EE 330 Homework 5 Fall 2016 (Due Friday Sept 23)

Size: px
Start display at page:

Download "EE 330 Homework 5 Fall 2016 (Due Friday Sept 23)"

Transcription

1 EE 330 Homework 5 Fall 2016 (Due Friday Sept 23) Assume the CMOS process is characterized by model parameters VTH=1V and µcox=100µa/v 2. If any other model parameters are needed, use the measured parameters from the ON T6AU process run that are attached. On those problems that involve the design of passive components, a sketch of the design is sufficient provided you indicate dimensions (i.e. it need not be done in Cadence). Problem 1 Design a 2K resistor in the ON 0.5µ CMOS process. Use Poly 1 for the resistor. The width-length ratio of an imaginary box enclosing the resistor should have a W/L ratio of between 1:2 and 2:1. The layout of the resistor can be either sketched or come from a Cadence layout. Problem 2 Design a 1pF capacitor in the ON 0.5µ CMOS process. Clearly specify which layers you are using for this capacitor. The layout of the capacitor can be either sketched or come from a Cadence layout. Problem 3 Four non-contacting regions are shown. Identify the parasitic capacitances and their size if this is fabricated in the 0.5u CMOS process. Don t forget that there is substrate below all layers. (assume this drawing is to scale) 12λ Poly Metal 1 Metal 2 Metal 3 9λ Active Problem 4 If the voltage of a forward-biased pn junction is varied between 0.5V and 0.6V, what is the range in the diode current. Assume the junction area of the diode is 50µ 2 and JS=10-15 A/µ 2. Page 1 of 11

2 Problem 5 Determine the current ID (within ±5%) if VX=10V for the following circuit. Assume the area of the diode is 200µ 2 and JS=10-15 A/u 2. 2K V X V R I D Problem 6 Repeat Problem 5 if VX=520mV. Problem 7 Analytically determine the quantities indicated with a?. 5V 5V 5V 1K I OUT =? 1K I OUT =? 3V M 1 V OUT =? W=10u L=2u 3V M 1 W=10u L=2u 3V M 1 W=10u L=2u (a) (b) (c) Problem 8 Determine W so that VOUT = 6V 9V V OUT M 1 W=? L=2u Problem 9 Assume a resistor has a resistance of 2.034KΩ at T=250 K. If the TCR of this resistor is constant of value 800 ppm/ C, what will be the resistance at T=320 K? Page 2 of 11

3 Problem 10 Gate protection circuits are used to protect the sensitive gate oxide of devices connected to the input of an integrated circuit from modest short-duration over voltages. Although no input protection circuit can protect from all unknown over-voltages, the Human Body Model (HBM) is often used to model the type of over-voltages that are commonly experienced when humans might become statically charged during normal activities. Such a model is shown below with a connection to one pad on the integrated circuit. In this model, RB is the body resistance, CB is the body capacitance, and VB is the charge on the body capacitance. Touching of the circuit while the person is charged is modeled by closing the switch in this model. At a time designated as t=0 it is assumed that the switch is closed and this inserts a voltage into the input pad of the integrated circuit. In the absence of the gate protection circuit, the pad voltage will appear directly on the voltage VINT of the internal integrated circuit if the input impedance to the Internal Circuit is high. VDD t=0 D2 VINT VB CB RB Spark Pad RProt D1 Internal Circuit Chip Boundary Gate Protection Circuit Assume the Internal Circuit has an input that is four parallel-connected minimum sized inverters that are designed in the ON 0.5µ CMOS process. Assume that the diodes D1 and D2 can be modeled as an ideal diode with JS=10-20 A/µ 2 and that the area of each of the two diode junctions is 1000µ 2. Consider two HBMs. One is termed a low voltage model and the other a high voltage model. These are characterized respectively by HBM1: VB =250V, CB=150pF, RB=1. HBM2: VB =2KV, CB=150pF, RB=1. a) What will be the peak value of the voltage VINT when the switch is closed if the gate protection circuit is absent (i.e. the Pad is directly connected to the Internal Circuit) with each of the models? b) What will be the peak value of the voltage VINT when the switch is closed if the gate protection circuit is present with each of the models? Assume RPROT=10K. c) What will be the peak current in D2 with each of the models? Assume RPROT=10K. d) What is the purpose of including the resistor RPROT and what are the disadvantages of including this resistor in the gate protection circuit? Page 3 of 11

4 Problem 11 Using ModelSim, create a 1 bit adder with inputs {a,b, Cin} and outputs {S, Cout}. A 1 bit adder can be implemented using XOR, AND, and OR gates as seen in the example circuit below: Include code for your adder, the test bench, and your input and output waveforms. Page 4 of 11

5 Problem 12 (Extra Credit). The audio amplifier shown has a gain determined by the resistors R1 and R2. The resistor R1 is ideal of value 1K and R2 is nominally of value 10K (with a voltage across it of 0V) but has a voltage coefficient of resistance of 400ppm/V. a) If VIN=0.1sin2000t, what is the maximum error this amplifier will make in amplifying this signal due to the voltage coefficient of R2? b) Repeat part a) if VIN=sin2000t c) What is the THD of the output if VIN=sin2000t?) R 1 R 2 V IN V OUT Problem 13 (Extra Credit) Diodes are often used to build temperature sensors. If one considers that the standard diode equation accurately characterizes the I-V relationship for the diode under modest forward bias, taking the natural logarithm of both sides, an alternate equivalent expression for the diode equation is VD V k I t D I I e V =T ln D S D q I S where T is in K. In the second equation, we have replaced Vt with kt/q to explicitly show the temperature dependence of this term. Looking at the second form, it could be argued that if a constant current were used to excite the diode, then the diode voltage would be proportional to temperature and thus the diode could serve as a very linear temperature sensor. Unfortunately, this argument falls apart because the parameter IS in the diode equation itself shows some temperature dependence. The following equation explicitly shows the temperature dependence of the diode equation. -V VD V G0 I(T) J m Vt A T e e SX where the parameters JSX, VGO, and m are constants that are independent of temperature and where A is the cross-sectional area of the diode. a) If JSX=0.45A/μ 2, VG0=1.17V, m=2.3, and A=200 μ 2, obtain an expression for and plot IS versus temperature from T=0 C to T=100 C. b) If IS was measured in the laboratory at t=27 C, what percent change in IS would occur if the temperature in the room increased to 32 C. c) Quantitatively comment on the accuracy you can expect to obtain in measuring IS in the laboratory if the heating/cooling in the room has a ripple temperature of 2 C peak to peak. t Page 5 of 11

