ECE Digital VLSI Design Course Syllabus Fall 2017

Size: px
Start display at page:

Download "ECE Digital VLSI Design Course Syllabus Fall 2017"

Transcription

1 ECE Digital VLSI Design Course Syllabus Fall 2017 Instructor: Dr. George L. Engel Phone: (618) Office: URLs: Engineering Building Room EB Lecture: M, W: 3:00 pm 4:15 pm (EB 2150) Office Hours: See Dr. Engel s website. Course Description: Discussion of CMOS circuits, MOS transistor theory, CMOS processing technology, circuit characterization, CMOS circuit and logic design. Design and synthesis of digital systems. Laboratory exercises using Cadence design software (Composer, Virtuoso, Spectre, RTL Compiler, Silicon Encounter, etc.) Course Text: CMOS Digital Integrated Circuits, 4 th Edition Sung-Mo Kang, Yusuf Leblebici, and Chulwoo Kim Publisher: McGraw Hill (Copyright: 2015) ISBN: Grading Policy: First Exam 20% Second Exam 20% Final Exam 20% Lab and HW 20% Final project 20%

2 Lectures M Aug 21 W Aug 23 M Aug 28 W Aug 30 Chapter 1: Introduction Moore s Law History of IC Design Chapter 1: Introduction RE and NRE costs The Economics of ICs Section 3.1: Basic Semiconductor Theory Section 3.2: Depletion Regions Section 3.3: MOSFET structure Section 3.3: MOSFET Threshold Voltages M Sep 04 *** LABOR DAY NO CLASSES *** W Sep 06 M Sep 11 W Sep 13 M Sep 18 W Sep 20 M Sep 25 Section 3.4: MOSFET I-V Characteristics Resistive Region Section 3.4: MOSFET I-V Characteristics Saturation and Channel Length Modulation Section 3.5: Short Channel Effects Section 3.5: Short Channel Effects Chapter 2: Manufacturing Process Chapter 5: MOS Inverters Static Characteristics W Sep 27 Exam #1 (Chapters 1, 2, and 3) M Oct 02 W Oct 04 Chapter 5: MOS Inverters Static Characteristics

3 M Oct 09 W Oct 12 M Oct 16 W Oct 18 M Oct 23 W Oct 25 M Oct 30 Exam #2 (Chapters 5 and 6) W Nov 01 M Nov 06 W Nov 08 M Nov 13 W Nov 15 Chapter 8: Sequential MOS Logic Circuits Chapter 8: Sequential MOS Logic Circuits M Nov 20 *** THANKSGIVING BREAK *** W Nov 22 *** THANKSGIVING BREAK *** M Nov 27 W Nov 29 M Dec 04 W Dec 06 Chapter 9: Dynamic Logic Circuits Chapter 9: Dynamic Logic Circuits Project Presentations Project Presentations

4 Class Attendance Policy: Based on University Class Attendance Policy 1I9: It is the responsibility of students to ascertain the policies of instructors with regard to absence from class, and to make arrangements satisfactory to instructors with regard to missed course work. Failure to attend the first session of a course may result in the student s place in class being assigned to another student. Class Policies: If you have a documented disability that requires academic accommodations, please go to Disability Support Services for coordination of your academic accommodations. DSS is located in the Student Success Center, Room 1270; you may contact them to make an appointment by calling (618) or sending an to disabilitysupport@siue.edu. Please visit the DSS website located online at for more information. Students are expected to be familiar with and follow the Student Academic Code. It is included in the SIUE Policies and Procedures under Section 3C2.2. Graduate students enrolled in the course will have an increased workload compared to undergraduates. Graduate and undergraduates will be assigned different final projects and may be asked to do an additional problem on the exams.

5 Laboratory Exercises M Aug 21 ***** N0 LABS (Determine Lab Times) ***** M Aug 28 ***** Setup Accounts and Introduction to LINUX ***** M Sep 04 M Sep 11 M Sep 18 M Sep 25 M Oct 02 M Oct 09 M Oct 16 M Oct 23 M Oct 30 M Nov 06 M Nov 13 Schematic Capture, Symbol Creation and Simulation Schematic Capture, Symbol Creation and Simulation Schematic Capture, Symbol Creation and Simulation Layout, DRC, and LVS using Virtuoso Layout, DRC, and LVS using Virtuoso Layout, DRC, and LVS using Virtuoso Post-Layout Simulation Using Virtuoso Using NClaunch for HDL creation and Simulation Using RTL Compiler for Synthesis Using Silicon Encounter for Place and Route M Nov 20 *** THANKSGIVING BREAK *** M Nov 27 M Dec 04

6 MOSIS PARAMETRIC TEST RESULTS RUN: T2AE TECHNOLOGY: SCN025 VENDOR: TSMC FEATURE SIZE: 0.25 microns INTRODUCTION: This report contains the lot average results obtained by MOSIS from measurements of MOSIS test structures on each wafer of this fabrication lot. SPICE parameters obtained from similar measurements on a selected wafer are also attached. COMMENTS: TSMC 0251P5M TRANSISTOR PARAMETERS W/L N-CHANNEL P-CHANNEL UNITS MINIMUM 0.36/0.24 Vth volts SHORT 20.0/0.24 Idss ua/um Vth volts Vpt volts WIDE 20.0/0.24 Ids pa/um LARGE 50/50 Vth volts Vjbkd volts Ijlk <50.0 <50.0 pa Gamma V^0.5 K' (Uo*Cox/2) ua/v^2 Low-field Mobility cm^2/v*s COMMENTS: Poly bias varies with design technology. To account for mask and etch bias use the appropriate value for the parameters XL and XW in your SPICE model card. Design Technology XL XW SCN5M_DEEP (lambda=0.12) thick oxide, NMOS thick oxide, PMOS TSMC thick oxide, NMOS thick oxide, PMOS SCN5M_SUBM (lambda=0.15) thick oxide, NMOS thick oxide, PMOS FOX TRANSISTORS GATE N+ACTIVE P+ACTIVE UNITS Vth Poly >6.6 <-6.6 volts

