DESCRIPTIO TYPICAL APPLICATIO. LT MHz Gain of 1 Triple Video Buffer FEATURES APPLICATIO S

Size: px
Start display at page:

Download "DESCRIPTIO TYPICAL APPLICATIO. LT MHz Gain of 1 Triple Video Buffer FEATURES APPLICATIO S"

Transcription

1 LT MHz Gain of Triple Video Buffer FEATRES MHz db Small Signal Bandwidth MHz db V P-P Large Signal Bandwidth MHz ±.db Bandwidth High Slew Rate: V/µs Fixed Gain of Requires No External Resistors 9dB Channel Separation at MHz db Channel Separation at MHz dbc nd Harmonic Distortion at MHz, V P-P 9dBc rd Harmonic Distortion at MHz, V P-P Low Supply Current: ma per Amplifier ns.% Settling Time for V Step TTL Compatible Enable: I SS µa When Disabled Differential Gain of.%, Differential Phase of. Wide Supply Range: ±.V (.V) to ±V (V) Available in -Lead SSOP Package APPLICATIO S RGB Buffers A/D Drivers LCD Projectors DESCRIPTIO The LT is a high-speed triple video buffer with an internally fixed gain of. The individual buffers are optimized for performance with a k load and feature a V P P full signal bandwidth of MHz, making them ideal for driving very high-resolution video signals. Separate power supply pins for each amplifier boost channel separation to 9dB, allowing the LT to excel in many highspeed applications. While the performance of the LT is optimized for dual supply operation, it can also be used on a single supply as low as.v. sing dual V supplies, each amplifier draws only ma. When disabled, the amplifiers draw less than µa and the outputs become high impedance. Furthermore, the amplifiers are capable of turning on in less than ns, making them suitable for multiplexing and portable applications. The LT is manufactured on Linear Technology s proprietary low voltage complementary bipolar process and is available in the -lead SSOP package that fits in the same PCB area as an SO- package., LTC and LT are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners. TYPICAL APPLICATIO R IN G IN B IN V 7 Triple Video Buffer and A/D Driver LT + Ω Ω + Ω + V V 9 V V k k k TAa OTPT (V)..... Large Signal Transient Response V OT = V P P R L = k. TIME (ns) TAb fa

2 LT ABSOLTE AXI RATI GS (Note ) W W W Total Supply Voltage ( to )....V Input Current (Note )... ±ma Output Current (Continuous)... ±7mA EN to DGND Voltage (Note )....V Output Short-Circuit Duration (Note )... Indefinite Operating Temperature Range (Note )... C to C Specified Temperature Range (Note )... C to C Storage Temperature Range... C to C Junction Temperature... C Lead Temperature (Soldering, sec)... C W PACKAGE/ORDER I FOR ATIO EN DGND INR ING INB 7 TOP VIEW G = + G = + G = + OTR OTG OTB 9 GN PACKAGE -LEAD PLASTIC SSOP T JMAX = C, θ JA = C/W ORDER PART NMBER LTCGN LTIGN GN PART MARKING I Consult LTC Marketing for parts specified with wider operating temperature ranges. ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating temperature range, otherwise specifications are at., R L = k, C L =.pf, V EN =.V, V, V DGND = V. SYMBOL PARAMETER CONDITIONS MIN TYP MAX NITS V OS Offset Voltage V IN = V, V OS = V OT ± mv ±7 mv I IN Input Current 7 ± µa e n Output Noise Voltage f = khz nv Hz i n Input Noise Current f = khz. pa Hz R IN Input Resistance V IN = ±V kω C IN Input Capacitance f = khz pf PSRR Power Supply Rejection Ratio V S (Total) =.V to V (Note ) db I PSRR Input Current Power Supply V S (Total) =.V to V (Note ) ± µa/v Rejection A V ERR Gain Error V OT = ±V.. % A V MATCH Gain Matching Any One Channel to Another ±. % V OT Maximum Output Voltage Swing ±.7 ±. V I S Supply Current, Per Amplifier R L = ma R L = ma Supply Current, Disabled, Total V EN = V µa V EN = Open. µa I EN Enable Pin Current V EN =.V 9 µa V EN =. µa I SC Output Short-Circuit Current R L = Ω, V IN = ±V ± ± ma SR Slew Rate V P-P Output Step (Note 9) 7 V/µs db BW Small Signal db Bandwidth V OT = mv P-P MHz.dB BW Gain Flatness ±.db Bandwidth V OT = mv P-P MHz fa

3 ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating temperature range, otherwise specifications are at., R L = k, C L =.pf, V EN =.V, V, V DGND = V. LT SYMBOL PARAMETER CONDITIONS MIN TYP MAX NITS LSBW Large Signal Bandwidth V OT = V P-P (Note 7) 7 MHz V OT = V P-P (Note 7) MHz All-Hostile Crosstalk f = MHz, V OT = V P-P 9 db f = MHz, V OT = V P-P db t S Settling Time.% of V FINAL, V STEP = V ns t R, t F Small-Signal Rise and Fall Time % to 9%, V OT = mv P-P ps dg Differential Gain (Note ). % dp Differential Phase (Note ). Deg HD nd Harmonic Distortion f = MHz, V OT = V P-P dbc HD rd Harmonic Distortion f = MHz, V OT = V P-P 9 dbc Note : Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Note : This parameter is guaranteed to meet specified performance through design and characterization. It is not production tested. Note : As long as output current and junction temperature are kept below the Absolute Maximum Ratings, no damage to the part will occur. Depending on the supply voltage, a heat sink may be required. Note : The LTC is guaranteed functional over the operating temperature range of C to C. Note : The LTC is guaranteed to meet specified performance from C to 7 C. The LTC is designed, characterized and expected to meet specified performance from C and C but is not tested or QA sampled at these temperatures. The LTI is guaranteed to meet specified performance from C to C. Note : The two supply voltage settings for power supply rejection are shifted from the typical ±V S points for ease of testing. The first measurement is taken at = V, =.V to provide the required V headroom for the enable circuitry to function with EN, DGND, and all inputs connected to V. The second measurement is taken at = V, = V. Note 7: Large signal bandwidth is calculated from the slew rate: LSBW = SR/(π V P-P ) Note : Differential gain and phase are measured using a Tektronix TSGYC/NTSC signal generator and a Tektronix 7R video measurement set. The resolution of this equipment is better than.% and.. Nine identical amplifier stages were cascaded giving an effective resolution of better than.% and.. Note 9: Slew rate is % production tested on the G channel. Slew rate of the R and B channels is guaranteed through design and characterization. fa

4 LT TYPICAL PERFOR A CE CHARACTERISTICS W Supply Current per Amplifier vs Temperature Supply Current per Amplifier vs Supply Voltage Supply Current per Amplifier vs EN Pin Voltage SPPLY CRRENT (ma) V EN = V V EN =.V R L = V IN = V SPPLY CRRENT (ma) = V EN, V DGND, V IN = V SPPLY CRRENT (ma) T A = C T A = C V DGND = V V IN = V TEMPERATRE ( C) 7 9 TOTAL SPPLY VOLTAGE (V) EN PIN VOLTAGE (V) G G G Offset Voltage vs Temperature Input Bias Current vs Input Voltage EN Pin Current vs EN Pin Voltage OFFSET VOLTAGE (mv) V IN = V TYPICAL PART INPT BIAS CRRENT (µa) T A = C T A = C EN PIN CRRENT (µa) V DGND = V T A = C T A = C.. TEMPERATRE ( C) INPT VOLTAGE (V) EN PIN VOLTAGE (V) G G G OTPT VOLTAGE (V) Output Voltage vs Input Voltage R L = k T A = C OTPT VOLTAGE (V) Output Voltage Swing vs I LOAD (Output High) V IN = V T A = C T A = C OTPT VOLTAGE (V) Output Voltage Swing vs I LOAD (Output Low) V IN = V T A = C T A = C T A = C INPT VOLTAGE (V) 7 9 SORCE CRRENT (ma) 7 9 SINK CRRENT (ma) G7 G G9 fa

5 LT TYPICAL PERFOR A CE CHARACTERISTICS W INPT NOISE (nv/ Hz OR pa/ Hz) Input Noise Spectral Density Input Impedance vs Frequency PSRR vs Frequency e n i n INPT IMPEDANCE (kω) V IN = V REJECTION RATIO (db) 7 ±PSRR +PSRR PSRR... FREQENCY (khz) G... G... G AMPLITDE (db) R L = k C L =.pf. Frequency Response Gain Flatness vs Frequency Crosstalk vs Frequency V OT = mv P-P V OT = V P-P V OT = V P-P AMPLITDE (db) V OT = mv P-P R L = k C L =.pf TYPICAL PART G-CHANNEL R-CHANNEL B-CHANNEL.. G G AMPLITDE (db). V OT = V P-P R L = k ALL- HOSTILE WORST ADJACENT G AMPLITDE (db) V OT = mv P-P R L = k. Frequency Response with Capacitive Loads Harmonic Distortion vs Frequency Output Impedance vs Frequency C L = 9pF C L =.pf C L =.pf C L = pf C L =.pf DISTORTION (dbc) V OT = V P-P R L = k 7 HD 9 HD.. OTPT IMPEDANCE (Ω).. DISABLED V EN = V ENABLED V EN =.V R L = k. G G7 G fa