6 Page 6 of 11

7 MOSIS WAFER ACCEPTANCE TESTS RUN: T6AU VENDOR: AMIS TECHNOLOGY: SCN05 FEATURE SIZE: 0.5 microns Run type: SKD INTRODUCTION: This report contains the lot average results obtained by MOSIS from measurements of MOSIS test structures on each wafer of this fabrication lot. SPICE parameters obtained from similar measurements on a selected wafer are also attached. COMMENTS: American Microsystems, Inc. C5 TRANSISTOR PARAMETERS W/L N-CHANNEL P-CHANNEL UNITS MINIMUM 3.0/0.6 Vth volts SHORT 20.0/0.6 Idss ua/um Vth volts Vpt volts WIDE 20.0/0.6 Ids0 < 2.5 < 2.5 pa/um LARGE 50/50 Vth volts Vjbkd volts Ijlk <50.0 <50.0 pa Gamma V^0.5 K' (Uo*Cox/2) ua/v^2 Low-field Mobility cm^2/v*s COMMENTS: Poly bias varies with design technology. To account for mask bias use the appropriate value for the parameter XL in your SPICE model card. Design Technology XL (um) XW (um) SCMOS_SUBM (lambda=0.30) SCMOS (lambda=0.35) FOX TRANSISTORS GATE N+ACTIVE P+ACTIVE UNITS Vth Poly >15.0 <-15.0 volts PROCESS PARAMETERS N+ P+ POLY PLY2_HR POLY2 M1 M2 UNITS Sheet Resistance ohms/sq Contact Resistance ohms M3 N\PLY N_W UNITS Sheet Resistance ohms/sq Contact Resistance 0.79 ohms Gate Oxide Thickness 142 angstrom Page 7 of 11

8 COMMENTS: N\POLY is N-well under polysilicon. CAPACITANCE PARAMETERS N+ P+ POLY POLY2 M1 M2 M3 N_W UNITS Area (substrate) af/um^2 Area (N+active) af/um^2 Area (P+active) 2335 af/um^2 Area (poly) af/um^2 Area (poly2) 49 af/um^2 Area (metal1) af/um^2 Area (metal2) 35 af/um^2 Fringe (substrate) af/um Fringe (poly) af/um Fringe (metal1) af/um Fringe (metal2) 52 af/um Overlap (N+active) 232 af/um Overlap (P+active) 312 af/um CIRCUIT PARAMETERS UNITS Inverters K Vinv volts Vinv volts Vol (100 ua) volts Voh (100 ua) volts Vinv volts Gain Ring Oscillator Freq. DIV256 (31-stg,5.0V) MHz D256_WIDE (31-stg,5.0V) MHz Ring Oscillator Power DIV256 (31-stg,5.0V) 0.49 uw/mhz/gate D256_WIDE (31-stg,5.0V) 1.01 uw/mhz/gate Page 8 of 11

9 COMMENTS: SUBMICRON T6AU SPICE BSIM3 VERSION 3.1 PARAMETERS SPICE 3f5 Level 8, Star-HSPICE Level 49, UTMOST Level 8 * DATE: Jan 11/07 * LOT: T6AU WAF: 7101 * Temperature_parameters=Default.MODEL CMOSN NMOS ( LEVEL = 49 +VERSION = 3.1 TNOM = 27 TOX = 1.42E-8 +XJ = 1.5E-7 NCH = 1.7E17 VTH0 = K1 = K2 = K3 = K3B = W0 = E-8 NLX = 1E-9 +DVT0W = 0 DVT1W = 0 DVT2W = 0 +DVT0 = DVT1 = DVT2 = U0 = UA = E-13 UB = E-18 +UC = E-11 VSAT = E5 A0 = AGS = B0 = E-6 B1 = 5E-6 +KETA = E-3 A1 = E-7 A2 = RDSW = E3 PRWG = PRWB = WR = 1 WINT = E-7 LINT = E-8 +XL = 1E-7 XW = 0 DWG = E-8 +DWB = E-8 VOFF = E-4 NFACTOR = CIT = 0 CDSC = 2.4E-4 CDSCD = 0 +CDSCB = 0 ETA0 = E-3 ETAB = E-4 +DSUB = PCLM = PDIBLC1 = PDIBLC2 = E-3 PDIBLCB = DROUT = PSCBE1 = E8 PSCBE2 = E-4 PVAG = 0 +DELTA = 0.01 RSH = 83.5 MOBMOD = 1 +PRT = 0 UTE = -1.5 KT1 = KT1L = 0 KT2 = UA1 = 4.31E-9 +UB1 = -7.61E-18 UC1 = -5.6E-11 AT = 3.3E4 +WL = 0 WLN = 1 WW = 0 +WWN = 1 WWL = 0 LL = 0 +LLN = 1 LW = 0 LWN = 1 +LWL = 0 CAPMOD = 2 XPART = 0.5 +CGDO = 2.32E-10 CGSO = 2.32E-10 CGBO = 1E-9 +CJ = E-4 PB = MJ = CJSW = E-10 PBSW = 0.8 MJSW = CJSWG = 1.64E-10 PBSWG = 0.8 MJSWG = CF = 0 PVTH0 = PRDSW = PK2 = WKETA = LKETA = E-3 ) * Page 9 of 11