7 PROCESS PARAMETERS N+ACTV P+ACTV POLY PLY+BLK MTL1 MTL2 N+BLK UNITS Sheet Resistance ohms/sq Contact Resistance ohms Gate Oxide Thickness 57 angstrom PROCESS PARAMETERS MTL3 MTL4 MTL5 N_WELL UNITS Sheet Resistance ohms/sq Contact Resistance ohms COMMENTS: BLK is silicide block. CAPACITANCE PARAMETERS N+ACTV P+ACTV POLY M1 M2 M3 M4 M5 N_WELL UNITS Area (substrate) af/um^2 Area (N+active) af/um^2 Area (P+active) 5802 af/um^2 Area (poly) af/um^2 Area (metal1) af/um^2 Area (metal2) af/um^2 Area (metal3) af/um^2 Area (metal4) 42 af/um^2 Area (no well) 484 af/um^2 Fringe (substrate) af/um Fringe (poly) af/um Fringe (metal1) af/um Fringe (metal2) af/um Fringe (metal3) af/um Fringe (metal4) 60 af/um Overlap (N+active) 599 af/um Overlap (P+active) 674 af/um CIRCUIT PARAMETERS UNITS Inverters K Vinv volts Vinv volts Vol (100 ua) volts Voh (100 ua) volts Vinv volts Gain Ring Oscillator Freq. DIV1024 (31-stg,2.5V) MHz D1024_THK (31-stg,3.3V) MHz Ring Oscillator Power DIV1024 (31-stg,2.5V) 0.06 uw/mhz/gate D1024_THK (31-stg,3.3V) 0.09 uw/mhz/gate COMMENTS: DEEP_SUBMICRON

EE 435 Homework 4 Spring 2019 (Due Wednesday Friday Feb 20) (reposted corrected Problem 7)

EE 435 Homework 4 Spring 2019 (Due Wednesday Friday Feb 20) (reposted corrected Problem 7) EE 435 Homework 4 Spring 2019 (Due Wednesday Friday Feb 20) (reposted corrected Problem 7) In the following problems, if reference to a semiconductor process is needed, assume processes with the following

More information

EE 435 Homework 4 Spring 2018 (Due Wednesday Friday Feb 28)

EE 435 Homework 4 Spring 2018 (Due Wednesday Friday Feb 28) EE 435 Homework 4 Spring 2018 (Due Wednesday Friday Feb 28) In the following problems, if reference to a semiconductor process is needed, assume processes with the following characteristics: CMOS Process

More information

1. (2pts) What is the purpose of the buried collector in a bipolar process?

1. (2pts) What is the purpose of the buried collector in a bipolar process? EE 330 Exam 2 Fall 2013 Name Instructions: This is a 50-minute exam. Students may bring 2 pages of notes (front and back) to this exam. The points allocated to each question and each problem are as indicated.

More information

2. (2pts) Why is the design parameter that is available to the designer in a typical bipolar process?

2. (2pts) Why is the design parameter that is available to the designer in a typical bipolar process? EE 330 Exam 2 Fall 2014 Name Instructions: This is a 50-minute exam. Students may bring 2 pages of notes (front and back) to this exam. The points allocated to each question and each problem are as indicated.

More information

3. (2 pts) What is the approximate number of parameters in the BSIM model of a MOSFET?

3. (2 pts) What is the approximate number of parameters in the BSIM model of a MOSFET? EE 330 Exam 2 Fall 2017 Name Instructions: This is a 50-minute exam. Students may bring 2 pages of notes (front and back) to this exam. Each short question is worth 2 points and each problem is worth 16

More information

2. (2 pts) What is the major reason static CMOS NAND gates are often preferred over static CMOS NOR gates?

2. (2 pts) What is the major reason static CMOS NAND gates are often preferred over static CMOS NOR gates? EE 330 Final Exam Spring 05 Name Instructions: Students may bring 3 pages of notes (3 front + 3 back) to this exam. There are 0 questions and 8 problems. There are two points allocated to each question.

More information

1. (2pts) Why is the Q-point of a common source amplifier often placed near the middle of the load line?

1. (2pts) Why is the Q-point of a common source amplifier often placed near the middle of the load line? EE 330 Exam 3 Fall 2014 Name Instructions: This is a 50 minute exam. Students may bring 3 page of notes (front and back) to this exam. There are 10 questions and 5 problems. There is also an optional extra

More information

V DD M 3 M 4 M 5 C C V OUT V 1 2 C L M 6 M 7 V XX. Homework Assignment EE 435 Homework 6 Due Tuesday March 12 Spring 2019

V DD M 3 M 4 M 5 C C V OUT V 1 2 C L M 6 M 7 V XX. Homework Assignment EE 435 Homework 6 Due Tuesday March 12 Spring 2019 Homework Assignment EE 435 Homework 6 Due Tuesday March 12 Spring 219 In the following problems, if reference to a semiconductor process is needed, assume processes with the following characteristics:

More information

1. (2pts) An SCR is formed by a stacking of alternate p and n diffused regions. How many diffused regions are needed to form a basic SCR?