6 LT TYPICAL PERFOR A CE CHARACTERISTICS W Maximum Capacitive Load vs Output Series Resistor Small Signal Transient Response Video Amplitude Transient Response OTPT SERIES RESISTANCE (Ω) AC PEAKING >db V OT = V P P R L = k OTPT (V)..... V IN = mv P P R L = k OTPT (V) V IN = 7mV P P R L = k CAPACITIVE LOAD (pf). TIME (ns). TIME (ns) G G9 G OTPT (V)..... Large Signal Transient Response V IN = V P P R L = k OTPT (V) Large Signal Transient Response V IN = V P P R L = k. TIME (ns) TIME (ns) G G PERCENT OF NITS (%) Gain Error Distribution V OT = ±V R L = k PERCENT OF NITS (%) Gain Error Matching Distribution V OT = ±V R L = k GAIN ERROR INDIVIDAL CHANNEL (%) GAIN ERROR BETWEEN CHANNELS (%) G G fa

7 LT PI F CTIO S EN (Pin ): Enable Control Pin. An internal pull-up resistor of k defines the pin s impedance and will turn the part off if the pin is unconnected. When the pin is pulled low, the part is enabled. DGND (Pin ): Digital Ground Reference for Enable Pin. This pin is normally connected to ground. INR (Pin ): Red Channel Input. This pin has a nominal impedance of kω and does not have any internal termination resistor. (Pin ): Analog Ground for Isolation Between Red and Green Channel Inputs. The pins have ESD protection and therefore should not be connected to potentials outside the power supply range. ING (Pin ): Green Channel Input. This pin has a nominal impedance of kω and does not have any internal termination resistor. (Pin ): Analog Ground for Isolation Between Green and Blue Channel Inputs. The pins have ESD protection and therefore should not be connected to potentials outside the power supply range. INB (Pin 7): Blue Channel Input. This pin has a nominal impedance of kω and does not have any internal termination resistor. (Pin ): Negative Supply Voltage. pins are not internally connected to each other, and must all be connected externally. Proper supply bypassing is necessary for best performance. See the Applications Information section. (Pin 9): Negative Supply Voltage for Blue Channel Output Stage. pins are not internally connected to each other, and must all be connected externally. Proper supply bypassing is necessary for best performance. See the Applications Information section. OTB (Pin ): Blue Channel Output. It is the buffered output of the blue channel input. (Pin ): Positive Supply Voltage for Blue and Green Channel Output Stages. pins are not internally connected to each other, and must all be connected externally. Proper supply bypassing is necessary for best performance. See the Applications Information section. OTG (Pin ): Green Channel Output. It is the buffered output of the green channel input. (Pin ): Negative Supply Voltage for Green and Red Channel Output Stages. pins are not internally connected to each other, and must all be connected externally. Proper supply bypassing is necessary for best performance. See the Applications Information section. OTR (Pin ): Red Channel Output. It is the buffered output of the red channel input. (Pin ): Positive Supply Voltage for Red Channel Output Stage. pins are not internally connected to each other, and must all be connected externally. Proper supply bypassing is necessary for best performance. See the Applications Information section. (Pin ): Positive Supply Voltage. pins are not internally connected to each other, and must all be connected externally. Proper supply bypassing is necessary for best performance. See the Applications Information section. fa 7

8 LT APPLICATIO S I FOR Power Supplies The LT is optimized for ±V supplies but can be operated on as little as ±.V or a single.v supply and as much as ±V or a single V supply. Internally, each supply is independent to improve channel isolation. Do not leave any supply pins disconnected! Enable/Shutdown The LT has a TTL compatible shutdown mode controlled by the EN pin and referenced to the DGND pin. If the amplifier will be enabled at all times, the EN pin can be connected directly to DGND. If the enable function is desired, either driving the pin above V or allowing the internal k pull-up resistor to pull the EN pin to the top rail will disable the amplifier. When disabled, the output will become very high impedance. Supply current into the amplifier in the disabled state will be primarily through and approximately equal to ( V EN )/k. It is important that the two following constraints on the DGND pin and the EN pin are always followed: V DGND V V EN V DGND.V Split supplies of ±V to ±.V will satisfy these requirements with DGND connected to V. In single supply applications above.v, an additional resistor may be needed from the EN pin to DGND if the pin is ever allowed to float. For example, on a V single supply, a k resistor to ground would protect the pin from floating too high while still allowing the internal pull-up resistor to disable the part. On dual ±.V supplies, connecting the EN and DGND pins to is the easiest way of ensuring that V DGND is more than V. The DGND pin should not be pulled above the EN pin since doing so will turn on an ESD protection diode. If the EN pin voltage is forced a diode drop below the DGND pin, current should be limited to ma or less. The enable/disable times of the LT are fast when driven with a logic input. Turn on (from % EN input to % output) typically occurs in less than ns. Turn off is slower, but is nonetheless below ns. ATIO W Input Considerations The LT input voltage range is from + V to V and is therefore larger than the output swing. The inputs can be driven beyond the point at which the output clips so long as input currents are limited to below ±ma. Layout and Grounding It is imperative that care is taken in PCB layout in order to utilize the very high speed and very low crosstalk of the LT. Separate power and ground planes are highly recommended and trace lengths should be kept as short as possible. If input traces must be run over a distance of several centimeters, they should use a controlled impedance with either series or shunt terminations (nominally Ω or 7Ω) to maintain signal fidelity. Care should be taken to minimize capacitance on the LT s output traces by increasing spacing between traces and adjacent metal and by eliminating metal planes in underlying layers. To drive cable or traces longer than several centimeters, using the LT with its fixed gain of + in conjunction with series and load termination resistors may provide better results. A plot of LT performance driving a k load with various trace lengths is shown in Figure. All data is from a -layer board with oz copper, mil of board layer thickness to the ground plane, a trace width of mils and spacing to adjacent metal of mils. The.cm output trace places the k resistor as close to the part as possible, while the other curves show the load resistor consecutively further away. The worst case, cm, trace has almost pf of parasitic capacitance. In order to counteract any peaking in the frequency response from driving a capacitive load, a series resistance can be inserted in the line at the output of the part to flatten the response. Figure shows the frequency response with the same cm trace from Figure, now with a Ω series resistor inserted near the output pin of the LT. Note that using a Ω series resistor with a k load only decreases the output amplitude by.db or % and has a minimal effect on the bandwidth of the system. See the graph labeled Maximum Capacitive Load vs Output Series Resistor in the Typical Performance Characteristics section for more information. fa

9 LT APPLICATIO S I FOR ATIO AMPLITDE (db) AMPLITDE (db). W Figure. Response vs Output Trace Length. V OT = mv P-P R L = k V OT = mv P-P R L = k cm TRACE cm TRACE.cm TRACE cm TRACE cm TRACE R S, OT = Ω F F Figure. Response vs Series Output Resistance While the pins on the LT are not connected to the amplifier circuitry, tying them to ground or another quiet node significantly increases channel isolation and is always recommended. The pins do have ESD protection and therefore should not be connected to potentials outside the power supply range. Low ESL/ESR bypass capacitors should be placed as close to the positive and negative supply pins as possible. One 7pF ceramic capacitor is recommended for both and. Additional 7pF ceramic capacitors with minimal trace length on each supply pin will further improve AC and transient response as well as channel isolation. For high current drive and large-signal transient applications, additional µf to µf tantalums should be added on each supply. The smallest value capacitors should be placed closest to the package. To maintain the LT s channel isolation, it is beneficial to shield parallel input and output traces using a ground plane or power supply traces. Vias between topside and backside metal are recommended to maintain a low inductance ground, especially between closely spaced signal traces. Single Supply Operation Figure illustrates how to use the LT with a single supply ranging from.v to V. Since the output range is comparable to the input range, the DC bias point at the input can be set anywhere between the supplies that will prevent the AC-coupled signal from running into the output range limits. As shown, the DC input level is midsupply. The only additional power dissipation in the single supply configuration is through the resistor bias string at the input and through any load resistance at the output. In many cases, the output can be used to directly drive other single supply devices without additional coupling and without any resistive load. ESD Protection The LT has reverse-biased ESD protection diodes on all pins. If any pins are forced a diode drop above the positive supply or a diode drop below the negative supply, large currents may flow through these diodes. If the current is kept below ma, no damage to the device will occur. V IN µf k k / LT Figure. Single Supply Configuration, One Channel Shown IN.V TO V OT F fa 9

