibrator RC Oscillator RC Integrator Peak Detector Switched Capacitor Amplifier Capacitors Design Examples References Homework Page 2

3 INTRODUCTION Analog electronic circuits are different from digital circuits in that the signals are expected to have any value rather than two discrete values. Primitive analog components include the diode, mosfet, BJT, resistor, capacitor, etc,. Analog circuit building blocks include single stage amplifiers, differential amplifiers, constant current sources, voltage references, etc. Basic analog electronic ciruits include the operational amplifier, inverting amplifier, noninverting amplifier, integrator, bistable multivibrator, peak detector, comparator, RC oscillator, etc. Mixedmode analog integrated circuits include DtoA, AtoD, etc. This document will introduce some Basic analog electronic circuits. Page 3

4 BASIC TWO STAGE OPERATIONAL AMPLIFIER Page 4

5 SPICE ANALYSIS OF OP AMP VERSION 2.incl rit_sub_param.txt m cmosn w=9u l=5u nrd=1 nrs=1 ad=45p pd=28u as=45p ps=28u m cmosn w=9u l=5u nrd=1 nrs=1 ad=45p pd=28u as=45p ps=28u m cmosp w=21u l=5u nrd=1 nrs=1 ad=102p pd=50u as=102p ps=50u m cmosp w=21u l=5u nrd=1 nrs=1 ad=102p pd=50u as=102p ps=50u m cmosn w=40u l=5u nrd=1 nrs=1 ad=205p pd=90u as=205p ps=90u m cmosp w=190u l=5u nrd=1 nrs=1 ad=950p pd=400u as=950p ps=400u m cmosn w=190u l=5u nrd=1 nrs=1 ad=950p pd=400u as=950p ps=400u m cmosn w=40u l=5u nrd=1 nrs=1 ad=205p pd=90u as=205p ps=90u vdd vss cprobe p Rprobe 2 0 1meg cc p mr cmosp w=6u l=10u nrd=1 nrs=1 ad=200p pd=60u as=200p ps=60u mr cmosp w=6u l=10u nrd=1 nrs=1 ad=200p pd=60u as=200p ps=60u *************** ************* 13.5kV/V gain ***dc open loop gain********* vi vi *.dc vi u.dc vi m *****open loop frequency characteristics***** *vi *vi dc 0 ac 1u *.ac dec g.end Page 5

6 OPERATIONAL AMPLIFIER Page 6

7 RIT OP AMP WITH OUTPUT STAGE 99 M6 M5 M8 M11 M15 W/L 100/2 W/L 100/2 W/L 100/2 W/L 282/2 9 W/L 686/2 M19 Vin 1 40/2 M1 3 V V M2 40/2 2 Vin 7 W/L 100/2 M12 10 M16 W/L 336/2 12 M18 W/L 3800/2 14 M7 6 20/40 5 M3 90/2 4 M4 90/2 M9 30/2 8 M10 90/2 M13 30/2 M /2 M17 13 W/L 645/2 W/L 100/2 M20 W/L 2600/2 RL W/L 98 Page 7

8 OPERATIONAL AMPLIFERS The 741 Op Amp is a general purpose bipolar integrated circuit that has input bias current of 80nA, and input voltage of / 15 supply maximum of / 18 volts. The output voltage can not go all the way to the and supply voltage. At a minimum supply of / 5 volts the output voltage can go ~6 volts pp. The newer Op Amps have railrail output swing and supply voltages as low as / 1.5 volts. The MOSFET input bias currents are ~ 1pA. The NJU7031 is an example of this type of Op Amp. Page 8

9 LOW VOLTAGE, RAILTORAIL OP AMP Page 9

10 SOME BASIC ANALOG ELECTRONIC CIRCUITS These circuits should be familiar: R1 R1 R2 R2 Vin Vin = Vin R2/R1 = Vin (1 R2/R1) Inverting Amplifier NonInverting Amplifier C Vin Unity Gain Buffer = Vin Vin R = 1/RC Vin dt Integrator Page 10

11 SOME BASIC ANALOG ELECTRONIC CIRCUITS R1 V1 V2 R1 R3 Inverting Summer = ( R3/R1) (V1 V2) Rin V2 V1 Rin Rf Rf = Rf/Rin (V1V2) Difference Amplifier Page 11

12 COMPARATOR Vin V V Theoretical Vref V V Vref V Vin V Measured Page 12

13 BISTABLE CIRCUIT WITH HYSTERESIS R1 R2 V V Theoretical Vin V V TL V TH Vin V Measured Sedra and Smith pg 1187 Page 13

14 RC INTEGRATOR Va Va Vin t1 Vin t R C ut ut Va Va Smaller RC t ut = (Va) [2Va(1e t/rc )] for 0<t<t1 If R=1MEG and C=10pF find RC=10us so t1 might be ~20us Page 14

15 OSCILLATOR (MULTIVIBRATOR) R1 V T R2 V V V t1 t C V R Period = T = 2RC ln 1Vt/V 1Vt/V Bistable Circuit with Hysteresis and RC Integrator Page 15

16 PEAK DETECTOR Variable Vin C Diode reverse leakage current ~100nA Page 16

17 CAPACITORS Capacitor a two terminal device whose current is proportional to the time rate of change of the applied voltage; I = C dv/dt a capacitor C is constructed of any two conductors separated by an insulator. The capacitance of such a structure is: C = eo er Area/d d where eo is the permitivitty of free space Area er is the relative permitivitty Area is the overlap area of the two conductor separated by distance d eo = 8.85E14 F/cm er air = 1 er SiO 2 = 3.9 C I V Page 17