1. (2pts) An SCR is formed by a stacking of alternate p and n diffused regions. How many diffused regions are needed to form a basic SCR? EE 330 Practice Final Exam Spring 207 Name Instructions: Students may bring 3 pages of notes (3 front + 3 back) to this exam. There are 0 questions and 8 problems. There are two points allocated to each

More information

Homework Assignment EE 435 Homework 4 Spring 2014 Due Wednesday Feb 26

Homework Assignment EE 435 Homework 4 Spring 2014 Due Wednesday Feb 26 Homework Assignment EE 435 Homework 4 Spring 2014 Due Wednesday Feb 26 In the following problems, if reference to a semiconductor process is needed, assume processes with the following characteristics:

More information

EE 330 Homework 5 Fall 2016 (Due Friday Sept 23)

EE 330 Homework 5 Fall 2016 (Due Friday Sept 23) EE 330 Homework 5 Fall 2016 (Due Friday Sept 23) Assume the CMOS process is characterized by model parameters VTH=1V and µcox=100µa/v 2. If any other model parameters are needed, use the measured parameters

More information

DIGITAL INTEGRATED CIRCUITS FALL 2003 ANALYSIS AND DESIGN OF DIGITAL INTEGRATED CIRCUITS (18-322) COURSE SYLLABUS

DIGITAL INTEGRATED CIRCUITS FALL 2003 ANALYSIS AND DESIGN OF DIGITAL INTEGRATED CIRCUITS (18-322) COURSE SYLLABUS ANALYSIS AND DESIGN OF DIGITAL INTEGRATED CIRCUITS (18-322) COURSE SYLLABUS Prof. Herman Schmit HH 2108; x 86470 herman@ece.cmu.edu Prof. Andrzej J. Strojwas HH 2106; X 83530 ajs@ece.cmu.edu 1 I. PURPOSE

More information

CS/ECE 5710/6710. Composite Layout

CS/ECE 5710/6710. Composite Layout CS/ECE 5710/6710 Introduction to Layout Inverter Layout Example Layout Design Rules Composite Layout Drawing the mask layers that will be used by the fabrication folks to make the devices Very different

More information

! Review: MOS IV Curves and Switch Model. ! MOS Device Layout. ! Inverter Layout. ! Gate Layout and Stick Diagrams. ! Design Rules. !

! Review: MOS IV Curves and Switch Model. ! MOS Device Layout. ! Inverter Layout. ! Gate Layout and Stick Diagrams. ! Design Rules. ! ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 3: January 21, 2017 MOS Fabrication pt. 2: Design Rules and Layout Lecture Outline! Review: MOS IV Curves and Switch Model! MOS Device Layout!

More information

DIGITAL VLSI LAB ASSIGNMENT 1

DIGITAL VLSI LAB ASSIGNMENT 1 DIGITAL VLSI LAB ASSIGNMENT 1 Problem 1: NMOS and PMOS plots using Cadence. In this exercise, you are required to generate both NMOS and PMOS I-V device characteristics (I/P and O/P) using Cadence (Use

More information

! Review: MOS IV Curves and Switch Model. ! MOS Device Layout. ! Inverter Layout. ! Gate Layout and Stick Diagrams. ! Design Rules. !

! Review: MOS IV Curves and Switch Model. ! MOS Device Layout. ! Inverter Layout. ! Gate Layout and Stick Diagrams. ! Design Rules. ! ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 3: January 21, 2016 MOS Fabrication pt. 2: Design Rules and Layout Lecture Outline! Review: MOS IV Curves and Switch Model! MOS Device Layout!

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 3: January 21, 2016 MOS Fabrication pt. 2: Design Rules and Layout Penn ESE 570 Spring 2016 Khanna Adapted from GATech ESE3060 Slides Lecture

More information

EE 410: Integrated Circuit Fabrication Laboratory

EE 410: Integrated Circuit Fabrication Laboratory EE 410: Integrated Circuit Fabrication Laboratory 1 EE 410: Integrated Circuit Fabrication Laboratory Web Site: Instructor: http://www.stanford.edu/class/ee410 https://ccnet.stanford.edu/ee410/ (on CCNET)

More information

Jack Keil Wolf Lecture. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. MOSFET N-Type, P-Type.

Jack Keil Wolf Lecture. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. MOSFET N-Type, P-Type. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Jack Keil Wolf Lecture Lec 3: January 24, 2019 MOS Fabrication pt. 2: Design Rules and Layout http://www.ese.upenn.edu/about-ese/events/wolf.php

More information

EC 1354-Principles of VLSI Design

EC 1354-Principles of VLSI Design EC 1354-Principles of VLSI Design UNIT I MOS TRANSISTOR THEORY AND PROCESS TECHNOLOGY PART-A 1. What are the four generations of integrated circuits? 2. Give the advantages of IC. 3. Give the variety of

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 3: January 24, 2019 MOS Fabrication pt. 2: Design Rules and Layout Penn ESE 570 Spring 2019 Khanna Jack Keil Wolf Lecture http://www.ese.upenn.edu/about-ese/events/wolf.php

More information

CMOS Inverter & Ring Oscillator

CMOS Inverter & Ring Oscillator CMOS Inverter & Ring Oscillator Theory: In this Lab we will implement a CMOS inverter and then use it as a building block for a Ring Oscillator. MOSfets (Metal Oxide Semiconductor Field Effect Transistors)

More information

Chapter 1. Introduction

Chapter 1. Introduction EECS3611 Analog Integrated Circuit esign Chapter 1 Introduction EECS3611 Analog Integrated Circuit esign Instructor: Prof. Ebrahim Ghafar-Zadeh, Prof. Peter Lian email: egz@cse.yorku.ca peterlian@cse.yorku.ca

