2. (2pts) Why is the design parameter that is available to the designer in a typical bipolar process?

Size: px
Start display at page:

Download "2. (2pts) Why is the design parameter that is available to the designer in a typical bipolar process?"

Transcription

1 EE 330 Exam 2 Fall 2014 Name Instructions: This is a 50-minute exam. Students may bring 2 pages of notes (front and back) to this exam. The points allocated to each question and each problem are as indicated. Please solve problems in the space provided on this exam and attach extra sheets only if you run out of space in solving a specific problem. If references to semiconductor processes are needed beyond what is given in a specific problem or question, assume a CMOS process is available with the following key process parameters; ncox=100 A/v 2 pcox= ncox/3,vtno=1v,vtpo= - 1V, V -1/2,, ϕ=0.6v, COX=2fF/ 2, and = 0 If reference to a bipolar process is made, assume this process has key process parameters JS=10-15 A/ 2, β=100 and VAF =. The ratio of Boltzmann s constant to the charge of an electron is k/q= 8.61E-5 V/K. If any other process parameters are needed, use the process parameters associated with the process described on the attachments to this exam. Specify clearly what process parameters you are using in any solution requiring process parameters. Also attached to this exam is a table that has information about large and small signal models of devices. 1. (2pts) There are several devices available in a bipolar process but the process is typically optimized to obtain good performance of one device with little concern for the performance of the remaining devices. For which device is the bipolar process optimized for? 2. (2pts) Why is the design parameter that is available to the designer in a typical bipolar process? 3. (2pts) Although for many applications, a CMOS process is the process that is ultimately used, designers would often prefer to work in a bipolar process. What is the major reason designers often prefer to work in a bipolar process? 4. (2 pts) What is the major processing step in a bipolar process that makes the size of the bipolar transistor so big? Page 1 of 10

2 5. (2pts) What is the major difference between an SCR and a Triac? 6. (2pts) Some on-line definitions of an amplifier state that an amplifier increases the amplitude of a current or a voltage but the definition we gave for an amplifier was somewhat different. What key property of an amplifier is missing in the above definition? 7. (2pts) What is the purpose of guard rings in a bulk CMOS process? 8. (2pts) In the bulk CMOS process that was described in class, the gate was selfaligned. What does this mean and why is it important to have the gate self-aligned? 9 (2pts) What is the difference between an enhancement mode and a depletion mode n-channel transistor? 10 (2pts) What region of operation in the bipolar process corresponds to the saturation region of operation in a MOS process? Page 2 of 10

3 Problem 1 (16 pts) Determine W and L so that the quiescent drain voltage is 2V. 8V 500K 2K W=? L=? C 1 A E =100µ 2 V D M 1 C 2 V OUT V IN Q 1 10K 2K Page 3 of 10

4 Problem 2 (16 pts) Determine the quiescent output voltage. Assume the small-signal input VIN is very small. 2.5K V OUT W=4µ L=1µ 5V 1K V IN Page 4 of 10

5 Problem 3 (16 pts) Consider the following circuit where the capacitor C is very large. a) Determine the quiescent drain voltage, VD b) Determine the quiescent output voltage c) What is the quiescent power dissipation in the MOS transistor? 2V 10K V D C V OUT V IN (t) L=1µ W=2µ 2K -2V Page 5 of 10

6 Problem 4 (16 pts) Consider the following circuit. The waveforms VAC is the 60Hz line voltage. Assume the triac has a gate trigger voltage of 2Vand that the relationship between the gate current and the gate voltage of the traic is as shown on the IG:VG plot on the right. a) Size the resistor R1 so that the triac turns on at TS/8 and 5TS/8 and subsequently at the same times in the VLOAD waveform in each period as shown below. The time TS is the period of the 60 Hz AC line voltage. b) Identify the quadrants that the triac is operating in. V AC I G 10K I F R L V LOAD -2V V G 2V R 1 V AC 170V t T S 170V V LOAD t T S Page 6 of 10

7 Problem 5 (16 pts) Draw the small-signal equivalent circuit for the following amplifier structure. Do not solve. 10V 1K 1.5K 9K A E = 100µ 2 Q 1 7.4V 6.5V M2 W=10µ L=1µ M 3 W=10µ L=1µ C V out V in 2K 2mA W=2µ L=25µ 36K M 4 Page 7 of 10

8 TRANSISTOR PARAMETERS W/L N-CHANNEL P-CHANNEL UNITS MINIMUM 3.0/0.6 Vth volts SHORT 20.0/0.6 Idss ua/um Vth volts Vpt volts WIDE 20.0/0.6 Ids0 < 2.5 < 2.5 pa/um LARGE 50/50 Vth volts Vjbkd volts Ijlk <50.0 <50.0 pa Gamma V^0.5 K' (Uo*Cox/2) ua/v^2 Low-field Mobility cm^2/v*s COMMENTS: XL_AMI_C5F FOX TRANSISTORS GATE N+ACTIVE P+ACTIVE UNITS Vth Poly >15.0 <-15.0 volts PROCESS PARAMETERS N+ACTV P+ACTV POLY PLY2_HR POLY2 MTL1 MTL2 UNITS Sheet Resistance ohms/sq Contact Resistance ohms Gate Oxide Thickness 144 angstrom PROCESS PARAMETERS MTL3 N\PLY N_WELL UNITS Sheet Resistance ohms/sq Contact Resistance 0.78 ohms COMMENTS: N\POLY is N-well under polysilicon. CAPACITANCE PARAMETERS N+ACTV P+ACTV POLY POLY2 M1 M2 M3 N_WELL UNITS Area (substrate) af/um^2 Area (N+active) af/um^2 Area (P+active) 2308 af/um^2 Area (poly) af/um^2 Area (poly2) 53 af/um^2 Area (metal1) af/um^2 Area (metal2) 32 af/um^2 Fringe (substrate) af/um Fringe (poly) af/um Fringe (metal1) af/um Fringe (metal2) 48 af/um Overlap (N+active) 206 af/um Overlap (P+active) 278 af/um Page 8 of 10