18 DIELECTRIC CONSTANT OF SELECTED MATERIALS Vacuum 1 Air Acetone 20 Barium strontium titanate 500 Benzene Conjugated Polymers 6 to 100,000 Ethanol 24.3 Glycerin 42.5 Glass 510 Methanol 30 Photoresist 3 Plexiglass 3.4 Polyimide 2.8 Rubber 3 Silicon 11.7 Silicon dioxide 3.9 Silicon Nitride 7.5 Teflon 2.1 Water Page 18

19 CALCULATIONS Page 19

20 DESIGN EXAMPLE Square Wave Generator RC Integrator & Capacitor Sensor Peak Detector Comparator Page 20

21 DESIGN EXAMPLE CAPACITOR SENSOR R1 R2 V V R C C Vref V C R Square Wave Generator RC Integrator & Capacitor Sensor Buffer Peak Detector Comparator Display Page 21

22 EXAMPLE LABORATORY RESULTS Smaller Capacitance Larger Capacitance Square Wave Generator Output Buffer Output Display Page 22

23 CAPACITOR MICROPHONE PLUS AMPLIFIER i R i 3.3V V C NJU = i R i = d (CV)/dt, V is constant C = Co Cm sin (2pft) i = V Cm 2 p f cos (2pft) Page 23

24 PHOTODIODE I TO V LINEAR AMPLIFIER 3.3V R1 10K I p n R2 20K 3.3V NJU R3 10K IR LED R4 100K 3.3V NJU ut 0 to 1V Gnd Gnd Page 24

25 Output ltage (V) PHOTO DIODE I TO V LOG AMPLIFIER 3.3V R1 20K IR LED I n p 3.3V NJU703 1N ut 0 to 1V Linear amplifier uses 100K ohm in place of the 1N4448 ut vs. Diode Current Gnd Gnd Linear Amplifier Log Amplifier Photodiode Diode Current (ua) Page 25

26 PHOTO DIODE I TO V INTEGRATING AMPLIFIER Reset C Internal 100 pf Ri Rf Analog ut Integrator and amplifier allow for measurement at low light levels Page 26

27 DIODE AS A TEMPERATURE SENSOR P N Poly Heater, Buried pn Diode, N Poly to Aluminum Thermocouple Compare with theoretical 2.2mV/ C Page 27

28 SIGNAL CONDITIONING FOR TEMPERATURE SENSOR 3.3V R1 20K I p n 0.2 < ut < 0.7V Gnd Page 28

29 Load I = Vs/R Load OP AMP CONSTANT CURRENT SOURCE Floating Load Grounded Load Vs Vs R1 R2 Rx R3 Rx/R1=R3/R2 R I = Vs/R2 Page 29

30 RESISTIVE PRESSURE SENSOR 5 lts 2 5 lts R1 R3 R2 R4 R1=427 R3=427 1=2.5v 2=2.5v 1 Gnd R2=427 R4=427 Resistors on a Diaphragm Gnd No Pressure 21 = 0 Page 30

31 INSTRUMENTATION AMPLIFIER R1= lts R3=426.4 V1 R1 R2 1 R3 R4 1=2.4965v R2= =2.5035v R4=427.6 V2 R2 2 R3 Gnd R4 Gnd With Pressure 21 = 0.007v =7 mv = (V2V1) R4 R3 1 2R2 R1 Page 31

32 POWER OUTPUT STAGE V V Vin V Rload V Page 32

33 REFERENCES 1. Switched Capacitor Circuits, Phillip E. Allen and Edgar SanchezSinencio, Van Nostrand Reinhold Publishers, Active Filter Design Using Operational Transconductance Amplifiers: A Tutorial, Randall L. Geiger and Edgar SanchezSinencio, IEEE Circuits and Devices Magazine, March 1985, pg Microelectronic Circuits, 5 th Edition, Sedra and Smith Page 33

34 HOMEWORK BASIC ANALOG CIRCUITS 1. Create one good homework problem and the solution related to the material covered in this document. (for next years students) 2. Design a bistable multivibrator witrh Vth of / 7.5 volts and frequency of 5 Khz. 3. Design a temperature sensor circuit that will shut down a heater if the temperature exceeds 90 C 4. Design a peak detector that will respond to changes in input in less than one second. 5. Derive the equation for the oscillator on page 15 (multivibrator). 6. Derive the voltage gain equation for the difference amplifier. Page 34

35 DERIVE GAIN EQUATION FOR DIFFERENCE AMP V2 V1 Rin Rin I Vx Rf Rf I = Rf/Rin (V1V2) I = (V1Vx)/Rin Rf Vx = V1 Rf Rin = I Rf Vx Difference Amplifier Page 35

Electronic Circuit Casebook. Dr. Lynn Fuller

Electronic Circuit Casebook. Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Electronic Circuit Casebook Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 146235604 Tel (585)

More information

MEMS Signal Conditioning Circuits Dr. Lynn Fuller Electrical and Microelectronic Engineering

MEMS Signal Conditioning Circuits Dr. Lynn Fuller Electrical and Microelectronic Engineering ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING MEMS Signal Conditioning Circuits Dr. Lynn Fuller Electrical and 82 Lomb Memorial Drive Rochester, NY 146235604 Email: Lynn.Fuller@rit.edu

More information

Single Supply Op Amp Circuits Dr. Lynn Fuller Webpage:

Single Supply Op Amp Circuits Dr. Lynn Fuller Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Single Supply Op Amp Circuits Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 146235604 Tel (585)

