Selected Analog Electronic Circuits Dr. Lynn Fuller

Size: px
Start display at page:

Download "Selected Analog Electronic Circuits Dr. Lynn Fuller"

Transcription

1 ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Selected Analog Electronic Circuits Dr. Lynn Fuller Webpage: 82 Lomb Memorial Drive Rochester, NY Tel (585) MicroE webpage: Selected_Analog_Circuits.ppt Page 1

2 INTRODUCTION Analog electronic circuits are different from digital circuits in that the signals are expected to have any value rather than two discrete values. Primitive analog components include the diode, mosfet, BJT, resistor, capacitor, etc,. Analog circuit building blocks include single stage amplifiers, differential amplifiers, constant current sources, voltage references, etc. Basic analog electronic ciruits include the operational amplifier, inverting amplifier, noninverting amplifier, integrator, bistable multivibrator, peak detector, comparator, RC oscillator, etc. Mixedmode analog integrated circuits include DtoA, AtoD, etc. This document will introduce some selected analog electronic circuits. Page 2

3 OUTLINE Wien Bridge Oscillator Multiplier Chip Constant Power Constant Temperature Active Filters Operational Transconductance Amplifiers Switched Capacitor Circuits References Homework Page 3

4 WIEN BRIDGE OSCILLATOR CIRCUIT CMOS Analog Circuit Design, Phillip Allen, Douglas Holbert, Holt, Rinehard and Winston. 1987, pg Page 4

5 LOOP GAIN OF WIEN BRIDGE OSCILLATOR Let R1 = R2 = R and C1 = C2 = C Loop gain G(s) = K s/rc s 2 s 3/RC (1/RC) 2 jw K/RC Loop gain G(jw) = (jw) 2 jw 3/RC (1/RC) 2 If jw = 1/RC and K = 3 then Loop gain = 1j0 and circuit will oscillate when loop is closed CMOS Analog Circuit Design, Phillip Allen, Douglas Holbert, Holt, Rinehard and Winston. 1987, pg Page 5

6 WAVEFORM GENERATOR R1 VT C R2 V V R Vo1 R Rf C Vo2 R Rf C Vo3 Vo1 SQUARE WAVE Vo2 TRIANGLE WAVE Vo3 SINE WAVE (approximation) Page 6

7 SPICE RESULTS WAVEFORM GENERATOR CIRCUIT Page 7

8 WAVEFORM GENERATORS Page 8

9 MULTIPLIER Page 9

10 MULTIPLIER AND DIVIDER CONFIGURATION Page 10

11 INTERNAL CIRCUIT SCHEMATIC FOR THE MULTIPLIER CMOS Analog Circuit Design, Phillip Allen, Douglas Holbert, Holt, Rinehard and Winston. 1987, pg Page 11

12 MULTIPLIER CHIP APPLICATIONS Multiplier Squarer Divider Square Rooter Constant Power Controller Constant Temperature Controller Voltage Controlled Amplifier Linear AM Modulator Voltage to Frequency Converter RMS to DC Converter Page 12

13 GAS FLOW SENSOR Upstream Polysilicon Resistor Polysilicon heater GAS Downstream Polysilicon Resistor Constant heat (power in watts) input and two temperature measurement resistors, one upstream, one downstream. At zero flow both sensors will be at the same temperature. Flow will cause the upstream sensor to be at a lower temperature than the down stream sensor. Page 13

14 Diode Temperature Sensor Selected Analog Electronic Circuits GAS FLOW SENSOR R1 Upstream Resistor Sensor 600ohm Heater R2 Downstream Resistor Sensor Page 14

15 FLOW SENSOR ELECTRONICS 6 Volts Constant Power Circuit for the Heater R2 Downstream Resistor 10 OHM Upstream Resistor R1 Vout Gnd 6 Volts Vout near Zero so that it can be amplified AD534 PLAY STOP Page 15

16 ANEMOMETER A single resistor with enough power dissipation will self heat to some value. At this elevated temperature the resistance normally increases. As fluid flows across the resistor the heat is carried away. King s law gives a relationship between the fluid velocity and fluid temperature, power in the heater and the temperature of the heater. If the temperature of the heater is kept constant and the fluid temperature is known the fluid velocity can be found from the power to the heater. (calibration parameters a, b, n) R Units of flow: sccm = standard cubic cm per min. Slm = standard liter per min. Flow = v f x Area V f = Power (Ts Tf) b a 1/n King s Law Page 16

17 ANEMOMETER CHARACTERIZATION Resistive Heater on Diaphragm With integrated diode temperature sensor I Cold Hot V Diode Temperature Measurement R = ρ L/(W xj) ohms ρ = 1/( qµ n n qµ p p) L,W,xj do not change, µn and µp changes with temperature, n and p does not change much in heavy doped semiconductors (that is, n and p is determined by doping) Page 17

18 ANEMOMETER CHARACTERIZATION V f = Power (Ts Tf) b a 1/n Page 18

19 AD534 CONSTANT TEMPERATURE CIRCUIT Setpoint R=V/I Analog Divider Using AD V I 10 Ω 9 Volts I Heater Gnd Page 19

20 WHEATSTONE BRIDGE CONSTANT TEMP CIRCUIT Page 20

21 POWER OUTPUT STAGE V V Vin V Vo Rload V Page 21

22 OPERATIONAL AMPLIFIER DC CHARACTERIZATION V=6 Vout 6 Vin Slope = Gain 0 Vout V=6 6 20mV Vos Vin 20mV Set up the HP 4145 to sweep the Vin from 20 mv to 20 mv in 0.001V steps. Measure Gain and Input offset voltage. 0 Page 22

23 MEASURED OPEN LOOP DC GAIN SMU1 100k 1k Vi 6v Vout SMU2 6v Gain = slope x 100 = 66,000 = 96 db Page 23

24 FREQUENCY RESPONSE OF AN OP AMP V Vin C1 100k 1k 100k Rb 6v 6v Vout V Adjust Rb to give Vout = zero with Vin = zero, Then use a network analyzer to collect data for Gain vs Frequency Page 24