More information

EE 434 ASIC & Digital Systems

EE 434 ASIC & Digital Systems EE 434 ASIC & Digital Systems Dae Hyun Kim EECS Washington State University Spring 2017 Course Website http://eecs.wsu.edu/~ee434 Themes Study how to design, analyze, and test a complex applicationspecific

More information

EE 434 Lecture 2. Basic Concepts

EE 434 Lecture 2. Basic Concepts EE 434 Lecture 2 Basic Concepts Review from Last Time Semiconductor Industry is One of the Largest Sectors in the World Economy and Growing All Initiatives Driven by Economic Opportunities and Limitations

More information

Electronic CAD Practical work. Week 1: Introduction to transistor models. curve tracing of NMOS transfer characteristics

Electronic CAD Practical work. Week 1: Introduction to transistor models. curve tracing of NMOS transfer characteristics Electronic CAD Practical work Dr. Martin John Burbidge Lancashire UK Tel: +44 (0)1524 825064 Email: martin@mjb-rfelectronics-synthesis.com Martin Burbidge 2006 Week 1: Introduction to transistor models

More information

Domino CMOS Implementation of Power Optimized and High Performance CLA adder

Domino CMOS Implementation of Power Optimized and High Performance CLA adder Domino CMOS Implementation of Power Optimized and High Performance CLA adder Kistipati Karthik Reddy 1, Jeeru Dinesh Reddy 2 1 PG Student, BMS College of Engineering, Bull temple Road, Bengaluru, India

More information

Design cycle for MEMS

Design cycle for MEMS Design cycle for MEMS Design cycle for ICs IC Process Selection nmos CMOS BiCMOS ECL for logic for I/O and driver circuit for critical high speed parts of the system The Real Estate of a Wafer MOS Transistor

More information

Basic Fabrication Steps

Basic Fabrication Steps Basic Fabrication Steps and Layout Somayyeh Koohi Department of Computer Engineering Adapted with modifications from lecture notes prepared by author Outline Fabrication steps Transistor structures Transistor

More information

ECEN474: (Analog) VLSI Circuit Design Fall 2011

ECEN474: (Analog) VLSI Circuit Design Fall 2011 ECEN474: (Analog) VLSI Circuit Design Fall 2011 Lecture 1: Introduction Sebastian Hoyos Analog & Mixed-Signal Center Texas A&M University Analog Circuit Sequence 326 2 Why is Analog Important? [Silva]

More information

Depletion-mode operation ( 공핍형 ): Using an input gate voltage to effectively decrease the channel size of an FET

Depletion-mode operation ( 공핍형 ): Using an input gate voltage to effectively decrease the channel size of an FET Ch. 13 MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor : I D D-mode E-mode V g The gate oxide is made of dielectric SiO 2 with e = 3.9 Depletion-mode operation ( 공핍형 ): Using an input gate voltage

More information

Academic Course Description

Academic Course Description BEC010- VLSI Design Academic Course Description BHARATH UNIVERSITY Faculty of Engineering and Technology Department of Electronics and Communication Engineering BEC010 VLSI Design Fifth Semester (Elective)

More information

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha ECE520 VLSI Design Lecture 2: Basic MOS Physics Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Wednesday 2:00-3:00PM or by appointment E-mail: pzarkesh@unm.edu Slide: 1 Review of Last Lecture Semiconductor

More information

Design and Analysis of Sram Cell for Reducing Leakage in Submicron Technologies Using Cadence Tool

Design and Analysis of Sram Cell for Reducing Leakage in Submicron Technologies Using Cadence Tool IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 10, Issue 2 Ver. II (Mar Apr. 2015), PP 52-57 www.iosrjournals.org Design and Analysis of

More information

Introduction to VLSI design using Cadence Electronic Design Automation Tools

Introduction to VLSI design using Cadence Electronic Design Automation Tools Bangladesh University of Engineering & Technology Department of Electrical & Electronic Engineering Introduction to VLSI design using Cadence Electronic Design Automation Tools Laboratory Module 4: Layout

More information

CMOS 65nm Process Monitor

CMOS 65nm Process Monitor CMOS 65nm Process Monitor Advisors: Dr. Hugh Grinolds Mr. Brian Misek Allen Chen Ryan Hoppal Phillip Misek What is Process Variation? The process parameters can vary from: Lot-to-Lot (interprocess variation)

More information

Academic Course Description

Academic Course Description BEC010- VLSI Design Academic Course Description BHARATH UNIVERSITY Faculty of Engineering and Technology Department of Electronics and Communication Engineering BEC010 VLSI Design Sixth Semester (Elective)

More information

ES 330 Electronics II Fall 2016

ES 330 Electronics II Fall 2016 ES 330 Electronics II Fall 2016 Sect Lectures Location Instructor Office Office Hours Email Tel 001 001 9:00 am to 9:50 am Wednesday 10:00 am to 10 :50 am 2001 2001 Dr. Donald Estreich Dr. Donald Estreich

More information

School of Engineering

School of Engineering Electronics (ENGR 353) Spring 2009 Bulletin Description Prerequisite: grades of C or better in Engr 205 and 206. Concurrent enrollment in Engr 301. PN diodes, BJTs, and MOSFETs. Semiconductor device basics,

More information

TECHNO INDIA BATANAGAR (DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING) QUESTION BANK- 2018

TECHNO INDIA BATANAGAR (DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING) QUESTION BANK- 2018 TECHNO INDIA BATANAGAR (DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING) QUESTION BANK- 2018 Paper Setter Detail Name Designation Mobile No. E-mail ID Raina Modak Assistant Professor 6290025725 raina.modak@tib.edu.in

