ECEN474/704: (Analog) VLSI Circuit Design Fall 2016
|
|
- Eric Evans
- 1 years ago
- Views:
Transcription
1 ECEN474/704: (Analog) VLSI Circuit Design Fall 2016 Lecture 1: Introduction Sam Palermo Analog & Mixed-Signal Center Texas A&M University
2 Announcements Turn in your 0.18um NDA form by Thursday Sep 1 No Lab this week Lab 1 starts Sep 6 or 7 Current Reading Razavi Chapters 2 & 17 2
3 Analog Circuit Sequence /
4 Why is Analog Important? [Silva] Naturally occurring signals are analog Analog circuits are required to amplify and condition the signal for further processing Performance of analog circuits often determine whether the chip works or not Examples Sensors and actuators (imagers, MEMS) RF transceivers Microprocessor circuits (PLL, high-speed I/O, thermal sensor) 4
5 Integrated Circuits [Bohr ISSCC 2009] 4-core Microprocessor (45nm CMOS) Mostly Digital Noteable analog blocks PLL, I/O circuits, thermal sensor [Sowlati ISSCC 2009] Cellular Transceiver (0.13 m CMOS) [Pertijs ISSCC 2009] Considerable analog & digital Instrumentation Amplifier (0.5 m CMOS) Mostly Analog Some Digital Control Logic 5
6 The Power of CMOS Scaling [Bohr ISSCC 2009] Scaling transistor dimensions allows for improved performance, reduced power, and reduced cost/transistor Assuming you can afford to build the fab 32nm CMOS fab ~3-4 BILLION dollars 6
7 Course Topics CMOS technology Active and passive devices Layout techniques MOS circuit building blocks Single-stage amplifiers, current mirrors, differential pairs Amplifiers and advanced circuit techiques 7
8 Course Goals Learn analog CMOS design approaches Specification Circuit Topology Circuit Simulation Layout Fabrication Understand CMOS technology from a design perspective Device modeling and layout techniques Use circuit building blocks to construct moderately complex analog circuits Multi-stage amplifiers, filters, simple data converters, 8
9 Administrative Instructor: Sam Palermo 315E WERC Bldg., , Office hours: M 2:30pm-4:00pm, T 10:00AM-11:30AM Distance learning office hours will be held via Zoom (similar to WebEx) at the same time. me if you want to meet and I will set up the session. Lectures: TR 2:20pm-3:35pm, WEB 049 Distance learning lecture recordings will be posted online on same day at ~4PM Class web page We will also use ecampus, but the above will be the main site 9
10 Class Material Textbook: Design of Analog CMOS Integrated Circuits, B. Razavi, McGraw-Hill, 2 nd Edition, References Analog Integrated Circuit Design, T. Chan Carusone, D. Johns and K. Martin, John Wiley & Sons, 2 nd Edition, Analysis and Design of Analog Integrated Circuits, P. Gray, P. Hurst, S. Lewis, and R. Meyer, John Wiley and Sons, 5 th Edition, Microelectronic Circuits, A. Sedra and K. Smith, Oxford University Press, 7 th Edition, Technical Papers Class notes Posted on the web 10
11 Grading Exams (60%) Three midterm exams in class (20% each) For distance learning students, you should have your manager proctor the exam Homework (10%) Collaboration is allowed, but independent simulations and write-ups Need to setup CADENCE simulation environment No late homework will be graded Laboratory (20%) Lab will start on the second week (Sep. 6) Need to complete NDA for 180nm process access Final Project (10%) Groups of 1-3 students Report and PowerPoint presentation required 11
12 Preliminary Schedule Dates may change with reasonable notice 12
13 CMOS Technology Overview MOS Transistors Interconnect Diodes Resistors Capacitors Inductors Bipolar Transistors 13
14 CMOS Technology [Razavi] NMOS PMOS Why p-substrate? Easier to build n-wells vs p-wells Allows for overall reduced doping levels 14
15 NMOS Transistor Source Metal 1 CVD Oxide Drain [Silva] NMOS Symbols Poly Gate n+ n+ Gate Oxide Cross Section p substrate Bulk Gate Source Drain Circuit Symbol Bulk n+ Poly n+ W Top View L 15
16 PMOS Transistor Drain Metal 1 CVD Oxide Source [Silva] PMOS Symbols p+ Poly Gate Gate Oxide n-well Bulk p+ p substrate Cross Section Bulk Gate Drain Source Circuit Symbol Bulk Top View 16
17 Today s Planar CMOS Transistors [Bohr ISSCC 2009] Today s transistors have advanced device structures Modern transistors are moving from poly-gates back to metal-gates Allows for High-K gate dielectric and reduced gate leakage current 17
18 FinFET Transistors 32nm Planar Transistors [Bohr 2011] 22nm FinFET Transistors Introducing a vertical 3 rd - dimension allows for better gate control and superior device performance The most advanced CMOS processes are based on these FinFET devices [Nowak IEEE 2004] In the graphs above Double-Gate means the FinFET transistor 18