10 .MODEL CMOSP PMOS ( LEVEL = 49 +VERSION = 3.1 TNOM = 27 TOX = 1.42E-8 +XJ = 1.5E-7 NCH = 1.7E17 VTH0 = K1 = K2 = E-3 K3 = K3B = W0 = E-8 NLX = E-8 +DVT0W = 0 DVT1W = 0 DVT2W = 0 +DVT0 = DVT1 = DVT2 = U0 = UA = E-9 UB = 1E-21 +UC = E-11 VSAT = E5 A0 = AGS = B0 = E-6 B1 = 5E-6 +KETA = E-3 A1 = E-4 A2 = RDSW = 3E3 PRWG = PRWB = WR = 1 WINT = E-7 LINT = E-7 +XL = 1E-7 XW = 0 DWG = E-8 +DWB = E-8 VOFF = NFACTOR = CIT = 0 CDSC = 2.4E-4 CDSCD = 0 +CDSCB = 0 ETA0 = ETAB = DSUB = 1 PCLM = PDIBLC1 = PDIBLC2 = E-3 PDIBLCB = DROUT = PSCBE1 = E9 PSCBE2 = 5E-10 PVAG = 0 +DELTA = 0.01 RSH = MOBMOD = 1 +PRT = 0 UTE = -1.5 KT1 = KT1L = 0 KT2 = UA1 = 4.31E-9 +UB1 = -7.61E-18 UC1 = -5.6E-11 AT = 3.3E4 +WL = 0 WLN = 1 WW = 0 +WWN = 1 WWL = 0 LL = 0 +LLN = 1 LW = 0 LWN = 1 +LWL = 0 CAPMOD = 2 XPART = 0.5 +CGDO = 3.12E-10 CGSO = 3.12E-10 CGBO = 1E-9 +CJ = E-4 PB = MJ = CJSW = E-10 PBSW = 0.99 MJSW = CJSWG = 6.4E-11 PBSWG = 0.99 MJSWG = CF = 0 PVTH0 = E-3 PRDSW = PK2 = E-3 WKETA = E-4 LKETA = E-3 ) * Page 10 of 11

11 Problem 10 Build a register in Verilog that holds a single 16-bit variable A. At every positive clock edge the register should replace A with the 16-bit INPUT. If the reset input is high, A will be reset to 0. If the xor input is high, A will be xor'd with 1. If the xor input is low, A will be xor'd with 0. If both the reset input and xor input are set to high, the register will be set to 0. Demonstrate proper results using a Verilog simulation. Problem 12 (Extra Credit) Obtain an expression for the output voltage versus temperature for the circuit shown below. Assume D1 and D2 are matched. 50K V OUT D 1 D 2 50K Problem 14 (Extra Credit) for the circuit shown below. Obtain an expression for the output voltage versus temperature D 1 D 2 V OUT 5V 2 Page 11 of 11

EECS 270A PROJECT Design of an Operational Amplifier with a Bandgap Reference. University of California Irvine

EECS 270A PROJECT Design of an Operational Amplifier with a Bandgap Reference. University of California Irvine EECS 270A PROJECT Design of an Operational Amplifier with a Bandgap Reference University of California Irvine Vipul Jain Arastoo Shahabi Contents 1. Introduction 2. Design Considerations 3. Design Methodology

More information

EE 435 Homework 4 Spring 2019 (Due Wednesday Friday Feb 20) (reposted corrected Problem 7)

EE 435 Homework 4 Spring 2019 (Due Wednesday Friday Feb 20) (reposted corrected Problem 7) EE 435 Homework 4 Spring 2019 (Due Wednesday Friday Feb 20) (reposted corrected Problem 7) In the following problems, if reference to a semiconductor process is needed, assume processes with the following

More information

EE 435 Homework 4 Spring 2018 (Due Wednesday Friday Feb 28)

EE 435 Homework 4 Spring 2018 (Due Wednesday Friday Feb 28) EE 435 Homework 4 Spring 2018 (Due Wednesday Friday Feb 28) In the following problems, if reference to a semiconductor process is needed, assume processes with the following characteristics: CMOS Process

More information

Research Article Electronically Controllable Sinusoidal Oscillator Employing CMOS VD-DIBAs

Research Article Electronically Controllable Sinusoidal Oscillator Employing CMOS VD-DIBAs ISRN Electronics Volume 213, Article ID 82363, 6 pages http://dx.doi.org/1.1155/213/82363 Research Article Electronically Controllable Sinusoidal Oscillator Employing CMOS VD-DIBAs Dinesh Prasad, 1 D.

More information

ECE Digital VLSI Design Course Syllabus Fall 2017

ECE Digital VLSI Design Course Syllabus Fall 2017 ECE484-001 Digital VLSI Design Course Syllabus Fall 2017 Instructor: Dr. George L. Engel Phone: (618) 650-2806 Office: Email: URLs: Engineering Building Room EB3043 gengel@siue.edu http://www.siue.edu/~gengel

More information

2. (2pts) Why is the design parameter that is available to the designer in a typical bipolar process?

2. (2pts) Why is the design parameter that is available to the designer in a typical bipolar process? EE 330 Exam 2 Fall 2014 Name Instructions: This is a 50-minute exam. Students may bring 2 pages of notes (front and back) to this exam. The points allocated to each question and each problem are as indicated.

More information

1. (2pts) Why is the Q-point of a common source amplifier often placed near the middle of the load line?

1. (2pts) Why is the Q-point of a common source amplifier often placed near the middle of the load line? EE 330 Exam 3 Fall 2014 Name Instructions: This is a 50 minute exam. Students may bring 3 page of notes (front and back) to this exam. There are 10 questions and 5 problems. There is also an optional extra

More information

2. (2 pts) What is the major reason static CMOS NAND gates are often preferred over static CMOS NOR gates?

2. (2 pts) What is the major reason static CMOS NAND gates are often preferred over static CMOS NOR gates? EE 330 Final Exam Spring 05 Name Instructions: Students may bring 3 pages of notes (3 front + 3 back) to this exam. There are 0 questions and 8 problems. There are two points allocated to each question.

More information

Local Optimization in UTMOST III 10/19/05

Local Optimization in UTMOST III 10/19/05 Local Optimization in UTMOST III 10/19/05 Outline Parameter Extraction Alternatives What is Local Optimization? MOSFET Local Optimization Example Conclusion - 2 - Outline Parameter Extraction Alternatives

More information

3. (2 pts) What is the approximate number of parameters in the BSIM model of a MOSFET?

3. (2 pts) What is the approximate number of parameters in the BSIM model of a MOSFET? EE 330 Exam 2 Fall 2017 Name Instructions: This is a 50-minute exam. Students may bring 2 pages of notes (front and back) to this exam. Each short question is worth 2 points and each problem is worth 16

More information

1. (2pts) What is the purpose of the buried collector in a bipolar process?

1. (2pts) What is the purpose of the buried collector in a bipolar process? EE 330 Exam 2 Fall 2013 Name Instructions: This is a 50-minute exam. Students may bring 2 pages of notes (front and back) to this exam. The points allocated to each question and each problem are as indicated.