More information

PHYSICAL STRUCTURE OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag

PHYSICAL STRUCTURE OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag PHYSICAL STRUCTURE OF CMOS INTEGRATED CIRCUITS Dr. Mohammed M. Farag Outline Integrated Circuit Layers MOSFETs CMOS Layers Designing FET Arrays EE 432 VLSI Modeling and Design 2 Integrated Circuit Layers

More information

ECEN474/704: (Analog) VLSI Circuit Design Fall 2016

ECEN474/704: (Analog) VLSI Circuit Design Fall 2016 ECEN474/704: (Analog) VLSI Circuit Design Fall 2016 Lecture 1: Introduction Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements Turn in your 0.18um NDA form by Thursday Sep 1 No

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION 1.1 Historical Background Recent advances in Very Large Scale Integration (VLSI) technologies have made possible the realization of complete systems on a single chip. Since complete

More information

Academic Course Description. VL2004 CMOS Analog VLSI Second Semester, (Even semester)

Academic Course Description. VL2004 CMOS Analog VLSI Second Semester, (Even semester) Academic Course Description SRM University Faculty of Engineering and Technology Department of Electronics and Communication Engineering VL2004 CMOS Analog VLSI Second Semester, 2013-14 (Even semester)

More information

The Design and Realization of Basic nmos Digital Devices

The Design and Realization of Basic nmos Digital Devices Proceedings of The National Conference On Undergraduate Research (NCUR) 2004 Indiana University Purdue University Indianapolis, Indiana April 15-17, 2004 The Design and Realization of Basic nmos Digital

More information

Sub-threshold Leakage Current Reduction Using Variable Gate Oxide Thickness (VGOT) MOSFET

Sub-threshold Leakage Current Reduction Using Variable Gate Oxide Thickness (VGOT) MOSFET Microelectronics and Solid State Electronics 2013, 2(2): 24-28 DOI: 10.5923/j.msse.20130202.02 Sub-threshold Leakage Current Reduction Using Variable Gate Oxide Thickness (VGOT) MOSFET Keerti Kumar. K

More information

Lecture Integrated circuits era

Lecture Integrated circuits era Lecture 1 1.1 Integrated circuits era Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell laboratories. In 1961, first IC was introduced. Levels of Integration:-

More information

Chapter12. Chip Assembly. Figure 12.1: Starting schematic showing the three connected modules

Chapter12. Chip Assembly. Figure 12.1: Starting schematic showing the three connected modules Chapter12 Chip Assembly Figure 12.1: Starting schematic showing the three connected modules 236 CHAPTER 12: Chip Assembly Figure 12.2: The Gen From Source dialog box 237 Figure 12.3: Initial layout before

More information

ELEC 350L Electronics I Laboratory Fall 2012

ELEC 350L Electronics I Laboratory Fall 2012 ELEC 350L Electronics I Laboratory Fall 2012 Lab #9: NMOS and CMOS Inverter Circuits Introduction The inverter, or NOT gate, is the fundamental building block of most digital devices. The circuits used

More information

EEC 118 Spring 2010 Lab #1: NMOS and PMOS Transistor Parameters

EEC 118 Spring 2010 Lab #1: NMOS and PMOS Transistor Parameters EEC 118 Spring 2010 Lab #1: NMOS and PMOS Transistor Parameters Dept. of Electrical and Computer Engineering University of California, Davis March 18, 2010 Reading: Rabaey Chapter 3 [1]. Reference: Kang

More information

ECE 340 Lecture 40 : MOSFET I

ECE 340 Lecture 40 : MOSFET I ECE 340 Lecture 40 : MOSFET I Class Outline: MOS Capacitance-Voltage Analysis MOSFET - Output Characteristics MOSFET - Transfer Characteristics Things you should know when you leave Key Questions How do

More information

Lecture 16: MOS Transistor models: Linear models, SPICE models. Context. In the last lecture, we discussed the MOS transistor, and

Lecture 16: MOS Transistor models: Linear models, SPICE models. Context. In the last lecture, we discussed the MOS transistor, and Lecture 16: MOS Transistor models: Linear models, SPICE models Context In the last lecture, we discussed the MOS transistor, and added a correction due to the changing depletion region, called the body

More information

MOSFET & IC Basics - GATE Problems (Part - I)

MOSFET & IC Basics - GATE Problems (Part - I) MOSFET & IC Basics - GATE Problems (Part - I) 1. Channel current is reduced on application of a more positive voltage to the GATE of the depletion mode n channel MOSFET. (True/False) [GATE 1994: 1 Mark]

More information

EE584 Introduction to VLSI Design Final Project Document Group 9 Ring Oscillator with Frequency selector

EE584 Introduction to VLSI Design Final Project Document Group 9 Ring Oscillator with Frequency selector EE584 Introduction to VLSI Design Final Project Document Group 9 Ring Oscillator with Frequency selector Group Members Uttam Kumar Boda Rajesh Tenukuntla Mohammad M Iftakhar Srikanth Yanamanagandla 1 Table

More information

problem grade total

problem grade total Fall 2005 6.012 Microelectronic Devices and Circuits Prof. J. A. del Alamo Name: Recitation: November 16, 2005 Quiz #2 problem grade 1 2 3 4 total General guidelines (please read carefully before starting):