19 Interconnect (Wires) [Bohr ISSCC 2009] 19
20 Diodes [Silva] Anode Cathode Typical values: P + = acceptors /cm 3 SiO 2 A C Diode P + N N + Bulk (substrate) P-type Contact P= acceptors /cm 3 N= donors/cm 3 N + = donors/cm 3 Metal 5x10 22 electrons/cm 3 20
21 Resistors Poly Resistor Nwell Resistor [Razavi] Different resistor types have varying levels of accuracy and temperature and voltage sensitivities 21
22 Capacitors Poly -Diffusion Poly -Poly Metal1 -Poly [Razavi] Vertical Metal Sandwich Lateral Metal-Oxide-Metal (MOM) [Wang] [Ho] 22
23 Inductors [Silva/Park] Inductors are generally too big for widespread use in analog IC design Can fit thousands of transistors in a typical inductor area (100 m x 100 m) Useful to extend amplifier bandwidth at zero power cost (but significant area cost) 23
24 Bipolar Transistors Vertical PNP [Johns] Vertical PNP Bandgap Reference Useful in a precise voltage reference circuit commonly implemented in ICs (Bandgap Reference) 24
25 Bipolar Transistors Latchup [Razavi] Equivalent Circuit Potential for parasitic BJTs (Vertical PNP and Lateral NPN) to form a positive feedback loop circuit If circuit is triggered, due to current injected into substrate, then a large current can be drawn through the circuit and cause damage Important to minimize substrate and well resistance with many contacts/guard rings 25
26 Next Time MOS Transistor Modeling DC I-V Equations Small-Signal Model 26
Academic Course Description. VL2004 CMOS Analog VLSI Second Semester, (Even semester)
Academic Course Description SRM University Faculty of Engineering and Technology Department of Electronics and Communication Engineering VL2004 CMOS Analog VLSI Second Semester, 2013-14 (Even semester)
0. Introduction to Microelectronic Circuits
0. Introduction to Microelectronic Circuits S. S. Dan and S. R. Zinka Department of Electrical & Electronics Engineering BITS Pilani, Hyderbad Campus January 18, 2016 Outline 1 Introduction 2 Course Contents
Introduction to Electronic Devices
(Course Number 300331) Fall 2006 Instructor: Dr. Dietmar Knipp Assistant Professor of Electrical Engineering Information: http://www.faculty.iubremen.de/dknipp/ Source: Apple Ref.: Apple Ref.: IBM Critical
2.8 - CMOS TECHNOLOGY
CMOS Technology (6/7/00) Page 1 2.8 - CMOS TECHNOLOGY INTRODUCTION Objective The objective of this presentation is: 1.) Illustrate the fabrication sequence for a typical MOS transistor 2.) Show the physical
EE 410: Integrated Circuit Fabrication Laboratory
EE 410: Integrated Circuit Fabrication Laboratory 1 EE 410: Integrated Circuit Fabrication Laboratory Web Site: Instructor: http://www.stanford.edu/class/ee410 https://ccnet.stanford.edu/ee410/ (on CCNET)
ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS
ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS Fourth Edition PAUL R. GRAY University of California, Berkeley PAUL J. HURST University of California, Davis STEPHEN H. LEWIS University of California,
Design and Layout of Two Stage High Bandwidth Operational Amplifier
Design and Layout of Two Stage High Bandwidth Operational Amplifier Yasir Mahmood Qureshi Abstract This paper presents the design and layout of a two stage, high speed operational amplifiers using standard
Design and Simulation of Voltage-Mode and Current-Mode Class-D Power Amplifiers for 2.4 GHz Applications
Design and Simulation of Voltage-Mode and Current-Mode Class-D Power Amplifiers for 2.4 GHz Applications Armindo António Barão da Silva Pontes Abstract This paper presents the design and simulations of
Analog and Telecommunication Electronics
Politecnico di Torino ICT School Analog and Telecommunication Electronics A0 Course Introduction» Goals and contents» Course organization» Learning material» Reference system 15/03/2011-1 ATLCE - A0-2010
Lecture 0: Introduction
Lecture 0: Introduction Introduction Integrated circuits: many transistors on one chip. Very Large Scale Integration (VLSI): bucketloads! Complementary Metal Oxide Semiconductor Fast, cheap, low power
ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016
ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016 Lecture 1: Introduction Sam Palermo Analog & Mixed-Signal Center Texas A&M University Class Topics System and design issues
A Linear CMOS Low Drop-Out Voltage Regulator in a 0.6µm CMOS Technology
International Journal of Electronics and Electrical Engineering Vol. 3, No. 3, June 2015 A Linear CMOS Low DropOut Voltage Regulator in a 0.6µm CMOS Technology Mohammad Maadi Middle East Technical University,
What will we do next time?
