Introduction to Op Amps

Size: px
Start display at page:

Download "Introduction to Op Amps"

Transcription

1 Introduction to Op Amps ENGI 242 ELEC 222 Basic Op-Amp The op-amp is a differential amplifier with a very high open loop gain 25k AVOL 500k (much higher for FET inputs) high input impedance 500kΩ ZIN 10MΩ low output impedance 25Ω RO 100Ω April 2004 ENGI 242/ELEC 222 Op Amps 2 Op Amps 1

2 Op-Amp Equivalent Circuit April 2004 ENGI 242/ELEC 222 Op Amps 3 Op-Amp Specifications DC Offset Parameters Even though the input voltage is 0, there will be an output. This is called offset. The following can cause this offset: Input Offset Voltage Output Offset Voltage due to Input Offset Current Total Offset Voltage Due to Input Offset Voltage and Input Offset Current Input Bias Current See lm301.pdf or mc1741c.pdf for sample specification sheets April 2004 ENGI 242/ELEC 222 Op Amps 4 Op Amps 2

3 General Op-Amp Specifications VIO Input Offset Voltage VIO The voltage that must be applied to the input terminals of an op amp to null the output voltage Typical value is 2mV with a max of 6mV When operated open loop, must be nulled or device may saturate April 2004 ENGI 242/ELEC 222 Op Amps 5 General Op-Amp Specifications IIO Input Offset Current The algebraic difference between the two input currents These are base currents and are usually nulled Typical value IIO 20 na with a max of 200nA April 2004 ENGI 242/ELEC 222 Op Amps 6 Op Amps 3

4 Technique to Null VO Short Input terminals to ground Connect potentiometer between compensation pins with wiper to VEE Potentiometer is usually a 10 turn device Connect meter to output and adjust potentiometer for VO = 0 April 2004 ENGI 242/ELEC 222 Op Amps 7 General Op-Amp Specifications CMRR VO A D = VIN V OCM A CM = VCM A CMRR = 20 log A Common Mode Rejection Ratio The ratio of the differential voltage gain (AD) to the common mode gain (ACM) ACM is the ratio between the differential input voltage (VINCM) applied common mode, and the common mode output voltage (VOCM) it can exceed minimum is 70db with a typical value of 90 db in properly designed circuit, it may exceed 110db D CM April 2004 ENGI 242/ELEC 222 Op Amps 8 Op Amps 4

5 General Op-Amp Specifications Input Bias Current The average of the currents that flow into the inverting and noninverting terminals Typical values rage from 7nA to 80 na Differential Input Resistance Also know as the input resistance Resistance seen looking into the input terminals of the device Runs from a low of 2MΩ for an LM741 to a high of Ω for FET input devices Output resistance Resistance between the output terminal ad ground Typical values are 75Ω or less Input Capacitance The equivalent capacitance measured at either the inverting or noninverting terminal with the other terminal connected to ground May not be on all spec sheets Typical value for LM741 is 1.4pF I B = I + I 2 B+ B- April 2004 ENGI 242/ELEC 222 Op Amps 9 General Op-Amp Specifications Power Supply Range May be differential or single ended Max is ± 22V Output Voltage Swing Range of output voltage Depends on power supply voltage used (typically about 85% to 90%) Usually about ±13.5V for a power supply voltage of ±15V Slew Rate The maximum rate of change in the output voltage in response to an input change Depends greatly on device, higher is better (output resonds faster to input changes) For LM741 it is.5v/µs while for the LM318 it is 70V /µs Gain Bandwidth Product The bandwidth of the device when the open loop voltage gain is 1 April 2004 ENGI 242/ELEC 222 Op Amps 10 Op Amps 5

6 Op Amp Equivalent Circuit April 2004 ENGI 242/ELEC 222 Op Amps 11 Op-Amp Gain Op-Amps have a very high gain. They can be connected open- or closed loop. Open-loop (AVOL) refers to a configuration where there is no feedback from output back to the input AVOL may exceed 10,000 Closed-loop (AVCL) configuration reduces the gain In order to control the gain of an op-amp it must have negative feedback Negative feedback will reduce the gain and improve many characteristics of the op-amp April 2004 ENGI 242/ELEC 222 Op Amps 12 Op Amps 6

7 Typical Op Amp Frequency Response April 2004 ENGI 242/ELEC 222 Op Amps 13 Change in AV with Feedback April 2004 ENGI 242/ELEC 222 Op Amps 14 Op Amps 7

8 Virtual Ground Since ZIN is very high, we assume no current can flow into any lead of the op amp When the noninverting input pin is at ground, the inverting input pin is at 0V The equivalent circuit. April 2004 ENGI 242/ELEC 222 Op Amps 15 Practical Op-Amp Circuits Typical Op-amp circuit configurations include the: Unity Gain Buffer (Voltage Follower) Inverting Amplifier Noninverting Amplifier Summing Amplifier Integrator Differentiator Note: the integrator and differentiator are considered active filters April 2004 ENGI 242/ELEC 222 Op Amps 16 Op Amps 8

9 Unity Gain Buffer (Follower) A V = V V V V O = 1 A V = 1 O 1 April 2004 ENGI 242/ELEC 222 Op Amps 17 Inverting Op Amp The input is applied to the inverting (-) input the non-inverting input (+) is grounded RF is the feedback resistor, and is connected from the output to the inverting input This is called negative feedback April 2004 ENGI 242/ELEC 222 Op Amps 18 Op Amps 9