25 NETWORK ANALYZER Quick Measurement Setup for 3577A Network Analyzer (by Jirachai Getpreecharsawas) Magnitude Plot: 1. Press INPUT button and select input A 2. Press DISPLY FCTN button and select LOG MAG 3. Press FREQ button and select STOP FREQ Note: Other options are also available. 4. Press AMPTD button and adjust the amplitude if necessary, say 20 dbm 5. Press RES BW and select an appropriate frequency resolution, say 100 Hz Note: Sweep time might need to be adjusted so that it is higher than the settling time required for each Res BW, see table* below. * Instruction Manual for 3577A Network Analyzer, pp If applicable, press SWEEP TYPE button and select LOG FREQ SWEEP to display xaxis (freq) in log scale Note: You might need to readjust the frequency range again by pressing FREQ button! Tip: Turning the knob will move the Marker along the trace (data readout). Network Analyzer Phase Plot: 1. Press TRACE 2 button 2. Press INPUT button and select input A 3. Press DISPLY FCTN button Rochester and select Institute PHASEof Technology 4. If needed, adjust the frequency Microelectronic range using FREQ Engineering button Obtain a plot using software Agilent Data Capture 2: 1. Go to Programs > Agilent IntuiLink > IntuiLink Data Capture Application 2. Click Instrument tab, choose 3577A if not selected, accept default setting, and click OK. 3. Click Get Data icon, the 2nd icon from the right, to open a plot window if no plot shown Page 25

26 AC TEST RESULTS ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING LFF OPAMP.XLS FILE3B LOT F OPAMP TEST RESULTS Frequency Gain Vout Vin hz db V mv Gain db Op Amp Frequency Response 80 GBP = 500,000 Hz Frequency Hz Page 26

27 LOW PASS FILTER Vin R1 C2 R2 Vout Derive an expression for Vo/Vin Plot 20Log 10 (Vo/Vin) vs frequency Verify using SPICE Verify by building the circuit Vo/Vin = R2/R1 ω = 2 π f ω1 = 1/R2C2 1 1 j ω/ω1 1 SR2C2 1 f Page 27

28 HIGH PASS FILTER Vin C1 R1 R2 Vout Derive an expression for Vo/Vin Plot 20Log 10 (Vo/Vin) vs frequency Verify using SPICE Verify by building the circuit Vo/Vin = R2/R1 ω = 2 π f ω1 = 1/R1C1 j ω/ω1 1 j ω/ω1 SR1C1 SR1C1 1 f Page 28

29 GENERAL FILTER Vin C1 R1 C2 R2 Derive an expression for Vo/Vin Plot 20Log 10 (Vo/Vin) vs frequency Verify using SPICE Verify by building the circuit Vout Vo/Vin = R2/R1 SR1C1 1 SR2C2 1 ω = 2 π f ω1 = 1/R1C1, ω2 = 1/R2C2 = R2/R1 1 j ω/ω1 1 j ω/ω2 Page 29

30 COMBINATIONS OF FILTERS Vo/Vin = R2/R1 1 j ω/ω1 1 j ω/ω2 Two General Filters in series General General ω1, ω2 ω3, ω4 Vo/Vin = R2R4/R1R3 1 j ω/ω1 1 j ω/ω2 1 j ω/ω3 1 j ω/ω4 2 nd Order lowpass, highpass, bandpass, bandrejection and all pass filter Page 30

31 SKETCH OF VARIOUS FILTER FREQUENCY RESPONSE Vo/Vin = R2R4/R1R3 ω1 = ω3 < ω2 = ω4 1 j ω/ω1 1 j ω/ω2 1 j ω/ω3 1 j ω/ω4 ω2 2 = ω4 4 < ω1 1 = ω33 ω1 < ω2 < ω4 < ω3 ω2 < ω1 < ω3 < ω4 Page 31

32 OPERATIONAL TRANSCONDUCTANCE AMPLIFIER Page 32

33 OPERATIONAL TRANSCONDUCTANCE AMPLIFIER National Semiconductor LM13700 Page 33

34 OPERATIONAL TRANSCONDUCTANCE AMPLIFIER V Va Vb Iout M3 2 M4 M3 M4 Va Vb V Ibias Iout gm(vavb) 5 V 12/30 12/30 Vin M5 M1 M2 12/30 12/30 Vref Ibias 1 12/30 V CMOS Realization 4 Vin 12/30 Note: gm is set by Ibias Iout Page 34

35 BIQUAD FILTER V V V g m1 gm2 g m3 Vout VA V Ibias1 V Ibias2 V V Ibias3 V VB C1 g m4 g m5 C2 V Ibias5 VC V Ibias4 Page 35

36 BIQUAD FILTER V out = (s 2 C 1 C 2 V c s C 1 g m4 V b g m2 g m5 V a )/(s 2 C 1 C 2 sc 1 g m3 g m2 g m1 ) This filter can be used as a lowpass, highpass, bandpass, bandrejection and all pass filter. Depending on the C and gm values a Butterworth, Chebyshev, Elliptic or any other configuration can be achieved For example: let Vc=Vb=0 and Va=Vin, also let all g m be equal, then Vout = Vin / (s 2 C 1 C 2 / g m g m sc 1 /g m 1) which is a second order low pass filter with corner frequency at ω c = g m / C 1 C 2 and Q = C 2 /C 1 Page 36

37 ELLIPTIC FILTER V V V Vout Vin VA V Ibias V Ibias V Ibias V C1 Vin 1500 R1 50 C2 VC=Vin/31 R2 V Ibias Page 37

38 COMPARISON OF DIFFERENT FILTER DESIGNS gain Lowpass Filters Butterworth is flat in the band pass region, has the least steep transition to band stop region Elliptic Butterworth Chebychev Chebychev is not flat in the band pass region, has a steeper transition to band stop region than Butterworth frequency Elliptic is flat in the band pass region, has the steepest transition to band stop region but has some gain in the band stop region Page 38