9 Page 9 of 10

10 Page 10 of 10

1. (2pts) What is the purpose of the buried collector in a bipolar process?

1. (2pts) What is the purpose of the buried collector in a bipolar process? EE 330 Exam 2 Fall 2013 Name Instructions: This is a 50-minute exam. Students may bring 2 pages of notes (front and back) to this exam. The points allocated to each question and each problem are as indicated.

More information

3. (2 pts) What is the approximate number of parameters in the BSIM model of a MOSFET?

3. (2 pts) What is the approximate number of parameters in the BSIM model of a MOSFET? EE 330 Exam 2 Fall 2017 Name Instructions: This is a 50-minute exam. Students may bring 2 pages of notes (front and back) to this exam. Each short question is worth 2 points and each problem is worth 16

More information

1. (2pts) An SCR is formed by a stacking of alternate p and n diffused regions. How many diffused regions are needed to form a basic SCR?

1. (2pts) An SCR is formed by a stacking of alternate p and n diffused regions. How many diffused regions are needed to form a basic SCR? EE 330 Practice Final Exam Spring 207 Name Instructions: Students may bring 3 pages of notes (3 front + 3 back) to this exam. There are 0 questions and 8 problems. There are two points allocated to each

More information

1. (2pts) Why is the Q-point of a common source amplifier often placed near the middle of the load line?

1. (2pts) Why is the Q-point of a common source amplifier often placed near the middle of the load line? EE 330 Exam 3 Fall 2014 Name Instructions: This is a 50 minute exam. Students may bring 3 page of notes (front and back) to this exam. There are 10 questions and 5 problems. There is also an optional extra

More information

V DD M 3 M 4 M 5 C C V OUT V 1 2 C L M 6 M 7 V XX. Homework Assignment EE 435 Homework 6 Due Tuesday March 12 Spring 2019

V DD M 3 M 4 M 5 C C V OUT V 1 2 C L M 6 M 7 V XX. Homework Assignment EE 435 Homework 6 Due Tuesday March 12 Spring 2019 Homework Assignment EE 435 Homework 6 Due Tuesday March 12 Spring 219 In the following problems, if reference to a semiconductor process is needed, assume processes with the following characteristics:

More information

2. (2 pts) What is the major reason static CMOS NAND gates are often preferred over static CMOS NOR gates?

2. (2 pts) What is the major reason static CMOS NAND gates are often preferred over static CMOS NOR gates? EE 330 Final Exam Spring 05 Name Instructions: Students may bring 3 pages of notes (3 front + 3 back) to this exam. There are 0 questions and 8 problems. There are two points allocated to each question.

More information

Homework Assignment EE 435 Homework 4 Spring 2014 Due Wednesday Feb 26

Homework Assignment EE 435 Homework 4 Spring 2014 Due Wednesday Feb 26 Homework Assignment EE 435 Homework 4 Spring 2014 Due Wednesday Feb 26 In the following problems, if reference to a semiconductor process is needed, assume processes with the following characteristics:

More information

EE 435 Homework 4 Spring 2019 (Due Wednesday Friday Feb 20) (reposted corrected Problem 7)

EE 435 Homework 4 Spring 2019 (Due Wednesday Friday Feb 20) (reposted corrected Problem 7) EE 435 Homework 4 Spring 2019 (Due Wednesday Friday Feb 20) (reposted corrected Problem 7) In the following problems, if reference to a semiconductor process is needed, assume processes with the following

More information

EE 435 Homework 4 Spring 2018 (Due Wednesday Friday Feb 28)

EE 435 Homework 4 Spring 2018 (Due Wednesday Friday Feb 28) EE 435 Homework 4 Spring 2018 (Due Wednesday Friday Feb 28) In the following problems, if reference to a semiconductor process is needed, assume processes with the following characteristics: CMOS Process

More information

ECE Digital VLSI Design Course Syllabus Fall 2017

ECE Digital VLSI Design Course Syllabus Fall 2017 ECE484-001 Digital VLSI Design Course Syllabus Fall 2017 Instructor: Dr. George L. Engel Phone: (618) 650-2806 Office: Email: URLs: Engineering Building Room EB3043 gengel@siue.edu http://www.siue.edu/~gengel

More information

EE 330 Homework 5 Fall 2016 (Due Friday Sept 23)

EE 330 Homework 5 Fall 2016 (Due Friday Sept 23) EE 330 Homework 5 Fall 2016 (Due Friday Sept 23) Assume the CMOS process is characterized by model parameters VTH=1V and µcox=100µa/v 2. If any other model parameters are needed, use the measured parameters