10 Inverting Op Amp We assume that no current enters the inverting terminal II- < 100nA VD 0V O IN F A V = = - S IN 1 A V V I R V I R RF = - R 1 April 2004 ENGI 242/ELEC 222 Op Amps 19 Inverting Op-Amp Gain Closed Loop Gain is controlled by the external resistors: RF and R1 O IN F A V = = - S IN 1 F A V = - R 1 V I R V I R R For Unity Gain: AV is -1 and RF = R1 R R F A V = - = -1 1 The minus sign denotes a 180 degree phase shift between input and output April 2004 ENGI 242/ELEC 222 Op Amps 20 Op Amps 10

11 Inverting Op Amp Compensated for Ibias R is used to compensate for difference in IBIAS+ and IBIAS- A V R = - R F 1 April 2004 ENGI 242/ELEC 222 Op Amps 21 Inverting Op-Amp This configuration achieves high gain with a smaller range of resistor values than the basic inverter A V- V+ R 2+ R F R 2R F A V = - + R 1 R 1R 3 April 2004 ENGI 242/ELEC 222 Op Amps 22 Op Amps 11

12 Inverting Amplifier with High Zin Use a Unity Gain Buffer to obtain a very high input resistance with an inverting amplifier April 2004 ENGI 242/ELEC 222 Op Amps 23 Inverting Amplifier for Low RL Use a Unity Gain Buffer to obtain a very high input resistance to drive a low impedance load April 2004 ENGI 242/ELEC 222 Op Amps 24 Op Amps 12

13 Noninverting Amplifier R 2 V O = V in 1 + R1 V O R 2 A V = = 1 + V in R1 V- = V+ = vi April 2004 ENGI 242/ELEC 222 Op Amps 25 Noninverting Op Amp Compensated for IBIAS Rbias is used to compensate for difference in IBIAS+ and IBIAS- April 2004 ENGI 242/ELEC 222 Op Amps 26 Op Amps 13

14 Differential (Difference) Amplifier V1 V2 A A V R - V - V R O 2 A V = - = April 2004 ENGI 242/ELEC 222 Op Amps 27 Differential Amplifier Output April 2004 ENGI 242/ELEC 222 Op Amps 28 Op Amps 14

15 Instrumentation Amplifier Buffered Input R1 = R2, RF1 = RF2 A V = April 2004 ENGI 242/ELEC 222 Op Amps 29 - R R F 1 Instrumentation Amplifier R1 = R2, RF1 = RF2 R F R A A V = R 1 RB April 2004 ENGI 242/ELEC 222 Op Amps 30 Op Amps 15

16 Inverting Summing Amplifier By applying KCL to the multiple inputs, we can consider the contribution of each source individually IF + I- = I1 + I2 + I3 but I- 0 IF = I1 + I2 + I3 VO = -IF RF RF RF RF V O = - V 1 + V 2 + V3 R1 R2 R3 V 1 V 2 V3 V O = - R F + + R1 R2 R3 April 2004 ENGI 242/ELEC 222 Op Amps 31 Non-inverting Summing Amplifier Perform a source transformation for each input Sum the current sources and find RTH for the resistances VIN+ = IT RTH V 1 V 2 V 3 V IN + = + + R R1 R2 R3 where R = R // R // R VIN + V = R + R R IN V O RF A V = = 1 + V IN + RIN ( ) TH TH O IN F April 2004 ENGI 242/ELEC 222 Op Amps 32 Op Amps 16

17 Integrator The output is the integral of the input This circuit is a low-pass filter circuit, and is used and sensor conditioning circuits 1 (t) = v (t)dt RC vo 1 April 2004 ENGI 242/ELEC 222 Op Amps 33 Differentiator The differentiator takes the derivative of the input This circuit is a high-pass filter circuits dv1(t) vo(t) = RC dt April 2004 ENGI 242/ELEC 222 Op Amps 34 Op Amps 17

18 Comparator High Gain Op Amp Operated Open Loop Designed to compare an input to a reference voltage Gives output (digital level) to indicate if input is above or below reference Circuit designed to give VOSAT and VOSAT only April 2004 ENGI 242/ELEC 222 Op Amps 35 Comparator Operation Example April 2004 ENGI 242/ELEC 222 Op Amps 36 Op Amps 18

19 LM 311 Comparator April 2004 ENGI 242/ELEC 222 Op Amps 37 Window Comparator April 2004 ENGI 242/ELEC 222 Op Amps 38 Op Amps 19

20 Determine the Output April 2004 ENGI 242/ELEC 222 Op Amps 39 Block Diagram of 555 April 2004 ENGI 242/ELEC 222 Op Amps 40 Op Amps 20

21 Astable Multivibrator April 2004 ENGI 242/ELEC 222 Op Amps Used as an Astable Multivibrator April 2004 ENGI 242/ELEC 222 Op Amps 42 Op Amps 21

22 Schmidt Trigger 7414 A Schmidt trigger (a comparator with Hysteresis) is a bistable digital (twostate) device It accepts virtually any analog input and provides a logic 0 or 1 output A typical use is to take distorted digital signals (due to RC time constant of transmission line) and provide a used to square-wave output Can be used to eliminate noise near reference point that would cause problems in analog comparators April 2004 ENGI 242/ELEC 222 Op Amps 43 Hysteresis April 2004 ENGI 242/ELEC 222 Op Amps 44 Op Amps 22

Chapter 10: Operational Amplifiers

Chapter 10: Operational Amplifiers Chapter 10: Operational Amplifiers Differential Amplifier Differential amplifier has two identical transistors with two inputs and two outputs. 2 Differential Amplifier Differential amplifier has two identical