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Homework Assignment EE 435 Homework 4 Spring 2014 Due Wednesday Feb 26

Homework Assignment EE 435 Homework 4 Spring 2014 Due Wednesday Feb 26 Homework Assignment EE 435 Homework 4 Spring 2014 Due Wednesday Feb 26 In the following problems, if reference to a semiconductor process is needed, assume processes with the following characteristics:

More information

A NON-SEQUENTIAL PHASE DETECTOR FOR LOW JITTER CLOCK RECOVERY APPLICATIONS

A NON-SEQUENTIAL PHASE DETECTOR FOR LOW JITTER CLOCK RECOVERY APPLICATIONS A NON-SEQUENTIAL PHASE DETECTOR FOR LOW JITTER CLOCK RECOVERY APPLICATIONS by AMRITRAJ KHATTOI B.Tech, Biju Patnaik University of Technology, 2007 A THESIS submitted in partial fulfillment of the requirements

More information

1. (2pts) An SCR is formed by a stacking of alternate p and n diffused regions. How many diffused regions are needed to form a basic SCR?

1. (2pts) An SCR is formed by a stacking of alternate p and n diffused regions. How many diffused regions are needed to form a basic SCR? EE 330 Practice Final Exam Spring 207 Name Instructions: Students may bring 3 pages of notes (3 front + 3 back) to this exam. There are 0 questions and 8 problems. There are two points allocated to each

More information

V DD M 3 M 4 M 5 C C V OUT V 1 2 C L M 6 M 7 V XX. Homework Assignment EE 435 Homework 6 Due Tuesday March 12 Spring 2019

V DD M 3 M 4 M 5 C C V OUT V 1 2 C L M 6 M 7 V XX. Homework Assignment EE 435 Homework 6 Due Tuesday March 12 Spring 2019 Homework Assignment EE 435 Homework 6 Due Tuesday March 12 Spring 219 In the following problems, if reference to a semiconductor process is needed, assume processes with the following characteristics:

More information

Final for EE 421 Digital Electronics and ECG 621 Digital Integrated Circuit Design Fall, University of Nevada, Las Vegas

Final for EE 421 Digital Electronics and ECG 621 Digital Integrated Circuit Design Fall, University of Nevada, Las Vegas Final for EE 421 Digital Electronics and ECG 621 Digital Integrated Circuit Design Fall, University of Nevada, Las Vegas NAME: Show your work to get credit. Open book and closed notes. Unless otherwise

More information

MOS Differential LNA Design Tutorial

MOS Differential LNA Design Tutorial of 4 MOS Differential LNA Design Tutorial J P Silver E-mail: john@rfic.co.uk ABSTRAT This tutorial describes the theory and design on a MOS Differential Low noise amplifier using source de-generation.

More information

I D1 I D2 V X D 1 D 2 EE 330. Homework Assignment 6 Spring 2017 (Due Friday Feb 17)

I D1 I D2 V X D 1 D 2 EE 330. Homework Assignment 6 Spring 2017 (Due Friday Feb 17) EE 330 Homework Assignment 6 Spring 2017 (Due Friday Feb 17) Unless specified to the contrary, assume all n-channel MOS transistors have model parameters μncox = 100μA/V 2 and VTn = 1V, all p-channel transistors

More information

Electronic CAD Practical work. Week 1: Introduction to transistor models. curve tracing of NMOS transfer characteristics

Electronic CAD Practical work. Week 1: Introduction to transistor models. curve tracing of NMOS transfer characteristics Electronic CAD Practical work Dr. Martin John Burbidge Lancashire UK Tel: +44 (0)1524 825064 Email: martin@mjb-rfelectronics-synthesis.com Martin Burbidge 2006 Week 1: Introduction to transistor models

More information

LAB 0: HƯỚNG DẪN LTSPICE

LAB 0: HƯỚNG DẪN LTSPICE LAB 0: HƯỚNG DẪN LTSPICE Tài liệu này được trình bày thành 2 phần chính: + Phần 1: hướng dẫn sử dụng LTSpice + Phần 2: thiết kế bộ inverter với LPSpice Mục đích: giúp người học biết cách sử dụng LTSpice,

More information

MOS Inverters Dr. Lynn Fuller Webpage:

MOS Inverters Dr. Lynn Fuller Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING MOS Inverters Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Email: Lynn.Fuller@rit.edu

More information

problem grade total

problem grade total Fall 2005 6.012 Microelectronic Devices and Circuits Prof. J. A. del Alamo Name: Recitation: November 16, 2005 Quiz #2 problem grade 1 2 3 4 total General guidelines (please read carefully before starting):

More information

Laboratory 1 Single-Stage MOSFET Amplifier Analysis and Design Due Date: Week of February 20, 2014, at the beginning of your lab section

Laboratory 1 Single-Stage MOSFET Amplifier Analysis and Design Due Date: Week of February 20, 2014, at the beginning of your lab section Laboratory 1 Single-Stage MOSFET Amplifier Analysis and Design Due Date: Week of February 20, 2014, at the beginning of your lab section Objective To analyze and design single-stage common source amplifiers.

More information

NMOS Inverter Lab ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING. NMOS Inverter Lab

NMOS Inverter Lab ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING. NMOS Inverter Lab ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING NMOS Inverter Lab Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee/ 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035

More information

Lab 5: MOSFET I-V Characteristics

Lab 5: MOSFET I-V Characteristics 1. Learning Outcomes Lab 5: MOSFET I-V Characteristics In this lab, students will determine the MOSFET I-V characteristics of both a P-Channel MOSFET and an N- Channel MOSFET. Also examined is the effect

More information

A MOS VLSI Comparator

A MOS VLSI Comparator A MOS VLSI Comparator John Monforte School of Music University of Miami, Coral Gables, FL. USA Jayant Datta Department of Electrical Engineering University of Miami, Coral Gables, FL. USA ABSTRACT A comparator

More information

LECTURE 4 SPICE MODELING OF MOSFETS

LECTURE 4 SPICE MODELING OF MOSFETS LECTURE 4 SPICE MODELING OF MOSFETS Objectives for Lecture 4* Understanding the element description for MOSFETs Understand the meaning and significance of the various parameters in SPICE model levels 1

More information

SPICE MODELING OF MOSFETS. Objectives for Lecture 4*

SPICE MODELING OF MOSFETS. Objectives for Lecture 4* LECTURE 4 SPICE MODELING OF MOSFETS Objectives for Lecture 4* Understanding the element description for MOSFETs Understand the meaning and significance of the various parameters in SPICE model levels 1

More information

Lab 6: MOSFET AMPLIFIER

Lab 6: MOSFET AMPLIFIER Lab 6: MOSFET AMPLIFIER NOTE: This is a "take home" lab. You are expected to do the lab on your own time (still working with your lab partner) and then submit your lab reports. Lab instructors will be

More information

CS/ECE 5710/6710. Composite Layout

CS/ECE 5710/6710. Composite Layout CS/ECE 5710/6710 Introduction to Layout Inverter Layout Example Layout Design Rules Composite Layout Drawing the mask layers that will be used by the fabrication folks to make the devices Very different

More information

Introduction to LTSPICE Dr. Lynn Fuller Electrical and Microelectronic Engineering

Introduction to LTSPICE Dr. Lynn Fuller Electrical and Microelectronic Engineering ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Introduction to LTSPICE Dr. Lynn Fuller Electrical and 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Fax (585) 475-5041

More information

Performance Evaluation of Different LNA s having Noise Cancellation and Phase Linearity Characteristics for IR-UWB Systems.