More information

Module-3: Metal Oxide Semiconductor (MOS) & Emitter coupled logic (ECL) families

Module-3: Metal Oxide Semiconductor (MOS) & Emitter coupled logic (ECL) families 1 Module-3: Metal Oxide Semiconductor (MOS) & Emitter coupled logic (ECL) families 1. Introduction 2. Metal Oxide Semiconductor (MOS) logic 2.1. Enhancement and depletion mode 2.2. NMOS and PMOS inverter

More information

Topic 3. CMOS Fabrication Process

Topic 3. CMOS Fabrication Process Topic 3 CMOS Fabrication Process Peter Cheung Department of Electrical & Electronic Engineering Imperial College London URL: www.ee.ic.ac.uk/pcheung/ E-mail: p.cheung@ic.ac.uk Lecture 3-1 Layout of a Inverter

More information

Lecture 4&5 CMOS Circuits

Lecture 4&5 CMOS Circuits Lecture 4&5 CMOS Circuits Xuan Silvia Zhang Washington University in St. Louis http://classes.engineering.wustl.edu/ese566/ Worst-Case V OL 2 3 Outline Combinational Logic (Delay Analysis) Sequential Circuits

More information

An Analog Phase-Locked Loop

An Analog Phase-Locked Loop 1 An Analog Phase-Locked Loop Greg Flewelling ABSTRACT This report discusses the design, simulation, and layout of an Analog Phase-Locked Loop (APLL). The circuit consists of five major parts: A differential

More information

The Ohio State University EE Senior Design (I)

The Ohio State University EE Senior Design (I) VLSI Scarlet Letters Design Report Report Due Date: Tuesday November 15 th 2005 The Ohio State University EE 582 - Senior Design (I) VLSI Scarlet Letters Team Members: -David W. Adams II -Steve Jocke -Joseph

More information

Lecture 0: Introduction

Lecture 0: Introduction Lecture 0: Introduction Introduction Integrated circuits: many transistors on one chip. Very Large Scale Integration (VLSI): bucketloads! Complementary Metal Oxide Semiconductor Fast, cheap, low power

More information

Conduction Characteristics of MOS Transistors (for fixed Vds)! Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor

Conduction Characteristics of MOS Transistors (for fixed Vds)! Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor Conduction Characteristics of MOS Transistors (for fixed Vds)! Topic 2 Basic MOS theory & SPICE simulation Peter Cheung Department of Electrical & Electronic Engineering Imperial College London (Weste&Harris,

More information

Topic 2. Basic MOS theory & SPICE simulation

Topic 2. Basic MOS theory & SPICE simulation Topic 2 Basic MOS theory & SPICE simulation Peter Cheung Department of Electrical & Electronic Engineering Imperial College London (Weste&Harris, Ch 2 & 5.1-5.3 Rabaey, Ch 3) URL: www.ee.ic.ac.uk/pcheung/

More information

Conduction Characteristics of MOS Transistors (for fixed Vds) Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor

Conduction Characteristics of MOS Transistors (for fixed Vds) Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor Conduction Characteristics of MOS Transistors (for fixed Vds) Topic 2 Basic MOS theory & SPICE simulation Peter Cheung Department of Electrical & Electronic Engineering Imperial College London (Weste&Harris,

More information

Layout of a Inverter. Topic 3. CMOS Fabrication Process. The CMOS Process - photolithography (2) The CMOS Process - photolithography (1) v o.

Layout of a Inverter. Topic 3. CMOS Fabrication Process. The CMOS Process - photolithography (2) The CMOS Process - photolithography (1) v o. Layout of a Inverter Topic 3 CMOS Fabrication Process V DD Q p Peter Cheung Department of Electrical & Electronic Engineering Imperial College London v i v o Q n URL: www.ee.ic.ac.uk/pcheung/ E-mail: p.cheung@ic.ac.uk

More information

1P6M 0.18-µm Low Power CMOS Ring Oscillator for Radio Frequency Applications

1P6M 0.18-µm Low Power CMOS Ring Oscillator for Radio Frequency Applications 1P6M 0.18-µm Low Power CMOS Ring Oscillator for Radio Frequency Applications Ashish Raman and R. K. Sarin Abstract The monograph analysis a low power voltage controlled ring oscillator, implement using

More information

Field Effect Transistors

Field Effect Transistors Field Effect Transistors LECTURE NO. - 41 Field Effect Transistors www.mycsvtunotes.in JFET MOSFET CMOS Field Effect transistors - FETs First, why are we using still another transistor? BJTs had a small

More information

UNIT III VLSI CIRCUIT DESIGN PROCESSES. In this chapter we will be studying how to get the schematic into stick diagrams or layouts.

UNIT III VLSI CIRCUIT DESIGN PROCESSES. In this chapter we will be studying how to get the schematic into stick diagrams or layouts. UNIT III VLSI CIRCUIT DESIGN PROCESSES In this chapter we will be studying how to get the schematic into stick diagrams or layouts. MOS circuits are formed on four basic layers: N-diffusion P-diffusion

More information

ECE/CoE 0132: FETs and Gates

ECE/CoE 0132: FETs and Gates ECE/CoE 0132: FETs and Gates Kartik Mohanram September 6, 2017 1 Physical properties of gates Over the next 2 lectures, we will discuss some of the physical characteristics of integrated circuits. We will

More information

EE241 - Spring 2013 Advanced Digital Integrated Circuits. Projects. Groups of 3 Proposals in two weeks (2/20) Topics: Lecture 5: Transistor Models

EE241 - Spring 2013 Advanced Digital Integrated Circuits. Projects. Groups of 3 Proposals in two weeks (2/20) Topics: Lecture 5: Transistor Models EE241 - Spring 2013 Advanced Digital Integrated Circuits Lecture 5: Transistor Models Projects Groups of 3 Proposals in two weeks (2/20) Topics: Soft errors in datapaths Soft errors in memory Integration