More information

500K V C C 1 R 1. V OUT (t) M 1 -2V

500K V C C 1 R 1. V OUT (t) M 1 -2V EE 330 Homework 8 Spring 2017 Due Friday March 3 Solve Problem 15 and any 8 of the remaining problems. Each problem is worth 10 points except Problem 15 which is worth 20 points. Unless stated to the contrary,

More information

I D1 I D2 V X D 1 D 2 EE 330. Homework Assignment 6 Spring 2017 (Due Friday Feb 17)

I D1 I D2 V X D 1 D 2 EE 330. Homework Assignment 6 Spring 2017 (Due Friday Feb 17) EE 330 Homework Assignment 6 Spring 2017 (Due Friday Feb 17) Unless specified to the contrary, assume all n-channel MOS transistors have model parameters μncox = 100μA/V 2 and VTn = 1V, all p-channel transistors

More information

COLLECTOR DRAIN BASE GATE EMITTER. Applying a voltage to the Gate connection allows current to flow between the Drain and Source connections.

COLLECTOR DRAIN BASE GATE EMITTER. Applying a voltage to the Gate connection allows current to flow between the Drain and Source connections. MOSFETS Although the base current in a transistor is usually small (< 0.1 ma), some input devices (e.g. a crystal microphone) may be limited in their output. In order to overcome this, a Field Effect Transistor

More information

Lecture 16: MOS Transistor models: Linear models, SPICE models. Context. In the last lecture, we discussed the MOS transistor, and

Lecture 16: MOS Transistor models: Linear models, SPICE models. Context. In the last lecture, we discussed the MOS transistor, and Lecture 16: MOS Transistor models: Linear models, SPICE models Context In the last lecture, we discussed the MOS transistor, and added a correction due to the changing depletion region, called the body

More information

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers EE 330 Laboratory 8 Discrete Semiconductor Amplifiers Fall 2018 Contents Objective:...2 Discussion:...2 Components Needed:...2 Part 1 Voltage Controlled Amplifier...2 Part 2 A Nonlinear Application...3

More information

BJT Amplifier. Superposition principle (linear amplifier)

BJT Amplifier. Superposition principle (linear amplifier) BJT Amplifier Two types analysis DC analysis Applied DC voltage source AC analysis Time varying signal source Superposition principle (linear amplifier) The response of a linear amplifier circuit excited

More information

EE 330 Laboratory 9. Semiconductor Parameter Measurement and Thyristor Applications

EE 330 Laboratory 9. Semiconductor Parameter Measurement and Thyristor Applications EE 330 Laboratory 9 Semiconductor Parameter Measurement and Thyristor Applications Spring 2011 Objective: The objective of this laboratory experiment is to become familiar with using a semiconductor parameter

More information

CS/ECE 5710/6710. Composite Layout

CS/ECE 5710/6710. Composite Layout CS/ECE 5710/6710 Introduction to Layout Inverter Layout Example Layout Design Rules Composite Layout Drawing the mask layers that will be used by the fabrication folks to make the devices Very different

More information

LECTURE 09 LARGE SIGNAL MOSFET MODEL

LECTURE 09 LARGE SIGNAL MOSFET MODEL Lecture 9 Large Signal MOSFET Model (5/14/18) Page 9-1 LECTURE 9 LARGE SIGNAL MOSFET MODEL LECTURE ORGANIZATION Outline Introduction to modeling Operation of the MOS transistor Simple large signal model

More information

INTRODUCTION TO MOS TECHNOLOGY

INTRODUCTION TO MOS TECHNOLOGY INTRODUCTION TO MOS TECHNOLOGY 1. The MOS transistor The most basic element in the design of a large scale integrated circuit is the transistor. For the processes we will discuss, the type of transistor

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits Mosfet Review Sections of Chapter 3 &4 A. Kruger Mosfet Review, Page-1 Basic Structure of MOS Capacitor Sect. 3.1 Width 1 10-6 m or less Thickness 50 10-9 m or less ` MOS Metal-Oxide-Semiconductor

More information

Lecture 16. Complementary metal oxide semiconductor (CMOS) CMOS 1-1

Lecture 16. Complementary metal oxide semiconductor (CMOS) CMOS 1-1 Lecture 16 Complementary metal oxide semiconductor (CMOS) CMOS 1-1 Outline Complementary metal oxide semiconductor (CMOS) Inverting circuit Properties Operating points Propagation delay Power dissipation

More information

Field Effect Transistors

Field Effect Transistors Field Effect Transistors LECTURE NO. - 41 Field Effect Transistors www.mycsvtunotes.in JFET MOSFET CMOS Field Effect transistors - FETs First, why are we using still another transistor? BJTs had a small

More information

Prof. Paolo Colantonio a.a

Prof. Paolo Colantonio a.a Prof. Paolo Colantonio a.a. 20 2 Field effect transistors (FETs) are probably the simplest form of transistor, widely used in both analogue and digital applications They are characterised by a very high

More information

Introduction to the Long Channel MOSFET. Dr. Lynn Fuller

Introduction to the Long Channel MOSFET. Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Introduction to the Long Channel MOSFET Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee Electrical and 82 Lomb Memorial Drive Rochester,

More information

You will be asked to make the following statement and provide your signature on the top of your solutions.