What will we do next time? Amplifiers and differential pairs Why differential? Stability Why stability? Phase margin Compensation 62 of 113 Lecture 1, ANIK Introduction, CMOS Analog integrated circuits
An Improved Bandgap Reference (BGR) Circuit with Constant Voltage and Current Outputs
International Journal of Research in Engineering and Innovation Vol-1, Issue-6 (2017), 60-64 International Journal of Research in Engineering and Innovation (IJREI) journal home page: http://www.ijrei.com
Metal-Oxide-Silicon (MOS) devices PMOS. n-type
Metal-Oxide-Silicon (MOS devices Principle of MOS Field Effect Transistor transistor operation Metal (poly gate on oxide between source and drain Source and drain implants of opposite type to substrate.
Lecture 4 -- Tuesday, Sept. 19: Non-uniform injection and/or doping. Diffusion. Continuity/conservation. The five basic equations.
6.012 ELECTRONIC DEVICES AND CIRCUITS Schedule -- Fall 1995 (8/31/95 version) Recitation 1 -- Wednesday, Sept. 6: Review of 6.002 models for BJT. Discussion of models and modeling; motivate need to go
DAT175: Topics in Electronic System Design
DAT175: Topics in Electronic System Design Analog Readout Circuitry for Hearing Aid in STM90nm 21 February 2010 Remzi Yagiz Mungan v1.10 1. Introduction In this project, the aim is to design an adjustable
Fairchild s Process Enhancements Eliminate the CMOS SCR Latch-Up Problem In 74HC Logic
Fairchild s Process Enhancements Eliminate the CMOS SCR Latch-Up Problem In 74HC Logic INTRODUCTION SCR latch-up is a parasitic phenomena that has existed in circuits fabricated using bulk silicon CMOS
ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016
ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016 Lecture 10: Electroabsorption Modulator Transmitters Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements
Academic Course Description. VL2107 CMOS Mixed Signal Circuit Design Third Semester, (Odd semester)
Academic Course Description SRM University Faculty of Engineering and Technology Department of Electronics and Communication Engineering VL2107 CMOS Mixed Signal Circuit Design Third Semester, 2014-15
EE5310: Analog Electronic Circuits EE3002: Analog Circuits
EE5310: Analog Electronic Circuits EE3002: Analog Circuits Introduction Aniruddhan S Nagendra Krishnapura https://courses.iitm.ac.in Department of Electrical Engineering Indian Institute of Technology,
Low Voltage Standard CMOS Opamp Design Techniques
Low Voltage Standard CMOS Opamp Design Techniques Student name: Eliyahu Zamir Student number: 961339780 Course: ECE1352F Proffessor: Khoman Phang Page 1 of 18 1.Abstract In a never-ending effort to reduce
Lecture 26 ANNOUNCEMENTS OUTLINE. Self-biased current sources BJT MOSFET Guest lecturer Prof. Niknejad
Lecture 26 ANNOUNCEMENTS Homework 12 due Thursday, 12/6 OUTLINE Self-biased current sources BJT MOSFET Guest lecturer Prof. Niknejad EE105 Fall 2007 Lecture 26, Slide 1 Prof. Liu, UC Berkeley Review: Current
ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.8
ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.8 10.8 10Gb/s Limiting Amplifier and Laser/Modulator Driver in 0.18µm CMOS Technology Sherif Galal, Behzad Razavi Electrical Engineering
PowerDsine/Freescale
April 25, 2005 PowerDsine/Freescale PD64004 4 Channel Power-Over-Ethernet (POE) Manager Process Review For questions, comments, or more information about this report, or for any additional technical needs
ECEN 5008: Analog IC Design. Final Exam
ECEN 5008 Initials: 1/10 ECEN 5008: Analog IC Design Final Exam Spring 2004 Instructions: 1. Exam Policy: Time-limited, 150-minute exam. When the time is called, all work must stop. Put your initials on
Chapter 3 CMOS processing technology (II)