More information

Operational Amplifiers. Boylestad Chapter 10

Operational Amplifiers. Boylestad Chapter 10 Operational Amplifiers Boylestad Chapter 10 DC-Offset Parameters Even when the input voltage is zero, an op-amp can have an output offset. The following can cause this offset: Input offset voltage Input

More information

Linear IC s and applications

Linear IC s and applications Questions and Solutions PART-A Unit-1 INTRODUCTION TO OP-AMPS 1. Explain data acquisition system Jan13 DATA ACQUISITION SYSYTEM BLOCK DIAGRAM: Input stage Intermediate stage Level shifting stage Output

More information

C H A P T E R 02. Operational Amplifiers

C H A P T E R 02. Operational Amplifiers C H A P T E R 02 Operational Amplifiers The Op-amp Figure 2.1 Circuit symbol for the op amp. Figure 2.2 The op amp shown connected to dc power supplies. The Ideal Op-amp 1. Infinite input impedance 2.

More information

Analog Electronics. Lecture Pearson Education. Upper Saddle River, NJ, All rights reserved.

Analog Electronics. Lecture Pearson Education. Upper Saddle River, NJ, All rights reserved. Analog Electronics V Lecture 5 V Operational Amplifers Op-amp is an electronic device that amplify the difference of voltage at its two inputs. V V 8 1 DIP 8 1 DIP 20 SMT 1 8 1 SMT Operational Amplifers

More information

Lecture Notes Unit-III

Lecture Notes Unit-III Lecture Notes Unit-III FAQs Q1: An operational amplifier has a differential gain of 103 and CMRR of 100, input voltages are 120µV and 80µV, determine output voltage. 2 MARKS

More information

Homework Assignment 03

Homework Assignment 03 Homework Assignment 03 Question 1 (Short Takes), 2 points each unless otherwise noted. 1. Two 0.68 μf capacitors are connected in series across a 10 khz sine wave signal source. The total capacitive reactance

More information

Differential Amplifier : input. resistance. Differential amplifiers are widely used in engineering instrumentation

Differential Amplifier : input. resistance. Differential amplifiers are widely used in engineering instrumentation Differential Amplifier : input resistance Differential amplifiers are widely used in engineering instrumentation Differential Amplifier : input resistance v 2 v 1 ir 1 ir 1 2iR 1 R in v 2 i v 1 2R 1 Differential

More information

Introduction to Analog Interfacing. ECE/CS 5780/6780: Embedded System Design. Various Op Amps. Ideal Op Amps

Introduction to Analog Interfacing. ECE/CS 5780/6780: Embedded System Design. Various Op Amps. Ideal Op Amps Introduction to Analog Interfacing ECE/CS 5780/6780: Embedded System Design Scott R. Little Lecture 19: Operational Amplifiers Most embedded systems include components that measure and/or control real-world

More information

UNIT - 1 OPERATIONAL AMPLIFIER FUNDAMENTALS

UNIT - 1 OPERATIONAL AMPLIFIER FUNDAMENTALS UNIT - 1 OPERATIONAL AMPLIFIER FUNDAMENTALS 1.1 Basic operational amplifier circuit- hte basic circuit of an operational amplifier is as shown in above fig. has a differential amplifier input stage and

More information

EE LINEAR INTEGRATED CIRCUITS & APPLICATIONS

EE LINEAR INTEGRATED CIRCUITS & APPLICATIONS UNITII CHARACTERISTICS OF OPAMP 1. What is an opamp? List its functions. The opamp is a multi terminal device, which internally is quite complex. It is a direct coupled high gain amplifier consisting of

More information

6. The Operational Amplifier

6. The Operational Amplifier 1 6. The Operational Amplifier This chapter introduces a new component which, although technically nonlinear, can be treated effectively with linear models This element known as the operational amplifier

More information

KA741/KA741E. Single Operational Amplifier. Features. Description. Internal Block Diagram.

KA741/KA741E. Single Operational Amplifier. Features. Description. Internal Block Diagram. Single Operational Amplifier www.fairchildsemi.com Features Short circuit protection Excellent temperature stability Internal frequency compensation High Input voltage range Null of offset Description

More information

LM348. Quad Operational Amplifier. Features. Description. Internal Block Diagram.

LM348. Quad Operational Amplifier. Features. Description. Internal Block Diagram. Quad Operational Amplifier www.fairchildsemi.com Features LM741 OP Amp operating characteristics Low supply current drain Class AB output stage-no crossover distortion Pin compatible with the LM324 Low

More information

Applied Electronics II

Applied Electronics II Applied Electronics II Chapter 3: Operational Amplifier Part 1- Op Amp Basics School of Electrical and Computer Engineering Addis Ababa Institute of Technology Addis Ababa University Daniel D./Getachew

More information

Experiments #7. Operational Amplifier part 1

Experiments #7. Operational Amplifier part 1 Experiments #7 Operational Amplifier part 1 1) Objectives: The objective of this lab is to study operational amplifier (op amp) and its applications. We will be simulating and building some basic op-amp

More information

Operational Amplifiers

Operational Amplifiers Fundamentals of op-amp Operation modes Golden rules of op-amp Op-amp circuits Inverting & non-inverting amplifier Unity follower, integrator & differentiator Introduction An operational amplifier, or op-amp,

More information

Dual operational amplifier

Dual operational amplifier DESCRIPTION The 77 is a pair of high-performance monolithic operational amplifiers constructed on a single silicon chip. High common-mode voltage range and absence of latch-up make the 77 ideal for use