More information

Selected Analog Electronic Circuits Dr. Lynn Fuller

Selected Analog Electronic Circuits Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Selected Analog Electronic Circuits Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 146235604 Tel

More information

Laboratory on Filter Circuits Dr. Lynn Fuller

Laboratory on Filter Circuits Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Laboratory on Filter Circuits Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585)

More information

Selected Filter Circuits Dr. Lynn Fuller

Selected Filter Circuits Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee Electrical and 82 Lomb Memorial Drive Rochester, NY 146235604 Tel (585) 4752035 Email:

More information

Diode Sensor Lab. Dr. Lynn Fuller

Diode Sensor Lab. Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Diode Sensor Lab Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Fax

More information

MEMS Microphone Design and Signal Conditioning Dr. Lynn Fuller, Erin Sullivan Webpage:

MEMS Microphone Design and Signal Conditioning Dr. Lynn Fuller, Erin Sullivan Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING MEMS Microphone Design and Signal Conditioning, Erin Sullivan Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604

More information

Power Conditioning Electronics Dr. Lynn Fuller Webpage:

Power Conditioning Electronics Dr. Lynn Fuller Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Power Conditioning Electronics Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Email:

More information

Introduction to Op Amps

Introduction to Op Amps Introduction to Op Amps ENGI 242 ELEC 222 Basic Op-Amp The op-amp is a differential amplifier with a very high open loop gain 25k AVOL 500k (much higher for FET inputs) high input impedance 500kΩ ZIN 10MΩ

More information

BJT IC Design ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING. BJT IC Design. Dr. Lynn Fuller Webpage:

BJT IC Design ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING. BJT IC Design. Dr. Lynn Fuller Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING BJT IC Design Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee/ 82 Lomb Memorial Drive Rochester, NY 146235604 Tel (585) 4752035 Email:

More information

Diode Curve Tracer ROCHESTER INSTITUTE OF TECHNOLOGY ELECTRICAL & MICROELECTRONIC ENGINEERING

Diode Curve Tracer ROCHESTER INSTITUTE OF TECHNOLOGY ELECTRICAL & MICROELECTRONIC ENGINEERING ROCHESTER INSTITUTE OF TECHNOLOGY ELECTRICAL & MICROELECTRONIC ENGINEERING Diode Curve Tracer Using Digilent Analog Discovery Module, Adam Wardas Webpage: http://people.rit.edu/lffeee Electrical and 82

More information

Differential Amplifier with Current Source Bias and Active Load

Differential Amplifier with Current Source Bias and Active Load Technical Memo: Differential Amplifier with Current Source Bias and Active Load Introduction: From: Dr. Lynn Fuller, Professor, Electrical and Microelectronic Engineering, Rochester Institute of Technology

More information

Special-Purpose Operational Amplifier Circuits

Special-Purpose Operational Amplifier Circuits Special-Purpose Operational Amplifier Circuits Instrumentation Amplifier An instrumentation amplifier (IA) is a differential voltagegain device that amplifies the difference between the voltages existing

More information

6. The Operational Amplifier

6. The Operational Amplifier 1 6. The Operational Amplifier This chapter introduces a new component which, although technically nonlinear, can be treated effectively with linear models This element known as the operational amplifier

More information

UNIVERSITY OF UTAH ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT ELECTROMYOGRAM (EMG) DETECTOR WITH AUDIOVISUAL OUTPUT

UNIVERSITY OF UTAH ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT ELECTROMYOGRAM (EMG) DETECTOR WITH AUDIOVISUAL OUTPUT UNIVESITY OF UTAH ELECTICAL AND COMPUTE ENGINEEING DEPATMENT ECE 3110 LABOATOY EXPEIMENT NO. 5 ELECTOMYOGAM (EMG) DETECTO WITH AUDIOVISUAL OUTPUT Pre-Lab Assignment: ead and review Sections 2.4, 2.8.2,

More information

Introduction to the Long Channel MOSFET. Dr. Lynn Fuller

Introduction to the Long Channel MOSFET. Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Introduction to the Long Channel MOSFET Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee Electrical and 82 Lomb Memorial Drive Rochester,

More information

EE LINEAR INTEGRATED CIRCUITS & APPLICATIONS

EE LINEAR INTEGRATED CIRCUITS & APPLICATIONS UNITII CHARACTERISTICS OF OPAMP 1. What is an opamp? List its functions. The opamp is a multi terminal device, which internally is quite complex. It is a direct coupled high gain amplifier consisting of

More information

Homework Assignment True or false. For both the inverting and noninverting op-amp configurations, V OS results in

Homework Assignment True or false. For both the inverting and noninverting op-amp configurations, V OS results in Question 1 (Short Takes), 2 points each. Homework Assignment 02 1. An op-amp has input bias current I B = 1 μa. Make an estimate for the input offset current I OS. Answer. I OS is normally an order of

More information

Emitter Coupled Differential Amplifier

Emitter Coupled Differential Amplifier Emitter Coupled Differential Amplifier Returning to the transistor, a very common and useful circuit is the differential amplifier. It's basic circuit is: Vcc Q1 Q2 Re Vee To see how this circuit works,

More information

Dimensions in inches (mm) .268 (6.81).255 (6.48) .390 (9.91).379 (9.63) .045 (1.14).030 (.76) 4 Typ. Figure 1. Typical application circuit.

