32nm Technology and Beyond

Size: px
Start display at page:

Download "32nm Technology and Beyond"

Transcription

1 32nm Technology and Beyond Paolo Gargini Chairman ITRS IEEE Fellow Director of Technology Strategy Intel Fellow ISS Europe 2009 P. Gargini 1

2 Agenda Equivalent Scaling 45nm Technology summary 32nm Technology highlights Beyond 32nm Conclusions ISS Europe 2009 P. Gargini 2

3 Agenda Equivalent Scaling 45nm Technology summary 32nm Technology highlights Beyond 32nm Conclusions ISS Europe 2009 P. Gargini 3

4 The Ideal MOS Transistor Metal Source Drain Gate Insulator Fully Surrounding Metal Electrode Fully Enclosed, Depleted Semiconductor High-K Gate Insulator Band Engineered Semiconductor Low Resistance Source/Drain From My Files ISS Europe 2009 P. Gargini 4

5 Staged Investment Aligned to Risks Step 5 Step 4 Step 3 Step 2 Step 1 External Research $/Year ~ 10 7 Research Pathfinding Development Manufacturing ~ 10 8 ~ 10 9 ~ Risk & Options High Moderate Low Create very Evaluate Focus on Synchronize Copy exactly, early on options, choices, and ramp rapidly options collaborate reduce risk integrate externally externally ISS Europe 2009 P. Gargini 5

6 The New Scaling Paradigm Classical Scaling L G T ox V DD L G T ox V DD Strain High-K Metal-G Tri-Gate New New ISS Europe 2009 P. Gargini 6

7 Strained P-Channel Transistor Mobility Innovation Strained N-Channel Transistor High Stress Film SiGe SiGe Source: Intel ISS Europe 2009 P. Gargini 7

8 Problem Statement ISS Europe 2009 P. Gargini 8

9 High-k k Dielectric reduces leakage substantially Gate Gate 1.2nm SiO 2 3.0nm High-k Silicon substrate Silicon substrate Benefits compared to current process technologies Capacitance Gate dielectric leakage High-k k vs. SiO 2 60% greater > 100x reduction November 4th, 2003 Benefit Much faster transistors Far cooler ISS Europe 2009 P. Gargini 9 10

10 Agenda Equivalent Scaling 45nm Technology summary 32nm Technology highlights Beyond 32nm Conclusions ISS Europe 2009 P. Gargini 10

11 ISS Europe 2009 IEDM 2007 P. Gargini 11

12 ISS Europe 2009 IEDM 2007 P. Gargini 12

13 ISS Europe 2009 IEDM 2007 P. Gargini 13

14 ISS Europe 2009 IEDM 2007 P. Gargini 14

15 ISS Europe 2009 IEDM 2007 P. Gargini 15

16 ISS Europe 2009 IEDM 2007 P. Gargini 16

17 ISS Europe 2009 IEDM 2007 P. Gargini 17

18 ISS Europe 2009 IEDM 2007 P. Gargini 18

19 ISS Europe 2009 IEDM 2007 P. Gargini 19

20 Scaling trend for inversion electrical TOX Metal Gate (different for NMOS & PMOS) 10 Electrical (Inv) Tox (nm) 1 High-k Silicon Substrate 350nm 250nm 180nm 130nm 90nm 65nm 45nm Gate Leakage (Rel.) ISS Europe 2009 IEDM 2007 P. Gargini 20

21 ISS Europe 2009 P. Gargini 21 IEDM 2007

22 ISS Europe 2009 P. Gargini 22 IEDM 2007

23 ISS Europe 2009 IEDM 2007 P. Gargini 23

24 ISS Europe 2009 P. Gargini 24 IEDM 2007

25 ISS Europe 2009 IEDM 2007 P. Gargini 25

26 ISS Europe 2009 P. Gargini 26 IEDM 2007

27 IEDM 2007 ISS Europe 2009 P. Gargini 27

28 Intel s 45nm Investment FAB INVESTMENT $9B FAB 11X New Mexico FAB 32 Arizona D1D Oregon FAB 28 Israel TECHNOLOGY INVESTMENT $1B 45nm High-k + Metal Gate Transistors SiGe Metal High-k SiGe PRODUCT INVESTMENT $2B Penryn Nehalem Silverthorne Others Source: Intel ISS Europe 2009 P. Gargini 28