More information

Operational Amplifier (Op-Amp)

Operational Amplifier (Op-Amp) Operational Amplifier (Op-Amp) 1 Contents Op-Amp Characteristics Op-Amp Circuits - Noninverting Amplifier - Inverting Amplifier - Comparator - Differential - Summing - Integrator - Differentiator 2 Introduction

More information

Chapter 3: Operational Amplifiers

Chapter 3: Operational Amplifiers Chapter 3: Operational Amplifiers 1 OPERATIONAL AMPLIFIERS Having learned the basic laws and theorems for circuit analysis, we are now ready to study an active circuit element of paramount importance:

More information

UNIT- IV ELECTRONICS

UNIT- IV ELECTRONICS UNIT- IV ELECTRONICS INTRODUCTION An operational amplifier or OP-AMP is a DC-coupled voltage amplifier with a very high voltage gain. Op-amp is basically a multistage amplifier in which a number of amplifier

More information

LINEAR IC APPLICATIONS

LINEAR IC APPLICATIONS 1 B.Tech III Year I Semester (R09) Regular & Supplementary Examinations December/January 2013/14 1 (a) Why is R e in an emitter-coupled differential amplifier replaced by a constant current source? (b)

More information

Lesson number one. Operational Amplifier Basics

Lesson number one. Operational Amplifier Basics What About Lesson number one Operational Amplifier Basics As well as resistors and capacitors, Operational Amplifiers, or Op-amps as they are more commonly called, are one of the basic building blocks

More information

Lecture #4 Basic Op-Amp Circuits

Lecture #4 Basic Op-Amp Circuits Summer 2015 Ahmad El-Banna Faculty of Engineering Department of Electronics and Communications GEE336 Electronic Circuits II Lecture #4 Basic Op-Amp Circuits Instructor: Dr. Ahmad El-Banna Agenda Some

More information

Copyright Each Manufacturing Company.

Copyright Each Manufacturing Company. Free DataSheet Search and Download Site. Free electronic engineering tool that enables you to locate product datasheets from hundreds of electronic component manufacturers worldwide. Copyright Each Manufacturing

More information

Concepts to be Reviewed

Concepts to be Reviewed Introductory Medical Device Prototyping Analog Circuits Part 3 Operational Amplifiers, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Concepts to be Reviewed Operational

More information

LM1458/LM1458C. Dual Operational Amplifier. Features. Description. Internal Block Diagram.

LM1458/LM1458C. Dual Operational Amplifier. Features. Description. Internal Block Diagram. Dual Operational Amplifier www.fairchildsemi.com Features Internal frequency compensation Short circuit protecion Large common mode and differential voltage range No latch up Low power consumption Description

More information

UNIT I. Operational Amplifiers

UNIT I. Operational Amplifiers UNIT I Operational Amplifiers Operational Amplifier: The operational amplifier is a direct-coupled high gain amplifier. It is a versatile multi-terminal device that can be used to amplify dc as well as

More information

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 019.101 Introductory Analog Electronics Laboratory Laboratory No. READING ASSIGNMENT

More information

An electronic unit that behaves like a voltagecontrolled

An electronic unit that behaves like a voltagecontrolled 1 An electronic unit that behaves like a voltagecontrolled voltage source. An active circuit element that amplifies, sums, subtracts, multiply, divide, differentiate or integrates a signal 2 A typical

More information

Lecture #2 Operational Amplifiers

Lecture #2 Operational Amplifiers Spring 2015 Benha University Faculty of Engineering at Shoubra ECE-322 Electronic Circuits (B) Lecture #2 Operational Amplifiers Instructor: Dr. Ahmad El-Banna Agenda Introduction Op-Amps Input Modes and

More information

Introduction to Operational Amplifiers

Introduction to Operational Amplifiers P. R. Nelson ECE 322 Fall 2012 p. 1/50 Introduction to Operational Amplifiers Phyllis R. Nelson prnelson@csupomona.edu Professor, Department of Electrical and Computer Engineering California State Polytechnic

More information

Chapter 2. Operational Amplifiers

Chapter 2. Operational Amplifiers Chapter 2. Operational Amplifiers Tong In Oh 1 2.5 Integrators and Differentiators Utilized resistors in the op-amp feedback and feed-in path Ideally independent of frequency Use of capacitors together

More information

AVAILABLE OPTIONS CERAMIC DIP (J) 6 mv ua747cd ua747cn. 5 mv ua747mj ua747mw ua747mfk

AVAILABLE OPTIONS CERAMIC DIP (J) 6 mv ua747cd ua747cn. 5 mv ua747mj ua747mw ua747mfk SLOS9A D97, FEBRUARY 97 REVISED OCTOBER 99 No Frequency Compensation Required Low Power Consumption Short-Circuit Protection Offset-Voltage Null Capability Wide Common-Mode and Differential Voltage Ranges

More information

Chapter 9: Operational Amplifiers

Chapter 9: Operational Amplifiers Chapter 9: Operational Amplifiers The Operational Amplifier (or op-amp) is the ideal, simple amplifier. It is an integrated circuit (IC). An IC contains many discrete components (resistors, capacitors,

More information

Chapter 9: Operational Amplifiers

Chapter 9: Operational Amplifiers Chapter 9: Operational Amplifiers The Operational Amplifier (or op-amp) is the ideal, simple amplifier. It is an integrated circuit (IC). An IC contains many discrete components (resistors, capacitors,

More information

KA741. Single Operational Amplifier. Features. Description. Internal Block Diagram.