You will be asked to make the following statement and provide your signature on the top of your solutions. 1 EE 435 Name Exam 1 Spring 216 Instructions: The points allocated to each problem are as indicated. Note that the first and last problem are weighted more heavily than the rest of the problems. On those

More information

CMOS Inverter & Ring Oscillator

CMOS Inverter & Ring Oscillator CMOS Inverter & Ring Oscillator Theory: In this Lab we will implement a CMOS inverter and then use it as a building block for a Ring Oscillator. MOSfets (Metal Oxide Semiconductor Field Effect Transistors)

More information

EE 230 Lab Lab 9. Prior to Lab

EE 230 Lab Lab 9. Prior to Lab MOS transistor characteristics This week we look at some MOS transistor characteristics and circuits. Most of the measurements will be done with our usual lab equipment, but we will also use the parameter

More information

Depletion-mode operation ( 공핍형 ): Using an input gate voltage to effectively decrease the channel size of an FET

Depletion-mode operation ( 공핍형 ): Using an input gate voltage to effectively decrease the channel size of an FET Ch. 13 MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor : I D D-mode E-mode V g The gate oxide is made of dielectric SiO 2 with e = 3.9 Depletion-mode operation ( 공핍형 ): Using an input gate voltage

More information

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers EE 330 Laboratory 8 Discrete Semiconductor Amplifiers Fall 2017 Contents Objective:... 2 Discussion:... 2 Components Needed:... 2 Part 1 Voltage Controlled Amplifier... 2 Part 2 Common Source Amplifier...

More information

EE105 Fall 2015 Microelectronic Devices and Circuits: MOSFET Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH)

EE105 Fall 2015 Microelectronic Devices and Circuits: MOSFET Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH) EE105 Fall 2015 Microelectronic Devices and Circuits: MOSFET Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 7-1 Simplest Model of MOSFET (from EE16B) 7-2 CMOS Inverter 7-3 CMOS NAND

More information

Lecture 190 CMOS Technology, Compatible Devices (10/28/01) Page 190-1

Lecture 190 CMOS Technology, Compatible Devices (10/28/01) Page 190-1 Lecture 190 CMOS Technology, Compatible Devices (10/28/01) Page 190-1 LECTURE 190 CMOS TECHNOLOGY-COMPATIBLE DEVICES (READING: Text-Sec. 2.9) INTRODUCTION Objective The objective of this presentation is

More information

ENEE307 Lab 7 MOS Transistors 2: Small Signal Amplifiers and Digital Circuits

ENEE307 Lab 7 MOS Transistors 2: Small Signal Amplifiers and Digital Circuits ENEE307 Lab 7 MOS Transistors 2: Small Signal Amplifiers and Digital Circuits In this lab, we will be looking at ac signals with MOSFET circuits and digital electronics. The experiments will be performed

More information

DIGITAL VLSI LAB ASSIGNMENT 1

DIGITAL VLSI LAB ASSIGNMENT 1 DIGITAL VLSI LAB ASSIGNMENT 1 Problem 1: NMOS and PMOS plots using Cadence. In this exercise, you are required to generate both NMOS and PMOS I-V device characteristics (I/P and O/P) using Cadence (Use

More information

MOSFET & IC Basics - GATE Problems (Part - I)

MOSFET & IC Basics - GATE Problems (Part - I) MOSFET & IC Basics - GATE Problems (Part - I) 1. Channel current is reduced on application of a more positive voltage to the GATE of the depletion mode n channel MOSFET. (True/False) [GATE 1994: 1 Mark]

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits MOSFETs Sections of Chapter 3 &4 A. Kruger MOSFETs, Page-1 Basic Structure of MOS Capacitor Sect. 3.1 Width = 1 10-6 m or less Thickness = 50 10-9 m or less ` MOS Metal-Oxide-Semiconductor

More information

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism;

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism; Chapter 3 Field-Effect Transistors (FETs) 3.1 Introduction Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism; The concept has been known

More information

Q1. Explain the construction and principle of operation of N-Channel and P-Channel Junction Field Effect Transistor (JFET).

Q1. Explain the construction and principle of operation of N-Channel and P-Channel Junction Field Effect Transistor (JFET). Q. Explain the construction and principle of operation of N-Channel and P-Channel Junction Field Effect Transistor (JFET). Answer: N-Channel Junction Field Effect Transistor (JFET) Construction: Drain(D)

More information

Preliminary Exam, Fall 2013 Department of Electrical and Computer Engineering University of California, Irvine EECS 170B

Preliminary Exam, Fall 2013 Department of Electrical and Computer Engineering University of California, Irvine EECS 170B Preliminary Exam, Fall 2013 Department of Electrical and Computer Engineering University of California, Irvine EECS 170B Problem 1. Consider the following circuit, where a saw-tooth voltage is applied

More information

EE351 Laboratory Exercise 4 Field Effect Transistors

EE351 Laboratory Exercise 4 Field Effect Transistors Oct. 28, 2007, rev. July 26, 2009 Introduction The purpose of this laboratory exercise is for students to gain experience making measurements on Junction (JFET) to confirm mathematical models and to gain

More information

EE 330 Lecture 27. Bipolar Processes. Special Bipolar Processes. Comparison of MOS and Bipolar Proces JFET. Thyristors SCR TRIAC