29 Agenda Equivalent Scaling 45nm Technology summary 32nm Technology highlights Beyond 32nm Conclusions ISS Europe 2009 P. Gargini 29

30 A 32nm Logic Technology Featuring 2nd-Generation High-k k + Metal-Gate Transistors, Enhanced Channel Strain and 0.171um 2 SRAM Cell Size in a 291Mb Array S. Natarajan,, M. Armstrong, M. Bost, R. Brain, M. Brazier, C-H C H Chang, V. Chikarmane, M. Childs, H. Deshpande, K. Dev, G. Ding, T. Ghani, O. Golonzka, W. Han, J. He*, R. Heussner, R. James, I. Jin, C. Kenyon, K S. Klopcic, S-H. S Lee, M. Liu, S. Lodha, B. McFadden, A. Murthy, L. Neiberg, J. Neirynck, P. Packan, S. Pae*, C. Parker, C. Pelto, L. Pipes, J. Sebastian, J. Seiple, B. Sell, S. Sivakumar, B. Song, K. Tone,, T. Troeger, C. Weber**, M. Yang, A. Yeoh, K. Zhang Logic Technology Development, *QRE, ** TCAD Intel Corporation IEDM 2008 P. Gargini

31 Process Features 32nm Groundrules 193nm Immersion Lithography 2 nd Generation High-K K + Metal Gate 4 th Generation Strained Silicon 9 Cu Interconnect Layers Low-k k CDO / SiCN dielectric Cu bump with Lead-free Packaging ISS Europe 2009 IEDM 2008 P. Gargini 31

32 Contacted Gate Pitch Transistor gate pitch of 112.5nm Continues 0.7x per generation scaling 1000 Contacted Gate Pitch (nm) Pitch 112.5nm Contacted Gate Pitch 0.7x every 2 years nm 180nm 130nm 90nm 65nm 45nm 32nm Technology Node Tightest contacted gate pitch reported for 32nm generation ISS Europe 2009 IEDM 2008 P. Gargini 32

33 SRAM Cells um 2 SRAM cell 10 SRAM Cell Area (um 2 ) 1 SRAM Cell Area 0.5x every 2 years nm 180nm 130nm 90nm 65nm 45nm 32nm Technology Node Transistor density doubles every two years ISS Europe 2009 IEDM 2008 P. Gargini 33

34 SRAM Array Density SRAM array density achieves 4.2 Mb/mm 2 Includes row/column drivers and other circuitry 10.0 SRAM Array Density (Mb/mm 2 ) Mb/mm nm 65nm 45nm 32nm Array density scales at ~2X per generation ISS Europe 2009 IEDM 2008 P. Gargini 34

35 Key Transistor Features 30nm gate length with 112.5nm contacted gate pitch 2 nd generation Hi-k k + Metal Gate 0.9nm EOT Hi-K K with dual workfunction metal gate electrodes Continued use of Replacement Metal Gate approach Metal gate deposition after high temperature anneals Integrated with strained silicon process Transistor mask count same as 45nm Adds ~4% process cost over non hi-k/mg 4 th generation of strained silicon ISS Europe 2009 IEDM 2008 P. Gargini 35

36 NMOS I vs. DSAT I OFF 1000 Vdd=1.0V Ioff (na/um) nm nm 1 45nm: Mistry, 2007 IEDM Idsat (ma/um) 1.55 ma/µm m at I OFF = 100 na/µm 14% better than 45nm ISS Europe 2009 IEDM 2008 P. Gargini 36