10 LT TYPICAL APPLICATIO RGB Buffer Demo Board The DC79 Demo Board illustrates optimal routing, bypassing and termination using the LT as an RGB video buffer. The schematic is shown in Figure. All inputs and outputs are routed to have a characteristic impedance of 7Ω. The 7Ω input shunt and output series terminations are connected as close to the part as possible. While the 7Ω back termination resistors at the outputs of the LT minimize signal reflections in the output traces and isolate the part from any capacitive loading in those traces, they also contribute to gain error if the output is not terminated with high impedance. For example, if the output is terminated with a k load, the 7Ω back termination will cause a 7% gain error. Decreasing the value of the back termination resistors will decrease the signal attenuation but may compromise the AC response. However, connecting the LT outputs to the output traces on the DC79 board without some series resistance is not recommended; Ω to Ω is generally sufficient. A fourth signal trace is provided at the bottom of the DC79 demo board with dimensions identical to the E EN combined input and output of the other channels. This trace can be used for calibrating the effects of electrical delay and impedance mismatching and is not necessary in an end-user application. Jumpers and additional connectors are also included to allow for evaluation of the enable feature and single supply operation. RGB Video Selector/Cable Driver A video multiplexer can be implemented using the EN pins of parallel LTs as shown in Figure. In this application, the corresponding outputs are connected together and one LT is switched on while the other is switched off. A fast inverter provides a complementary signal to ensure that only one set of R, G and B channels is buffered at any time. Since the output impedance of a disabled LT is very high, adding additional channels will not resistively load an enabled output. However, since the disabled LT has around pf of capacitance, it may be desirable to resistively isolate the outputs of each channel to maintain flat frequency response as shown in the graph labeled Maximum Capacitive Load vs Output Series Resistor in the Typical Performance Characteristics section. INR ING INB CAL J Ω BNC EN BNC J J J7 J BNC J BANANA JACK JP DGND FLOAT Z = 7 Z = 7 Z = 7 E R 7Ω SINGLE DAL JP SPPLY E DGND R 7Ω JP CONTROL ENABLE EXT R 7Ω C 7pF 7 C pf EN DGND INR ING INB LT C7 7pF OTR OTG OTB Figure. DC79 Demo Board Schematic 9 C 7pF C9 µf, V C 7pF R 7Ω R 7Ω R 7Ω C 7pF C 7pF Z = 7 Z = 7 Z = 7 Z = 7 ALL BNC: CANARE BCJ-BPLH C J µf, V BANANA JACK BNC x J9 OTR OTG J OTB J J BANANA JACK CAL J BNC F fa

11 LT SI PLIFIED SCHE ATIC W W BIAS TO OTHER AMPLIFIERS k EN k IN Ω Ω OT DGND SS PACKAGE DESCRIPTIO GN Package -Lead Plastic SSOP (Narrow. Inch) (Reference LTC DWG # --). ±..9.9* (..97) 9.9 (.9) REF. MIN...9. (.7.9)..7** (..9). ±. RECOMMENDED SOLDER PAD LAYOT. TYP (.7.9). ±. (. ±.) TYP.. (..77)..9 (..9).. (..7) NOTE:. CONTROLLING DIMENSION: INCHES INCHES. DIMENSIONS ARE IN (MILLIMETERS). DRAWING NOT TO SCALE *DIMENSION DOES NOT INCLDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED." (.mm) PER SIDE **DIMENSION DOES NOT INCLDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED." (.mm) PER SIDE.. (..). (.) BSC GN (SSOP) Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. fa

12 LT TYPICAL APPLICATIO.V NC7SZ LT R G B 7Ω 7Ω 7Ω 7 9 R OT G OT SEL LT B OT R G B 7Ω 7Ω 7Ω 7 9 NOTE: POWER SPPLY BYPASS CAPACITORS NOT SHOWN FOR CLARITY.V F Figure. RGB Video Selector and A/D Driver RELATED PARTS PART NMBER DESCRIPTION COMMENTS LT9/LT Dual/Triple MHz Current Feedback Amplifiers Shutdown, Operates to ±V LT9/LT9/LT97 Single/Dual/Quad MHz Current Feedback Amplifiers V/µs Slew Rate LT9/LT99 Dual/Triple MHz Current Feedback Amplifiers.dB Gain Flatness to MHz, Shutdown LT7/LT7- MHz, Triple and Single RGB Multiplexer with MHz Pixel Switching, db Bandwidth: MHz, Current Feedback Amplifiers V/µs Slew Rate LT9/LT Single/Dual, MHz, Rail-to-Rail Input and V/µs Slew Rate, Shutdown, Output Amplifiers Low Distortion 9dBc at MHz LT/LT.V Triple and Quad Video Buffers MHz Gain of Buffers in MSOP Package LT MHz, Gain of, Triple Video Amplifier Same Pinout as LT LT/TP K REV A PRINTED IN SA Linear Technology Corporation McCarthy Blvd., Milpitas, CA 9-77 () -9 FAX: () -7 LINEAR TECHNOLOGY CORPORATION fa

TYPICAL APPLICATIO. LT MHz, 250V/µs, A V 4 Operational Amplifier DESCRIPTIO FEATURES APPLICATIO S

TYPICAL APPLICATIO. LT MHz, 250V/µs, A V 4 Operational Amplifier DESCRIPTIO FEATURES APPLICATIO S 5MHz, 5V/µs, A V Operational Amplifier FEATRES Gain-Bandwidth: 5MHz Gain of Stable Slew Rate: 5V/µs Input Noise Voltage: nv/ Hz C-Load TM Op Amp Drives Capacitive Loads Maximum Input Offset Voltage: µv

More information

FEATURES APPLICATIONS TYPICAL APPLICATION LT1466L/LT1467L Micropower Dual/Quad Precision Rail-to-Rail Input and Output Op Amps

FEATURES APPLICATIONS TYPICAL APPLICATION LT1466L/LT1467L Micropower Dual/Quad Precision Rail-to-Rail Input and Output Op Amps Micropower Dual/Quad Precision Rail-to-Rail Input and Output Op Amps FEATRES Rail-to-Rail Input and Output Low Supply Current: 75µA Max 39µV V OS(MAX) for V CM = V to V + High Common Mode Rejection Ratio:

More information

FEATURES TYPICAL APPLICATIO LTC MHz to 3GHz RF Power Detector. in SC70 Package DESCRIPTIO APPLICATIO S

FEATURES TYPICAL APPLICATIO LTC MHz to 3GHz RF Power Detector. in SC70 Package DESCRIPTIO APPLICATIO S 300MHz to 3GHz RF Power Detector in SC70 Package FEATRES Temperature Compensated Internal Schottky Diode RF Detector Wide Input Frequency Range: 300MHz to 3GHz Wide Input Power Range: 30dBm to 6dBm Buffered

More information

FEATURES TYPICAL APPLICATIO. LT6550/LT V Triple and Quad Video Amplifiers DESCRIPTIO APPLICATIO S

FEATURES TYPICAL APPLICATIO. LT6550/LT V Triple and Quad Video Amplifiers DESCRIPTIO APPLICATIO S FEATRES Single Supply Operation from V to.v Small (mm mm) MSOP -Lead Package Internal Resistors for a Gain of Two V/µs Slew Rate MHz db Bandwidth MHz Flat to.db % Settling Time: ns Input Common Mode Range

More information

DESCRIPTIO FEATURES APPLICATIO S TYPICAL APPLICATIO. LT1813/LT1814 Dual/Quad 3mA, 100MHz, 750V/µs Operational Amplifiers

DESCRIPTIO FEATURES APPLICATIO S TYPICAL APPLICATIO. LT1813/LT1814 Dual/Quad 3mA, 100MHz, 750V/µs Operational Amplifiers / LT8 FEATRES MHz Gain Bandwidth Product 75V/µs Slew Rate 3.6mA Maximum Supply Current per Amplifier Tiny 3mm x 3mm x.8mm DFN Package 8nV/ Hz Input Noise Voltage nity-gain Stable.5mV Maximum Input Offset

More information

Distributed by: www.jameco.com --3-44 The content and copyrights of the attached material are the property of its owner. MHz, 3nV/ Hz, A V Operational Amplifier FEATRES Gain-Bandwidth: MHz Gain of Stable

More information

APPLICATIO S TYPICAL APPLICATIO. LT V Single Supply Video Difference Amplifier FEATURES DESCRIPTIO

APPLICATIO S TYPICAL APPLICATIO. LT V Single Supply Video Difference Amplifier FEATURES DESCRIPTIO FEATRES Differential or Single-Ended Gain Block Wide Supply Range V to.v Output Swings Rail-to-Rail Input Common Mode Range Includes Ground V/µs Slew Rate db Bandwidth = 7MHz, A V = ± CMRR at MHz: >db

More information

FEATURES TYPICAL APPLICATIO. LT1194 Video Difference Amplifier DESCRIPTIO APPLICATIO S

FEATURES TYPICAL APPLICATIO. LT1194 Video Difference Amplifier DESCRIPTIO APPLICATIO S FEATURES Differential or Single-Ended Gain Block: ± (db) db Bandwidth: MHz Slew Rate: /µs Low Cost Output Current: ±ma Settling Time: ns to.% CMRR at MHz: db Differential Gain Error:.% Differential Phase

More information

FEATURES TYPICAL APPLICATIO. LT1635 Micropower Rail-to-Rail Op Amp and Reference DESCRIPTIO APPLICATIO S

FEATURES TYPICAL APPLICATIO. LT1635 Micropower Rail-to-Rail Op Amp and Reference DESCRIPTIO APPLICATIO S LT5 Micropower Rail-to-Rail Op Amp and Reference FEATRES Guaranteed Operation at.v Op Amp and Reference on Single Chip Micropower: µa Supply Current Industrial Temperature Range SO- Packages Rail-to-Rail

More information

APPLICATIONS LT1351. Operational Amplifier DESCRIPTION FEATURES TYPICAL APPLICATION

APPLICATIONS LT1351. Operational Amplifier DESCRIPTION FEATURES TYPICAL APPLICATION FEATRES 3MHz Gain Bandwidth V/µs Slew Rate 5µA Supply Current Available in Tiny MSOP Package C-Load TM Op Amp Drives All Capacitive Loads nity-gain Stable Power Saving Shutdown Feature Maximum Input Offset

More information

FEATURES DESCRIPTIO APPLICATIO S LTC1451 LTC1452/LTC Bit Rail-to-Rail Micropower DACs in SO-8 TYPICAL APPLICATIO