39 SWITCHED CAPACITOR CIRCUITS Switched capacitor circuits makes use of analog switches and capacitors to replace resistors. Saves space compared to using resistors Low pass filter, filters out high frequency switching artifacts Page 39

40 SWITCHED CAPACITOR EQUIVALENT RESISTOR S1 I S2 I V1 C V2 V1 R V2 I = Cfs (V1V2) I = (1/R) (V1V2) S1 closed C charges to V1, charge transferred is Q = CV1 S1 is opened S2 is closed C charges to V2, charge transferred is Q = CV2 if the switches operate at a switching frequency fs, then I = Qfs = Cfs(V1V2) and Req = 1/(Cfs) Page 40

41 SWITCHED CAPACITOR CIRCUITS 1. The sampling frequency fs must be much higher than the signal frequencies 2. The voltages at node 1 and 2 must be unaffected by switch closures. 3. The switches are ideal. 4. S1 and S2 are not both on at same time. (use non overlapping clocks) I I S1 S2 V1 V2 C Req = 1/(Cfs) V1 R V2 I = (1/R) (V1V2) Example: for audio applications with frequencies up to 10KHz, we select switch frequency of 500KHz, for a 1 MEG ohm resistor we find that C = 1/ (500K 1MEG) = 2 p/f If Xox = 4000 Å, then the capacitor will be about 150 µm by 150 µm Page 41

42 LMF100 SWITCHED CAPACITOR FILTER CHIP Page 42

43 CHEBYCHEV FILTER EXAMPLE USING LMF100 From LMF100 Data Sheet Page 43

44 SWITCHED CAPACITOR AMPLIFIER Q = CV Φ1 Vin Φ1 Φ2 Cx Cf Vo Vo = Vin Cx/Cf Page 44

45 CAPACITOR SENSOR TO DC VOLTAGE Q = CV Φ1 Vin Φ1 Φ2 Cx Cf Low Pass Filter Vo Vo = Vin Cx/Cf Page 45

46 CAPACITANCE MEASUREMENT CIRCUIT SIMULATION Cf SPICE SIMULATION Cx Vo = Vin (CxCA) / Cf Page 46

47 REFERENCES 1. Switched Capacitor Circuits, Phillip E. Allen and Edgar SanchezSinencio, Van Nostrand Reinhold Publishers, Active Filter Design Using Operational Transconductance Amplifiers: A Tutorial, Randall L. Geiger and Edgar SanchezSinencio, IEEE Circuits and Devices Magazine, March 1985, pg Microelectronic Circuits, 5 th Edition, Sedra and Smith 4. CMOS Analog Circuit Design, Phillip Allen, Douglas Holbert, Holt, Rinehard and Winston, 1987, pg AsingleSupply OpAmp Circuit Collection, Texas Instruments, Application Report SLOA058November Op Amp Circuit Collection, National Semiconductor, Application Note 31, September Page 47

48 HOMEWORK SELECTED ANALOG CIRCUITS 1. Create one good homework problem and the solution related to the material covered in this document. (for next years students) 2. Design a high pass filter to have a gain of 100 and corner frequency of 10Mhz. 3. You have a 10pf switched capacitor equivalent resistor. What frequency is required to give an equivalent resistance of 10Mohm. 4. Design a bandpass filter to pass frequencies of 2K to 10Khz. Page 48

Selected Filter Circuits Dr. Lynn Fuller

Selected Filter Circuits Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee Electrical and 82 Lomb Memorial Drive Rochester, NY 146235604 Tel (585) 4752035 Email:

More information

Laboratory on Filter Circuits Dr. Lynn Fuller

Laboratory on Filter Circuits Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Laboratory on Filter Circuits Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585)

More information

Electronic Circuit Casebook. Dr. Lynn Fuller

Electronic Circuit Casebook. Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Electronic Circuit Casebook Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 146235604 Tel (585)

More information

Basic Analog Electronic Circuits Dr. Lynn Fuller

Basic Analog Electronic Circuits Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 146235604 Tel (585) 4752035 Email: Lynn.Fuller@rit.edu

More information

MEMS Signal Conditioning Circuits Dr. Lynn Fuller Electrical and Microelectronic Engineering

MEMS Signal Conditioning Circuits Dr. Lynn Fuller Electrical and Microelectronic Engineering ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING MEMS Signal Conditioning Circuits Dr. Lynn Fuller Electrical and 82 Lomb Memorial Drive Rochester, NY 146235604 Email: Lynn.Fuller@rit.edu

More information

Single Supply Op Amp Circuits Dr. Lynn Fuller Webpage:

Single Supply Op Amp Circuits Dr. Lynn Fuller Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Single Supply Op Amp Circuits Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 146235604 Tel (585)

More information

Power Conditioning Electronics Dr. Lynn Fuller Webpage:

Power Conditioning Electronics Dr. Lynn Fuller Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Power Conditioning Electronics Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Email:

More information

Homework Assignment 03 Solution

Homework Assignment 03 Solution Homework Assignment 03 Solution Question 1 Determine the h 11 and h 21 parameters for the circuit. Be sure to supply the units and proper sign for each parameter. (8 points) Solution Setting v 2 = 0 h

More information

Lab 6 Prelab Grading Sheet

Lab 6 Prelab Grading Sheet Lab 6 Prelab Grading Sheet NAME: Read through the Background section of this lab and print the prelab and in-lab grading sheets. Then complete the steps below and fill in the Prelab 6 Grading Sheet. You

More information

Question Paper Code: 21398

Question Paper Code: 21398 Reg. No. : Question Paper Code: 21398 B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2013 Fourth Semester Electrical and Electronics Engineering EE2254 LINEAR INTEGRATED CIRCUITS AND APPLICATIONS (Regulation

More information

ECE4902 C Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load

ECE4902 C Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load ECE4902 C2012 - Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load PURPOSE: The primary purpose of this lab is to measure the

More information

EE 230 Lab Lab 9. Prior to Lab

EE 230 Lab Lab 9. Prior to Lab MOS transistor characteristics This week we look at some MOS transistor characteristics and circuits. Most of the measurements will be done with our usual lab equipment, but we will also use the parameter

More information

ECE3204 D2015 Lab 1. See suggested breadboard configuration on following page!