37 PMOS I vs. DSAT I OFF 1000 Vdd=1.0V Ioff (na/um) nm: Mistry, 2007 IEDM 45nm nm Idsat (ma/um) 1.31 ma/µm m at I OFF = 100 na/µm 22% better than 45nm 32nm PMOS Idsat almost equal to 45nm NMOS Idsat! ISS Europe 2009 IEDM 2008 P. Gargini 37

38 Transistor Performance vs. Gate Pitch IDSAT (ma/um) V, 100 na/µm 90nm: Mistry, 2004 VLSI 65nm: Tyagi, 2005 IEDM 45nm: Mistry, 2007 IEDM Gate Pitch (Generation) NMOS PMOS 320nm (90nm) 220nm (65nm) Contacted Gate Pitch (nm) 160nm 112.5nm (45nm) (32nm) 100 Highest reported drive current at tightest reported gate pitch Simultaneous performance and density improvement ISS Europe 2009 IEDM 2008 P. Gargini 38

39 Interconnects Metal pitches match transistor pitch Graduated upper level pitches optimize density & performance Extensive use of low-k k ILD and SiCN ISS Europe 2009 IEDM 2008 P. Gargini 39

40 SRAM Yield Defect Density (log scale) 2 Years 32nm SRAM yield maintains 2-year 2 cadence ISS Europe 2009 IEDM 2008 P. Gargini 40

41 Agenda Equivalent Scaling 45nm Technology summary 32nm Technology highlights Beyond 32nm Conclusions ISS Europe 2009 P. Gargini 41

42 Options and Challenges (1) Substrate Engineering (110) vs. (100) crystal orientation + Increased p-channel mobility? Impact on n-channel mobility Hole Mobility (cm 2 /Vs) (100) Mobility (110) Mobility Hole <110> Stress (MPa) <110> (100) <100> <110> <100> (110) <111> <110> ISS Europe 2009 P. Gargini 42

43 Options and Challenges (2) Multi-Gate FETs + Improved electrostatics + Steeper sub-threshold slope? Parasitic resistance? Parasitic capacitance FinFET GAA Wrap around Gate Source-drain Fin ISS Europe 2009 P. Gargini 43

44 Picking the Right High-µ Material Material Property Electron mobility Hole mobility Bandgap (ev) Dielectric constant Si Ge Why Ge? More symmetric and higher carrier mobilities Highest hole mobility Easier integration on Si Lower temperature processing ISS Europe 2009 P. Gargini 44

45 ISS Europe 2009 IEDM 2008 P. Gargini 45

46 Increasing Electron Mobility Increased mobility in the transistor channel leads to higher performance and less energy consumption W IDSAT µ COX L Relative mobility Compound Semiconductors Si GaAs InAs InSb Compound semiconductors have higher electron mobility than Si; InSb (indium antimonide) is highest of all ISS Europe 2009 P. Gargini 46

47 Depletion and Enhancement Mode Gate Source Drain Al x In 1-x Sb barrier InSb QW Source Recessed Gate Al x In 1-x Sb barrier Drain Etch Stop Layer Semi-insulating GaAs substrate for epitaxial growth Semi-insulating GaAs substrate for epitaxial growth Depletion mode (Normally ON) Enhancement mode (Normally OFF) A novel gate recess process is used to fabricate enhancement mode InSb QWFETs IEDM 2005 ISS Europe 2009 P. Gargini 47

48 Speed, Power, Performance Cut-off Frequency, ft [GHz] InSb E-mode QWFET (LG = 85nm) VDS = 0.3V, 0.5V, 0.6V 10X power 1.5X speed Silicon MOSFET (LG = 60nm) VDS = 0.5V, 0.7V, 0.9V, 1.2V DC Power Dissipation [µw/µm] InSb QWFETs show > 10x reduction in active power dissipation compared to Si MOSFETs ISS Europe 2009 P. Gargini 48