FEATURES DESCRIPTIO APPLICATIO S LTC1451 LTC1452/LTC Bit Rail-to-Rail Micropower DACs in SO-8 TYPICAL APPLICATIO 12-Bit Rail-to-Rail Micropower DACs in SO-8 FEATRES 12-Bit Resolution Buffered True Rail-to-Rail Voltage Output 3V Operation (LTC1453), I CC : 250µA Typ 5V Operation (), I CC : 400µA Typ 3V to 5V Operation

More information

DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION. LT1498/LT MHz, 6V/µs, Dual/Quad Rail-to-Rail Input and Output Precision C-Load Op Amps

DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION. LT1498/LT MHz, 6V/µs, Dual/Quad Rail-to-Rail Input and Output Precision C-Load Op Amps MHz, 6V/µs, Dual/Quad Rail-to-Rail Input and Output Precision C-Load Op Amps FEATRES Rail-to-Rail Input and Output 475µV Max V OS from V + to V Gain-Bandwidth Product: MHz Slew Rate: 6V/µs Low Supply Current

More information

DESCRIPTIO TYPICAL APPLICATIO. LTC1383 5V Low Power RS232 Transceiver FEATURES APPLICATIO S

DESCRIPTIO TYPICAL APPLICATIO. LTC1383 5V Low Power RS232 Transceiver FEATURES APPLICATIO S LTC V Low Power RS Transceiver FEATRES Operates from a Single V Supply Low Supply Current: I CC = µa ESD Protection Over ±kv Available in -Pin SOIC Narrow Package ses Small Capacitors: Operates to kbaud

More information

DESCRIPTIO TYPICAL APPLICATION. LT1207 Dual 250mA/60MHz Current Feedback Amplifier APPLICATIO S

DESCRIPTIO TYPICAL APPLICATION. LT1207 Dual 250mA/60MHz Current Feedback Amplifier APPLICATIO S LT27 Dual 25mA/6MHz Current Feedback Amplifier FEATRES 25mA Minimum Output Drive Current 6MHz Bandwidth, A V = 2, R L = Ω 9V/µs Slew Rate, A V = 2, R L = 5Ω.2% Differential Gain, A V = 2, R L = 3Ω.7 Differential

More information

DESCRIPTIO FEATURES TYPICAL APPLICATIO. LT1080/LT1081 Advanced Low Power 5V RS232 Dual Driver/Receiver APPLICATIO S

DESCRIPTIO FEATURES TYPICAL APPLICATIO. LT1080/LT1081 Advanced Low Power 5V RS232 Dual Driver/Receiver APPLICATIO S Advanced Low Power V RS Dual Driver/Receiver FEATRES Superior to CMOS Improved Speed: Operates over kbaud Improved Protection: Outputs Can Be Forced to ±0V without Damage Three-State Outputs Are High Impedance

More information

DESCRIPTIO TYPICAL APPLICATIO. LT1803/LT1804/LT1805 Single/Dual/Quad 100V/µs, 85MHz, Rail-to-Rail Input and Output Op Amps FEATURES APPLICATIO S

DESCRIPTIO TYPICAL APPLICATIO. LT1803/LT1804/LT1805 Single/Dual/Quad 100V/µs, 85MHz, Rail-to-Rail Input and Output Op Amps FEATURES APPLICATIO S FEATURES Slew Rate: V/µs Gain Bandwidth Product: 8MHz Input Common Mode Range Includes Both Rails Output Swings Rail-to-Rail Low Quiescent Current: 3mA Max per Amplifier Large Output Current: 42mA Voltage

More information

FEATURES APPLICATIONS TYPICAL APPLICATION. LTC1451 LTC1452/LTC Bit Rail-to-Rail Micropower DACs in SO-8 DESCRIPTION

FEATURES APPLICATIONS TYPICAL APPLICATION. LTC1451 LTC1452/LTC Bit Rail-to-Rail Micropower DACs in SO-8 DESCRIPTION 12-Bit Rail-to-Rail Micropower DACs in SO-8 FEATRES 12-Bit Resolution Buffered True Rail-to-Rail Voltage Output 3V Operation (LTC1453), I CC : 250µA Typ 5V Operation (), I CC : 400µA Typ 3V to 5V Operation

More information

FEATURES TYPICAL APPLICATIO. LTC1382 5V Low Power RS232 Transceiver with Shutdown DESCRIPTIO APPLICATIO S

FEATURES TYPICAL APPLICATIO. LTC1382 5V Low Power RS232 Transceiver with Shutdown DESCRIPTIO APPLICATIO S FEATRES Operates from a Single V Supply Low Supply Current: I CC = µa I CC =.µa in Shutdown Mode ESD Protection Over ±1kV ses Small Capacitors:.1µF Operates to 1kBaud Output Overvoltage Does Not Force

More information

FEATURES TYPICAL APPLICATIO. LT µA, 14nV/ Hz, Rail-to-Rail Output Precision Op Amp with Shutdown DESCRIPTIO APPLICATIO S

FEATURES TYPICAL APPLICATIO. LT µA, 14nV/ Hz, Rail-to-Rail Output Precision Op Amp with Shutdown DESCRIPTIO APPLICATIO S FEATURES 3µV Maximum Offset Voltage pa Maximum Input Bias Current 3µA Supply Current Rail-to-Rail Output Swing µa Supply Current in Shutdown db Minimum Voltage Gain (V S = ±V).µV/ C Maximum V OS Drift

More information

FEATURES DESCRIPTIO APPLICATIO S. LT1636 Over-The-Top Micropower Rail-to-Rail Input and Output Op Amp TYPICAL APPLICATIO

FEATURES DESCRIPTIO APPLICATIO S. LT1636 Over-The-Top Micropower Rail-to-Rail Input and Output Op Amp TYPICAL APPLICATIO Over-The-Top Micropower Rail-to-Rail Input and Output Op Amp FEATRES Rail-to-Rail Input and Output Micropower: 5µA I Q, 44V Supply MSOP Package Over-The-Top TM : Input Common Mode Range Extends 44V Above

More information

FEATURES DESCRIPTIO APPLICATIO S. LTC2050/LTC2050HV Zero-Drift Operational Amplifiers in SOT-23 TYPICAL APPLICATION

FEATURES DESCRIPTIO APPLICATIO S. LTC2050/LTC2050HV Zero-Drift Operational Amplifiers in SOT-23 TYPICAL APPLICATION FEATRES Maximum Offset Voltage of µv Maximum Offset Voltage Drift of nv/ C Noise:.µV P-P (.Hz to Hz Typ) Voltage Gain: db (Typ) PSRR: db (Typ) CMRR: db (Typ) Supply Current:.8mA (Typ) Supply Operation:.7V

More information

DESCRIPTIO. LT1413 Single Supply, Dual Precision Op Amp

DESCRIPTIO. LT1413 Single Supply, Dual Precision Op Amp Single Supply, Dual Precision Op Amp FEATRES Single Supply Operation: Input Goes Below Ground Output Swings to Ground Sinking Current No Pull-Down Resistors Needed Phase Reversal Protection At V, V Low

More information

DESCRIPTIO FEATURES APPLICATIO S. LT GHz to 2.7GHz Receiver Front End TYPICAL APPLICATIO

DESCRIPTIO FEATURES APPLICATIO S. LT GHz to 2.7GHz Receiver Front End TYPICAL APPLICATIO 1.GHz to 2.GHz Receiver Front End FEATURES 1.V to 5.25V Supply Dual LNA Gain Setting: +13.5dB/ db at Double-Balanced Mixer Internal LO Buffer LNA Input Internally Matched Low Supply Current: 23mA Low Shutdown

More information

LT MHz Differential ADC Driver/Dual Selectable Gain Amplifi er DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION

LT MHz Differential ADC Driver/Dual Selectable Gain Amplifi er DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION FEATURES 65MHz 3dB Small-Signal Bandwidth 6MHz 3dB Large-Signal Bandwidth High Slew Rate: 33V/µs Easily Configured for Single-Ended to Differential Conversion MHz ±.db Bandwidth User Selectable Gain of,

More information

VID Controlled High Current 4-Phase DC/DC Converter (Simplified Block Diagram) 4.5V TO 22V V OS TG1 INTV CC SW1 LTC1629 BG1 PGND SGND TG2 EAIN SW2

VID Controlled High Current 4-Phase DC/DC Converter (Simplified Block Diagram) 4.5V TO 22V V OS TG1 INTV CC SW1 LTC1629 BG1 PGND SGND TG2 EAIN SW2 FEATRES Fully Compliant with the Intel RM 8. ID Specification Programs Regulator Output oltage from.0 to.8 in m Steps Programs an Entire Family of Linear Technology DC/DC Converters with 0.8 References

More information

DESCRIPTION FEATURES. LT1490/LT1491 Dual and Quad Micropower Rail-to-Rail Input and Output Op Amps APPLICATIONS TYPICAL APPLICATION

DESCRIPTION FEATURES. LT1490/LT1491 Dual and Quad Micropower Rail-to-Rail Input and Output Op Amps APPLICATIONS TYPICAL APPLICATION FEATRES Rail-to-Rail Input and Output Single Supply Input Range:.4V to 44V Micropower: µa/amplifier Max Specified on 3V, 5V and ±5V Supplies High Output Current: ma Output Drives,pF with Output Compensation

More information

LT622/LT6221/LT6222 ABSOLTE AXI RATI GS W W W Total Supply Voltage ( to ) V Input Voltage (Note 2)... ± Input Current (Note 2)... ±1mA Output S