ECE3204 D2015 Lab 1. See suggested breadboard configuration on following page! ECE3204 D2015 Lab 1 The Operational Amplifier: Inverting and Non-inverting Gain Configurations Gain-Bandwidth Product Relationship Frequency Response Limitation Transfer Function Measurement DC Errors

More information

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2)

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2) EE 368 Electronics Lab Experiment 10 Operational Amplifier Applications (2) 1 Experiment 10 Operational Amplifier Applications (2) Objectives To gain experience with Operational Amplifier (Op-Amp). To

More information

ECE 4670 Spring 2014 Lab 1 Linear System Characteristics

ECE 4670 Spring 2014 Lab 1 Linear System Characteristics ECE 4670 Spring 2014 Lab 1 Linear System Characteristics 1 Linear System Characteristics The first part of this experiment will serve as an introduction to the use of the spectrum analyzer in making absolute

More information

LINEAR IC APPLICATIONS

LINEAR IC APPLICATIONS 1 B.Tech III Year I Semester (R09) Regular & Supplementary Examinations December/January 2013/14 1 (a) Why is R e in an emitter-coupled differential amplifier replaced by a constant current source? (b)

More information

ECE4902 C Lab 7

ECE4902 C Lab 7 ECE902 C2012 - Lab MOSFET Differential Amplifier Resistive Load Active Load PURPOSE: The primary purpose of this lab is to measure the performance of the differential amplifier. This is an important topology

More information

Homework Assignment True or false. For both the inverting and noninverting op-amp configurations, V OS results in

Homework Assignment True or false. For both the inverting and noninverting op-amp configurations, V OS results in Question 1 (Short Takes), 2 points each. Homework Assignment 02 1. An op-amp has input bias current I B = 1 μa. Make an estimate for the input offset current I OS. Answer. I OS is normally an order of

More information

ENGR 201 Homework, Fall 2018

ENGR 201 Homework, Fall 2018 Chapter 1 Voltage, Current, Circuit Laws (Selected contents from Chapter 1-3 in the text book) 1. What are the following instruments? Draw lines to match them to their cables: Fig. 1-1 2. Complete the

More information

EE 2274 RC and Op Amp Circuit Completed Prior to Coming to Lab. Prelab Part I: RC Circuit

EE 2274 RC and Op Amp Circuit Completed Prior to Coming to Lab. Prelab Part I: RC Circuit EE 2274 RC and Op Amp Circuit Completed Prior to Coming to Lab Prelab Part I: RC Circuit 1. Design a high pass filter (Fig. 1) which has a break point f b = 1 khz at 3dB below the midband level (the -3dB

More information

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 019.101 Introductory Analog Electronics Laboratory Laboratory No. READING ASSIGNMENT

More information

Diode Sensor Lab. Dr. Lynn Fuller

Diode Sensor Lab. Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Diode Sensor Lab Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Fax

More information

St.MARTIN S ENGINEERING COLLEGE

St.MARTIN S ENGINEERING COLLEGE St.MARTIN S ENGINEERING COLLEGE Dhulapally, Kompally, Secunderabad-500014. Branch Year&Sem Subject Name : Electrical and Electronics Engineering : III B. Tech I Semester : IC Applications OBJECTIVES QUESTION

More information

Assignment 11. 1) Using the LM741 op-amp IC a circuit is designed as shown, then find the output waveform for an input of 5kHz

Assignment 11. 1) Using the LM741 op-amp IC a circuit is designed as shown, then find the output waveform for an input of 5kHz Assignment 11 1) Using the LM741 op-amp IC a circuit is designed as shown, then find the output waveform for an input of 5kHz Vo = 1 x R1Cf 0 Vin t dt, voltage output for the op amp integrator 0.1 m 1

More information

1) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz

1) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz ) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz Solution: a) Input is of constant amplitude of 2 V from 0 to 0. ms and 2 V from 0. ms to 0.2 ms. The output

More information

Dimensions in inches (mm) .268 (6.81).255 (6.48) .390 (9.91).379 (9.63) .045 (1.14).030 (.76) 4 Typ. Figure 1. Typical application circuit.

Dimensions in inches (mm) .268 (6.81).255 (6.48) .390 (9.91).379 (9.63) .045 (1.14).030 (.76) 4 Typ. Figure 1. Typical application circuit. LINEAR OPTOCOUPLER FEATURES Couples AC and DC signals.% Servo Linearity Wide Bandwidth, > KHz High Gain Stability, ±.%/C Low Input-Output Capacitance Low Power Consumption, < mw Isolation Test Voltage,

More information

BJT Characterization Laboratory Dr. Lynn Fuller

BJT Characterization Laboratory Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING BJT Characterization Laboratory Dr. Lynn Fuller 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Fax (585) 475-5041 Email:

More information

System on a Chip. Prof. Dr. Michael Kraft

System on a Chip. Prof. Dr. Michael Kraft System on a Chip Prof. Dr. Michael Kraft Lecture 4: Filters Filters General Theory Continuous Time Filters Background Filters are used to separate signals in the frequency domain, e.g. remove noise, tune

More information

ECE 363 FINAL (F16) 6 problems for 100 pts Problem #1: Fuel Pump Controller (18 pts)

ECE 363 FINAL (F16) 6 problems for 100 pts Problem #1: Fuel Pump Controller (18 pts) ECE 363 FINAL (F16) NAME: 6 problems for 100 pts Problem #1: Fuel Pump Controller (18 pts) You are asked to design a high-side switch for a remotely operated fuel pump. You decide to use the IRF9520 power

More information

2. BAND-PASS NOISE MEASUREMENTS

2. BAND-PASS NOISE MEASUREMENTS 2. BAND-PASS NOISE MEASUREMENTS 2.1 Object The objectives of this experiment are to use the Dynamic Signal Analyzer or DSA to measure the spectral density of a noise signal, to design a second-order band-pass

More information

EK307 Active Filters and Steady State Frequency Response

EK307 Active Filters and Steady State Frequency Response EK307 Active Filters and Steady State Frequency Response Laboratory Goal: To explore the properties of active signal-processing filters Learning Objectives: Active Filters, Op-Amp Filters, Bode plots Suggested

More information

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 019 Spring Term 00.101 Introductory Analog Electronics Laboratory Laboratory No.