EE 330 Lecture 27. Bipolar Processes. Special Bipolar Processes. Comparison of MOS and Bipolar Proces JFET. Thyristors SCR TRIAC EE 330 Lecture 27 Bipolar Processes Comparison of MOS and Bipolar Proces JFET Special Bipolar Processes Thyristors SCR TRIAC Review from a Previous Lecture B C E E C vertical npn B A-A Section B C E C

More information

The Common Source JFET Amplifier

The Common Source JFET Amplifier The Common Source JFET Amplifier Small signal amplifiers can also be made using Field Effect Transistors or FET's for short. These devices have the advantage over bipolar transistors of having an extremely

More information

ECE 340 Lecture 40 : MOSFET I

ECE 340 Lecture 40 : MOSFET I ECE 340 Lecture 40 : MOSFET I Class Outline: MOS Capacitance-Voltage Analysis MOSFET - Output Characteristics MOSFET - Transfer Characteristics Things you should know when you leave Key Questions How do

More information

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics Politecnico di Torino - ICT School Analog and Telecommunication Electronics F2 Active power devices»mos»bjt» IGBT, TRIAC» Safe Operating Area» Thermal analysis 30/05/2012-1 ATLCE - F2-2011 DDC Lesson F2:

More information

D n ox GS THN DS GS THN DS GS THN. D n ox GS THN DS GS THN DS GS THN

D n ox GS THN DS GS THN DS GS THN. D n ox GS THN DS GS THN DS GS THN Name: EXAM #3 Closed book, closed notes. Calculators may be used for numeric computations only. All work is to be your own - show your work for maximum partial credit. Data: Use the following data in all

More information

EE 330 Laboratory 7 MOSFET Device Experimental Characterization and Basic Applications Spring 2017

EE 330 Laboratory 7 MOSFET Device Experimental Characterization and Basic Applications Spring 2017 EE 330 Laboratory 7 MOSFET Device Experimental Characterization and Basic Applications Spring 2017 Objective: The objective of this laboratory experiment is to become more familiar with the operation of

More information

UNIT-1 Bipolar Junction Transistors. Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press

UNIT-1 Bipolar Junction Transistors. Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press UNIT-1 Bipolar Junction Transistors Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press Figure 6.1 A simplified structure of the npn transistor. Microelectronic Circuits, Sixth

More information

Design cycle for MEMS

Design cycle for MEMS Design cycle for MEMS Design cycle for ICs IC Process Selection nmos CMOS BiCMOS ECL for logic for I/O and driver circuit for critical high speed parts of the system The Real Estate of a Wafer MOS Transistor

More information

EE 320 L LABORATORY 9: MOSFET TRANSISTOR CHARACTERIZATIONS. by Ming Zhu UNIVERSITY OF NEVADA, LAS VEGAS 1. OBJECTIVE 2. COMPONENTS & EQUIPMENT

EE 320 L LABORATORY 9: MOSFET TRANSISTOR CHARACTERIZATIONS. by Ming Zhu UNIVERSITY OF NEVADA, LAS VEGAS 1. OBJECTIVE 2. COMPONENTS & EQUIPMENT EE 320 L ELECTRONICS I LABORATORY 9: MOSFET TRANSISTOR CHARACTERIZATIONS by Ming Zhu DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF NEVADA, LAS VEGAS 1. OBJECTIVE Get familiar with MOSFETs,

More information

Field Effect Transistors

Field Effect Transistors Chapter 5: Field Effect Transistors Slide 1 FET FET s (Field Effect Transistors) are much like BJT s (Bipolar Junction Transistors). Similarities: Amplifiers Switching devices Impedance matching circuits

More information

6. Explain control characteristics of GTO, MCT, SITH with the help of waveforms and circuit diagrams.

6. Explain control characteristics of GTO, MCT, SITH with the help of waveforms and circuit diagrams. POWER ELECTRONICS QUESTION BANK Unit 1: Introduction 1. Explain the control characteristics of SCR and GTO with circuit diagrams, and waveforms of control signal and output voltage. 2. Explain the different

More information

Basic Fabrication Steps

Basic Fabrication Steps Basic Fabrication Steps and Layout Somayyeh Koohi Department of Computer Engineering Adapted with modifications from lecture notes prepared by author Outline Fabrication steps Transistor structures Transistor

More information

In this lecture we will begin a new topic namely the Metal-Oxide-Semiconductor Field Effect Transistor.

In this lecture we will begin a new topic namely the Metal-Oxide-Semiconductor Field Effect Transistor. Solid State Devices Dr. S. Karmalkar Department of Electronics and Communication Engineering Indian Institute of Technology, Madras Lecture - 38 MOS Field Effect Transistor In this lecture we will begin

More information

An introduction to Depletion-mode MOSFETs By Linden Harrison

An introduction to Depletion-mode MOSFETs By Linden Harrison An introduction to Depletion-mode MOSFETs By Linden Harrison Since the mid-nineteen seventies the enhancement-mode MOSFET has been the subject of almost continuous global research, development, and refinement

More information

UNIT-VI FIELD EFFECT TRANSISTOR. 1. Explain about the Field Effect Transistor and also mention types of FET s.