LT622/LT6221/LT6222 ABSOLTE AXI RATI GS W W W Total Supply Voltage ( to ) V Input Voltage (Note 2)... ± Input Current (Note 2)... ±1mA Output S FEATRES Gain Bandwidth Product: 6MHz Input Common Mode Range Includes Both Rails Output Swings Rail-to-Rail Low Quiescent Current: 1mA Max Input Offset Voltage: 3µV Max Input Bias Current: na Max Wide

More information

DESCRIPTIO. LTC Low Power, 8th Order Progressive Elliptic, Lowpass Filter

DESCRIPTIO. LTC Low Power, 8th Order Progressive Elliptic, Lowpass Filter LTC9- Low Power, th Order Progressive Elliptic, Lowpass Filter FEATRES th Order Elliptic Filter in SO- Package Operates from Single.V to ±V Power Supplies db at.f CTOFF db at.f CTOFF db at f CTOFF Wide

More information

FEATURES U U PRECO DITIO I G APPLICATIO S TYPICAL APPLICATIO. LT1033 3A Negative Adjustable Regulator DESCRIPTIO

FEATURES U U PRECO DITIO I G APPLICATIO S TYPICAL APPLICATIO. LT1033 3A Negative Adjustable Regulator DESCRIPTIO NOT RECOMMENDED FOR NEW DESIGNS Contact Linear Technology for Potential Replacement FEATRES Guaranteed 1% Initial Voltage Tolerance Guaranteed.15%/V Line Regulation Guaranteed.2%/ W Thermal Regulation

More information

LT1780/LT1781 Low Power 5V RS232 Dual Driver/Receiver with ±15kV ESD Protection DESCRIPTIO

LT1780/LT1781 Low Power 5V RS232 Dual Driver/Receiver with ±15kV ESD Protection DESCRIPTIO FEATRES ma Max Supply Current ESD Protection to IEC -- Level ±1kV Air Gap, ±kv Contact ses Small Capacitors:.1µF kbaud Operation for R L = 3k, C L = pf kbaud Operation for R L = 3k, C L = pf Outputs Withstand

More information

DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION. LT1039A/LT1039A-16 Triple RS232 Driver/Receiver with Shutdown

DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION. LT1039A/LT1039A-16 Triple RS232 Driver/Receiver with Shutdown FEATRES On-Chip ESD Protection: ±15kV Human Body Model ±15kV IEC-00-4-2 Air Gap Test** ±8kV IEC-00-4-2 Contact Test 125kBd Operation with 3kΩ/2500pF Load 250kBd Operation with 3kΩ/00pF Load Operates from

More information

DESCRIPTIO. LTC1446/LTC1446L Dual 12-Bit Rail-to-Rail Micropower DACs in SO-8

DESCRIPTIO. LTC1446/LTC1446L Dual 12-Bit Rail-to-Rail Micropower DACs in SO-8 Dual 12-Bit Rail-to-Rail Micropower DACs in SO-8 FEATRES Dual DACs with 12-Bit Resolution SO-8 Package Rail-to-Rail Output Amplifiers 3V Operation (LTC1446L): I CC = 65µA Typ 5V Operation (LTC1446): I

More information

Distributed by: www.jameco.com -8-83-4242 The content and copyrights of the attached material are the property of its owner. FEATRES Regulates While Sourcing or Sinking Current Provides Termination for

More information

DESCRIPTIO FEATURES TYPICAL APPLICATIO. LT1469 Dual 90MHz, 22V/µs 16-Bit Accurate Operational Amplifier APPLICATIO S

DESCRIPTIO FEATURES TYPICAL APPLICATIO. LT1469 Dual 90MHz, 22V/µs 16-Bit Accurate Operational Amplifier APPLICATIO S FEATURES 9MHz Gain Bandwidth, f = khz Maximum Input Offset Voltage: 5µV Settling Time: 9ns (A V =, 5µV, V Step) V/µs Slew Rate Low Distortion: 96.5dB for khz, V P-P Maximum Input Offset Voltage Drift:

More information

FEATURES DESCRIPTIO APPLICATIO S TYPICAL APPLICATIO. LTC1046 Inductorless 5V to 5V Converter

FEATURES DESCRIPTIO APPLICATIO S TYPICAL APPLICATIO. LTC1046 Inductorless 5V to 5V Converter LTC Inductorless V to V Converter FEATRES ma Output Current Plug-In Compatible with ICL/LTC R OT = Ω Maximum µa Maximum No Load Supply Current at V Boost Pin (Pin ) for Higher Switching Frequency 9% Minimum

More information

DESCRIPTIO FEATURES APPLICATIO S. LT1129/LT /LT Micropower Low Dropout Regulators with Shutdown TYPICAL APPLICATIO

DESCRIPTIO FEATURES APPLICATIO S. LT1129/LT /LT Micropower Low Dropout Regulators with Shutdown TYPICAL APPLICATIO Micropower Low Dropout Regulators with Shutdown FEATRES.4V Dropout Voltage 7mA Output Current µa Quiescent Current No Protection Diodes Needed Adjustable Output from 3.8V to 3V 3.3V and V Fixed Output

More information

DESCRIPTIO APPLICATIO S TYPICAL APPLICATIO LTC1921 Dual 48V Supply and Fuse Monitor FEATURES

DESCRIPTIO APPLICATIO S TYPICAL APPLICATIO LTC1921 Dual 48V Supply and Fuse Monitor FEATURES LTC9 Dual Supply and Fuse Monitor FEATRES Withstands Transient Voltages p to V/V Requires No Precision External Components Independently Monitors Two Supplies for ndervoltage Faults:.V ±V MAX Overvoltage

More information

FEATURES DESCRIPTIO TYPICAL APPLICATIO. LM / LM /LM Micropower Voltage Reference APPLICATIO S

FEATURES DESCRIPTIO TYPICAL APPLICATIO. LM / LM /LM Micropower Voltage Reference APPLICATIO S Micropower Voltage Reference FEATRES 2µA to 2mA Operating Range Guaranteed % Initial Voltage Tolerance Guaranteed Ω Dynamic Impedance Very Low Power Consumption APPLICATIO S Portable Meter References Portable

More information

DESCRIPTIO. LT685 High Speed Comparator FEATURES APPLICATIO S TYPICAL APPLICATIO

DESCRIPTIO. LT685 High Speed Comparator FEATURES APPLICATIO S TYPICAL APPLICATIO High Speed Comparator FEATRES ltrafast (5.5ns typ) Complementary ECL Output 50Ω Line Driving Capability Low Offset Voltage Output Latch Capability External Hysteresis Control Pin Compatible with Am685

More information

FEATURES DESCRIPTIO APPLICATIO S TYPICAL APPLICATIO. LT Very Low Noise, Differential Amplifier and 10MHz Lowpass Filter

FEATURES DESCRIPTIO APPLICATIO S TYPICAL APPLICATIO. LT Very Low Noise, Differential Amplifier and 10MHz Lowpass Filter LT- ery Low Noise, Differential Amplifier and MHz Lowpass Filter FEATURES Programmable Differential Gain via Two External Resistors Adjustable Output Common Mode oltage Operates and Specified with,, ±

More information

Distributed by: www.jameco.com --- The content and copyrights of the attached material are the property of its owner. Precision, Rail-to-Rail, Zero-Drift, Resistor-Programmable Instrumentation Amplifier

More information

FEATURES DESCRIPTIO. LTC Linear Phase, DC Accurate, Low Power, 10th Order Lowpass Filter APPLICATIO S TYPICAL APPLICATIO

FEATURES DESCRIPTIO. LTC Linear Phase, DC Accurate, Low Power, 10th Order Lowpass Filter APPLICATIO S TYPICAL APPLICATIO Linear Phase, DC Accurate, Low Power, 0th Order Lowpass Filter FEATRES One External R Sets Cutoff Frequency Root Raised Cosine Response ma Supply Current with a Single Supply p to khz Cutoff on a Single

More information

APPLICATIONS DESCRIPTION TYPICAL APPLICATION. LT1675/LT MHz, Triple and Single RGB Multiplexer with Current Feedback Amplifiers FEATURES

APPLICATIONS DESCRIPTION TYPICAL APPLICATION. LT1675/LT MHz, Triple and Single RGB Multiplexer with Current Feedback Amplifiers FEATURES MHz, Triple and Single RGB Multiplexer with Current Feedback Amplifiers FEATURES MHz Pixel Switching 3dB Bandwidth: MHz Small 6-Pin SSOP Package Channel Switching Time:.ns Expandable to Larger Arrays Drives

More information

V ON = 0.93V V OFF = 0.91V V ON = 2.79V V OFF = 2.73V V ON = 4.21V V OFF = 3.76V V ON = 3.32V V OFF = 2.80V. 45.3k 6.04k 1.62k. 3.09k. 7.68k 1.