More information

Sticks Diagram & Layout. Part II

Sticks Diagram & Layout. Part II Sticks Diagram & Layout Part II Well and Substrate Taps Substrate must be tied to GND and n-well to V DD Metal to lightly-doped semiconductor forms poor connection called Shottky Diode Use heavily doped

More information

INTRODUCTION TO MOS TECHNOLOGY

INTRODUCTION TO MOS TECHNOLOGY INTRODUCTION TO MOS TECHNOLOGY 1. The MOS transistor The most basic element in the design of a large scale integrated circuit is the transistor. For the processes we will discuss, the type of transistor

More information

Comparative Study of Different Low Power Design Techniques for Reduction of Leakage Power in CMOS VLSI Circuits

Comparative Study of Different Low Power Design Techniques for Reduction of Leakage Power in CMOS VLSI Circuits Comparative Study of Different Low Power Design Techniques for Reduction of Leakage Power in CMOS VLSI Circuits P. S. Aswale M. E. VLSI & Embedded Systems Department of E & TC Engineering SITRC, Nashik,

More information

420 Intro to VLSI Design

420 Intro to VLSI Design Dept of Electrical and Computer Engineering 420 Intro to VLSI Design Lecture 0: Course Introduction and Overview Valencia M. Joyner Spring 2005 Getting Started Syllabus About the Instructor Labs, Problem

More information

Introduction to VLSI ASIC Design and Technology

Introduction to VLSI ASIC Design and Technology Introduction to VLSI ASIC Design and Technology Paulo Moreira CERN - Geneva, Switzerland Paulo Moreira Introduction 1 Outline Introduction Is there a limit? Transistors CMOS building blocks Parasitics

More information

Characterization of Variable Gate Oxide Thickness MOSFET with Non-Uniform Oxide Thicknesses for Sub-Threshold Leakage Current Reduction

Characterization of Variable Gate Oxide Thickness MOSFET with Non-Uniform Oxide Thicknesses for Sub-Threshold Leakage Current Reduction 2012 International Conference on Solid-State and Integrated Circuit (ICSIC 2012) IPCSIT vol. 32 (2012) (2012) IACSIT Press, Singapore Characterization of Variable Gate Oxide Thickness MOSFET with Non-Uniform

More information

CMOS 65nm Process Monitor

CMOS 65nm Process Monitor CMOS 65nm Process Monitor Final Report Fall Semester 2008 Prepared to partially fulfill the requirements for ECE401 Department of Electrical and Computer Engineering Colorado State University Fort Collins,

More information

ECE520 VLSI Design. Lecture 5: Basic CMOS Inverter. Payman Zarkesh-Ha

ECE520 VLSI Design. Lecture 5: Basic CMOS Inverter. Payman Zarkesh-Ha ECE520 VLSI Design Lecture 5: Basic CMOS Inverter Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Wednesday 2:00-3:00PM or by appointment E-mail: pzarkesh@unm.edu Slide: 1 Review of Last Lecture

More information

Academic Course Description

Academic Course Description BEC702 Digital CMOS VLSI Academic Course Description BHARATH UNIVERSITY Faculty of Engineering and Technology Department of Electronics and Communication Engineering BEC702 Digital CMOS VLSI Seventh Semester

More information

Study the Analysis of Low power and High speed CMOS Logic Circuits in 90nm Technology

Study the Analysis of Low power and High speed CMOS Logic Circuits in 90nm Technology 43 Study the Analysis of Low power and High speed CMOS Logic Circuits in 90nm Technology Fazal Noorbasha 1, Ashish Verma 1 and A.M. Mahajan 2 1. Laboratory of VLSI and Embedded Systems, Deptt. Of Physics

More information

Integrated Circuit Technology (Course Code: EE662) Lecture 1: Introduction

Integrated Circuit Technology (Course Code: EE662) Lecture 1: Introduction Indian Institute of Technology Jodhpur, Year 2015 2016 Integrated Circuit Technology (Course Code: EE662) Lecture 1: Introduction Course Instructor: Shree Prakash Tiwari, Ph.D. Email: sptiwari@iitj.ac.in

More information

Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced.

Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced. Unit 1 Basic MOS Technology Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced. Levels of Integration:- i) SSI:-

More information

A RF Low Power 0.18-µm based CMOS Differential Ring Oscillator

A RF Low Power 0.18-µm based CMOS Differential Ring Oscillator , July 4-6, 2012, London, U.K. A RF Low Power 0.18-µm based CMOS Differential Ring Oscillator Ashish Raman 1,Jaya Nidhi Vashishtha 1 and R K sarin 2 Abstract A voltage controlled ring oscillator is implemented

More information

Lecture 16. Complementary metal oxide semiconductor (CMOS) CMOS 1-1

Lecture 16. Complementary metal oxide semiconductor (CMOS) CMOS 1-1 Lecture 16 Complementary metal oxide semiconductor (CMOS) CMOS 1-1 Outline Complementary metal oxide semiconductor (CMOS) Inverting circuit Properties Operating points Propagation delay Power dissipation

More information

EE4800 CMOS Digital IC Design & Analysis. Lecture 1 Introduction Zhuo Feng

EE4800 CMOS Digital IC Design & Analysis. Lecture 1 Introduction Zhuo Feng EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng 1.1 Prof. Zhuo Feng Office: EERC 730 Phone: 487-3116 Email: zhuofeng@mtu.edu Class Website http://www.ece.mtu.edu/~zhuofeng/ee4800fall2010.html