UNIT-VI FIELD EFFECT TRANSISTOR. 1. Explain about the Field Effect Transistor and also mention types of FET s. UNIT-I FIELD EFFECT TRANSISTOR 1. Explain about the Field Effect Transistor and also mention types of FET s. The Field Effect Transistor, or simply FET however, uses the voltage that is applied to their

More information

Electronic CAD Practical work. Week 1: Introduction to transistor models. curve tracing of NMOS transfer characteristics

Electronic CAD Practical work. Week 1: Introduction to transistor models. curve tracing of NMOS transfer characteristics Electronic CAD Practical work Dr. Martin John Burbidge Lancashire UK Tel: +44 (0)1524 825064 Email: martin@mjb-rfelectronics-synthesis.com Martin Burbidge 2006 Week 1: Introduction to transistor models

More information

Week 9a OUTLINE. MOSFET I D vs. V GS characteristic Circuit models for the MOSFET. Reading. resistive switch model small-signal model

Week 9a OUTLINE. MOSFET I D vs. V GS characteristic Circuit models for the MOSFET. Reading. resistive switch model small-signal model Week 9a OUTLINE MOSFET I vs. V GS characteristic Circuit models for the MOSFET resistive switch model small-signal model Reading Rabaey et al.: Chapter 3.3.2 Hambley: Chapter 12 (through 12.5); Section

More information

MOSFET Terminals. The voltage applied to the GATE terminal determines whether current can flow between the SOURCE & DRAIN terminals.

MOSFET Terminals. The voltage applied to the GATE terminal determines whether current can flow between the SOURCE & DRAIN terminals. MOSFET Terminals The voltage applied to the GATE terminal determines whether current can flow between the SOURCE & DRAIN terminals. For an n-channel MOSFET, the SOURCE is biased at a lower potential (often

More information

Reading. Lecture 17: MOS transistors digital. Context. Digital techniques:

Reading. Lecture 17: MOS transistors digital. Context. Digital techniques: Reading Lecture 17: MOS transistors digital Today we are going to look at the analog characteristics of simple digital devices, 5. 5.4 And following the midterm, we will cover PN diodes again in forward

More information

Gechstudentszone.wordpress.com

Gechstudentszone.wordpress.com UNIT 4: Small Signal Analysis of Amplifiers 4.1 Basic FET Amplifiers In the last chapter, we described the operation of the FET, in particular the MOSFET, and analyzed and designed the dc response of circuits

More information

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) 4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) The Metal Oxide Semitonductor Field Effect Transistor (MOSFET) has two modes of operation, the depletion mode, and the enhancement mode.

More information

Lecture 4. MOS transistor theory

Lecture 4. MOS transistor theory Lecture 4 MOS transistor theory 1.7 Introduction: A MOS transistor is a majority-carrier device, in which the current in a conducting channel between the source and the drain is modulated by a voltage

More information

Electric Circuit Fall 2017 Lab3 LABORATORY 3. Diode. Guide

Electric Circuit Fall 2017 Lab3 LABORATORY 3. Diode. Guide LABORATORY 3 Diode Guide Diodes Overview Diodes are mostly used in practice for emitting light (as Light Emitting Diodes, LEDs) or controlling voltages in various circuits. Typical diode packages in same

More information

Electronic Circuits II - Revision

Electronic Circuits II - Revision Electronic Circuits II - Revision -1 / 16 - T & F # 1 A bypass capacitor in a CE amplifier decreases the voltage gain. 2 If RC in a CE amplifier is increased, the voltage gain is reduced. 3 4 5 The load

More information

2.8 - CMOS TECHNOLOGY

2.8 - CMOS TECHNOLOGY CMOS Technology (6/7/00) Page 1 2.8 - CMOS TECHNOLOGY INTRODUCTION Objective The objective of this presentation is: 1.) Illustrate the fabrication sequence for a typical MOS transistor 2.) Show the physical

More information

Experiment (1) Principles of Switching

Experiment (1) Principles of Switching Experiment (1) Principles of Switching Introduction When you use microcontrollers, sometimes you need to control devices that requires more electrical current than a microcontroller can supply; for this,

More information

Chapter 5: Field Effect Transistors

Chapter 5: Field Effect Transistors Chapter 5: Field Effect Transistors Slide 1 FET FET s (Field Effect Transistors) are much like BJT s (Bipolar Junction Transistors). Similarities: Amplifiers Switching devices Impedance matching circuits

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fundamentals 4.4. Field Effect Transistor (MOSFET) ENS 463 Lecture Course by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 4N101b 1 Field-effect transistor (FET)

More information

MEASUREMENT AND INSTRUMENTATION STUDY NOTES UNIT-I

MEASUREMENT AND INSTRUMENTATION STUDY NOTES UNIT-I MEASUREMENT AND INSTRUMENTATION STUDY NOTES The MOSFET The MOSFET Metal Oxide FET UNIT-I As well as the Junction Field Effect Transistor (JFET), there is another type of Field Effect Transistor available

More information

problem grade total

problem grade total Fall 2005 6.012 Microelectronic Devices and Circuits Prof. J. A. del Alamo Name: Recitation: November 16, 2005 Quiz #2 problem grade 1 2 3 4 total General guidelines (please read carefully before starting):

More information

Integrated diodes. The forward voltage drop only slightly depends on the forward current. ELEKTRONIKOS ĮTAISAI

Integrated diodes. The forward voltage drop only slightly depends on the forward current. ELEKTRONIKOS ĮTAISAI 1 Integrated diodes pn junctions of transistor structures can be used as integrated diodes. The choice of the junction is limited by the considerations of switching speed and breakdown voltage. The forward

More information

Pre-certification Electronics Questions. Answer the following with the MOST CORRECT answer.