49 NMOS 2007 IEDM ISS Europe 2009 P. Gargini 49

50 New Material Integration for High- Performance Transistors N-channel built on Silicon (IEDM 2007) Background: III-V Integration with Silicon Opportunity Higher mobility allows radical voltage scaling for 10x power reduction New material and deposition methods already in use starting with 45nm node Key Challenges Integrate with Silicon Infrastructure Integration with Conventional Design Comparable Density and Cost InGaAs QWFET on Si [L G = 80nm] Si Peak f T > 400GHz at V cc = 0.5V III-V V Transistors May Enable Improved Performance and Lower Power Beyond What Silicon Can Provide Marko Radosavljevic, IEDM 2007 ISS Europe 2009 P. Gargini 50

51 New Material Integration for High- Performance Transistors P-channel with compressive strain (IEDM 2008) Ti/Au Source 6nm p-doped 10nm p-doped 3nm undoped Be δ-doping 7nm undoped Ti/Au Gate L G Ti/Au Drain low resistance cap Alxx In 1-x Sb top barrier Al x In 1-x Sb top barrier Al x In 1-x Sb spacer 5nm InSb quantum well 3 µ m undoped Al x In 1-x Sb bottom barrier 200nm Al y In 1-y S b interfacial layer Semi-insulating GaAs substrate Peak f T > 140 GHz at Vcc = -0.5V High performance III-V p-channel Demonstrated with InSb Compressive strain to raise mobility 10x reduction in power vs equiv Si Highest performance P-channel reported to date Source 40nm gate length Gate Drain P-channel III-V in partnership with Qinetiq Marko Radosavljevic, IEDM 2008 ISS Europe 2009 P. Gargini 51

52 Transistors/Die Intel Sees No End to Moore s s Law 10µm 13 Bipolar PMOS NMOS CMOS Voltage Scaling Data (Moore) Memory Microprocessor Kilo Xtor 1µm 100nm 10nm Mega Xtor Pwr Eff Scaling Giga Xtor New Nano- structures Beyond CMOS? Spin based? Molecular? Other? Tera Xtor ISS Europe 2009 P. Gargini 52

53 Agenda Equivalent Scaling 45nm Technology summary 32nm Technology highlights Beyond 32nm Conclusions ISS Europe 2009 P. Gargini 53

54 Conclusions 45nm and 32nm technologies demonstrate that multiple Technical Red Brick Walls of the past have been overcome Completed development phase on 32nm CMOS On track for production readiness in Q4 09 Multiple viable technical options exist for the next years Device technology will not be a show stopper for the foreseeable future Moore s s Law is Alive and Well! ISS Europe 2009 P. Gargini 54

Logic Technology Development, *QRE, ** TCAD Intel Corporation

Logic Technology Development, *QRE, ** TCAD Intel Corporation A 32nm Logic Technology Featuring 2nd-Generation High-k + Metal-Gate Transistors, Enhanced Channel Strain and 0.171um 2 SRAM Cell Size in a 291Mb Array S. Natarajan, M. Armstrong, M. Bost, R. Brain, M.

More information

A 90 nm High Volume Manufacturing Logic Technology Featuring Novel 45 nm Gate Length Strained Silicon CMOS Transistors

A 90 nm High Volume Manufacturing Logic Technology Featuring Novel 45 nm Gate Length Strained Silicon CMOS Transistors A 90 nm High Volume Manufacturing Logic Technology Featuring Novel 45 nm Gate Length Strained Silicon CMOS Transistors T. Ghani, M. Armstrong, C. Auth, M. Bost, P. Charvat, G. Glass, T. Hoffmann*, K. Johnson#,