Dimensions in inches (mm) .268 (6.81).255 (6.48) .390 (9.91).379 (9.63) .045 (1.14).030 (.76) 4 Typ. Figure 1. Typical application circuit. LINEAR OPTOCOUPLER FEATURES Couples AC and DC signals.% Servo Linearity Wide Bandwidth, > KHz High Gain Stability, ±.%/C Low Input-Output Capacitance Low Power Consumption, < mw Isolation Test Voltage,

More information

EET 438a Automatic Control Systems Technology Laboratory 1 Analog Sensor Signal Conditioning

EET 438a Automatic Control Systems Technology Laboratory 1 Analog Sensor Signal Conditioning EET 438a Automatic Control Systems Technology Laboratory 1 Analog Sensor Signal Conditioning Objectives: Use analog OP AMP circuits to scale the output of a sensor to signal levels commonly found in practical

More information

Assignment 11. 1) Using the LM741 op-amp IC a circuit is designed as shown, then find the output waveform for an input of 5kHz

Assignment 11. 1) Using the LM741 op-amp IC a circuit is designed as shown, then find the output waveform for an input of 5kHz Assignment 11 1) Using the LM741 op-amp IC a circuit is designed as shown, then find the output waveform for an input of 5kHz Vo = 1 x R1Cf 0 Vin t dt, voltage output for the op amp integrator 0.1 m 1

More information

Static Random Access Memory - SRAM Dr. Lynn Fuller Webpage:

Static Random Access Memory - SRAM Dr. Lynn Fuller Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Static Random Access Memory - SRAM Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Email:

More information

Differential Amplifier : input. resistance. Differential amplifiers are widely used in engineering instrumentation

Differential Amplifier : input. resistance. Differential amplifiers are widely used in engineering instrumentation Differential Amplifier : input resistance Differential amplifiers are widely used in engineering instrumentation Differential Amplifier : input resistance v 2 v 1 ir 1 ir 1 2iR 1 R in v 2 i v 1 2R 1 Differential

More information

TRANSDUCER INTERFACE APPLICATIONS

TRANSDUCER INTERFACE APPLICATIONS TRANSDUCER INTERFACE APPLICATIONS Instrumentation amplifiers have long been used as preamplifiers in transducer applications. High quality transducers typically provide a highly linear output, but at a

More information

UNIT- IV ELECTRONICS

UNIT- IV ELECTRONICS UNIT- IV ELECTRONICS INTRODUCTION An operational amplifier or OP-AMP is a DC-coupled voltage amplifier with a very high voltage gain. Op-amp is basically a multistage amplifier in which a number of amplifier

More information

Designing Linear Amplifiers Using the IL300 Optocoupler

Designing Linear Amplifiers Using the IL300 Optocoupler VISHAY SEMICONDUCTORS www.vishay.com Optocouplers Application Note Designing Linear Amplifiers Using the IL Optocoupler By Deniz Görk and Achim M. Kruck INTRODUCTION This application note presents isolation

More information

Microelectronic Circuits

Microelectronic Circuits SECOND EDITION ISHBWHBI \ ' -' Microelectronic Circuits Adel S. Sedra University of Toronto Kenneth С Smith University of Toronto HOLT, RINEHART AND WINSTON HOLT, RINEHART AND WINSTON, INC. New York Chicago

More information

DUAL ULTRA MICROPOWER RAIL-TO-RAIL CMOS OPERATIONAL AMPLIFIER

DUAL ULTRA MICROPOWER RAIL-TO-RAIL CMOS OPERATIONAL AMPLIFIER ADVANCED LINEAR DEVICES, INC. ALD276A/ALD276B ALD276 DUAL ULTRA MICROPOWER RAILTORAIL CMOS OPERATIONAL AMPLIFIER GENERAL DESCRIPTION The ALD276 is a dual monolithic CMOS micropower high slewrate operational

More information

1) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz

1) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz ) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz Solution: a) Input is of constant amplitude of 2 V from 0 to 0. ms and 2 V from 0. ms to 0.2 ms. The output

More information

Analog Electronics. Lecture. Op-amp Circuits and Active Filters. Muhammad Amir Yousaf

Analog Electronics. Lecture. Op-amp Circuits and Active Filters. Muhammad Amir Yousaf Analog Electronics Lecture Op-amp Circuits and Active Filters Muhammad Amir Yousaf Instrumentation Amplifiers An instrumentation amplifier (IA) amplifies the voltage difference between its terminals. It

More information

An Analog Phase-Locked Loop

An Analog Phase-Locked Loop 1 An Analog Phase-Locked Loop Greg Flewelling ABSTRACT This report discusses the design, simulation, and layout of an Analog Phase-Locked Loop (APLL). The circuit consists of five major parts: A differential

More information

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET)

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET) Difference between BJTs and FETs Transistors can be categorized according to their structure, and two of the more commonly known transistor structures, are the BJT and FET. The comparison between BJTs

More information

Chapter 3-2 Semiconductor devices Transistors and Amplifiers-BJT Department of Mechanical Engineering

Chapter 3-2 Semiconductor devices Transistors and Amplifiers-BJT Department of Mechanical Engineering MEMS1082 Chapter 3-2 Semiconductor devices Transistors and Amplifiers-BJT Bipolar Transistor Construction npn BJT Transistor Structure npn BJT I = I + E C I B V V BE CE = V = V B C V V E E Base-to-emitter

More information

High Voltage Operational Amplifiers in SOI Technology

High Voltage Operational Amplifiers in SOI Technology High Voltage Operational Amplifiers in SOI Technology Kishore Penmetsa, Kenneth V. Noren, Herbert L. Hess and Kevin M. Buck Department of Electrical Engineering, University of Idaho Abstract This paper

More information

EE320L Electronics I. Laboratory. Laboratory Exercise #2. Basic Op-Amp Circuits. Angsuman Roy. Department of Electrical and Computer Engineering