More information

LT Spice Getting Started Very Quickly. First Get the Latest Software!

LT Spice Getting Started Very Quickly. First Get the Latest Software! LT Spice Getting Started Very Quickly First Get the Latest Software! 1. After installing LT Spice, run it and check to make sure you have the latest version with respect to the latest version available

More information

The above figure represents a two stage circuit. Recall, the transfer function relates. Vout

The above figure represents a two stage circuit. Recall, the transfer function relates. Vout LABORATORY 12: Bode plots/second Order Filters Material covered: Multistage circuits Bode plots Design problem Overview Notes: Two stage circuits: Vin1 H1(s) Vout1 Vin2 H2(s) Vout2 The above figure represents

More information

Electronics basics for MEMS and Microsensors course

Electronics basics for MEMS and Microsensors course Electronics basics for course, a.a. 2017/2018, M.Sc. in Electronics Engineering Transfer function 2 X(s) T(s) Y(s) T S = Y s X(s) The transfer function of a linear time-invariant (LTI) system is the function

More information

Differential Amplifier : input. resistance. Differential amplifiers are widely used in engineering instrumentation

Differential Amplifier : input. resistance. Differential amplifiers are widely used in engineering instrumentation Differential Amplifier : input resistance Differential amplifiers are widely used in engineering instrumentation Differential Amplifier : input resistance v 2 v 1 ir 1 ir 1 2iR 1 R in v 2 i v 1 2R 1 Differential

More information

A 3-STAGE 5W AUDIO AMPLIFIER

A 3-STAGE 5W AUDIO AMPLIFIER ECE 2201 PRELAB 7x BJT APPLICATIONS A 3-STAGE 5W AUDIO AMPLIFIER UTILIZING NEGATIVE FEEDBACK INTRODUCTION Figure P7-1 shows a simplified schematic of a 3-stage audio amplifier utilizing three BJT amplifier

More information

Function Generator Using Op Amp Ic 741 Theory

Function Generator Using Op Amp Ic 741 Theory Function Generator Using Op Amp Ic 741 Theory Note: Op-Amps ua741, LM 301, LM311, LM 324 & AD 633 may be used To design an Inverting Amplifier for the given specifications using Op-Amp IC 741. THEORY:

More information

Homework Assignment 06

Homework Assignment 06 Question 1 (2 points each unless noted otherwise) Homework Assignment 06 1. True or false: when transforming a circuit s diagram to a diagram of its small-signal model, we replace dc constant current sources

More information

AURORA S ENGINEERING COLLEGE BHONGIR, NALGONDA DIST

AURORA S ENGINEERING COLLEGE BHONGIR, NALGONDA DIST AURORA S ENGINEERING COLLEGE BHONGIR, NALGONDA DIST. 508116. Lab manual of IC APPLICATIONS LAB 3 rd Year 1 st Sem. ECE 2014-15 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING 1 PREFACE Integrated

More information

Lecture 2 Analog circuits. Seeing the light..

Lecture 2 Analog circuits. Seeing the light.. Lecture 2 Analog circuits Seeing the light.. I t IR light V1 9V +V IR detection Noise sources: Electrical (60Hz, 120Hz, 180Hz.) Other electrical IR from lights IR from cameras (autofocus) Visible light

More information

Homework Assignment 12

Homework Assignment 12 Homework Assignment 12 Question 1 Shown the is Bode plot of the magnitude of the gain transfer function of a constant GBP amplifier. By how much will the amplifier delay a sine wave with the following

More information

ENE/EIE 211 : Electronic Devices and Circuit Design II Lecture 1: Introduction

ENE/EIE 211 : Electronic Devices and Circuit Design II Lecture 1: Introduction ENE/EIE 211 : Electronic Devices and Circuit Design II Lecture 1: Introduction 1/14/2018 1 Course Name: ENE/EIE 211 Electronic Devices and Circuit Design II Credits: 3 Prerequisite: ENE/EIE 210 Electronic

More information

CHARACTERIZATION OF OP-AMP

CHARACTERIZATION OF OP-AMP EXPERIMENT 4 CHARACTERIZATION OF OP-AMP OBJECTIVES 1. To sketch and briefly explain an operational amplifier circuit symbol and identify all terminals. 2. To list the amplifier stages in a typical op-amp

More information

ECE Lab #4 OpAmp Circuits with Negative Feedback and Positive Feedback

ECE Lab #4 OpAmp Circuits with Negative Feedback and Positive Feedback ECE 214 Lab #4 OpAmp Circuits with Negative Feedback and Positive Feedback 20 February 2018 Introduction: The TL082 Operational Amplifier (OpAmp) and the Texas Instruments Analog System Lab Kit Pro evaluation

More information

Analog CMOS Interface Circuits for UMSI Chip of Environmental Monitoring Microsystem

Analog CMOS Interface Circuits for UMSI Chip of Environmental Monitoring Microsystem Analog CMOS Interface Circuits for UMSI Chip of Environmental Monitoring Microsystem A report Submitted to Canopus Systems Inc. Zuhail Sainudeen and Navid Yazdi Arizona State University July 2001 1. Overview

More information

Homework Assignment 11

Homework Assignment 11 Homework Assignment 11 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3-dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =

More information

ENGR4300 Test 3A Fall 2002

ENGR4300 Test 3A Fall 2002 1. 555 Timer (20 points) Figure 1: 555 Timer Circuit For the 555 timer circuit in Figure 1, find the following values for R1 = 1K, R2 = 2K, C1 = 0.1uF. Show all work. a) (4 points) T1: b) (4 points) T2:

More information

PURPOSE: NOTE: Be sure to record ALL results in your laboratory notebook.