Performance Evaluation of Different LNA s having Noise Cancellation and Phase Linearity Characteristics for IR-UWB Systems. Performance Evaluation of Different NA s having Noise ancellation and Phase inearity haracteristics for I-UWB Systems. Alpana P. Adsul, Shrikant K. Bodhe Abstract In the UWB communication system receiver

More information

Gunning Transceiver Logic Interface Bus Design Project

Gunning Transceiver Logic Interface Bus Design Project Gunning Transceiver Logic Interface Bus Design Project Group #14 EE 307 Winter 2007 February 23, 2007 Robert Hursig rhursig@calpoly.edu Tommy Oleksyn toleksyn@calpoly.edu http://www.drdphd.com/02_14.pdf

More information

Lecture 16: MOS Transistor models: Linear models, SPICE models. Context. In the last lecture, we discussed the MOS transistor, and

Lecture 16: MOS Transistor models: Linear models, SPICE models. Context. In the last lecture, we discussed the MOS transistor, and Lecture 16: MOS Transistor models: Linear models, SPICE models Context In the last lecture, we discussed the MOS transistor, and added a correction due to the changing depletion region, called the body

More information

Chapter 4. Problems. 1 Chapter 4 Problem Set

Chapter 4. Problems. 1 Chapter 4 Problem Set 1 Chapter 4 Problem Set Chapter 4 Problems 1. [M, None, 4.x] Figure 0.1 shows a clock-distribution network. Each segment of the clock network (between the nodes) is 5 mm long, 3 µm wide, and is implemented

More information

PHYSICAL STRUCTURE OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag

PHYSICAL STRUCTURE OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag PHYSICAL STRUCTURE OF CMOS INTEGRATED CIRCUITS Dr. Mohammed M. Farag Outline Integrated Circuit Layers MOSFETs CMOS Layers Designing FET Arrays EE 432 VLSI Modeling and Design 2 Integrated Circuit Layers

More information

Design and Performance Evaluation of Transmitted Reference BPSK UWB Receiver using SIMULINK

Design and Performance Evaluation of Transmitted Reference BPSK UWB Receiver using SIMULINK Design and Performance Evaluation of Transmitted eference BPSK UWB eceiver using SIMUINK Alpana P. Adsul, Shrikant. K. Bodhe SITS, IT Department, Maharashtra (India) Principal, OE, Pandharpur, Maharashtra,

More information

CMOS voltage controlled floating resistor

CMOS voltage controlled floating resistor INT. J. ELECTRONICS, 1996, VOL. 81, NO. 5, 571± 576 CMOS voltage controlled floating resistor HASSAN O. ELWAN², SOLIMAN A. MAHMOUD² AHMED M. SOLIMAN² and A new CMOS floating linear resistor circuit with

More information

Differential Amplifier with Current Source Bias and Active Load

Differential Amplifier with Current Source Bias and Active Load Technical Memo: Differential Amplifier with Current Source Bias and Active Load Introduction: From: Dr. Lynn Fuller, Professor, Electrical and Microelectronic Engineering, Rochester Institute of Technology

More information

HW#3 Solution. Dr. Parker. Spring 2014

HW#3 Solution. Dr. Parker. Spring 2014 HW#3 olution r. Parker pring 2014 Assume for the problems below that V dd = 1.8 V, V tp0 is -.7 V. and V tn0 is.7 V. V tpbodyeffect is -.9 V. and V tnbodyeffect is.9 V. Assume ß n (k n )= 219.4 W/L µ A(microamps)/V

More information

Introduction to Modeling MOSFETS in SPICE

Introduction to Modeling MOSFETS in SPICE ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Introduction to Modeling MOSFETS in SPICE Dr. Lynn Fuller Electrical and 82 Lomb Memorial Drive Rochester, NY 14623-5604 Dr. Fuller s Webpage:

More information

Analog CMOS Interface Circuits for UMSI Chip of Environmental Monitoring Microsystem

Analog CMOS Interface Circuits for UMSI Chip of Environmental Monitoring Microsystem Analog CMOS Interface Circuits for UMSI Chip of Environmental Monitoring Microsystem A report Submitted to Canopus Systems Inc. Zuhail Sainudeen and Navid Yazdi Arizona State University July 2001 1. Overview

More information

Novel MOS-C oscillators using the current feedback op-amp

Novel MOS-C oscillators using the current feedback op-amp INT. J. ELECTRONICS, 2000, VOL. 87, NO. 3, 269± 280 Novel MOS-C oscillators using the current feedback op-amp SOLIMAN A. MAHMOUDy and AHMED M. SOLIMANyz Three new MOS-C oscillators using the current feedback

More information

The basic inverter circuit or common-source amplifier using a resistive load is shown in Figure 1. source s

The basic inverter circuit or common-source amplifier using a resistive load is shown in Figure 1. source s of 0 MOS FET Inverter Amplifier The basic inverter circuit or common-source amplifier using a resistive load is shown in Figure. g d Io gate R L drain in in rds R L out out in source s Figure Common-source

More information

INTRODUCTION TO CIRCUIT SIMULATION USING SPICE

INTRODUCTION TO CIRCUIT SIMULATION USING SPICE LSI Circuits INTRODUCTION TO CIRCUIT SIMULATION USING SPICE Introduction: SPICE (Simulation Program with Integrated Circuit Emphasis) is a very powerful and probably the most widely used simulator for

More information

An Analog Phase-Locked Loop

An Analog Phase-Locked Loop 1 An Analog Phase-Locked Loop Greg Flewelling ABSTRACT This report discusses the design, simulation, and layout of an Analog Phase-Locked Loop (APLL). The circuit consists of five major parts: A differential