Chapter 3 CMOS processing technology (II) Twin-tub CMOS process 1. Provide separate optimization of the n-type and p-type transistors 2. Make it possible to optimize "Vt", "Body effect", and the "Gain"
DIGITAL VLSI LAB ASSIGNMENT 1
DIGITAL VLSI LAB ASSIGNMENT 1 Problem 1: NMOS and PMOS plots using Cadence. In this exercise, you are required to generate both NMOS and PMOS I-V device characteristics (I/P and O/P) using Cadence (Use
VLSI Design. Introduction
VLSI Design Introduction Outline Introduction Silicon, pn-junctions and transistors A Brief History Operation of MOS Transistors CMOS circuits Fabrication steps for CMOS circuits Introduction Integrated
Transistor Scaling in the Innovation Era. Mark Bohr Intel Senior Fellow Logic Technology Development August 15, 2011
Transistor Scaling in the Innovation Era Mark Bohr Intel Senior Fellow Logic Technology Development August 15, 2011 MOSFET Scaling Device or Circuit Parameter Scaling Factor Device dimension tox, L, W
ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers
ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers Objective Design, simulate and layout various inverting amplifiers. Introduction Inverting amplifiers are fundamental building blocks of electronic
ELEC 350L Electronics I Laboratory Fall 2012
ELEC 350L Electronics I Laboratory Fall 2012 Lab #9: NMOS and CMOS Inverter Circuits Introduction The inverter, or NOT gate, is the fundamental building block of most digital devices. The circuits used
Linköping University. Reinventing research and education
Linköping University Reinventing research and education J Jacob Wikner Electronics Systems Department of Electrical Engineering Lecture 1, ANDA Course introduction, CMOS basics Analog design, second course
UMAINE ECE Morse Code ROM and Transmitter at ISM Band Frequency
UMAINE ECE Morse Code ROM and Transmitter at ISM Band Frequency Jamie E. Reinhold December 15, 2011 Abstract The design, simulation and layout of a UMAINE ECE Morse code Read Only Memory and transmitter
A 2.4-GHz 24-dBm SOI CMOS Power Amplifier with Fully Integrated Output Balun and Switched Capacitors for Load Line Adaptation
A 2.4-GHz 24-dBm SOI CMOS Power Amplifier with Fully Integrated Output Balun and Switched Capacitors for Load Line Adaptation Francesco Carrara 1, Calogero D. Presti 2,1, Fausto Pappalardo 1, and Giuseppe
Static Random Access Memory - SRAM Dr. Lynn Fuller Webpage:
ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Static Random Access Memory - SRAM Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Email:
5.1 BJT Device Structure and Physical Operation
11/28/2004 section 5_1 BJT Device Structure and Physical Operation blank 1/2 5.1 BJT Device Structure and Physical Operation Reading Assignment: pp. 377-392 Another kind of transistor is the Bipolar Junction
Fundamentals of Microelectronics
Fundamentals of Microelectronics CH1 Why Microelectronics? CH2 Basic Physics of Semiconductors CH3 Diode Circuits CH4 Physics of Bipolar Transistors CH5 Bipolar Amplifiers CH6 Physics of MOS Transistors
Signal Integrity Design of TSV-Based 3D IC
Signal Integrity Design of TSV-Based 3D IC October 24, 21 Joungho Kim at KAIST joungho@ee.kaist.ac.kr http://tera.kaist.ac.kr 1 Contents 1) Driving Forces of TSV based 3D IC 2) Signal Integrity Issues
Rail-To-Rail Output Op-Amp Design with Negative Miller Capacitance Compensation
Rail-To-Rail Op-Amp Design with Negative Miller Capacitance Compensation Muhaned Zaidi, Ian Grout, Abu Khari bin A ain Abstract In this paper, a two-stage op-amp design is considered using both Miller
Introduction to VLSI design using Cadence Electronic Design Automation Tools