More information

Technology, Jabalpur, India 1 2

Technology, Jabalpur, India 1 2 1181 LAYOUT DESIGNING AND OPTIMIZATION TECHNIQUES USED FOR DIFFERENT FULL ADDER TOPOLOGIES ARPAN SINGH RAJPUT 1, RAJESH PARASHAR 2 1 M.Tech. Scholar, 2 Assistant professor, Department of Electronics and

More information

EE 320 L LABORATORY 9: MOSFET TRANSISTOR CHARACTERIZATIONS. by Ming Zhu UNIVERSITY OF NEVADA, LAS VEGAS 1. OBJECTIVE 2. COMPONENTS & EQUIPMENT

EE 320 L LABORATORY 9: MOSFET TRANSISTOR CHARACTERIZATIONS. by Ming Zhu UNIVERSITY OF NEVADA, LAS VEGAS 1. OBJECTIVE 2. COMPONENTS & EQUIPMENT EE 320 L ELECTRONICS I LABORATORY 9: MOSFET TRANSISTOR CHARACTERIZATIONS by Ming Zhu DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF NEVADA, LAS VEGAS 1. OBJECTIVE Get familiar with MOSFETs,

More information

Review: CMOS Logic Gates

Review: CMOS Logic Gates Review: CMOS Logic Gates INV Schematic NOR Schematic NAND Schematic + Vsg - pmos x x Vin Vout = Vin y + Vgs - nmos CMOS inverts functions CMOS Combinational Logic x g(x,y) = x + y use DeMorgan relations

More information

Academic Course Description. BEC702 Digital CMOS VLSI

Academic Course Description. BEC702 Digital CMOS VLSI BEC702 Digital CMOS VLSI Academic Course Description Course (catalog) description BHARATH UNIVERSITY Faculty of Engineering and Technology Department of Electronics and Communication Engineering CMOS is

More information

ECE 484 VLSI Digital Circuits Fall Lecture 02: Design Metrics

ECE 484 VLSI Digital Circuits Fall Lecture 02: Design Metrics ECE 484 VLSI Digital Circuits Fall 2016 Lecture 02: Design Metrics Dr. George L. Engel Adapted from slides provided by Mary Jane Irwin (PSU) [Adapted from Rabaey s Digital Integrated Circuits, 2002, J.

More information

ET475 Electronic Circuit Design I [Onsite]

ET475 Electronic Circuit Design I [Onsite] ET475 Electronic Circuit Design I [Onsite] Course Description: This course covers the analysis and design of electronic circuits, and includes a laboratory that utilizes computer-aided software tools for

More information

CMOS VLSI IC Design. A decent understanding of all tasks required to design and fabricate a chip takes years of experience

CMOS VLSI IC Design. A decent understanding of all tasks required to design and fabricate a chip takes years of experience CMOS VLSI IC Design A decent understanding of all tasks required to design and fabricate a chip takes years of experience 1 Commonly used keywords INTEGRATED CIRCUIT (IC) many transistors on one chip VERY

More information

ECEN3250 Lab 9 CMOS Logic Inverter

ECEN3250 Lab 9 CMOS Logic Inverter Lab 9 CMOS Logic Inverter ECE Department University of Colorado, Boulder 1 Prelab Read Section 4.10 (4th edition Section 5.8), and the Lab procedure Do and turn in Exercise 4.41 (page 342) Do PSpice (.dc)

More information

Device Technologies. Yau - 1

Device Technologies. Yau - 1 Device Technologies Yau - 1 Objectives After studying the material in this chapter, you will be able to: 1. Identify differences between analog and digital devices and passive and active components. Explain

More information

ECE380 Digital Logic. Logic values as voltage levels

ECE380 Digital Logic. Logic values as voltage levels ECE380 Digital Logic Implementation Technology: NMOS and PMOS Transistors, CMOS logic gates Dr. D. J. Jackson Lecture 13-1 Logic values as voltage levels V ss is the minimum voltage that can exist in the

More information

Lecture 4. MOS transistor theory

Lecture 4. MOS transistor theory Lecture 4 MOS transistor theory 1.7 Introduction: A MOS transistor is a majority-carrier device, in which the current in a conducting channel between the source and the drain is modulated by a voltage

More information

MOS TRANSISTOR THEORY

MOS TRANSISTOR THEORY MOS TRANSISTOR THEORY Introduction A MOS transistor is a majority-carrier device, in which the current in a conducting channel between the source and the drain is modulated by a voltage applied to the

More information

UVic Department of Electrical and Computer Engineering

UVic Department of Electrical and Computer Engineering UVic Department of Electrical and Computer Engineering COURSE OUTLINE ELEC 365 Applied Electronics and Electrical Machines Fall 2013 Instructor: Office Hours: Dr. S. Nandi Days: Same as tutorial time in

More information

ECE 5745 Complex Digital ASIC Design Topic 2: CMOS Devices

ECE 5745 Complex Digital ASIC Design Topic 2: CMOS Devices ECE 5745 Complex Digital ASIC Design Topic 2: CMOS Devices Christopher Batten School of Electrical and Computer Engineering Cornell University http://www.csl.cornell.edu/courses/ece5950 Simple Transistor

More information

Low Power VLSI Circuit Synthesis: Introduction and Course Outline

Low Power VLSI Circuit Synthesis: Introduction and Course Outline Low Power VLSI Circuit Synthesis: Introduction and Course Outline Ajit Pal Professor Department of Computer Science and Engineering Indian Institute of Technology Kharagpur INDIA -721302 Agenda Why Low

More information