More information

Lecture 020 ECE4430 Review II (1/5/04) Page 020-1

Lecture 020 ECE4430 Review II (1/5/04) Page 020-1 Lecture 020 ECE4430 Review II (1/5/04) Page 020-1 LECTURE 020 ECE 4430 REVIEW II (READING: GHLM - Chap. 2) Objective The objective of this presentation is: 1.) Identify the prerequisite material as taught

More information

Modeling MOS Transistors. Prof. MacDonald

Modeling MOS Transistors. Prof. MacDonald Modeling MOS Transistors Prof. MacDonald 1 Modeling MOSFETs for simulation l Software is used simulate circuits for validation l Original program SPICE UC Berkeley Simulation Program with Integrated Circuit

More information

EE 330 Laboratory 7 MOSFET Device Experimental Characterization and Basic Applications Spring 2017

EE 330 Laboratory 7 MOSFET Device Experimental Characterization and Basic Applications Spring 2017 EE 330 Laboratory 7 MOSFET Device Experimental Characterization and Basic Applications Spring 2017 Objective: The objective of this laboratory experiment is to become more familiar with the operation of

More information

CHAPTER 6 DESIGN OF VOLTAGE CONTROLLED OSCILLATOR (VCO) USING 45 NM VLSI TECHNOLOGY

CHAPTER 6 DESIGN OF VOLTAGE CONTROLLED OSCILLATOR (VCO) USING 45 NM VLSI TECHNOLOGY CHAPTER 6 DESIGN OF VOLTAGE CONTROLLED OSCILLATOR (VCO) USING 45 NM VLSI TECHNOLOGY Oscillators are required to generate the carrying signals for radio frequency transmission, but also for the main clocks

More information

Typical NMOS Modeling Using a Skewing Method

Typical NMOS Modeling Using a Skewing Method The 4th International Conference on Integrated Circuits, Design, and Verification Mo Chi Minh City, Vietnam (Nov. 15, 2013) Typical NMOS Modeling Using a Skewing Method - An NMOS Modeling Method for RF

More information

ECE4902 B2015 HW Set 1

ECE4902 B2015 HW Set 1 ECE4902 B2015 HW Set 1 Due in class Tuesday November 3. To make life easier on the graders: Be sure your NAME and ECE MAILBOX NUMBER are prominently displayed on the upper right of what you hand in. When

More information

Lecture 020 ECE4430 Review II (1/5/04) Page 020-1

Lecture 020 ECE4430 Review II (1/5/04) Page 020-1 Lecture 020 ECE4430 Review II (1/5/04) Page 020-1 LECTURE 020 ECE 4430 REVIEW II (READING: GHLM - Chap. 2) Objective The objective of this presentation is: 1.) Identify the prerequisite material as taught

More information

NEW ALL-PASS FILTER CIRCUIT COMPENSATING FOR C-CDBA NON-IDEALITIES

NEW ALL-PASS FILTER CIRCUIT COMPENSATING FOR C-CDBA NON-IDEALITIES Journal of Circuits, Systems, and Computers Vol. 19, No. 2 (2010) 381 391 #.c World Scienti c Publishing Company DOI: 10.1142/S0218126610006128 NEW ALL-PASS FILTER CIRCUIT COMPENSATING FOR C-CDBA NON-IDEALITIES

More information

Chapter 1. Introduction

Chapter 1. Introduction EECS3611 Analog Integrated Circuit esign Chapter 1 Introduction EECS3611 Analog Integrated Circuit esign Instructor: Prof. Ebrahim Ghafar-Zadeh, Prof. Peter Lian email: egz@cse.yorku.ca peterlian@cse.yorku.ca

More information

ECEN3250 Lab 9 CMOS Logic Inverter

ECEN3250 Lab 9 CMOS Logic Inverter Lab 9 CMOS Logic Inverter ECE Department University of Colorado, Boulder 1 Prelab Read Section 4.10 (4th edition Section 5.8), and the Lab procedure Do and turn in Exercise 4.41 (page 342) Do PSpice (.dc)

More information

UNIT 3: FIELD EFFECT TRANSISTORS

UNIT 3: FIELD EFFECT TRANSISTORS FIELD EFFECT TRANSISTOR: UNIT 3: FIELD EFFECT TRANSISTORS The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There are

More information

MOS TRANSISTOR THEORY

MOS TRANSISTOR THEORY MOS TRANSISTOR THEORY Introduction A MOS transistor is a majority-carrier device, in which the current in a conducting channel between the source and the drain is modulated by a voltage applied to the

More information

Appendix 5 Model card parameters for built-in components

Appendix 5 Model card parameters for built-in components Appendix 5 Model card parameters for built-in components In this Appendix, names and default values of model card parameters are given for built-in analogue components. These are SPICE models of diode,

More information

VLSI Design I. The MOSFET model Wow!

VLSI Design I. The MOSFET model Wow! VLSI Design I The MOSFET model Wow! Are device models as nice as Cindy? Overview The large signal MOSFET model and second order effects. MOSFET capacitances. Introduction in fet process technology Goal:

More information

D n ox GS THN DS GS THN DS GS THN. D n ox GS THN DS GS THN DS GS THN

D n ox GS THN DS GS THN DS GS THN. D n ox GS THN DS GS THN DS GS THN Name: EXAM #3 Closed book, closed notes. Calculators may be used for numeric computations only. All work is to be your own - show your work for maximum partial credit. Data: Use the following data in all

More information

Preliminary Exam, Fall 2013 Department of Electrical and Computer Engineering University of California, Irvine EECS 170B

Preliminary Exam, Fall 2013 Department of Electrical and Computer Engineering University of California, Irvine EECS 170B Preliminary Exam, Fall 2013 Department of Electrical and Computer Engineering University of California, Irvine EECS 170B Problem 1. Consider the following circuit, where a saw-tooth voltage is applied

More information

Experiment 3 - IC Resistors

Experiment 3 - IC Resistors Experiment 3 - IC Resistors.T. Yeung, Y. Shin,.Y. Leung and R.T. Howe UC Berkeley EE 105 1.0 Objective This lab introduces the Micro Linear Lab Chips, with measurements of IC resistors and a distributed