PURPOSE: NOTE: Be sure to record ALL results in your laboratory notebook. EE4902 Lab 9 CMOS OP-AMP PURPOSE: The purpose of this lab is to measure the closed-loop performance of an op-amp designed from individual MOSFETs. This op-amp, shown in Fig. 9-1, combines all of the major

More information

EE4902 C Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load

EE4902 C Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load EE4902 C200 - Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load PURPOSE: The primary purpose of this lab is to measure the

More information

Assignment 8 Analyzing Operational Amplifiers in MATLAB and PSpice

Assignment 8 Analyzing Operational Amplifiers in MATLAB and PSpice ECEL 301 ECE Laboratory I Dr. A. Fontecchio Assignment 8 Analyzing Operational Amplifiers in MATLAB and PSpice Goal Characterize critical parameters of the inverting or non-inverting opampbased amplifiers.

More information

Lab 2: Discrete BJT Op-Amps (Part I)

Lab 2: Discrete BJT Op-Amps (Part I) Lab 2: Discrete BJT Op-Amps (Part I) This is a three-week laboratory. You are required to write only one lab report for all parts of this experiment. 1.0. INTRODUCTION In this lab, we will introduce and

More information

Spectrum analyzer for frequency bands of 8-12, and MHz

Spectrum analyzer for frequency bands of 8-12, and MHz EE389 Electronic Design Lab Project Report, EE Dept, IIT Bombay, November 2006 Spectrum analyzer for frequency bands of 8-12, 12-16 and 16-20 MHz Group No. D-13 Paras Choudhary (03d07012)

More information

BJT IC Design ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING. BJT IC Design. Dr. Lynn Fuller Webpage:

BJT IC Design ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING. BJT IC Design. Dr. Lynn Fuller Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING BJT IC Design Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee/ 82 Lomb Memorial Drive Rochester, NY 146235604 Tel (585) 4752035 Email:

More information

EE320L Electronics I. Laboratory. Laboratory Exercise #2. Basic Op-Amp Circuits. Angsuman Roy. Department of Electrical and Computer Engineering

EE320L Electronics I. Laboratory. Laboratory Exercise #2. Basic Op-Amp Circuits. Angsuman Roy. Department of Electrical and Computer Engineering EE320L Electronics I Laboratory Laboratory Exercise #2 Basic Op-Amp Circuits By Angsuman Roy Department of Electrical and Computer Engineering University of Nevada, Las Vegas Objective: The purpose of

More information

Experiment 8 Frequency Response

Experiment 8 Frequency Response Experiment 8 Frequency Response W.T. Yeung, R.A. Cortina, and R.T. Howe UC Berkeley EE 105 Spring 2005 1.0 Objective This lab will introduce the student to frequency response of circuits. The student will

More information

Op-Amp Simulation Part II

Op-Amp Simulation Part II Op-Amp Simulation Part II EE/CS 5720/6720 This assignment continues the simulation and characterization of a simple operational amplifier. Turn in a copy of this assignment with answers in the appropriate

More information

Laboratory 6. Lab 6. Operational Amplifier Circuits. Required Components: op amp 2 1k resistor 4 10k resistors 1 100k resistor 1 0.

Laboratory 6. Lab 6. Operational Amplifier Circuits. Required Components: op amp 2 1k resistor 4 10k resistors 1 100k resistor 1 0. Laboratory 6 Operational Amplifier Circuits Required Components: 1 741 op amp 2 1k resistor 4 10k resistors 1 100k resistor 1 0.1 F capacitor 6.1 Objectives The operational amplifier is one of the most

More information

Low Cost, General Purpose High Speed JFET Amplifier AD825

Low Cost, General Purpose High Speed JFET Amplifier AD825 a FEATURES High Speed 41 MHz, 3 db Bandwidth 125 V/ s Slew Rate 8 ns Settling Time Input Bias Current of 2 pa and Noise Current of 1 fa/ Hz Input Voltage Noise of 12 nv/ Hz Fully Specified Power Supplies:

More information

EXPERIMENT 2. NMOS AND BJT INVERTING CIRCUITS

EXPERIMENT 2. NMOS AND BJT INVERTING CIRCUITS EXPERIMENT 2. NMOS AND BJT INVERTING CIRCUITS I. Introduction I.I Objectives In this experiment, you will analyze and compare the voltage transfer characteristics (VTC) and the dynamic response of the

More information

Scheme I Sample Question Paper

Scheme I Sample Question Paper Sample Question Paper Marks : 70 Time: 3 Hrs. Q.1) Attempt any FIVE of the following. 10 Marks a) Classify configuration of differential amplifier. b) Draw equivalent circuit of an OPAMP c) Suggest and

More information

Digital Applications of the Operational Amplifier

Digital Applications of the Operational Amplifier Lab Procedure 1. Objective This project will show the versatile operation of an operational amplifier in a voltage comparator (Schmitt Trigger) circuit and a sample and hold circuit. 2. Components Qty

More information

21/10/58. M2-3 Signal Generators. Bill Hewlett and Dave Packard s 1 st product (1939) US patent No HP 200A s schematic

21/10/58. M2-3 Signal Generators. Bill Hewlett and Dave Packard s 1 st product (1939) US patent No HP 200A s schematic M2-3 Signal Generators Bill Hewlett and Dave Packard s 1 st product (1939) US patent No.2267782 1 HP 200A s schematic 2 1 The basic structure of a sinusoidal oscillator. A positive feedback loop is formed

More information

6.002 Circuits and Electronics Final Exam Practice Set 1

6.002 Circuits and Electronics Final Exam Practice Set 1 MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE 6.002 Circuits and Electronics Set 1 Problem 1 Figure 1 shows a simplified small-signal model of a certain

More information

Analog Electronics. Lecture. Op-amp Circuits and Active Filters. Muhammad Amir Yousaf

Analog Electronics. Lecture. Op-amp Circuits and Active Filters. Muhammad Amir Yousaf Analog Electronics Lecture Op-amp Circuits and Active Filters Muhammad Amir Yousaf Instrumentation Amplifiers An instrumentation amplifier (IA) amplifies the voltage difference between its terminals. It