EE320L Electronics I. Laboratory. Laboratory Exercise #2. Basic Op-Amp Circuits. Angsuman Roy. Department of Electrical and Computer Engineering EE320L Electronics I Laboratory Laboratory Exercise #2 Basic Op-Amp Circuits By Angsuman Roy Department of Electrical and Computer Engineering University of Nevada, Las Vegas Objective: The purpose of

More information

Electronics Lab. (EE21338)

Electronics Lab. (EE21338) Princess Sumaya University for Technology The King Abdullah II School for Engineering Electrical Engineering Department Electronics Lab. (EE21338) Prepared By: Eng. Eyad Al-Kouz October, 2012 Table of

More information

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers EE 330 Laboratory 8 Discrete Semiconductor Amplifiers Fall 2018 Contents Objective:...2 Discussion:...2 Components Needed:...2 Part 1 Voltage Controlled Amplifier...2 Part 2 A Nonlinear Application...3

More information

Basic Analog Circuits

Basic Analog Circuits Basic Analog Circuits Overview This tutorial is part of the National Instruments Measurement Fundamentals series. Each tutorial in this series, will teach you a specific topic of common measurement applications,

More information

or Op Amps for short

or Op Amps for short or Op Amps for short Objective of Lecture Describe how an ideal operational amplifier (op amp) behaves. Chapter 14.1 Electrical Engineering: Principles and Applications Chapter 5.1-5.3 Fundamentals of

More information

GATE SOLVED PAPER - IN

GATE SOLVED PAPER - IN YEAR 202 ONE MARK Q. The i-v characteristics of the diode in the circuit given below are : v -. A v 0.7 V i 500 07 $ = * 0 A, v < 0.7 V The current in the circuit is (A) 0 ma (C) 6.67 ma (B) 9.3 ma (D)

More information

HEMT Bias Controller

HEMT Bias Controller Features Only one external component other than sense resistor in HEMT drain Preset references for common HEMT operating currents Other operating points can be set with two external resistors Logic level

More information

Microelectronic Circuits, Kyung Hee Univ. Spring, Chapter 3. Diodes

Microelectronic Circuits, Kyung Hee Univ. Spring, Chapter 3. Diodes Chapter 3. Diodes 1 Introduction IN THIS CHAPTER WE WILL LEARN the characteristics of the ideal diode and how to analyze and design circuits containing multiple ideal diodes together with resistors and

More information

Introduction to Analog Interfacing. ECE/CS 5780/6780: Embedded System Design. Various Op Amps. Ideal Op Amps

Introduction to Analog Interfacing. ECE/CS 5780/6780: Embedded System Design. Various Op Amps. Ideal Op Amps Introduction to Analog Interfacing ECE/CS 5780/6780: Embedded System Design Scott R. Little Lecture 19: Operational Amplifiers Most embedded systems include components that measure and/or control real-world

More information

ENEE307 Lab 7 MOS Transistors 2: Small Signal Amplifiers and Digital Circuits

ENEE307 Lab 7 MOS Transistors 2: Small Signal Amplifiers and Digital Circuits ENEE307 Lab 7 MOS Transistors 2: Small Signal Amplifiers and Digital Circuits In this lab, we will be looking at ac signals with MOSFET circuits and digital electronics. The experiments will be performed

More information

Summer 2015 Examination

Summer 2015 Examination Summer 2015 Examination Subject Code: 17445 Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

More information

FSK DEMODULATOR / TONE DECODER

FSK DEMODULATOR / TONE DECODER FSK DEMODULATOR / TONE DECODER GENERAL DESCRIPTION The is a monolithic phase-locked loop (PLL) system especially designed for data communications. It is particularly well suited for FSK modem applications,

More information

GATE: Electronics MCQs (Practice Test 1 of 13)

GATE: Electronics MCQs (Practice Test 1 of 13) GATE: Electronics MCQs (Practice Test 1 of 13) 1. Removing bypass capacitor across the emitter leg resistor in a CE amplifier causes a. increase in current gain b. decrease in current gain c. increase

More information

Physics 303 Fall Module 4: The Operational Amplifier

Physics 303 Fall Module 4: The Operational Amplifier Module 4: The Operational Amplifier Operational Amplifiers: General Introduction In the laboratory, analog signals (that is to say continuously variable, not discrete signals) often require amplification.

More information

Analog Electronics. Lecture Pearson Education. Upper Saddle River, NJ, All rights reserved.

Analog Electronics. Lecture Pearson Education. Upper Saddle River, NJ, All rights reserved. Analog Electronics V Lecture 5 V Operational Amplifers Op-amp is an electronic device that amplify the difference of voltage at its two inputs. V V 8 1 DIP 8 1 DIP 20 SMT 1 8 1 SMT Operational Amplifers

More information

B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics

B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics Sr. No. Date TITLE To From Marks Sign 1 To verify the application of op-amp as an Inverting Amplifier 2 To

More information

Operational Amplifiers: Part II

Operational Amplifiers: Part II 1. Introduction Operational Amplifiers: Part II The name "operational amplifier" comes from this amplifier's ability to perform mathematical operations. Three good examples of this are the summing amplifier,

More information

High Voltage and MEMS Process Integration

High Voltage and MEMS Process Integration ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING High Voltage and MEMS Process Integration Dr. Lynn Fuller and Dr. Ivan Puchades webpage: http://people.rit.edu/lffeee Electrical and Microelectronic

More information

I1 19u 5V R11 1MEG IDC Q7 Q2N3904 Q2N3904. Figure 3.1 A scaled down 741 op amp used in this lab

I1 19u 5V R11 1MEG IDC Q7 Q2N3904 Q2N3904. Figure 3.1 A scaled down 741 op amp used in this lab Lab 3: 74 Op amp Purpose: The purpose of this laboratory is to become familiar with a two stage operational amplifier (op amp). Students will analyze the circuit manually and compare the results with SPICE.