Bangladesh University of Engineering & Technology Department of Electrical & Electronic Engineering Introduction to VLSI design using Cadence Electronic Design Automation Tools Laboratory Module 4: Layout
ITRS: RF and Analog/Mixed- Signal Technologies for Wireless Communications. Nick Krajewski CMPE /16/2005
ITRS: RF and Analog/Mixed- Signal Technologies for Wireless Communications Nick Krajewski CMPE 640 11/16/2005 Introduction 4 Working Groups within Wireless Analog and Mixed Signal (0.8 10 GHz) (Covered
ECE/CoE 0132: FETs and Gates
ECE/CoE 0132: FETs and Gates Kartik Mohanram September 6, 2017 1 Physical properties of gates Over the next 2 lectures, we will discuss some of the physical characteristics of integrated circuits. We will
An Analytical model of the Bulk-DTMOS transistor
Journal of Electron Devices, Vol. 8, 2010, pp. 329-338 JED [ISSN: 1682-3427 ] Journal of Electron Devices www.jeldev.org An Analytical model of the Bulk-DTMOS transistor Vandana Niranjan Indira Gandhi
Design Simulation and Analysis of NMOS Characteristics for Varying Oxide Thickness
MIT International Journal of Electronics and Communication Engineering, Vol. 4, No. 2, August 2014, pp. 81 85 81 Design Simulation and Analysis of NMOS Characteristics for Varying Oxide Thickness Alpana
MOSFET & IC Basics - GATE Problems (Part - I)
MOSFET & IC Basics - GATE Problems (Part - I) 1. Channel current is reduced on application of a more positive voltage to the GATE of the depletion mode n channel MOSFET. (True/False) [GATE 1994: 1 Mark]
CMOS Operational Amplifier
The George Washington University Department of Electrical and Computer Engineering Course: ECE218 Instructor: Mona E. Zaghloul Students: Shunping Wang Yiping (Neil) Tsai Data: 05/14/07 Introduction In
Georgia Institute of Technology School of Electrical and Computer Engineering. Midterm Exam
Georgia Institute of Technology School of Electrical and Computer Engineering Midterm Exam ECE-3400 Fall 2013 Tue, September 24, 2013 Duration: 80min First name Solutions Last name Solutions ID number
Introduction to Electronic Devices
Introduction to Electronic Devices (Course Number 300331) Fall 2006 Dr. Dietmar Knipp Assistant Professor of Electrical Engineering Information: http://www.faculty.iubremen.de/dknipp/ Source: Apple Ref.:
An introduction to Depletion-mode MOSFETs By Linden Harrison
An introduction to Depletion-mode MOSFETs By Linden Harrison Since the mid-nineteen seventies the enhancement-mode MOSFET has been the subject of almost continuous global research, development, and refinement
Microelectronics, BSc course
Microelectronics, BSc course MOS circuits: CMOS circuits, construction http://www.eet.bme.hu/~poppe/miel/en/14-cmos.pptx http://www.eet.bme.hu The abstraction level of our study: SYSTEM + MODULE GATE CIRCUIT
Analog and Mixed-Signal IC Design in a Junior Electronics Course Sequence
Analog and Mixed-Signal IC Design in a Junior Electronics Course Sequence David A. Rich and John A. Nestor Department of Electrical and Computer Engineering Lafayette College Easton, PA 18042 richd@lafayette.edu
Guest Editorial: Low-Voltage Integrated Circuits and Systems
Circuits Syst Signal Process (2017) 36:4769 4773 DOI 10.1007/s00034-017-0666-7 Guest Editorial: Low-Voltage Integrated Circuits and Systems Fabian Khateb 1,2 Spyridon Vlassis 3 Tomasz Kulej 4 Published
Device Technology( Part 2 ): CMOS IC Technologies
1 Device Technology( Part 2 ): CMOS IC Technologies Chapter 3 : Semiconductor Manufacturing Technology by M. Quirk & J. Serda Saroj Kumar Patra, Department of Electronics and Telecommunication, Norwegian
Dynamic Threshold MOS transistor for Low Voltage Analog Circuits
26 Dynamic Threshold MOS transistor for Low Voltage Analog Circuits Vandana Niranjan, Akanksha Singh, Ashwani Kumar Electronics and Communication Engineering Department Indira Gandhi Delhi Technical University