Pre-certification Electronics Questions. Answer the following with the MOST CORRECT answer. Electronics Questions Answer the following with the MOST CORRECT answer. 1. The cathode end terminal of a semiconductor diode can be identified by: a. the negative sign marked on the case b. a circular

More information

MOS TRANSISTOR THEORY

MOS TRANSISTOR THEORY MOS TRANSISTOR THEORY Introduction A MOS transistor is a majority-carrier device, in which the current in a conducting channel between the source and the drain is modulated by a voltage applied to the

More information

Exam Below are two schematics of current sources implemented with MOSFETs. Which current source has the best compliance voltage?

Exam Below are two schematics of current sources implemented with MOSFETs. Which current source has the best compliance voltage? Exam 2 Name: Score /90 Question 1 Short Takes 1 point each unless noted otherwise. 1. Below are two schematics of current sources implemented with MOSFETs. Which current source has the best compliance

More information

UNIT 3: FIELD EFFECT TRANSISTORS

UNIT 3: FIELD EFFECT TRANSISTORS FIELD EFFECT TRANSISTOR: UNIT 3: FIELD EFFECT TRANSISTORS The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There are

More information

Power Semiconductor Devices

Power Semiconductor Devices TRADEMARK OF INNOVATION Power Semiconductor Devices Introduction This technical article is dedicated to the review of the following power electronics devices which act as solid-state switches in the circuits.

More information

HW#3 Solution. Dr. Parker. Spring 2014

HW#3 Solution. Dr. Parker. Spring 2014 HW#3 olution r. Parker pring 2014 Assume for the problems below that V dd = 1.8 V, V tp0 is -.7 V. and V tn0 is.7 V. V tpbodyeffect is -.9 V. and V tnbodyeffect is.9 V. Assume ß n (k n )= 219.4 W/L µ A(microamps)/V

More information

ELEC 2210 EXPERIMENT 8 MOSFETs

ELEC 2210 EXPERIMENT 8 MOSFETs ELEC 10 EXPERIMENT 8 MOSFETs Objectives: The experiments in this laboratory exercise will provide an introduction to the MOSFET. You will use the Bit Bucket breadboarding system to build and test several

More information

8. Combinational MOS Logic Circuits

8. Combinational MOS Logic Circuits 8. Combinational MOS Introduction Combinational logic circuits, or gates, witch perform Boolean operations on multiple input variables and determine the output as Boolean functions of the inputs, are the

More information

8. Characteristics of Field Effect Transistor (MOSFET)

8. Characteristics of Field Effect Transistor (MOSFET) 1 8. Characteristics of Field Effect Transistor (MOSFET) 8.1. Objectives The purpose of this experiment is to measure input and output characteristics of n-channel and p- channel field effect transistors

More information

Electronics EECE2412 Spring 2018 Exam #2

Electronics EECE2412 Spring 2018 Exam #2 Electronics EECE2412 Spring 2018 Exam #2 Prof. Charles A. DiMarzio Department of Electrical and Computer Engineering Northeastern University 29 March 2018 File:12262/exams/exam2 Name: General Rules: You

More information

Conduction Characteristics of MOS Transistors (for fixed Vds)! Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor

Conduction Characteristics of MOS Transistors (for fixed Vds)! Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor Conduction Characteristics of MOS Transistors (for fixed Vds)! Topic 2 Basic MOS theory & SPICE simulation Peter Cheung Department of Electrical & Electronic Engineering Imperial College London (Weste&Harris,

More information

Topic 2. Basic MOS theory & SPICE simulation

Topic 2. Basic MOS theory & SPICE simulation Topic 2 Basic MOS theory & SPICE simulation Peter Cheung Department of Electrical & Electronic Engineering Imperial College London (Weste&Harris, Ch 2 & 5.1-5.3 Rabaey, Ch 3) URL: www.ee.ic.ac.uk/pcheung/

More information

Conduction Characteristics of MOS Transistors (for fixed Vds) Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor

Conduction Characteristics of MOS Transistors (for fixed Vds) Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor Conduction Characteristics of MOS Transistors (for fixed Vds) Topic 2 Basic MOS theory & SPICE simulation Peter Cheung Department of Electrical & Electronic Engineering Imperial College London (Weste&Harris,

More information

Department of Electrical Engineering IIT Madras

Department of Electrical Engineering IIT Madras Department of Electrical Engineering IIT Madras Sample Questions on Semiconductor Devices EE3 applicants who are interested to pursue their research in microelectronics devices area (fabrication and/or

More information

Questions on JFET: 1) Which of the following component is a unipolar device?