More information

Operational amplifiers

Operational amplifiers Operational amplifiers Bởi: Sy Hien Dinh INTRODUCTION Having learned the basic laws and theorems for circuit analysis, we are now ready to study an active circuit element of paramount importance: the operational

More information

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) 4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) The Metal Oxide Semitonductor Field Effect Transistor (MOSFET) has two modes of operation, the depletion mode, and the enhancement mode.

More information

ELT 215 Operational Amplifiers (LECTURE) Chapter 5

ELT 215 Operational Amplifiers (LECTURE) Chapter 5 CHAPTER 5 Nonlinear Signal Processing Circuits INTRODUCTION ELT 215 Operational Amplifiers (LECTURE) In this chapter, we shall present several nonlinear circuits using op-amps, which include those situations

More information

Operational Amplifier as A Black Box

Operational Amplifier as A Black Box Chapter 8 Operational Amplifier as A Black Box 8. General Considerations 8.2 Op-Amp-Based Circuits 8.3 Nonlinear Functions 8.4 Op-Amp Nonidealities 8.5 Design Examples Chapter Outline CH8 Operational Amplifier

More information

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers EE 330 Laboratory 8 Discrete Semiconductor Amplifiers Fall 2017 Contents Objective:... 2 Discussion:... 2 Components Needed:... 2 Part 1 Voltage Controlled Amplifier... 2 Part 2 Common Source Amplifier...

More information

Gechstudentszone.wordpress.com

Gechstudentszone.wordpress.com 8.1 Operational Amplifier (Op-Amp) UNIT 8: Operational Amplifier An operational amplifier ("op-amp") is a DC-coupled high-gain electronic voltage amplifier with a differential input and, usually, a single-ended

More information

NOVEMBER 29, 2017 COURSE PROJECT: CMOS TRANSIMPEDANCE AMPLIFIER ECG 720 ADVANCED ANALOG IC DESIGN ERIC MONAHAN

NOVEMBER 29, 2017 COURSE PROJECT: CMOS TRANSIMPEDANCE AMPLIFIER ECG 720 ADVANCED ANALOG IC DESIGN ERIC MONAHAN NOVEMBER 29, 2017 COURSE PROJECT: CMOS TRANSIMPEDANCE AMPLIFIER ECG 720 ADVANCED ANALOG IC DESIGN ERIC MONAHAN 1.Introduction: CMOS Transimpedance Amplifier Avalanche photodiodes (APDs) are highly sensitive,

More information

Instructor: Aaron T. Ohta Office Hours: Mon 3:30 to 4:30 pm

Instructor: Aaron T. Ohta Office Hours: Mon 3:30 to 4:30 pm EE 323 Microelectronic Circuits I Lecture: MWF 2:30 to 3:20 pm, POST 127 Labs: Section 1 Tue 9:00 to 11:50 am, Holmes 358 Section 2 Thur 9:00 to 11:50 am, Holmes 358 Section 3 Tue 1:30 to 4:20 pm, Holmes

More information

Dr. Lynn Fuller, Ivan Puchades

Dr. Lynn Fuller, Ivan Puchades ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Bulk Micromachined Laboratory Project Dr. Lynn Fuller, Ivan Puchades Motorola Professor 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel

More information

EECE251 Circuit Analysis I Set 5: Operational Amplifiers

EECE251 Circuit Analysis I Set 5: Operational Amplifiers EECE251 Circuit Analysis I Set 5: Operational Amplifiers Shahriar Mirabbasi Department of Electrical and Computer Engineering University of British Columbia shahriar@ece.ubc.ca 1 Amplifiers There are various

More information

Dimensions in inches (mm) .021 (0.527).035 (0.889) .016 (.406).020 (.508 ) .280 (7.112).330 (8.382) Figure 1. Typical application circuit.

Dimensions in inches (mm) .021 (0.527).035 (0.889) .016 (.406).020 (.508 ) .280 (7.112).330 (8.382) Figure 1. Typical application circuit. IL Linear Optocoupler Dimensions in inches (mm) FEATURES Couples AC and DC signals.% Servo Linearity Wide Bandwidth, > khz High Gain Stability, ±.%/C Low Input-Output Capacitance Low Power Consumption,

More information

QUAD 5V RAIL-TO-RAIL PRECISION OPERATIONAL AMPLIFIER

QUAD 5V RAIL-TO-RAIL PRECISION OPERATIONAL AMPLIFIER ADVANCED LINEAR DEVICES, INC. ALD472A/ALD472B ALD472 QUAD 5V RAILTORAIL PRECISION OPERATIONAL AMPLIFIER GENERAL DESCRIPTION The ALD472 is a quad monolithic precision CMOS railtorail operational amplifier

More information

UNIT - 1 OPERATIONAL AMPLIFIER FUNDAMENTALS

UNIT - 1 OPERATIONAL AMPLIFIER FUNDAMENTALS UNIT - 1 OPERATIONAL AMPLIFIER FUNDAMENTALS 1.1 Basic operational amplifier circuit- hte basic circuit of an operational amplifier is as shown in above fig. has a differential amplifier input stage and