More information

EE LINEAR INTEGRATED CIRCUITS & APPLICATIONS

EE LINEAR INTEGRATED CIRCUITS & APPLICATIONS UNITII CHARACTERISTICS OF OPAMP 1. What is an opamp? List its functions. The opamp is a multi terminal device, which internally is quite complex. It is a direct coupled high gain amplifier consisting of

More information

or Op Amps for short

or Op Amps for short or Op Amps for short Objective of Lecture Describe how an ideal operational amplifier (op amp) behaves. Chapter 14.1 Electrical Engineering: Principles and Applications Chapter 5.1-5.3 Fundamentals of

More information

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING QUESTION BANK SUBJECT : EC6404 LINEAR INTEGRATED CIRCUITS SEM / YEAR: IV / II year

More information

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier TL082 Wide Bandwidth Dual JFET Input Operational Amplifier General Description These devices are low cost, high speed, dual JFET input operational amplifiers with an internally trimmed input offset voltage

More information

HEMT Bias Controller

HEMT Bias Controller Features Only one external component other than sense resistor in HEMT drain Preset references for common HEMT operating currents Other operating points can be set with two external resistors Logic level

More information

Active Filters - Revisited

Active Filters - Revisited Active Filters - Revisited Sources: Electronic Devices by Thomas L. Floyd. & Electronic Devices and Circuit Theory by Robert L. Boylestad, Louis Nashelsky Ideal and Practical Filters Ideal and Practical

More information

EXPERIMENT NUMBER 8 Introduction to Active Filters

EXPERIMENT NUMBER 8 Introduction to Active Filters EXPERIMENT NUMBER 8 Introduction to Active Filters i-1 Preface: Preliminary exercises are to be done and submitted individually. Laboratory hardware exercises are to be done in groups. This laboratory

More information

(b) 25% (b) increases

(b) 25% (b) increases Homework Assignment 07 Question 1 (2 points each unless noted otherwise) 1. In the circuit 10 V, 10, and 5K. What current flows through? Answer: By op-amp action the voltage across is and the current through

More information

MAE334 - Introduction to Instrumentation and Computers. Final Exam. December 11, 2006

MAE334 - Introduction to Instrumentation and Computers. Final Exam. December 11, 2006 MAE334 - Introduction to Instrumentation and Computers Final Exam December 11, 2006 o Closed Book and Notes o No Calculators 1. Fill in your name on side 2 of the scoring sheet (Last name first!) 2. Fill

More information

Diode Curve Tracer ROCHESTER INSTITUTE OF TECHNOLOGY ELECTRICAL & MICROELECTRONIC ENGINEERING

Diode Curve Tracer ROCHESTER INSTITUTE OF TECHNOLOGY ELECTRICAL & MICROELECTRONIC ENGINEERING ROCHESTER INSTITUTE OF TECHNOLOGY ELECTRICAL & MICROELECTRONIC ENGINEERING Diode Curve Tracer Using Digilent Analog Discovery Module, Adam Wardas Webpage: http://people.rit.edu/lffeee Electrical and 82

More information

MEASURING HUM MODULATION USING MATRIX MODEL HD-500 HUM DEMODULATOR

MEASURING HUM MODULATION USING MATRIX MODEL HD-500 HUM DEMODULATOR MEASURING HUM MODULATION USING MATRIX MODEL HD-500 HUM DEMODULATOR The SCTE defines hum modulation as, The amplitude distortion of a signal caused by the modulation of the signal by components of the power

More information

Lecture 2 Analog circuits. Seeing the light..

Lecture 2 Analog circuits. Seeing the light.. Lecture 2 Analog circuits Seeing the light.. I t IR light V1 9V +V IR detection Noise sources: Electrical (60Hz, 120Hz, 180Hz.) Other electrical IR from lights IR from cameras (autofocus) Visible light

More information

A study of switched-capacitor filters

A study of switched-capacitor filters University of Arkansas, Fayetteville ScholarWorks@UARK Electrical Engineering Undergraduate Honors Theses Electrical Engineering 12-2008 A study of switched-capacitor filters Kacie Thomas University of

More information

University of North Carolina, Charlotte Department of Electrical and Computer Engineering ECGR 3157 EE Design II Fall 2009

University of North Carolina, Charlotte Department of Electrical and Computer Engineering ECGR 3157 EE Design II Fall 2009 University of North Carolina, Charlotte Department of Electrical and Computer Engineering ECGR 3157 EE Design II Fall 2009 Lab 1 Power Amplifier Circuits Issued August 25, 2009 Due: September 11, 2009

More information

Integrators, differentiators, and simple filters

Integrators, differentiators, and simple filters BEE 233 Laboratory-4 Integrators, differentiators, and simple filters 1. Objectives Analyze and measure characteristics of circuits built with opamps. Design and test circuits with opamps. Plot gain vs.

More information

Field Effect Transistors

Field Effect Transistors Field Effect Transistors Purpose In this experiment we introduce field effect transistors (FETs). We will measure the output characteristics of a FET, and then construct a common-source amplifier stage,

More information

Static Random Access Memory - SRAM Dr. Lynn Fuller Webpage:

Static Random Access Memory - SRAM Dr. Lynn Fuller Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Static Random Access Memory - SRAM Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Email:

More information

EE4902 C Lab 7

EE4902 C Lab 7 EE4902 C2007 - Lab 7 MOSFET Differential Amplifier Resistive Load Active Load PURPOSE: The primary purpose of this lab is to measure the performance of the differential amplifier. This is an important

More information

1. Hand Calculations (in a manner suitable for submission) For the circuit in Fig. 1 with f = 7.2 khz and a source vin () t 1.