KA741. Single Operational Amplifier. Features. Description. Internal Block Diagram. Single Operational Amplifier www.fairchildsemi.com Features Short circuit protection Excellent temperature stability Internal frequency compensation High Input voltage range Null of offset Description

More information

Başkent University Department of Electrical and Electronics Engineering EEM 311 Electronics II Experiment 8 OPERATIONAL AMPLIFIERS

Başkent University Department of Electrical and Electronics Engineering EEM 311 Electronics II Experiment 8 OPERATIONAL AMPLIFIERS Başkent University Department of Electrical and Electronics Engineering EEM 311 Electronics II Experiment 8 Objectives: OPERATIONAL AMPLIFIERS 1.To demonstrate an inverting operational amplifier circuit.

More information

Operational Amplifiers (Op Amps)

Operational Amplifiers (Op Amps) Operational Amplifiers (Op Amps) Introduction * An operational amplifier is modeled as a voltage controlled voltage source. * An operational amplifier has a very high input impedance and a very high gain.

More information

ELC224 Final Review (12/10/2009) Name:

ELC224 Final Review (12/10/2009) Name: ELC224 Final Review (12/10/2009) Name: Select the correct answer to the problems 1 through 20. 1. A common-emitter amplifier that uses direct coupling is an example of a dc amplifier. 2. The frequency

More information

Chapter 10: The Operational Amplifiers

Chapter 10: The Operational Amplifiers Chapter 10: The Operational Amplifiers Electronic Devices Operational Amplifiers (op-amp) Op-amp is an electronic device that amplify the difference of voltage at its two inputs. It has two input terminals,

More information

Chapter 2. Operational Amplifiers

Chapter 2. Operational Amplifiers Chapter 2. Operational Amplifiers Tong In Oh 1 Objective Terminal characteristics of the ideal op amp How to analyze op amp circuits How to use op amps to design amplifiers How to design more sophisticated

More information

CHAPTER-6. OP-AMP A. 2 B. 3 C. 4 D. 1

CHAPTER-6. OP-AMP A. 2 B. 3 C. 4 D. 1 CHAPTER-6. OP-AMP [1]. A non inverting closed loop op amp circuit generally has a gain factor A. Less than one B. Greater than one C. Of zero D. Equal to one HINT: - For non inverting amplifier the gain

More information

OPERATIONAL AMPLIFIER PREPARED BY, PROF. CHIRAG H. RAVAL ASSISTANT PROFESSOR NIRMA UNIVRSITY

OPERATIONAL AMPLIFIER PREPARED BY, PROF. CHIRAG H. RAVAL ASSISTANT PROFESSOR NIRMA UNIVRSITY OPERATIONAL AMPLIFIER PREPARED BY, PROF. CHIRAG H. RAVAL ASSISTANT PROFESSOR NIRMA UNIVRSITY INTRODUCTION Op-Amp means Operational Amplifier. Operational stands for mathematical operation like addition,

More information

EKT 314 ELECTRONIC INSTRUMENTATION

EKT 314 ELECTRONIC INSTRUMENTATION EKT 314 ELECTRONIC INSTRUMENTATION Elektronik Instrumentasi Semester 2 2012/2013 Chapter 3 Analog Signal Conditioning Session 2 Mr. Fazrul Faiz Zakaria school of computer and communication engineering.

More information

OP07C PRECISION OPERATIONAL AMPLIFIERS

OP07C PRECISION OPERATIONAL AMPLIFIERS OP0C PRECISION OPERATIONAL AMPLIFIERS Low Noise No External Components Required Replace Chopper Amplifiers at a Lower Cost Wide Input-Voltage Range...0 to ± V Typ Wide Supply-Voltage Range...± V to ± V

More information

UNISONIC TECHNOLOGIES CO., LTD

UNISONIC TECHNOLOGIES CO., LTD UNISONIC TECHNOLOGIES CO., LTD DUAL OPERATIONAL AMPLIFIER DESCRIPTION The UTC MC1458 is a high performance dual operational amplifier. It is designed for a wide range of analog applications. The high gain

More information

ES250: Electrical Science. HW6: The Operational Amplifier

ES250: Electrical Science. HW6: The Operational Amplifier ES250: Electrical Science HW6: The Operational Amplifier Introduction This chapter introduces the operational amplifier or op amp We will learn how to analyze and design circuits that contain op amps,

More information

UTC UNISONIC TECHNOLOGIES CO., LTD. 1 LINEAR INTEGRATED CIRCUIT QUAD OPERATIONAL AMPLIFIERS

UTC UNISONIC TECHNOLOGIES CO., LTD. 1 LINEAR INTEGRATED CIRCUIT QUAD OPERATIONAL AMPLIFIERS UTC LM QUAD OPERATIONAL AMPLIFIERS DESCRIPTION The UTC LM consists of four independent, high gain internally frequency compensated operational amplifiers which are designed specifically to operated from

More information

Fig 1: The symbol for a comparator

Fig 1: The symbol for a comparator INTRODUCTION A comparator is a device that compares two voltages or currents and switches its output to indicate which is larger. They are commonly used in devices such as They are commonly used in devices

More information

Dual operational amplifier

Dual operational amplifier Dual operational amplifier The BA8, BA8F, and BA8N are monolithic ICs with two operational amplifiers featuring low power consumption and internal phase compensation mounted on a single silicon chip. These

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers Table of contents 1. Design 1.1. The Differential Amplifier 1.2. Level Shifter 1.3. Power Amplifier 2. Characteristics 3. The Opamp without NFB 4. Linear Amplifiers 4.1. The Non-Inverting