More information

Fin-Shaped Field Effect Transistor (FinFET) Min Ku Kim 03/07/2018

Fin-Shaped Field Effect Transistor (FinFET) Min Ku Kim 03/07/2018 Fin-Shaped Field Effect Transistor (FinFET) Min Ku Kim 03/07/2018 ECE 658 Sp 2018 Semiconductor Materials and Device Characterizations OUTLINE Background FinFET Future Roadmap Keeping up w/ Moore s Law

More information

Transistor Scaling in the Innovation Era. Mark Bohr Intel Senior Fellow Logic Technology Development August 15, 2011

Transistor Scaling in the Innovation Era. Mark Bohr Intel Senior Fellow Logic Technology Development August 15, 2011 Transistor Scaling in the Innovation Era Mark Bohr Intel Senior Fellow Logic Technology Development August 15, 2011 MOSFET Scaling Device or Circuit Parameter Scaling Factor Device dimension tox, L, W

More information

Challenges and Innovations in Nano CMOS Transistor Scaling

Challenges and Innovations in Nano CMOS Transistor Scaling Challenges and Innovations in Nano CMOS Transistor Scaling Tahir Ghani Intel Fellow Logic Technology Development October, 2009 Nikkei Presentation 1 Outline Traditional Scaling Traditional Scaling Limiters,

More information

Advanced Digital Integrated Circuits. Lecture 2: Scaling Trends. Announcements. No office hour next Monday. Extra office hour Tuesday 2-3pm

Advanced Digital Integrated Circuits. Lecture 2: Scaling Trends. Announcements. No office hour next Monday. Extra office hour Tuesday 2-3pm EE241 - Spring 20 Advanced Digital Integrated Circuits Lecture 2: Scaling Trends and Features of Modern Technologies Announcements No office hour next Monday Extra office hour Tuesday 2-3pm 2 1 Outline

More information

SoC Technology in the Era of 3-D Tri-Gate Transistors for Low Power, High Performance, and High Density Applications

SoC Technology in the Era of 3-D Tri-Gate Transistors for Low Power, High Performance, and High Density Applications SoC Technology in the Era of 3-D Tri-Gate Transistors for Low Power, High Performance, and High Density Applications Vice President, Technology Manufacturing Group Intel Corporation August 2013 Outlines

More information

Alternative Channel Materials for MOSFET Scaling Below 10nm

Alternative Channel Materials for MOSFET Scaling Below 10nm Alternative Channel Materials for MOSFET Scaling Below 10nm Doug Barlage Electrical Requirements of Channel Mark Johnson Challenges With Material Synthesis Introduction Outline Challenges with scaling

More information

ECE 5745 Complex Digital ASIC Design Topic 2: CMOS Devices

ECE 5745 Complex Digital ASIC Design Topic 2: CMOS Devices ECE 5745 Complex Digital ASIC Design Topic 2: CMOS Devices Christopher Batten School of Electrical and Computer Engineering Cornell University http://www.csl.cornell.edu/courses/ece5950 Simple Transistor

More information

Intel s s Silicon Power Savings Strategy

Intel s s Silicon Power Savings Strategy Intel s s Silicon Power Savings Strategy Keeping Moore s s Law Alive and Well Paolo Gargini Intel Fellow and Director, Technology Strategy Agenda Moore s s Law and scaling The power challenge Looking ahead

More information

Record I on (0.50 ma/μm at V DD = 0.5 V and I off = 100 na/μm) 25 nm-gate-length ZrO 2 /InAs/InAlAs MOSFETs

Record I on (0.50 ma/μm at V DD = 0.5 V and I off = 100 na/μm) 25 nm-gate-length ZrO 2 /InAs/InAlAs MOSFETs Record I on (0.50 ma/μm at V DD = 0.5 V and I off = 100 na/μm) 25 nm-gate-length ZrO 2 /InAs/InAlAs MOSFETs Sanghoon Lee 1*, V. Chobpattana 2,C.-Y. Huang 1, B. J. Thibeault 1, W. Mitchell 1, S. Stemmer

More information

Alternatives to standard MOSFETs. What problems are we really trying to solve?