More information

LECTURE 09 LARGE SIGNAL MOSFET MODEL

LECTURE 09 LARGE SIGNAL MOSFET MODEL Lecture 9 Large Signal MOSFET Model (5/14/18) Page 9-1 LECTURE 9 LARGE SIGNAL MOSFET MODEL LECTURE ORGANIZATION Outline Introduction to modeling Operation of the MOS transistor Simple large signal model

More information

Comparison of CMOS XOR and XNOR gate design

Comparison of CMOS XOR and XNOR gate design Oregon Health & Science University OHSU Digital Commons Scholar Archive August 2002 Comparison of CMOS XOR and XNOR gate design Makara Tang Follow this and additional works at: http://digitalcommons.ohsu.edu/etd

More information

Basic Fabrication Steps

Basic Fabrication Steps Basic Fabrication Steps and Layout Somayyeh Koohi Department of Computer Engineering Adapted with modifications from lecture notes prepared by author Outline Fabrication steps Transistor structures Transistor

More information

Field Effect Transistors

Field Effect Transistors Field Effect Transistors LECTURE NO. - 41 Field Effect Transistors www.mycsvtunotes.in JFET MOSFET CMOS Field Effect transistors - FETs First, why are we using still another transistor? BJTs had a small

More information

500K V C C 1 R 1. V OUT (t) M 1 -2V

500K V C C 1 R 1. V OUT (t) M 1 -2V EE 330 Homework 8 Spring 2017 Due Friday March 3 Solve Problem 15 and any 8 of the remaining problems. Each problem is worth 10 points except Problem 15 which is worth 20 points. Unless stated to the contrary,

More information

Problem: 4.6. Lay out an NMOS device with a length of 1 and width of 10. Label all four of the MOSFET s terminals.

Problem: 4.6. Lay out an NMOS device with a length of 1 and width of 10. Label all four of the MOSFET s terminals. Meshack Appikatla meshakappikatla@mail.boisestate.edu Problem: 4.6. Lay out an NMOS device with a length of 1 and width of 10. Label all four of the MOSFET s terminals. Solution: A 10x10 box is drawn on

More information

EE 230 Lab Lab 9. Prior to Lab

EE 230 Lab Lab 9. Prior to Lab MOS transistor characteristics This week we look at some MOS transistor characteristics and circuits. Most of the measurements will be done with our usual lab equipment, but we will also use the parameter

More information

EE 501 Lab9 Widlar Biasing Circuit and Bandgap Reference Circuit

EE 501 Lab9 Widlar Biasing Circuit and Bandgap Reference Circuit EE 501 Lab9 Widlar Biasing Circuit and Bandgap Reference Circuit Due Nov. 19, 2015 Objective: 1. Understand the Widlar current source circuit. 2. Built a Self-biasing current source circuit. 3. Understand

More information

Georgia Institute of Technology School of Electrical and Computer Engineering. Midterm Exam

Georgia Institute of Technology School of Electrical and Computer Engineering. Midterm Exam Georgia Institute of Technology School of Electrical and Computer Engineering Midterm Exam ECE-3400 Fall 2013 Tue, September 24, 2013 Duration: 80min First name Solutions Last name Solutions ID number

More information

Common-Source Amplifiers

Common-Source Amplifiers Lab 2: Common-Source Amplifiers Introduction The common-source stage is the most basic amplifier stage encountered in CMOS analog circuits. Because of its very high input impedance, moderate-to-high gain,

More information

ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers

ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers Objective Design, simulate and layout various inverting amplifiers. Introduction Inverting amplifiers are fundamental building blocks of electronic

More information

Field Effect Transistors (FET s) University of Connecticut 136

Field Effect Transistors (FET s) University of Connecticut 136 Field Effect Transistors (FET s) University of Connecticut 136 Field Effect Transistors (FET s) FET s are classified three ways: by conduction type n-channel - conduction by electrons p-channel - conduction

More information

Accurate active-feedback CM OS cascode current mirror with improved output swing

Accurate active-feedback CM OS cascode current mirror with improved output swing INT. J. ELECTRONICS, 1998, VOL. 84, NO. 4, 335±343 Accurate active-feedback CM OS cascode current mirror with improved output swing ALÇI ZEKÇI² and HAKAN KUNTMAN² An improved active-feedback CMOS cascode

More information

EEEE 381 Electronics I

EEEE 381 Electronics I EEEE 381 Electronics I Lab #5: Two-Stage CMOS Op-Amp Oeriew In this lab we will expand on the work done in Lab #4, which introduced the actiely-loaded differential pair. A second stage that is comprised

More information

PMOS-based Integrated Charge Pumps with Extended Voltage Range in Standard CMOS Technology

PMOS-based Integrated Charge Pumps with Extended Voltage Range in Standard CMOS Technology PMOS-based Integrated Charge Pumps with Extended Voltage Range in Standard CMOS Technology by Jingqi Liu A Thesis presented to The University of Guelph In partial fulfillment of requirements for the degree

More information

Microwind & Dsch User's Manual Version 2.7

Microwind & Dsch User's Manual Version 2.7 National Institute of Applied Sciences Department of Electrical & Computer Engineering Toulouse, FRANCE Microwind & Dsch User's Manual Version 2.7 November 2003 Etienne Sicard http://www.microwind.org

More information

the reactance of the capacitor, 1/2πfC, is equal to the resistance at a frequency of 4 to 5 khz.

the reactance of the capacitor, 1/2πfC, is equal to the resistance at a frequency of 4 to 5 khz. EXPERIMENT 12 INTRODUCTION TO PSPICE AND AC VOLTAGE DIVIDERS OBJECTIVE To gain familiarity with PSPICE, and to review in greater detail the ac voltage dividers studied in Experiment 14. PROCEDURE 1) Connect

More information

Sticks Diagram & Layout. Part II

Sticks Diagram & Layout. Part II Sticks Diagram & Layout Part II Well and Substrate Taps Substrate must be tied to GND and n-well to V DD Metal to lightly-doped semiconductor forms poor connection called Shottky Diode Use heavily doped

More information

Fundamentos de Electrónica Lab Guide

Fundamentos de Electrónica Lab Guide Fundamentos de Electrónica Lab Guide Field Effect Transistor MOS-FET IST-2016/2017 2 nd Semester I-Introduction These are the objectives: a. n-type MOSFET characterization from the I(U) characteristics.