More information

Applied Electronics II

Applied Electronics II Applied Electronics II Chapter 3: Operational Amplifier Part 1- Op Amp Basics School of Electrical and Computer Engineering Addis Ababa Institute of Technology Addis Ababa University Daniel D./Getachew

More information

EEEE 381 Electronics I

EEEE 381 Electronics I EEEE 381 Electronics I Lab #5: Two-Stage CMOS Op-Amp Oeriew In this lab we will expand on the work done in Lab #4, which introduced the actiely-loaded differential pair. A second stage that is comprised

More information

Q.1: Power factor of a linear circuit is defined as the:

Q.1: Power factor of a linear circuit is defined as the: Q.1: Power factor of a linear circuit is defined as the: a. Ratio of real power to reactive power b. Ratio of real power to apparent power c. Ratio of reactive power to apparent power d. Ratio of resistance

More information

ENGR 201 Homework, Fall 2018

ENGR 201 Homework, Fall 2018 Chapter 1 Voltage, Current, Circuit Laws (Selected contents from Chapter 1-3 in the text book) 1. What are the following instruments? Draw lines to match them to their cables: Fig. 1-1 2. Complete the

More information

2.996/6.971 Biomedical Devices Design Laboratory Lecture 7: OpAmps

2.996/6.971 Biomedical Devices Design Laboratory Lecture 7: OpAmps 2.996/6.971 Biomedical Devices Design Laboratory Lecture 7: OpAmps Instructor: Dr. Hong Ma Oct. 3, 2007 Fundamental Circuit: Source and Load Sources Power supply Signal Generator Sensor Amplifier output

More information

MOS Inverters Dr. Lynn Fuller Webpage:

MOS Inverters Dr. Lynn Fuller Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING MOS Inverters Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Email: Lynn.Fuller@rit.edu

More information

Analog Circuits Part 3 Operational Amplifiers

Analog Circuits Part 3 Operational Amplifiers Introductory Medical Device Prototyping Analog Circuits Part 3 Operational Amplifiers, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Concepts to be Reviewed Operational

More information

d. Why do circuit designers like to use feedback when they make amplifiers? Give at least two reasons.

d. Why do circuit designers like to use feedback when they make amplifiers? Give at least two reasons. EECS105 Final 5/12/10 Name SID 1 /20 2 /30 3 /20 4 /20 5 /30 6 /40 7 /20 8 /20 Total 1. Give a short answer to each question a. Your friend from Stanford says that he has designed a three-stage high gain

More information

0. Introduction to Microelectronic Circuits

0. Introduction to Microelectronic Circuits 0. Introduction to Microelectronic Circuits S. S. Dan and S. R. Zinka Department of Electrical & Electronics Engineering BITS Pilani, Hyderbad Campus January 18, 2016 Outline 1 Introduction 2 Course Contents

More information

Analytical Chemistry II

Analytical Chemistry II Analytical Chemistry II L3: Signal processing (selected slides) Semiconductor devices Apart from resistors and capacitors, electronic circuits often contain nonlinear devices: transistors and diodes. The

More information

INTEGRATED CIRCUITS AND APPLICATIONS LAB MANUAL

INTEGRATED CIRCUITS AND APPLICATIONS LAB MANUAL INTEGRATED CIRCUITS AND APPLICATIONS LAB MANUAL V SEMESTER Department of Electronics and communication Engineering Government Engineering College, Dahod-389151 http://www.gecdahod.ac.in/ L A B M A N U

More information

Unit III FET and its Applications. 2 Marks Questions and Answers

Unit III FET and its Applications. 2 Marks Questions and Answers Unit III FET and its Applications 2 Marks Questions and Answers 1. Why do you call FET as field effect transistor? The name field effect is derived from the fact that the current is controlled by an electric

More information

Homework Assignment 11

Homework Assignment 11 Homework Assignment 11 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3-dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =

More information

the reactance of the capacitor, 1/2πfC, is equal to the resistance at a frequency of 4 to 5 khz.

the reactance of the capacitor, 1/2πfC, is equal to the resistance at a frequency of 4 to 5 khz. EXPERIMENT 12 INTRODUCTION TO PSPICE AND AC VOLTAGE DIVIDERS OBJECTIVE To gain familiarity with PSPICE, and to review in greater detail the ac voltage dividers studied in Experiment 14. PROCEDURE 1) Connect

More information

Unit WorkBook 1 Level 4 ENG U22 Electronic Circuits and Devices 2018 UniCourse Ltd. All Rights Reserved. Sample

Unit WorkBook 1 Level 4 ENG U22 Electronic Circuits and Devices 2018 UniCourse Ltd. All Rights Reserved. Sample Pearson BTEC Level 4 Higher Nationals in Engineering (RQF) Unit 22: Electronic Circuits and Devices Unit Workbook 1 in a series of 4 for this unit Learning Outcome 1 Operational Amplifiers Page 1 of 23

More information

LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers

LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers General Description The LM13600 series consists of two current controlled transconductance amplifiers each with

More information

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820 a FEATURES True Single Supply Operation Output Swings Rail-to-Rail Input Voltage Range Extends Below Ground Single Supply Capability from + V to + V Dual Supply Capability from. V to 8 V Excellent Load

More information

Objective: To study and verify the functionality of a) PN junction diode in forward bias. Sl.No. Name Quantity Name Quantity 1 Diode

Objective: To study and verify the functionality of a) PN junction diode in forward bias. Sl.No. Name Quantity Name Quantity 1 Diode Experiment No: 1 Diode Characteristics Objective: To study and verify the functionality of a) PN junction diode in forward bias Components/ Equipments Required: b) Point-Contact diode in reverse bias Components