Alternatives to standard MOSFETs. What problems are we really trying to solve? Alternatives to standard MOSFETs A number of alternative FET schemes have been proposed, with an eye toward scaling up to the 10 nm node. Modifications to the standard MOSFET include: Silicon-in-insulator

More information

FinFET Devices and Technologies

FinFET Devices and Technologies FinFET Devices and Technologies Jack C. Lee The University of Texas at Austin NCCAVS PAG Seminar 9/25/14 Material Opportunities for Semiconductors 1 Why FinFETs? Planar MOSFETs cannot scale beyond 22nm

More information

Enabling Breakthroughs In Technology

Enabling Breakthroughs In Technology Enabling Breakthroughs In Technology Mike Mayberry Director of Components Research VP, Technology and Manufacturing Group Intel Corporation June 2011 Defined To be defined Enabling a Steady Technology

More information

Design Simulation and Analysis of NMOS Characteristics for Varying Oxide Thickness

Design Simulation and Analysis of NMOS Characteristics for Varying Oxide Thickness MIT International Journal of Electronics and Communication Engineering, Vol. 4, No. 2, August 2014, pp. 81 85 81 Design Simulation and Analysis of NMOS Characteristics for Varying Oxide Thickness Alpana

More information

Parameter Optimization Of GAA Nano Wire FET Using Taguchi Method

Parameter Optimization Of GAA Nano Wire FET Using Taguchi Method Parameter Optimization Of GAA Nano Wire FET Using Taguchi Method S.P. Venu Madhava Rao E.V.L.N Rangacharyulu K.Lal Kishore Professor, SNIST Professor, PSMCET Registrar, JNTUH Abstract As the process technology

More information

Trends and Challenges in VLSI Technology Scaling Towards 100nm

Trends and Challenges in VLSI Technology Scaling Towards 100nm Trends and Challenges in VLSI Technology Scaling Towards 100nm Stefan Rusu Intel Corporation stefan.rusu@intel.com September 2001 Stefan Rusu 9/2001 2001 Intel Corp. Page 1 Agenda VLSI Technology Trends

More information

Intel Demonstrates High-k + Metal Gate Transistor Breakthrough on 45 nm Microprocessors

Intel Demonstrates High-k + Metal Gate Transistor Breakthrough on 45 nm Microprocessors Intel Demonstrates High-k + Metal Gate Transistor Breakthrough on 45 nm Microprocessors Mark Bohr Intel Senior Fellow Logic Technology Development Kaizad Mistry 45 nm Program Manager Logic Technology Development

More information

ITRS MOSFET Scaling Trends, Challenges, and Key Technology Innovations

ITRS MOSFET Scaling Trends, Challenges, and Key Technology Innovations Workshop on Frontiers of Extreme Computing Santa Cruz, CA October 24, 2005 ITRS MOSFET Scaling Trends, Challenges, and Key Technology Innovations Peter M. Zeitzoff Outline Introduction MOSFET scaling and

More information

III-V CMOS: the key to sub-10 nm electronics?

III-V CMOS: the key to sub-10 nm electronics? III-V CMOS: the key to sub-10 nm electronics? J. A. del Alamo Microsystems Technology Laboratories, MIT 2011 MRS Spring Meeting and Exhibition Symposium P: Interface Engineering for Post-CMOS Emerging

More information

Newer process technology (since 1999) includes :

Newer process technology (since 1999) includes : Newer process technology (since 1999) includes : copper metalization hi-k dielectrics for gate insulators si on insulator strained silicon lo-k dielectrics for interconnects Immersion lithography for masks

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 11/01/2007 MOSFETs Lecture 5 Announcements HW7 set is due now HW8 is assigned, but will not be collected/graded. MOSFET Technology Scaling Technology