More information

CHARACTERIZATION OF OP-AMP

CHARACTERIZATION OF OP-AMP EXPERIMENT 4 CHARACTERIZATION OF OP-AMP OBJECTIVES 1. To sketch and briefly explain an operational amplifier circuit symbol and identify all terminals. 2. To list the amplifier stages in a typical op-amp

More information

Low Cost, Precision JFET Input Operational Amplifiers ADA4000-1/ADA4000-2/ADA4000-4

Low Cost, Precision JFET Input Operational Amplifiers ADA4000-1/ADA4000-2/ADA4000-4 Low Cost, Precision JFET Input Operational Amplifiers ADA-/ADA-/ADA- FEATURES High slew rate: V/μs Fast settling time Low offset voltage:.7 mv maximum Bias current: pa maximum ± V to ±8 V operation Low

More information

Common mode rejection ratio

Common mode rejection ratio Common mode rejection ratio Definition: Common mode rejection ratio represents the ratio of the differential voltage gaina d tothecommonmodevoltagegain,a cm : Common mode rejection ratio Definition: Common

More information

GATE: Electronics MCQs (Practice Test 1 of 13)

GATE: Electronics MCQs (Practice Test 1 of 13) GATE: Electronics MCQs (Practice Test 1 of 13) 1. Removing bypass capacitor across the emitter leg resistor in a CE amplifier causes a. increase in current gain b. decrease in current gain c. increase

More information

Gechstudentszone.wordpress.com

Gechstudentszone.wordpress.com 8.1 Operational Amplifier (Op-Amp) UNIT 8: Operational Amplifier An operational amplifier ("op-amp") is a DC-coupled high-gain electronic voltage amplifier with a differential input and, usually, a single-ended

More information

LM2904,LM358/LM358A,LM258/ LM258A

LM2904,LM358/LM358A,LM258/ LM258A LM2904,LM358/LM358A,LM258/ LM258A Dual Operational Amplifier www.fairchildsemi.com Features Internally Frequency Compensated for Unity Gain Large DC Voltage Gain: 100dB Wide Power Supply Range: LM258/LM258A,

More information

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 019 Spring Term 00.101 Introductory Analog Electronics Laboratory Laboratory No.

More information

using dc inputs. You will verify circuit operation with a multimeter.

using dc inputs. You will verify circuit operation with a multimeter. Op Amp Fundamentals using dc inputs. You will verify circuit operation with a multimeter. FACET by Lab-Volt 77 Op Amp Fundamentals O circuit common. a. inverts the input voltage polarity. b. does not invert

More information

Describe the basic DC characteristics of an op amp. Sketch a diagram of the op amp DC test circuit. Input Offset Voltage. Input Offset Current

Describe the basic DC characteristics of an op amp. Sketch a diagram of the op amp DC test circuit. Input Offset Voltage. Input Offset Current Testing Op Amps Chapter 3 Goals Understand the requirements for testing Op Amp DC parameters. Objectives Describe the basic DC characteristics of an op amp. Select a test methodology for evaluating voltage

More information

Quad ground sense operational amplifier

Quad ground sense operational amplifier Quad ground sense operational amplifier BAA / BAAF / BAAFV The BAA, BAAF, and BAAFV are monolithic ICs with four built-in operational amplifiers featuring internal phase compensation. Either a dual or

More information

Hours / 100 Marks Seat No.

Hours / 100 Marks Seat No. 17445 21415 3 Hours / 100 Seat No. Instructions (1) All Questions are Compulsory. (2) Illustrate your answers with neat sketches wherever necessary. (3) Figures to the right indicate full marks. (4) Assume

More information

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820 a FEATURES True Single Supply Operation Output Swings Rail-to-Rail Input Voltage Range Extends Below Ground Single Supply Capability from + V to + V Dual Supply Capability from. V to 8 V Excellent Load

More information

GATE SOLVED PAPER - IN

GATE SOLVED PAPER - IN YEAR 202 ONE MARK Q. The i-v characteristics of the diode in the circuit given below are : v -. A v 0.7 V i 500 07 $ = * 0 A, v < 0.7 V The current in the circuit is (A) 0 ma (C) 6.67 ma (B) 9.3 ma (D)

More information

Chapter 2. Operational Amplifiers

Chapter 2. Operational Amplifiers Chapter 2. Operational Amplifiers Tong In Oh 1 2.3 The Noninverting Configuration v I is applied directly to the positive input terminal of the op amp One terminal of is connected to ground Closed-loop

More information

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A.

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A. Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica Analogue Electronics Paolo Colantonio A.A. 2056 Operational amplifiers (op amps) Operational amplifiers (op amps) are among

More information

ULTRA-WIDEBAND DIFFERENTIAL VIDEO AMPLIFIER PACKAGE OUTLINE

ULTRA-WIDEBAND DIFFERENTIAL VIDEO AMPLIFIER PACKAGE OUTLINE FEATURES BANDWIDTH AND TYPICAL GAIN 12 MHz at AVOL = 3 17 MHz at AVOL = 7 MHz at AVOL = ULTRA-WIDEBAND DIFFERENTIAL VIDEO AMPLIFIER VERY SMALL PHASE DELAY GAIN ADJUSTABLE FROM TO 3 NO FREQUENCY COMPENSATION