University of Michigan, EECS413 Final project. A High Speed Operational Amplifier. 1. A High Speed Operational Amplifier
University of Michigan, EECS413 Final project. A High Speed Operational Amplifier. 1 A High Speed Operational Amplifier A. Halim El-Saadi, Mohammed El-Tanani, University of Michigan Abstract This paper
DESIGN OF A FULLY DIFFERENTIAL HIGH-SPEED HIGH-PRECISION AMPLIFIER
DESIGN OF A FULLY DIFFERENTIAL HIGH-SPEED HIGH-PRECISION AMPLIFIER Mayank Gupta mayank@ee.ucla.edu N. V. Girish envy@ee.ucla.edu Design I. Design II. University of California, Los Angeles EE215A Term Project
ECEN620: Network Theory Broadband Circuit Design Fall 2014
ECEN620: Network Theory Broadband Circuit Design Fall 2014 Lecture 7: Phase Detector Circuits Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements & Agenda HW2 is due Oct 6 Exam
IMPROVED CURRENT MIRROR OUTPUT PERFORMANCE BY USING GRADED-CHANNEL SOI NMOSFETS
IMPROVED CURRENT MIRROR OUTPUT PERFORMANCE BY USING GRADED-CHANNEL SOI NMOSFETS Marcelo Antonio Pavanello *, João Antonio Martino and Denis Flandre 1 Laboratório de Sistemas Integráveis Escola Politécnica
6.776 High Speed Communication Circuits Lecture 6 MOS Transistors, Passive Components, Gain- Bandwidth Issue for Broadband Amplifiers
6.776 High Speed Communication Circuits Lecture 6 MOS Transistors, Passive Components, Gain- Bandwidth Issue for Broadband Amplifiers Massachusetts Institute of Technology February 17, 2005 Copyright 2005
Lecture 8. MOS Transistors; Cheap Computers; Everycircuit
Lecture 8 MOS Transistors; Cheap Computers; Everycircuit Copyright 2017 by Mark Horowitz 1 Reading The rest of Chapter 4 in the reader For more details look at A&L 5.1 Digital Signals (goes in much more
ISSCC 2006 / SESSION 11 / RF BUILDING BLOCKS AND PLLS / 11.9
ISSCC 2006 / SESSION 11 / RF BUILDING BLOCKS AND PLLS / 11.9 11.9 A Single-Chip Linear CMOS Power Amplifier for 2.4 GHz WLAN Jongchan Kang 1, Ali Hajimiri 2, Bumman Kim 1 1 Pohang University of Science
Design of a Folded Cascode Operational Amplifier in a 1.2 Micron Silicon-Carbide CMOS Process
University of Arkansas, Fayetteville ScholarWorks@UARK Electrical Engineering Undergraduate Honors Theses Electrical Engineering 5-2017 Design of a Folded Cascode Operational Amplifier in a 1.2 Micron
Atypical op amp consists of a differential input stage,
IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 33, NO. 6, JUNE 1998 915 Low-Voltage Class Buffers with Quiescent Current Control Fan You, S. H. K. Embabi, and Edgar Sánchez-Sinencio Abstract This paper presents
VLSI Chip Design Project TSEK06
VLSI Chip Design Project TSEK06 Project Description and Requirement Specification Version 1.1 Project: 100 MHz, 10 dbm direct VCO modulating FM transmitter Project number: 4 Project Group: Name Project
Intel Demonstrates High-k + Metal Gate Transistor Breakthrough on 45 nm Microprocessors
Intel Demonstrates High-k + Metal Gate Transistor Breakthrough on 45 nm Microprocessors Mark Bohr Intel Senior Fellow Logic Technology Development Kaizad Mistry 45 nm Program Manager Logic Technology Development
Low-Voltage Rail-to-Rail CMOS Operational Amplifier Design
Electronics and Communications in Japan, Part 2, Vol. 89, No. 12, 2006 Translated from Denshi Joho Tsushin Gakkai Ronbunshi, Vol. J89-C, No. 6, June 2006, pp. 402 408 Low-Voltage Rail-to-Rail CMOS Operational
Energy Efficient and High Speed Charge-Pump Phase Locked Loop
Energy Efficient and High Speed Charge-Pump Phase Locked Loop Sherin Mary Enosh M.Tech Student, Dept of Electronics and Communication, St. Joseph's College of Engineering and Technology, Palai, India.
Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati
Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture-1 Transistor
Design of Low Voltage Low Power CMOS OP-AMP
RESEARCH ARTICLE OPEN ACCESS Design of Low Voltage Low Power CMOS OP-AMP Shahid Khan, Prof. Sampath kumar V. Electronics & Communication department, JSSATE ABSTRACT Operational amplifiers are an integral
Experiment 6: Biasing Circuitry
1 Objective UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE105 Lab Experiments Experiment 6: Biasing Circuitry Setting up a biasing
Modern Power Electronics Courses at UCF
Modern Power Electronics Courses at UCF Issa Batarseh, John Shen, and Sam Abdel-Rahman School of Electrical Engineering and Computer Science University of Central Florida Orlando, Florida, USA University
Using Transistor Roles in Teaching CMOS Integrated Circuits
Using Transistor Roles in Teaching CMOS Integrated Circuits G. S. KLIROS 1 and A. S. ANDREATOS 2 Department of Aeronautical Sciences (1) Div. of Electronics & Communications Engineering (2) Div. of Computer
CSE 577 Spring Insoo Kim, Kyusun Choi Mixed Signal CHIP Design Lab. Department of Computer Science & Engineering The Penn State University
CSE 577 Spring 2011 Basic Amplifiers and Differential Amplifier, Kyusun Choi Mixed Signal CHIP Design Lab. Department of Computer Science & Engineering The Penn State University Don t let the computer
EC5135: Analog Electronic Circuits EC3102: Analog Circuits
EC5135: Analog Electronic Circuits EC3102: Analog Circuits Introduction Nagendra Krishnapura Shanthi Pavan ec3102iitm@gmail.com Department of Electrical Engineering Indian Institute of Technology, Madras
ECE 683 Project Report. Winter Professor Steven Bibyk. Team Members. Saniya Bhome. Mayank Katyal. Daniel King. Gavin Lim.
ECE 683 Project Report Winter 2006 Professor Steven Bibyk Team Members Saniya Bhome Mayank Katyal Daniel King Gavin Lim Abstract This report describes the use of Cadence software to simulate logic circuits
Chapter 13: Introduction to Switched- Capacitor Circuits
Chapter 13: Introduction to Switched- Capacitor Circuits 13.1 General Considerations 13.2 Sampling Switches 13.3 Switched-Capacitor Amplifiers 13.4 Switched-Capacitor Integrator 13.5 Switched-Capacitor
ITRS MOSFET Scaling Trends, Challenges, and Key Technology Innovations
Workshop on Frontiers of Extreme Computing Santa Cruz, CA October 24, 2005 ITRS MOSFET Scaling Trends, Challenges, and Key Technology Innovations Peter M. Zeitzoff Outline Introduction MOSFET scaling and
VLSI Designed Low Power Based DPDT Switch
International Journal of Electronics and Communication Engineering. ISSN 0974-2166 Volume 8, Number 1 (2015), pp. 81-86 International Research Publication House http://www.irphouse.com VLSI Designed Low
Low-voltage, High-precision Bandgap Current Reference Circuit
Low-voltage, High-precision Bandgap Current Reference Circuit Chong Wei Keat, Harikrishnan Ramiah and Jeevan Kanesan Department of Electrical Engineering, Faculty of Engineering, University of Malaya,
Field Effect Transistors
Field Effect Transistors Purpose In this experiment we introduce field effect transistors (FETs). We will measure the output characteristics of a FET, and then construct a common-source amplifier stage,
Design of a Sample and Hold Circuit using Rail to Rail Low Voltage Compact Operational Amplifier and bootstrap Switching
RESEARCH ARTICLE OPEN ACCESS Design of a Sample and Hold Circuit using Rail to Rail Low Voltage Compact Operational Amplifier and bootstrap Switching Annu Saini, Prity Yadav (M.Tech. Student, Department
Lecture 7. July 24, Detecting light (converting light to electrical signal)
Lecture 7 July 24, 2017 Detecting light (converting light to electrical signal) Photoconductor Photodiode Managing electrical signal Metal-oxide-semiconductor (MOS) capacitor Charge coupled device (CCD)
DESIGN AND ANALYSIS OF LOW POWER CHARGE PUMP CIRCUIT FOR PHASE-LOCKED LOOP
DESIGN AND ANALYSIS OF LOW POWER CHARGE PUMP CIRCUIT FOR PHASE-LOCKED LOOP 1 B. Praveen Kumar, 2 G.Rajarajeshwari, 3 J.Anu Infancia 1, 2, 3 PG students / ECE, SNS College of Technology, Coimbatore, (India)
Delay-Locked Loop Using 4 Cell Delay Line with Extended Inverters
International Journal of Electronics and Electrical Engineering Vol. 2, No. 4, December, 2014 Delay-Locked Loop Using 4 Cell Delay Line with Extended Inverters Jefferson A. Hora, Vincent Alan Heramiz,
Propagation Delay, Circuit Timing & Adder Design. ECE 152A Winter 2012
Propagation Delay, Circuit Timing & Adder Design ECE 152A Winter 2012 Reading Assignment Brown and Vranesic 2 Introduction to Logic Circuits 2.9 Introduction to CAD Tools 2.9.1 Design Entry 2.9.2 Synthesis
E4332: VLSI Design Laboratory. Columbia University Spring 2005: Lectures
E4332: VLSI Design Laboratory Nagendra Krishnapura Columbia University Spring 2005: Lectures nkrishna@vitesse.com 1 AM radio receiver AM radio signals: Audio signals on a carrier Intercept the signal Amplify
ENEE 307 Laboratory#2 (n-mosfet, p-mosfet, and a single n-mosfet amplifier in the common source configuration)
Revised 2/16/2007 ENEE 307 Laboratory#2 (n-mosfet, p-mosfet, and a single n-mosfet amplifier in the common source configuration) *NOTE: The text mentioned below refers to the Sedra/Smith, 5th edition.