V ON = 0.93V V OFF = 0.91V V ON = 2.79V V OFF = 2.73V V ON = 4.21V V OFF = 3.76V V ON = 3.32V V OFF = 2.80V. 45.3k 6.04k 1.62k. 3.09k. 7.68k 1. FEATURES Fully Sequence Four Supplies Six with Minimal External Circuitry Cascadable for Additional Supplies Power Off in Reverse Order or Simultaneously Charge Pump Drives External MOSFETs Drives Power

More information

LT6230/LT / LT6231/LT MHz, Rail-to-Rail Output, 1.1nV/ Hz, 3.5mA Op Amp Family DESCRIPTIO FEATURES APPLICATIO S TYPICAL APPLICATIO

LT6230/LT / LT6231/LT MHz, Rail-to-Rail Output, 1.1nV/ Hz, 3.5mA Op Amp Family DESCRIPTIO FEATURES APPLICATIO S TYPICAL APPLICATIO FEATURES Low Noise Voltage:.nV/ Hz Low Supply Current: 3.mA/Amp Max Low Offset Voltage: 3µV Max Gain Bandwidth Product: LT623: 2MHz; A V LT623-: 4MHz; A V Wide Supply Range: 3V to 2.6V Output Swings Rail-to-Rail

More information

Single Supply, Low Power Triple Video Amplifier AD813

Single Supply, Low Power Triple Video Amplifier AD813 a FEATURES Low Cost Three Video Amplifiers in One Package Optimized for Driving Cables in Video Systems Excellent Video Specifications (R L = 15 ) Gain Flatness.1 db to 5 MHz.3% Differential Gain Error.6

More information

FEATURES DESCRIPTIO Low Noise Voltage: 0.95nV/ Hz (100kHz) Gain Bandwidth Product: LT6200/LT MHz AV = 1 LT MHz LT

FEATURES DESCRIPTIO Low Noise Voltage: 0.95nV/ Hz (100kHz) Gain Bandwidth Product: LT6200/LT MHz AV = 1 LT MHz LT LT62/LT62- LT62-1/LT621 16MHz, Rail-to-Rail Input and Output,.9nV/ Hz Low Noise, Op Amp Family FEATURES Low Noise Voltage:.9nV/ Hz (1kHz) Gain Bandwidth Product: LT62/LT621 16MHz A V = 1 LT62-8MHz A V

More information

Distributed by: www.jameco.com -8-8-22 The content and copyrights of the attached material are the property of its owner. FEATRES Input Bias Current, Warmed p: pa Max % Tested Low Voltage Noise: 8nV/ Hz

More information

DESCRIPTIO FEATURES TYPICAL APPLICATIO. LT mA, Low Noise, Low Dropout Negative Micropower Regulator in ThinSOT APPLICATIO S

DESCRIPTIO FEATURES TYPICAL APPLICATIO. LT mA, Low Noise, Low Dropout Negative Micropower Regulator in ThinSOT APPLICATIO S 2mA, Low Noise, Low Dropout Negative Micropower Regulator in ThinSOT FEATRES Low Profile (1mm) ThinSOT TM Package Low Noise: 3µV RMS (1Hz to 1kHz) Low Quiescent Current: 3µA Low Dropout Voltage: 34mV Output

More information

Improved Second Source to the EL2020 ADEL2020

Improved Second Source to the EL2020 ADEL2020 Improved Second Source to the EL ADEL FEATURES Ideal for Video Applications.% Differential Gain. Differential Phase. db Bandwidth to 5 MHz (G = +) High Speed 9 MHz Bandwidth ( db) 5 V/ s Slew Rate ns Settling

More information

LTC1515 Series Step-Up/Step-Down Switched Capacitor DC/DC Converters with Reset DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION

LTC1515 Series Step-Up/Step-Down Switched Capacitor DC/DC Converters with Reset DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION LTC Series Step-p/Step-Down Switched Capacitor DC/DC Converters with Reset FEATRES Adjustable/Selectable 3V, 3.3V or V Output Voltages V to V Input Voltage Range p to ma Output Current Only Three External

More information

LT1206 TA mA/60MHz Current Feedback Amplifi er DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION

LT1206 TA mA/60MHz Current Feedback Amplifi er DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION LT26 2mA/6MHz Current Feedback Amplifi er FEATURES 2mA Minimum Output Drive Current 6MHz Bandwidth, A V = 2, R L = Ω 9V/µs Slew Rate, A V = 2, R L = Ω.2% Differential Gain, A V = 2, R L = Ω.7 Differential

More information

FEATURES TYPICAL APPLICATIO. LTC Low Power 8th Order Pin Selectable Butterworth or Bessel Lowpass Filter DESCRIPTIO APPLICATIO S

FEATURES TYPICAL APPLICATIO. LTC Low Power 8th Order Pin Selectable Butterworth or Bessel Lowpass Filter DESCRIPTIO APPLICATIO S FEATRES Pin Selectable Butterworth or Bessel Response ma Supply Current with ±V Supplies f CTOFF up to khz µv RMS Wideband Noise THD

More information

KM4110/KM mA, Low Cost, +2.7V & +5V, 75MHz Rail-to-Rail Amplifiers

KM4110/KM mA, Low Cost, +2.7V & +5V, 75MHz Rail-to-Rail Amplifiers + + www.fairchildsemi.com KM411/KM41.5mA, Low Cost, +.7V & +5V, 75MHz Rail-to-Rail Amplifiers Features 55µA supply current 75MHz bandwidth Power down to I s = 33µA (KM41) Fully specified at +.7V and +5V

More information

DESCRIPTIO APPLICATIO S. LTC5531 Precision 300MHz to 7GHz RF Detector with Shutdown and Offset Adjustment FEATURES TYPICAL APPLICATIO

DESCRIPTIO APPLICATIO S. LTC5531 Precision 300MHz to 7GHz RF Detector with Shutdown and Offset Adjustment FEATURES TYPICAL APPLICATIO LTC553 Precision 3MHz to 7GHz RF Detector with Shutdown and Offset Adjustment FEATURES Temperature Compensated Internal Schottky Diode RF Detector Wide Input Frequency Range: 3MHz to 7GHz* Wide Input Power

More information

FEATURES DESCRIPTIO APPLICATIO S. LT1120 Micropower Regulator with Comparator and Shutdown TYPICAL APPLICATIO

FEATURES DESCRIPTIO APPLICATIO S. LT1120 Micropower Regulator with Comparator and Shutdown TYPICAL APPLICATIO LT Micropower Regulator with Comparator and Shutdown FEATRES μa Supply Current ma Output Current.V Reference Voltage Reference Output Sources ma and Sinks ma Open Collector Comparator Sinks ma Logic Shutdown.V

More information

FEATURES DESCRIPTIO TYPICAL APPLICATIO LT MHz to 3GHz RF Power Detector. with 60dB Dynamic Range APPLICATIO S

FEATURES DESCRIPTIO TYPICAL APPLICATIO LT MHz to 3GHz RF Power Detector. with 60dB Dynamic Range APPLICATIO S LT4 MHz to GHz Power Detector with 6dB Dynamic Range FEATRES Frequency Range: MHz to GHz Linear Dynamic Range: 6dB Exceptional Accuracy over Temperature and Power Supply Fast Transient Response: 8ns Full-Scale

More information

U S DESCRIPTIO. LT1225 Very High Speed Operational Amplifier

U S DESCRIPTIO. LT1225 Very High Speed Operational Amplifier FEATRES Gain of Stable MHz Gain Bandwidth V/µs Slew Rate V/mV DC Gain, R L = Ω mv Maximum Input ffset Voltage ±V Minimum utput Swing into Ω ide Supply Range: ±.V to ±V 7mA Supply Current 9ns Settling Time

More information

FHP3350, FHP3450 Triple and Quad Voltage Feedback Amplifiers

FHP3350, FHP3450 Triple and Quad Voltage Feedback Amplifiers FHP335, FHP345 Triple and Quad Voltage Feedback Amplifiers Features.dB gain flatness to 3MHz.7%/.3 differential gain/phase error 2MHz full power -3dB bandwidth at G = 2,V/μs slew rate ±55mA output current

More information

Dual, Current Feedback Low Power Op Amp AD812

Dual, Current Feedback Low Power Op Amp AD812 a FEATURES Two Video Amplifiers in One -Lead SOIC Package Optimized for Driving Cables in Video Systems Excellent Video Specifications (R L = ): Gain Flatness. db to MHz.% Differential Gain Error. Differential

More information

FEATURES APPLICATIO S TYPICAL APPLICATIO. LTC Low Noise, 8th Order, Clock Sweepable Elliptic Lowpass Filter DESCRIPTIO

FEATURES APPLICATIO S TYPICAL APPLICATIO. LTC Low Noise, 8th Order, Clock Sweepable Elliptic Lowpass Filter DESCRIPTIO LTC- Low Noise, th Order, Clock Sweepable Elliptic Lowpass Filter FEATRES th Order Filter in a -Pin Package No External Components : Clock to Center Ratio µv RMS Total Wideband Noise.% THD or Better khz

More information

DESCRIPTIO APPLICATIO S. LTC5530 Precision 300MHz to 7GHz RF Detector with Shutdown and Gain Adjustment FEATURES TYPICAL APPLICATIO

DESCRIPTIO APPLICATIO S. LTC5530 Precision 300MHz to 7GHz RF Detector with Shutdown and Gain Adjustment FEATURES TYPICAL APPLICATIO Precision 3MHz to 7GHz RF Detector with Shutdown and Gain Adjustment FEATURES Temperature Compensated Internal Schottky Diode RF Detector Wide Input Frequency Range: 3MHz to 7GHz* Wide Input Power Range:

More information

V ON = 2.64V V OFF = 1.98V V ON = 0.93V V OFF = 0.915V V ON = 3.97V V OFF = 2.97V. V ON = 2.79V V OFF = 2.73V 100k 1.62k 66.5k. 6.04k.