More information

THS MHz HIGH-SPEED AMPLIFIER

THS MHz HIGH-SPEED AMPLIFIER THS41 27-MHz HIGH-SPEED AMPLIFIER Very High Speed 27 MHz Bandwidth (Gain = 1, 3 db) 4 V/µsec Slew Rate 4-ns Settling Time (.1%) High Output Drive, I O = 1 ma Excellent Video Performance 6 MHz Bandwidth

More information

Emitter Coupled Differential Amplifier

Emitter Coupled Differential Amplifier Emitter Coupled Differential Amplifier Returning to the transistor, a very common and useful circuit is the differential amplifier. It's basic circuit is: Vcc Q1 Q2 Re Vee To see how this circuit works,

More information

Experiments #6. Differential Amplifier

Experiments #6. Differential Amplifier Experiments #6 Differential Amplifier 1) Objectives: To understand the DC and AC operation of a differential amplifier. To measure DC voltages and currents in differential amplifier. To obtain measured

More information

ELEC207 LINEAR INTEGRATED CIRCUITS

ELEC207 LINEAR INTEGRATED CIRCUITS Concept of VIRTUAL SHORT For feedback amplifiers constructed with op-amps, the two op-amp terminals will always be approximately equal (V + = V - ) This condition in op-amp feedback amplifiers is known

More information

Dual Bipolar/JFET, Audio Operational Amplifier OP275*

Dual Bipolar/JFET, Audio Operational Amplifier OP275* a FEATURES Excellent Sonic Characteristics Low Noise: 6 nv/ Hz Low Distortion: 0.0006% High Slew Rate: 22 V/ms Wide Bandwidth: 9 MHz Low Supply Current: 5 ma Low Offset Voltage: 1 mv Low Offset Current:

More information

Community College of Allegheny County Unit 8 Page #1. Op-Amps

Community College of Allegheny County Unit 8 Page #1. Op-Amps Community College of Allegheny County Unit 8 Page #1 Op-s "You will say that I am always conjuring up awful difficulties & consequences my answer to this is it is an important part of the duty of an engineer"

More information

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET)

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET) Difference between BJTs and FETs Transistors can be categorized according to their structure, and two of the more commonly known transistor structures, are the BJT and FET. The comparison between BJTs

More information

Operational Amplifiers

Operational Amplifiers Basic Electronics Syllabus: Introduction to : Ideal OPAMP, Inverting and Non Inverting OPAMP circuits, OPAMP applications: voltage follower, addition, subtraction, integration, differentiation; Numerical

More information

Single-Supply, Rail-to-Rail, Low Power FET-Input Op Amp AD820

Single-Supply, Rail-to-Rail, Low Power FET-Input Op Amp AD820 Single-Supply, Rail-to-Rail, Low Power FET-Input Op Amp AD82 FEATURES True single-supply operation Output swings rail-to-rail Input voltage range extends below ground Single-supply capability from 5 V

More information

LM101A, LM201A, LM301A HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS

LM101A, LM201A, LM301A HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS HIGH-PERFORMAE OPERATIONAL AMPLIFIERS D9, OCTOBER 99 REVISED SEPTEMBER 99 Low Input Currents Low Input Offset Parameters Frequency and Transient Response Characteristics Adjustable Short-Circuit Protection

More information

Physical Limitations of Op Amps

Physical Limitations of Op Amps Physical Limitations of Op Amps The IC Op-Amp comes so close to ideal performance that it is useful to state the characteristics of an ideal amplifier without regard to what is inside the package. Infinite

More information

Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820

Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820 Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820 FEATURES True single-supply operation Output swings rail-to-rail Input voltage range extends below ground Single-supply capability from 5

More information

Integrated Circuit: Classification:

Integrated Circuit: Classification: Integrated Circuit: It is a miniature, low cost electronic circuit consisting of active and passive components that are irreparably joined together on a single crystal chip of silicon. Classification:

More information

Operational Amplifier BME 360 Lecture Notes Ying Sun

Operational Amplifier BME 360 Lecture Notes Ying Sun Operational Amplifier BME 360 Lecture Notes Ying Sun Characteristics of Op-Amp An operational amplifier (op-amp) is an analog integrated circuit that consists of several stages of transistor amplification

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers Here we see two matched differential amps cascaded to form a basic OPAMP. The differential pair cancel temperature drifts and common mode noise at the input. First built to perform

More information

INTEGRATED CIRCUITS. AN109 Microprocessor-compatible DACs Dec

INTEGRATED CIRCUITS. AN109 Microprocessor-compatible DACs Dec INTEGRATED CIRCUITS 1988 Dec DAC products are designed to convert a digital code to an analog signal. Since a common source of digital signals is the data bus of a microprocessor, DAC circuits that are

More information

LM101A, LM201A, LM301A HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS

LM101A, LM201A, LM301A HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS HIGH-PERFORMAE OPERATIONAL AMPLIFIERS D9, OCTOBER 979 REVISED SEPTEMBER 990 Low Input Currents Low Input Offset Parameters Frequency and Transient Response Characteristics Adjustable Short-Circuit Protection

More information

EET 438a Automatic Control Systems Technology Laboratory 1 Analog Sensor Signal Conditioning

EET 438a Automatic Control Systems Technology Laboratory 1 Analog Sensor Signal Conditioning EET 438a Automatic Control Systems Technology Laboratory 1 Analog Sensor Signal Conditioning Objectives: Use analog OP AMP circuits to scale the output of a sensor to signal levels commonly found in practical

More information

Analog Circuits Part 3 Operational Amplifiers

Analog Circuits Part 3 Operational Amplifiers Introductory Medical Device Prototyping Analog Circuits Part 3 Operational Amplifiers, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Concepts to be Reviewed Operational