More information

EE584 Introduction to VLSI Design Final Project Document Group 9 Ring Oscillator with Frequency selector

EE584 Introduction to VLSI Design Final Project Document Group 9 Ring Oscillator with Frequency selector EE584 Introduction to VLSI Design Final Project Document Group 9 Ring Oscillator with Frequency selector Group Members Uttam Kumar Boda Rajesh Tenukuntla Mohammad M Iftakhar Srikanth Yanamanagandla 1 Table

More information

ETI , Good luck! Written Exam Integrated Radio Electronics. Lund University Dept. of Electroscience

ETI , Good luck! Written Exam Integrated Radio Electronics. Lund University Dept. of Electroscience und University Dept. of Electroscience EI170 Written Exam Integrated adio Electronics 2010-03-10, 08.00-13.00 he exam consists of 5 problems which can give a maximum of 6 points each. he total maximum

More information

6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers

6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers 6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers Michael Perrott Massachusetts Institute of Technology Copyright 2003 by Michael H. Perrott Broadband Communication

More information

Experiment 5 Single-Stage MOS Amplifiers

Experiment 5 Single-Stage MOS Amplifiers Experiment 5 Single-Stage MOS Amplifiers B. Cagdaser, H. Chong, R. Lu, and R. T. Howe UC Berkeley EE 105 Fall 2005 1 Objective This is the first lab dealing with the use of transistors in amplifiers. We

More information

Microelectronics, BSc course

Microelectronics, BSc course Microelectronics, BSc course MOS circuits: CMOS circuits, construction http://www.eet.bme.hu/~poppe/miel/en/14-cmos.pptx http://www.eet.bme.hu The abstraction level of our study: SYSTEM + MODULE GATE CIRCUIT

More information

Lecture 190 CMOS Technology, Compatible Devices (10/28/01) Page 190-1

Lecture 190 CMOS Technology, Compatible Devices (10/28/01) Page 190-1 Lecture 190 CMOS Technology, Compatible Devices (10/28/01) Page 190-1 LECTURE 190 CMOS TECHNOLOGY-COMPATIBLE DEVICES (READING: Text-Sec. 2.9) INTRODUCTION Objective The objective of this presentation is

More information

1. Short answer questions. (30) a. What impact does increasing the length of a transistor have on power and delay? Why? (6)

1. Short answer questions. (30) a. What impact does increasing the length of a transistor have on power and delay? Why? (6) CSE 493/593 Test 2 Fall 2011 Solution 1. Short answer questions. (30) a. What impact does increasing the length of a transistor have on power and delay? Why? (6) Decreasing of W to make the gate slower,

More information

Week 9a OUTLINE. MOSFET I D vs. V GS characteristic Circuit models for the MOSFET. Reading. resistive switch model small-signal model

Week 9a OUTLINE. MOSFET I D vs. V GS characteristic Circuit models for the MOSFET. Reading. resistive switch model small-signal model Week 9a OUTLINE MOSFET I vs. V GS characteristic Circuit models for the MOSFET resistive switch model small-signal model Reading Rabaey et al.: Chapter 3.3.2 Hambley: Chapter 12 (through 12.5); Section

More information

MOSFET Terminals. The voltage applied to the GATE terminal determines whether current can flow between the SOURCE & DRAIN terminals.

MOSFET Terminals. The voltage applied to the GATE terminal determines whether current can flow between the SOURCE & DRAIN terminals. MOSFET Terminals The voltage applied to the GATE terminal determines whether current can flow between the SOURCE & DRAIN terminals. For an n-channel MOSFET, the SOURCE is biased at a lower potential (often

More information

Q1. Explain the construction and principle of operation of N-Channel and P-Channel Junction Field Effect Transistor (JFET).

Q1. Explain the construction and principle of operation of N-Channel and P-Channel Junction Field Effect Transistor (JFET). Q. Explain the construction and principle of operation of N-Channel and P-Channel Junction Field Effect Transistor (JFET). Answer: N-Channel Junction Field Effect Transistor (JFET) Construction: Drain(D)

More information

EE241 - Spring 2013 Advanced Digital Integrated Circuits. Projects. Groups of 3 Proposals in two weeks (2/20) Topics: Lecture 5: Transistor Models

EE241 - Spring 2013 Advanced Digital Integrated Circuits. Projects. Groups of 3 Proposals in two weeks (2/20) Topics: Lecture 5: Transistor Models EE241 - Spring 2013 Advanced Digital Integrated Circuits Lecture 5: Transistor Models Projects Groups of 3 Proposals in two weeks (2/20) Topics: Soft errors in datapaths Soft errors in memory Integration

More information

Common-source Amplifiers

Common-source Amplifiers Lab 1: Common-source Amplifiers Introduction The common-source amplifier is one of the basic amplifiers in CMOS analog circuits. Because of its very high input impedance, relatively high gain, low noise,

More information

A Compact Folded-cascode Operational Amplifier with Class-AB Output Stage

A Compact Folded-cascode Operational Amplifier with Class-AB Output Stage A Compact Folded-cascode Operational Amplifier with Class-AB Output Stage EEE 523 Advanced Analog Integrated Circuits Project Report Fuding Ge You are an engineer who is assigned the project to design

More information

EE 140 HW7 SOLUTION 1. OPA334. a. From the data sheet, we see that. Vss 0.1V Vcm Vdd 1.5V

EE 140 HW7 SOLUTION 1. OPA334. a. From the data sheet, we see that. Vss 0.1V Vcm Vdd 1.5V EE 140 HW7 SOLUTION 1. OPA334 a. From the data sheet, we see that Vss 0.1V Vcm Vdd 1.5V The input common mode voltage must remain at least 1.5V below vdd. The input common mode voltage can be below Vss.

More information

Introduction to the Long Channel MOSFET. Dr. Lynn Fuller

Introduction to the Long Channel MOSFET. Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Introduction to the Long Channel MOSFET Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee Electrical and 82 Lomb Memorial Drive Rochester,

More information

Basic Layout Techniques

Basic Layout Techniques Basic Layout Techniques Rahul Shukla Advisor: Jaime Ramirez-Angulo Spring 2005 Mixed Signal VLSI Lab Klipsch School of Electrical and Computer Engineering New Mexico State University Outline Transistor

More information

ES 330 Electronics II Homework # 1 (Fall 2016 SOLUTIONS)

ES 330 Electronics II Homework # 1 (Fall 2016 SOLUTIONS) SOLUTIONS ES 330 Electronics II Homework # 1 (Fall 2016 SOLUTIONS) Problem 1 (20 points) We know that a pn junction diode has an exponential I-V behavior when forward biased. The diode equation relating

More information