V ON = 2.64V V OFF = 1.98V V ON = 0.93V V OFF = 0.915V V ON = 3.97V V OFF = 2.97V. V ON = 2.79V V OFF = 2.73V 100k 1.62k 66.5k. 6.04k. FEATURES Fully Sequence and Monitor Four Supplies Six with Minimal External Circuitry Cascadable for Additional Supplies Power Off in Reverse Order or Simultaneously Charge Pump Drives External MOSFETs

More information

5-Bit VID-Controlled High Current Application (Simplified Block Diagram) 4.5V TO 22V LTC TG1 SW1 BG1 PGND TG2 SW2 BG2 4.5V TO 22V LTC TG1

5-Bit VID-Controlled High Current Application (Simplified Block Diagram) 4.5V TO 22V LTC TG1 SW1 BG1 PGND TG2 SW2 BG2 4.5V TO 22V LTC TG1 LTC0- -Bit ID oltage Programmer for AMD Opteron CPs FEATRES Programs Regulator Output oltage Range from 0. to. in m Steps Programs a Wide Range of Linear Technology DC/DC Converters with a 0. Reference

More information

APPLICATIONS TYPICAL APPLICATION. LTC1841/LTC1842/LTC1843 Ultralow Power Dual Comparators with Reference DESCRIPTION FEATURES

APPLICATIONS TYPICAL APPLICATION. LTC1841/LTC1842/LTC1843 Ultralow Power Dual Comparators with Reference DESCRIPTION FEATURES LTC/LTC/LTC3 ltralow Power Dual Comparators with Reference FEATRES ltralow Quiescent Current: 3.µA Typ Open-Drain Outputs Typically Sink Greater Than ma Wide Supply Range: (LTC) Single: V to V Dual: ±V

More information

LT MHz, 30V/µs 16-Bit Accurate A V 2 Op Amp. Description. Features. Applications. Typical Application

LT MHz, 30V/µs 16-Bit Accurate A V 2 Op Amp. Description. Features. Applications. Typical Application Features n Stable in Gain A (A = ) n MHz Gain Bandwidth Product n /μs Slew Rate n Settling Time: 8ns ( Step, ) n Specified at and Supplies n Low Distortion, 9.dB for khz, P-P n Maximum Input Offset oltage:

More information

LT1342 5V RS232 Transceiver with 3V Logic Interface DESCRIPTIO

LT1342 5V RS232 Transceiver with 3V Logic Interface DESCRIPTIO V RS Transceiver with V Logic Interface FEATRES ESD Protection Over ±kv V Logic Interface ses Small Capacitors:.µF,.µF µa Supply Current in Shutdown Low Power Driver Disable Operating Mode Pin Compatible

More information

APPLICATIO S. LT /LT1585A-1.5 Fixed 1.5V, 4.6A and 5A Low Dropout, Fast Response GTL+ Regulators DESCRIPTIO FEATURES TYPICAL APPLICATIO

APPLICATIO S. LT /LT1585A-1.5 Fixed 1.5V, 4.6A and 5A Low Dropout, Fast Response GTL+ Regulators DESCRIPTIO FEATURES TYPICAL APPLICATIO FEATRES Fast Transient Response Guaranteed Dropout Voltage at Multiple Currents Load Regulation: 0.05% Typ Trimmed Current Limit On-Chip Thermal Limiting APPLICATIO S GTL+ Power Supply Low Voltage Logic

More information

Single Supply, Low Power, Triple Video Amplifier AD8013

Single Supply, Low Power, Triple Video Amplifier AD8013 a FEATURES Three Video Amplifiers in One Package Drives Large Capacitive Load Excellent Video Specifications (R L = 5 ) Gain Flatness. db to MHz.% Differential Gain Error. Differential Phase Error Low

More information

FEATURES DESCRIPTIO TYPICAL APPLICATIO LT V Low Dropout Regulator

FEATURES DESCRIPTIO TYPICAL APPLICATIO LT V Low Dropout Regulator Low Dropout Regulator Driver FEATRES Extremely Low Dropout Low Cost Fixed 5V Output, Trimmed to ±1% 7µA Quiescent Current 1mV Line Regulation 5mV Load Regulation Thermal Limit 4A Output Current Guaranteed

More information

U U W PACKAGE I FOR ATIO. RH1498M 10MHz, 6V/µs, Dual Rail-to-Rail Input and Output Precision C-Load Op Amp DESCRIPTIO BUR -I CIRCUIT

U U W PACKAGE I FOR ATIO. RH1498M 10MHz, 6V/µs, Dual Rail-to-Rail Input and Output Precision C-Load Op Amp DESCRIPTIO BUR -I CIRCUIT RH498M MHz, 6V/µs, Dual Rail-to-Rail Input and Output Precision C-Load Op Amp DESCRIPTIO U The RH498 is a dual, rail-to-rail input and output precision C-Load TM op amp with a MHz gain-bandwidth product

More information

380 MHz, 25 ma, Triple 2:1 Multiplexers AD8183/AD8185

380 MHz, 25 ma, Triple 2:1 Multiplexers AD8183/AD8185 a FEATURES Fully Buffered Inputs and Outputs Fast Channel-to-Channel Switching: 5 ns High Speed 38 MHz Bandwidth ( 3 db) 2 mv p-p 3 MHz Bandwidth ( 3 db) 2 V p-p V/ s Slew Rate G = +, 2 V Step 5 V/ s Slew

More information

LT1106. DC/DC Converter for PCMCIA Card Flash Memory DESCRIPTIO OBSOLETE:

LT1106. DC/DC Converter for PCMCIA Card Flash Memory DESCRIPTIO OBSOLETE: FOR INFORMATION PRPOSES ONLY OBSOLETE: Contact Linear Technology for Potential Replacement FEATRES 60mA Output Current at 12V from 3V Supply Shutdown to 10µA Programmable 12V or 5V Output p to 85% Efficiency

More information

AD9300 SPECIFICATIONS ELECTRICAL CHARACTERISTICS ( V S = 12 V 5%; C L = 10 pf; R L = 2 k, unless otherwise noted) COMMERCIAL 0 C to +70 C Test AD9300K

AD9300 SPECIFICATIONS ELECTRICAL CHARACTERISTICS ( V S = 12 V 5%; C L = 10 pf; R L = 2 k, unless otherwise noted) COMMERCIAL 0 C to +70 C Test AD9300K a FEATURES 34 MHz Full Power Bandwidth 0.1 db Gain Flatness to 8 MHz 72 db Crosstalk Rejection @ 10 MHz 0.03 /0.01% Differential Phase/Gain Cascadable for Switch Matrices MIL-STD-883 Compliant Versions

More information

TYPICAL APPLICATIO. LT1027 Precision 5V Reference FEATURES DESCRIPTIO APPLICATIO S

TYPICAL APPLICATIO. LT1027 Precision 5V Reference FEATURES DESCRIPTIO APPLICATIO S Precision 5V Reference FEATRES Very Low Drift: 2ppm/ C Max TC Pin Compatible with LT121-5, REF-2, (PDIP Package) Output Sources 15mA, Sinks 1mA Excellent Transient Response Suitable for A-to-D Reference

More information

Low Cost, General Purpose High Speed JFET Amplifier AD825

Low Cost, General Purpose High Speed JFET Amplifier AD825 a FEATURES High Speed 41 MHz, 3 db Bandwidth 125 V/ s Slew Rate 8 ns Settling Time Input Bias Current of 2 pa and Noise Current of 1 fa/ Hz Input Voltage Noise of 12 nv/ Hz Fully Specified Power Supplies:

More information

Rail-to-Rail, High Output Current Amplifier AD8397

Rail-to-Rail, High Output Current Amplifier AD8397 Rail-to-Rail, High Output Current Amplifier FEATURES Dual operational amplifier Voltage feedback Wide supply range from 3 V to 24 V Rail-to-rail output Output swing to within.5 V of supply rails High linear

More information

DESCRIPTIO APPLICATIO S TYPICAL APPLICATIO. LT MHz, 1000V/µs Gain Selectable Amplifier FEATURES

DESCRIPTIO APPLICATIO S TYPICAL APPLICATIO. LT MHz, 1000V/µs Gain Selectable Amplifier FEATURES LT MHz, /µs Gain Selectable Amplifier FEATURES Internal Gain Setting Resistors Pin Configurable as a Difference Amplifier, Inverting and Noninverting Amplifier Difference Amplifier: Gain Range to CMRR

More information

Distributed by: www.jameco.com --- The content and copyrights of the attached material are the property of its owner. LTC Micropower Quad -Bit DAC FEATRES Tiny: DACs in the Board Space of an SO- Micropower:

More information

ABSOLTE MAXIMM RATINGS W W W... 7V Operating Junction Temperature Range Control Section... 0 C to 125 C Power Transistor... 0 C to 150 C Storage Tempe

ABSOLTE MAXIMM RATINGS W W W... 7V Operating Junction Temperature Range Control Section... 0 C to 125 C Power Transistor... 0 C to 150 C Storage Tempe FEATRES Fast Transient Response Guaranteed Dropout Voltage at Multiple Currents Load Regulation: 0.05% Typ Trimmed Current Limit On-Chip Thermal Limiting APPLICATIONS Intel Pentium Pro Processor GTL Supply

More information

200 ma Output Current High-Speed Amplifier AD8010

200 ma Output Current High-Speed Amplifier AD8010 a FEATURES 2 ma of Output Current 9 Load SFDR 54 dbc @ MHz Differential Gain Error.4%, f = 4.43 MHz Differential Phase Error.6, f = 4.43 MHz Maintains Video Specifications Driving Eight Parallel 75 Loads.2%

More information

TOP VIEW. Maxim Integrated Products 1

TOP VIEW. Maxim Integrated Products 1 9-987; Rev ; 9/3 5MHz, Triple, -Channel Video General Description The is a triple, wideband, -channel, noninverting gain-of-two video amplifier with input multiplexing, capable of driving up to two back-terminated