More information

Section 6 Chapter 2: Operational Amplifiers

Section 6 Chapter 2: Operational Amplifiers 03 Section 6 Chapter : Operational Amplifiers eference : Microelectronic circuits Sedra sixth edition 4//03 4//03 Contents: - DC imperfections A. Offset voltage B. Solution of offset voltage C. Input bias

More information

LF411 Low Offset, Low Drift JFET Input Operational Amplifier

LF411 Low Offset, Low Drift JFET Input Operational Amplifier Low Offset, Low Drift JFET Input Operational Amplifier General Description These devices are low cost, high speed, JFET input operational amplifiers with very low input offset voltage and guaranteed input

More information

DC to VHF DIFFERENTIAL VIDEO AMPLIFIER PACKAGE OUTLINE

DC to VHF DIFFERENTIAL VIDEO AMPLIFIER PACKAGE OUTLINE FEATURES BANDWIDTH AND TYPICAL GAIN: 12 MHz at AVOL = 3 17 MHz at AVOL = 7 MHz at AVOL = VERY SMALL PHASE DELAY GAIN ADJUSTABLE FROM TO 3 DC to VHF DIFFERENTIAL VIDEO AMPLIFIER NO FREQUENCY COMPENSATION

More information

KA3303/KA3403. Quad Operational Amplifier. Features. Description. Internal Block Diagram.

KA3303/KA3403. Quad Operational Amplifier. Features. Description. Internal Block Diagram. Quad Operational Amplifier www.fairchildsemi.com Features Output voltage can swing to GND or negative supply Wide power supply range; Single supply of 3.0V to 36V Dual supply of ±1.5V to ±18V Electrical

More information

Dimensions in inches (mm) .268 (6.81).255 (6.48) .390 (9.91).379 (9.63) .045 (1.14).030 (.76) 4 Typ. Figure 1. Typical application circuit.

Dimensions in inches (mm) .268 (6.81).255 (6.48) .390 (9.91).379 (9.63) .045 (1.14).030 (.76) 4 Typ. Figure 1. Typical application circuit. LINEAR OPTOCOUPLER FEATURES Couples AC and DC signals.% Servo Linearity Wide Bandwidth, > KHz High Gain Stability, ±.%/C Low Input-Output Capacitance Low Power Consumption, < mw Isolation Test Voltage,

More information

LDIC Course Contents. - Operational Amplifier. - Applications of OP-Amp. - D-A and A-D Converters. - Logic Families

LDIC Course Contents. - Operational Amplifier. - Applications of OP-Amp. - D-A and A-D Converters. - Logic Families LDIC Course Contents Unit 1 - Operational Amplifier Unit 2 - Applications of OP-Amp Unit 3 - Oscillators Unit 4 - D-A and A-D Converters Unit 5 - Logic Families Unit 6 - Memories Text Books: 1. Linear

More information

Quad Ground Sense Operational Amplifier. The CO324 is monolithic IC with four built-in operational amplifiers featuring internal phase compensation.

Quad Ground Sense Operational Amplifier. The CO324 is monolithic IC with four built-in operational amplifiers featuring internal phase compensation. The CO4 is monolithic IC with four built-in operational amplifiers featuring internal phase compensation. Either a dual or single power supply can be driven, and these products can be driven by a digital

More information

ua747c, ua747m DUAL GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

ua747c, ua747m DUAL GENERAL-PURPOSE OPERATIONAL AMPLIFIERS No Frequency Compensation Required Low Power Consumption Short-Circuit Protection Offset-Voltage Null Capability Wide Common-Mode and Differential Voltage Ranges No Latch-Up Designed to Be Interchangeable

More information

Higher Technological Institute 10 th of Ramadan City Department of Electrical & Computers Engineering. Student Name:... Student No.:...

Higher Technological Institute 10 th of Ramadan City Department of Electrical & Computers Engineering. Student Name:... Student No.:... Higher Technological Institute 1 th of Ramadan City Department of Electrical & Computers Engineering Bass Booster Project Electronic Circuits (EEC 117)-G1 Student Name:... Student No.:... Under the supervision

More information

Ultralow Offset Voltage Operational Amplifier OP07

Ultralow Offset Voltage Operational Amplifier OP07 Ultralow Offset Voltage Operational Amplifier OP07 FEATURES Low VOS: 75 μv maximum Low VOS drift:.3 μv/ C maximum Ultrastable vs. time:.5 μv per month maximum Low noise: 0.6 μv p-p maximum Wide input voltage

More information

ELM824xA 3.0μA Very low power CMOS dual operational amplifier

ELM824xA 3.0μA Very low power CMOS dual operational amplifier ELM824xA 3.μA Very low power CMOS dual operational amplifier General description ELM824xA is a very low current consumption-typ.3.μa CMOS dual OP-AMP provided with a wide common mode input voltage range.

More information

or Op Amps for short

or Op Amps for short or Op Amps for short Objective of Lecture Describe how an ideal operational amplifier (op amp) behaves. Chapter 14.1 Electrical Engineering: Principles and Applications Chapter 5.1-5.3 Fundamentals of

More information

Lecture 2: Non-Ideal Amps and Op-Amps

Lecture 2: Non-Ideal Amps and Op-Amps Lecture 2: Non-Ideal Amps and Op-Amps Prof. Ali M. Niknejad Department of EECS University of California, Berkeley Practical Op-Amps Linear Imperfections: Finite open-loop gain (A 0 < ) Finite input resistance

More information