More information

OBSOLETE. High Performance, BiFET Operational Amplifiers AD542/AD544/AD547 REV. B

OBSOLETE. High Performance, BiFET Operational Amplifiers AD542/AD544/AD547 REV. B a FEATURES Ultralow Drift: 1 V/ C (AD547L) Low Offset Voltage: 0.25 mv (AD547L) Low Input Bias Currents: 25 pa max Low Quiescent Current: 1.5 ma Low Noise: 2 V p-p High Open Loop Gain: 110 db High Slew

More information

THIRD SEMESTER ELECTRONICS - II BASIC ELECTRICAL & ELECTRONICS LAB DEPARTMENT OF ELECTRICAL ENGINEERING

THIRD SEMESTER ELECTRONICS - II BASIC ELECTRICAL & ELECTRONICS LAB DEPARTMENT OF ELECTRICAL ENGINEERING THIRD SEMESTER ELECTRONICS - II BASIC ELECTRICAL & ELECTRONICS LAB DEPARTMENT OF ELECTRICAL ENGINEERING Prepared By: Checked By: Approved By: Engr. Saqib Riaz Engr. M.Nasim Khan Dr.Noman Jafri Lecturer

More information

Low Cost Instrumentation Amplifier AD622

Low Cost Instrumentation Amplifier AD622 a FEATURES Easy to Use Low Cost Solution Higher Performance than Two or Three Op Amp Design Unity Gain with No External Resistor Optional Gains with One External Resistor (Gain Range 2 to ) Wide Power

More information

XR FSK Modem Filter FUNCTIONAL BLOCK DIAGRAM GENERAL DESCRIPTION FEATURES ORDERING INFORMATION APPLICATIONS SYSTEM DESCRIPTION

XR FSK Modem Filter FUNCTIONAL BLOCK DIAGRAM GENERAL DESCRIPTION FEATURES ORDERING INFORMATION APPLICATIONS SYSTEM DESCRIPTION FSK Modem Filter GENERAL DESCRIPTION FUNCTIONAL BLOCK DIAGRAM The XR-2103 is a Monolithic Switched-Capacitor Filter designed to perform the complete filtering function necessary for a Bell 103 Compatible

More information

HA-2600, HA Features. 12MHz, High Input Impedance Operational Amplifiers. Applications. Pinouts. Ordering Information

HA-2600, HA Features. 12MHz, High Input Impedance Operational Amplifiers. Applications. Pinouts. Ordering Information HA26, HA26 September 998 File Number 292.3 2MHz, High Input Impedance Operational Amplifiers HA26/26 are internally compensated bipolar operational amplifiers that feature very high input impedance (MΩ,

More information

Concepts to be Reviewed

Concepts to be Reviewed Introductory Medical Device Prototyping Analog Circuits Part 3 Operational Amplifiers, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Concepts to be Reviewed Operational

More information

CHAPTER-6. OP-AMP A. 2 B. 3 C. 4 D. 1

CHAPTER-6. OP-AMP A. 2 B. 3 C. 4 D. 1 CHAPTER-6. OP-AMP [1]. A non inverting closed loop op amp circuit generally has a gain factor A. Less than one B. Greater than one C. Of zero D. Equal to one HINT: - For non inverting amplifier the gain

More information

BJT Characterization Laboratory Dr. Lynn Fuller

BJT Characterization Laboratory Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING BJT Characterization Laboratory Dr. Lynn Fuller 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Fax (585) 475-5041 Email:

More information

PMOS OPERATIONAL AMPLIFIER. Khanh-Biflh Ta 5th Year Microelectronic Engineering Student Rochester Institute of TechnolOgy ABSTRACT

PMOS OPERATIONAL AMPLIFIER. Khanh-Biflh Ta 5th Year Microelectronic Engineering Student Rochester Institute of TechnolOgy ABSTRACT PMOS OPERATIONAL AMPLIFIER Khanh-Biflh Ta 5th Year Microelectronic Engineering Student Rochester Institute of TechnolOgy ABSTRACT This project was characteristics. an Due evaluation of to nonworking a

More information

OPERATIONAL AMPLIFIERS and FEEDBACK

OPERATIONAL AMPLIFIERS and FEEDBACK Lab Notes A. La Rosa OPERATIONAL AMPLIFIERS and FEEDBACK 1. THE ROLE OF OPERATIONAL AMPLIFIERS A typical digital data acquisition system uses a transducer (sensor) to convert a physical property measurement

More information

Efficient Current Feedback Operational Amplifier for Wireless Communication

Efficient Current Feedback Operational Amplifier for Wireless Communication International Journal of Electronics and Communication Engineering. ISSN 0974-2166 Volume 10, Number 1 (2017), pp. 19-24 International Research Publication House http://www.irphouse.com Efficient Current

More information

IFB270 Advanced Electronic Circuits

IFB270 Advanced Electronic Circuits IFB270 Advanced Electronic Circuits Chapter 14: Special-purpose op-amp circuits Prof. Manar Mohaisen Department of EEC Engineering eview of the Precedent Lecture Introduce the level detection op-amp circuits

More information

LINEAR IC APPLICATIONS

LINEAR IC APPLICATIONS 1 B.Tech III Year I Semester (R09) Regular & Supplementary Examinations December/January 2013/14 1 (a) Why is R e in an emitter-coupled differential amplifier replaced by a constant current source? (b)

More information

NMOS Inverter Lab ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING. NMOS Inverter Lab

NMOS Inverter Lab ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING. NMOS Inverter Lab ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING NMOS Inverter Lab Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee/ 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035

More information