1. Hand Calculations (in a manner suitable for submission) For the circuit in Fig. 1 with f = 7.2 khz and a source vin () t 1. Objectives The purpose of this laboratory project is to introduce to equipment, measurement techniques, and simulations commonly used in AC circuit analysis. In this laboratory session, each student will:

More information

EE 105 MICROELECTRONIC DEVICES & CIRCUITS FALL 2018 C. Nguyen. Laboratory 2: Characterization of the 741 Op Amp Preliminary Exercises

EE 105 MICROELECTRONIC DEVICES & CIRCUITS FALL 2018 C. Nguyen. Laboratory 2: Characterization of the 741 Op Amp Preliminary Exercises Laboratory 2: Characterization of the 741 Op Amp Preliminary Exercises This lab will characterize an actual 741 operational amplifier with emphasis on its non-ideal properties, such as finite gain and

More information

LF353 Wide Bandwidth Dual JFET Input Operational Amplifier

LF353 Wide Bandwidth Dual JFET Input Operational Amplifier LF353 Wide Bandwidth Dual JFET Input Operational Amplifier General Description These devices are low cost, high speed, dual JFET input operational amplifiers with an internally trimmed input offset voltage

More information

Lecture 2 Analog circuits...or How to detect the Alarm beacon

Lecture 2 Analog circuits...or How to detect the Alarm beacon Lecture 2 Analog circuits..or How to detect the Alarm beacon I t IR light generates collector current V1 9V +V I c Q1 OP805 IR detection Vout Noise sources: Electrical (60Hz, 120Hz, 180Hz.) Other electrical

More information

ETIN25 Analogue IC Design. Laboratory Manual Lab 2

ETIN25 Analogue IC Design. Laboratory Manual Lab 2 Department of Electrical and Information Technology LTH ETIN25 Analogue IC Design Laboratory Manual Lab 2 Jonas Lindstrand Martin Liliebladh Markus Törmänen September 2011 Laboratory 2: Design and Simulation

More information

Electric Circuit Theory

Electric Circuit Theory Electric Circuit Theory Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Chapter 15 Active Filter Circuits Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Contents and Objectives 3 Chapter Contents 15.1 First-Order

More information

MEMS Microphone Design and Signal Conditioning Dr. Lynn Fuller, Erin Sullivan Webpage:

MEMS Microphone Design and Signal Conditioning Dr. Lynn Fuller, Erin Sullivan Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING MEMS Microphone Design and Signal Conditioning, Erin Sullivan Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604

More information

THIRD SEMESTER ELECTRONICS - II BASIC ELECTRICAL & ELECTRONICS LAB DEPARTMENT OF ELECTRICAL ENGINEERING

THIRD SEMESTER ELECTRONICS - II BASIC ELECTRICAL & ELECTRONICS LAB DEPARTMENT OF ELECTRICAL ENGINEERING THIRD SEMESTER ELECTRONICS - II BASIC ELECTRICAL & ELECTRONICS LAB DEPARTMENT OF ELECTRICAL ENGINEERING Prepared By: Checked By: Approved By: Engr. Saqib Riaz Engr. M.Nasim Khan Dr.Noman Jafri Lecturer

More information

LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers

LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers General Description The LM13600 series consists of two current controlled transconductance amplifiers each with

More information

UNIVERSITY OF UTAH ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT ELECTROMYOGRAM (EMG) DETECTOR WITH AUDIOVISUAL OUTPUT

UNIVERSITY OF UTAH ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT ELECTROMYOGRAM (EMG) DETECTOR WITH AUDIOVISUAL OUTPUT UNIVESITY OF UTAH ELECTICAL AND COMPUTE ENGINEEING DEPATMENT ECE 3110 LABOATOY EXPEIMENT NO. 5 ELECTOMYOGAM (EMG) DETECTO WITH AUDIOVISUAL OUTPUT Pre-Lab Assignment: ead and review Sections 2.4, 2.8.2,

More information

Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Post-lab Forms

Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Post-lab Forms Facility of Engineering Biomedical Engineering Department Medical Electronic Lab BME (317) Post-lab Forms Prepared by Eng.Hala Amari Spring 2014 Facility of Engineering Biomedical Engineering Department

More information

Introduction to Op Amps

Introduction to Op Amps Introduction to Op Amps ENGI 242 ELEC 222 Basic Op-Amp The op-amp is a differential amplifier with a very high open loop gain 25k AVOL 500k (much higher for FET inputs) high input impedance 500kΩ ZIN 10MΩ

More information

Nonlinear Macromodeling of Amplifiers and Applications to Filter Design.

Nonlinear Macromodeling of Amplifiers and Applications to Filter Design. ECEN 622(ESS) Nonlinear Macromodeling of Amplifiers and Applications to Filter Design. By Edgar Sanchez-Sinencio Thanks to Heng Zhang for part of the material OP AMP MACROMODELS Systems containing a significant

More information

Nonlinear Macromodeling of Amplifiers and Applications to Filter Design.

Nonlinear Macromodeling of Amplifiers and Applications to Filter Design. ECEN 622 Nonlinear Macromodeling of Amplifiers and Applications to Filter Design. By Edgar Sanchez-Sinencio Thanks to Heng Zhang for part of the material OP AMP MACROMODELS Systems containing a significant

More information

P a g e 1 ST985. TDR Cable Analyzer Instruction Manual. Analog Arts Inc.

P a g e 1 ST985. TDR Cable Analyzer Instruction Manual. Analog Arts Inc. P a g e 1 ST985 TDR Cable Analyzer Instruction Manual Analog Arts Inc. www.analogarts.com P a g e 2 Contents Software Installation... 4 Specifications... 4 Handling Precautions... 4 Operation Instruction...

More information

ANALOG SYNTHESIZER WITH AR ENVELOPING

ANALOG SYNTHESIZER WITH AR ENVELOPING ANALOG SYNTHESIZER WITH AR ENVELOPING EC412 MAY 5, 2013 CHRISTOPHER WOODALL CWOODALL@BU.EDU BENJAMIN HAVEY BENHAVEY@BU.EDU 1. Introduction Building an analog audio synthesizer is an exercise in low speed

More information

Lab 6: Building a Function Generator

Lab 6: Building a Function Generator ECE 212 Spring 2010 Circuit Analysis II Names: Lab 6: Building a Function Generator Objectives In this lab exercise you will build a function generator capable of generating square, triangle, and sine

More information