More information

LT Dual 200MHz, 30V/µs 16-Bit Accurate A V 2 Op Amp DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION

LT Dual 200MHz, 30V/µs 16-Bit Accurate A V 2 Op Amp DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION FEATURES n Stable in Gain A (A = ) n MHz Gain Bandwidth Product n /μs Slew Rate n Settling Time: 8ns (μ, Step) n Specifi ed at and Supplies n Maximum Input Offset oltage: μ n Low Distortion: 9. for khz,

More information

250 MHz, General Purpose Voltage Feedback Op Amps AD8047/AD8048

250 MHz, General Purpose Voltage Feedback Op Amps AD8047/AD8048 5 MHz, General Purpose Voltage Feedback Op Amps AD8/AD88 FEATURES Wide Bandwidth AD8, G = + AD88, G = + Small Signal 5 MHz 6 MHz Large Signal ( V p-p) MHz 6 MHz 5.8 ma Typical Supply Current Low Distortion,

More information

DESCRIPTIO FEATURES TYPICAL APPLICATIO. LTC1250 Very Low Noise Zero-Drift Bridge Amplifier APPLICATIO S

DESCRIPTIO FEATURES TYPICAL APPLICATIO. LTC1250 Very Low Noise Zero-Drift Bridge Amplifier APPLICATIO S LTC Very Low Noise Zero-Drift Bridge Amplifier FEATRES Very Low Noise:.µV P-P Typ,.Hz to Hz DC to Hz Noise Lower Than OP- Full Output Swing into k Load Offset Voltage: µv Max Offset Voltage Drift: nv/

More information

DESCRIPTION FEATURES APPLICATIONS. LT1313 Dual PCMCIA VPP Driver/Regulator TYPICAL APPLICATION

DESCRIPTION FEATURES APPLICATIONS. LT1313 Dual PCMCIA VPP Driver/Regulator TYPICAL APPLICATION Dual PCMCIA VPP Driver/Regulator FEATRES Digital Selection of V, V CC, 12V or Hi-Z Output Current Capability: 12mA Internal Current Limiting and Thermal Shutdown Automatic Switching from 3.3V to Powered

More information

DESCRIPTIO. LTC1323 Single 5V AppleTalk Transceiver

DESCRIPTIO. LTC1323 Single 5V AppleTalk Transceiver LTC Single V AppleTalk Transceiver FEATRES Single Chip Provides Complete LocalTalk /AppleTalk Port Operates From a Single V Supply ESD Protection to ±0kV on Receiver Inputs and Driver Outputs Low Power:

More information

High Speed, G = +2, Low Cost, Triple Op Amp ADA4862-3

High Speed, G = +2, Low Cost, Triple Op Amp ADA4862-3 High Speed,, Low Cost, Triple Op Amp ADA4862-3 FEATURES Ideal for RGB/HD/SD video Supports 8i/72p resolution High speed 3 db bandwidth: 3 MHz Slew rate: 75 V/μs Settling time: 9 ns (.5%). db flatness:

More information

MIC915. Features. General Description. Applications. Ordering Information. Pin Configuration. Pin Description. Dual 135MHz Low-Power Op Amp

MIC915. Features. General Description. Applications. Ordering Information. Pin Configuration. Pin Description. Dual 135MHz Low-Power Op Amp MIC915 Dual 135MHz Low-Power Op Amp General Description The MIC915 is a high-speed, unity-gain stable operational amplifier. It provides a gain-bandwidth product of 135MHz with a very low, 2.4mA supply

More information

DESCRIPTION FEATURES. LTC1550/LTC1551 Low Noise, Switched Capacitor Regulated Voltage Inverters APPLICATIONS TYPICAL APPLICATION

DESCRIPTION FEATURES. LTC1550/LTC1551 Low Noise, Switched Capacitor Regulated Voltage Inverters APPLICATIONS TYPICAL APPLICATION LTC55/LTC55 Low Noise, Switched Capacitor Regulated Voltage Inverters FEATRES Regulated Negative Voltage from a Single Positive Supply Low Output Ripple: Less Than mv P-P Typ High Charge Pump Frequency:

More information

SGM8621/2/3/4 3MHz, Rail-to-Rail I/O CMOS Operational Amplifiers

SGM8621/2/3/4 3MHz, Rail-to-Rail I/O CMOS Operational Amplifiers SGM8621/2/3/4 3MHz, Rail-to-Rail I/O PRODUCT DESCRIPTION The SGM8621 (single), SGM8622 (dual), SGM8623 (single with shutdown) and SGM8624 (quad) are low noise, low voltage, and low power operational amplifiers,

More information

SGM8631/2/3/4 470μA, 6MHz, Rail-to-Rail I/O CMOS Operational Amplifiers

SGM8631/2/3/4 470μA, 6MHz, Rail-to-Rail I/O CMOS Operational Amplifiers PRODUCT DESCRIPTION The SGM863 (single), SGM863 (dual), SGM8633 (single with shutdown) and SGM8634 (quad) are low noise, low voltage, and low power operational amplifiers, that can be designed into a wide

More information

Low Power. Video Op Amp with Disable AD810 REV. A. Closed-Loop Gain and Phase vs. Frequency, G = +2, R L = 150, R F = 715 Ω

Low Power. Video Op Amp with Disable AD810 REV. A. Closed-Loop Gain and Phase vs. Frequency, G = +2, R L = 150, R F = 715 Ω CLOSED-LOOP db SHIFT Degrees DIFFERENTIAL % DIFFERENTIAL Degrees a FEATURES High Speed MHz Bandwidth ( db, G = +) MHz Bandwidth ( db, G = +) V/ s Slew Rate ns Settling Time to.% ( = V Step) Ideal for Video

More information

FEATURES APPLICATIO S. LT GHz to 1.4GHz High Linearity Upconverting Mixer DESCRIPTIO TYPICAL APPLICATIO

FEATURES APPLICATIO S. LT GHz to 1.4GHz High Linearity Upconverting Mixer DESCRIPTIO TYPICAL APPLICATIO FEATURES Wide RF Frequency Range:.7GHz to.ghz 7.dBm Typical Input IP at GHz On-Chip RF Output Transformer On-Chip 5Ω Matched LO and RF Ports Single-Ended LO and RF Operation Integrated LO Buffer: 5dBm

More information

High Common-Mode Rejection. Differential Line Receiver SSM2141 REV. B FUNCTIONAL BLOCK DIAGRAM FEATURES. High Common-Mode Rejection

High Common-Mode Rejection. Differential Line Receiver SSM2141 REV. B FUNCTIONAL BLOCK DIAGRAM FEATURES. High Common-Mode Rejection a FEATURES High Common-Mode Rejection DC: 100 db typ 60 Hz: 100 db typ 20 khz: 70 db typ 40 khz: 62 db typ Low Distortion: 0.001% typ Fast Slew Rate: 9.5 V/ s typ Wide Bandwidth: 3 MHz typ Low Cost Complements

More information

Single-Supply, High Speed, Triple Op Amp with Charge Pump ADA4858-3

Single-Supply, High Speed, Triple Op Amp with Charge Pump ADA4858-3 Single-Supply, High Speed, Triple Op Amp with Charge Pump FEATURES Integrated charge pump Supply range: 3 V to 5.5 V Output range: 3.3 V to.8 V 5 ma maximum output current for external use at 3 V High

More information

Quad 150 MHz Rail-to-Rail Amplifier AD8044

Quad 150 MHz Rail-to-Rail Amplifier AD8044 a FEATURES Single AD84 and Dual AD842 Also Available Fully Specified at + V, +5 V, and 5 V Supplies Output Swings to Within 25 mv of Either Rail Input Voltage Range Extends 2 mv Below Ground No Phase Reversal

More information

FEATURES. LT1612 Synchronous, Step-Down 800kHz PWM DC/DC Converter DESCRIPTIO APPLICATIO S TYPICAL APPLICATION

FEATURES. LT1612 Synchronous, Step-Down 800kHz PWM DC/DC Converter DESCRIPTIO APPLICATIO S TYPICAL APPLICATION Synchronous, Step-Down 8kHz PWM DC/DC Converter FEATRES Operates from Input Voltage As Low As 2V Internal.7A Synchronous Switches ses Ceramic Input and Output Capacitors 62mV Reference Voltage 8kHz Fixed

More information

RH1014M Quad Precision Operational Amplifier DESCRIPTIO PACKAGE INFORMATION BURN-IN CIRCUIT

RH1014M Quad Precision Operational Amplifier DESCRIPTIO PACKAGE INFORMATION BURN-IN CIRCUIT RH4M Quad Precision Operational Amplifier DESCRIPTIO U The RH4M is the first precision quad operational amplifier which directly upgrades designs in the industry standard 8-pin DIP LM4/LM48/OP-/556 pin

More information

FEATURES APPLICATIO S. LT1178/LT µA Max, Dual and Quad, Single Supply, Precision Op Amps DESCRIPTIO TYPICAL APPLICATIO

FEATURES APPLICATIO S. LT1178/LT µA Max, Dual and Quad, Single Supply, Precision Op Amps DESCRIPTIO TYPICAL APPLICATIO FEATRES 7µA Max Supply Current per Amplifier 7µV Max Offset Voltage 5pA Max Offset Current 5nA Max Input Bias Current.9µV P-P.Hz to Hz Voltage Noise.5pA P-P.Hz to Hz Current Noise.5µV/ C Offset Voltage

More information