Questions on JFET: 1) Which of the following component is a unipolar device? Questions on JFET: 1) Which of the following component is a unipolar device? a) BJT b) FET c) DJT d) EFT 2) Current Conduction in FET takes place due e) Majority charge carriers only f) Minority charge

More information

Semiconductor Memory: DRAM and SRAM. Department of Electrical and Computer Engineering, National University of Singapore

Semiconductor Memory: DRAM and SRAM. Department of Electrical and Computer Engineering, National University of Singapore Semiconductor Memory: DRAM and SRAM Outline Introduction Random Access Memory (RAM) DRAM SRAM Non-volatile memory UV EPROM EEPROM Flash memory SONOS memory QD memory Introduction Slow memories Magnetic

More information

ECEN325: Electronics Summer 2018

ECEN325: Electronics Summer 2018 ECEN325: Electronics Summer 2018 Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements & Reading H5 due today Exam 2 on

More information

Experiment No. 9 DESIGN AND CHARACTERISTICS OF COMMON BASE AND COMMON COLLECTOR AMPLIFIERS

Experiment No. 9 DESIGN AND CHARACTERISTICS OF COMMON BASE AND COMMON COLLECTOR AMPLIFIERS Experiment No. 9 DESIGN AND CHARACTERISTICS OF COMMON BASE AND COMMON COLLECTOR AMPLIFIERS 1. Objective: The objective of this experiment is to explore the basic applications of the bipolar junction transistor

More information

Course Number Section. Electronics I ELEC 311 BB Examination Date Time # of pages. Final August 12, 2005 Three hours 3 Instructor

Course Number Section. Electronics I ELEC 311 BB Examination Date Time # of pages. Final August 12, 2005 Three hours 3 Instructor Course Number Section Electronics ELEC 311 BB Examination Date Time # of pages Final August 12, 2005 Three hours 3 nstructor Dr. R. Raut M aterials allowed: No Yes X (Please specify) Calculators allowed:

More information

Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs)

Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) Device Structure N-Channel MOSFET Providing electrons Pulling electrons (makes current flow) + + + Apply positive voltage to gate: Drives away

More information

Phy 335, Unit 4 Transistors and transistor circuits (part one)

Phy 335, Unit 4 Transistors and transistor circuits (part one) Mini-lecture topics (multiple lectures): Phy 335, Unit 4 Transistors and transistor circuits (part one) p-n junctions re-visited How does a bipolar transistor works; analogy with a valve Basic circuit

More information

Electronics EECE2412 Spring 2017 Exam #2

Electronics EECE2412 Spring 2017 Exam #2 Electronics EECE2412 Spring 2017 Exam #2 Prof. Charles A. DiMarzio Department of Electrical and Computer Engineering Northeastern University 30 March 2017 File:12198/exams/exam2 Name: : General Rules:

More information

ET Training. Electronics: JFET Instructor: H.Pham. The JUNCTION FIELF EFFECT TRANSISTOR (JFET) n channel JFET p channel JFET

ET Training. Electronics: JFET Instructor: H.Pham. The JUNCTION FIELF EFFECT TRANSISTOR (JFET) n channel JFET p channel JFET The JUNCTION FIELF EFFECT TRANSISTOR (JFET) n channel JFET p channel JFET 1 The BIASED JFET VDD provides a drain-to-source voltage and supplies current from drain to source VGG sets the reverse-biased

More information

The Norwegian University of Science and Technology ENGLISH. EXAM IN TFY 4185 Measurement Technique/Måleteknikk. 1 Dec 2014 Time: 09:00-13:00

The Norwegian University of Science and Technology ENGLISH. EXAM IN TFY 4185 Measurement Technique/Måleteknikk. 1 Dec 2014 Time: 09:00-13:00 Page 1 of 9 The Norwegian University of Science and Technology ENGLISH Department of Physics Contact person: Name: Patrick Espy Tel: +47 73 55 10 95 (office) or +47 41 38 65 78 (mobile) EXAM IN TFY 4185

More information

Chapter 1. Introduction

Chapter 1. Introduction EECS3611 Analog Integrated Circuit esign Chapter 1 Introduction EECS3611 Analog Integrated Circuit esign Instructor: Prof. Ebrahim Ghafar-Zadeh, Prof. Peter Lian email: egz@cse.yorku.ca peterlian@cse.yorku.ca

More information

ECE/CoE 0132: FETs and Gates

ECE/CoE 0132: FETs and Gates ECE/CoE 0132: FETs and Gates Kartik Mohanram September 6, 2017 1 Physical properties of gates Over the next 2 lectures, we will discuss some of the physical characteristics of integrated circuits. We will

More information

Integrated Circuit Amplifiers. Comparison of MOSFETs and BJTs

Integrated Circuit Amplifiers. Comparison of MOSFETs and BJTs Integrated Circuit Amplifiers Comparison of MOSFETs and BJTs 17 Typical CMOS Device Parameters 0.8 µm 0.25 µm 0.13 µm Parameter NMOS PMOS NMOS PMOS NMOS PMOS t ox (nm) 15 15 6 6 2.7 2.7 C ox (ff/µm 2 )

More information

ECE520 VLSI Design. Lecture 5: Basic CMOS Inverter. Payman Zarkesh-Ha

ECE520 VLSI Design. Lecture 5: Basic CMOS Inverter. Payman Zarkesh-Ha ECE520 VLSI Design Lecture 5: Basic CMOS Inverter Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Wednesday 2:00-3:00PM or by appointment E-mail: pzarkesh@unm.edu Slide: 1 Review of Last Lecture

More information