Common-Source Amplifiers
Lab 2: Common-Source Amplifiers Introduction The common-source stage is the most basic amplifier stage encountered in CMOS analog circuits. Because of its very high input impedance, moderate-to-high gain,
HW#3 Solution. Dr. Parker. Spring 2014
HW#3 olution r. Parker pring 2014 Assume for the problems below that V dd = 1.8 V, V tp0 is -.7 V. and V tn0 is.7 V. V tpbodyeffect is -.9 V. and V tnbodyeffect is.9 V. Assume ß n (k n )= 219.4 W/L µ A(microamps)/V
CMOS VLSI IC Design. A decent understanding of all tasks required to design and fabricate a chip takes years of experience
CMOS VLSI IC Design A decent understanding of all tasks required to design and fabricate a chip takes years of experience 1 Commonly used keywords INTEGRATED CIRCUIT (IC) many transistors on one chip VERY
Final Design Project: Variable Gain Amplifier with Output Stage Optimization for Audio Amplifier Applications EE 332: Summer 2011 Group 2: Chaz
Final Design Project: Variable Gain Amplifier with Output Stage Optimization for Audio Amplifier Applications EE 332: Summer 2011 Group 2: Chaz Bofferding, Serah Peterson, Eric Stephanson, Casey Wojcik
Alternatives to standard MOSFETs. What problems are we really trying to solve?
Alternatives to standard MOSFETs A number of alternative FET schemes have been proposed, with an eye toward scaling up to the 10 nm node. Modifications to the standard MOSFET include: Silicon-in-insulator
DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY
DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY Neha Bakawale Departmentof Electronics & Instrumentation Engineering, Shri G. S. Institute of
BJT Differential Amplifiers
Instituto Tecnológico y de Estudios Superiores de Occidente (), OBJECTIVES The general objective of this experiment is to contrast the practical behavior of a real differential pair with its theoretical
Design Consideration with AP3041
Design Consideration with AP3041 Application Note 1059 Prepared by Yong Wang System Engineering Dept. 1. Introduction The AP3041 is a current-mode, high-voltage low-side channel MOSFET controller, which
CMOS Inverter & Ring Oscillator
CMOS Inverter & Ring Oscillator Theory: In this Lab we will implement a CMOS inverter and then use it as a building block for a Ring Oscillator. MOSfets (Metal Oxide Semiconductor Field Effect Transistors)
Each individual is to report on the design, simulations, construction, and testing according to the reporting guidelines attached.
EE 352 Design Project Spring 2015 FM Receiver Revision 0, 03-02-15 Interim report due: Friday April 3, 2015, 5:00PM Project Demonstrations: April 28, 29, 30 during normal lab section times Final report
Low Power 8-Bit ALU Design Using Full Adder and Multiplexer
Low Power 8-Bit ALU Design Using Full Adder and Multiplexer Gaddam Sushil Raj B.Tech, Vardhaman College of Engineering. ABSTRACT: Arithmetic logic unit (ALU) is an important part of microprocessor. In
An Introduction to Bipolar Junction Transistors. Prepared by Dr Yonas M Gebremichael, 2005
An Introduction to Bipolar Junction Transistors Transistors Transistors are three port devices used in most integrated circuits such as amplifiers. Non amplifying components we have seen so far, such as