More information

Intel's 65 nm Logic Technology Demonstrated on 0.57 µm 2 SRAM Cells

Intel's 65 nm Logic Technology Demonstrated on 0.57 µm 2 SRAM Cells Intel's 65 nm Logic Technology Demonstrated on 0.57 µm 2 SRAM Cells Mark Bohr Intel Senior Fellow Director of Process Architecture & Integration Intel 1 What are We Announcing? Intel has fabricated fully-functional

More information

EE241 - Spring 2013 Advanced Digital Integrated Circuits. Announcements. Sign up for Piazza if you haven t already

EE241 - Spring 2013 Advanced Digital Integrated Circuits. Announcements. Sign up for Piazza if you haven t already EE241 - Spring 2013 Advanced Digital Integrated Circuits Lecture 2: Scaling Trends and Features of Modern Technologies Announcements Sign up for Piazza if you haven t already 2 1 Assigned Reading R.H.

More information

Integrated CMOS Tri-Gate Transistors: Paving the Way to Future Technology Generations

Integrated CMOS Tri-Gate Transistors: Paving the Way to Future Technology Generations Page 1 Integrated CMOS Tri-Gate Transistors: Paving the Way to Future Technology Generations Robert S. Chau, Intel Senior Fellow Copyright Intel Corporation 2006. *Third-party brands and names are the

More information

Intel Technology Journal

Intel Technology Journal Volume 06 Issue 02 Published, May 16, 2002 ISSN 1535766X Intel Technology Journal Semiconductor Technology and Manufacturing Transistor Elements for 30nm Physical Gate Length and Beyond A compiled version

More information

Innovation to Advance Moore s Law Requires Core Technology Revolution

Innovation to Advance Moore s Law Requires Core Technology Revolution Innovation to Advance Moore s Law Requires Core Technology Revolution Klaus Schuegraf, Ph.D. Chief Technology Officer Silicon Systems Group Applied Materials UC Berkeley Seminar March 9 th, 2012 Innovation

More information

Chapter 3: Basics Semiconductor Devices and Processing 2006/9/27 1. Topics

Chapter 3: Basics Semiconductor Devices and Processing 2006/9/27 1. Topics Chapter 3: Basics Semiconductor Devices and Processing 2006/9/27 1 Topics What is semiconductor Basic semiconductor devices Basics of IC processing CMOS technologies 2006/9/27 2 1 What is Semiconductor

More information

Session 10: Solid State Physics MOSFET

Session 10: Solid State Physics MOSFET Session 10: Solid State Physics MOSFET 1 Outline A B C D E F G H I J 2 MOSCap MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor: Al (metal) SiO2 (oxide) High k ~0.1 ~5 A SiO2 A n+ n+ p-type Si (bulk)

More information

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha ECE520 VLSI Design Lecture 2: Basic MOS Physics Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Wednesday 2:00-3:00PM or by appointment E-mail: pzarkesh@unm.edu Slide: 1 Review of Last Lecture Semiconductor

More information

Opportunities and Challenges for Nanoelectronic Devices and Processes

Opportunities and Challenges for Nanoelectronic Devices and Processes The Sixth U.S.-Korea Forum on Nanotechnology, April 28-29, 2009, Las Vegas, NV Opportunities and Challenges for Nanoelectronic Devices and Processes Yoshio Nishi Professor, Electrical Engineering, Material

More information

Sub-30 nm InAs Quantum-Well MOSFETs with Self-Aligned Metal Contacts and Sub-1 nm EOT HfO 2 Insulator

Sub-30 nm InAs Quantum-Well MOSFETs with Self-Aligned Metal Contacts and Sub-1 nm EOT HfO 2 Insulator Sub-30 nm InAs Quantum-Well MOSFETs with Self-Aligned Metal Contacts and Sub-1 nm EOT HfO 2 Insulator Jianqiang Lin, Dimitri A. Antoniadis, and Jesús A. del Alamo Microsystems Technology Laboratories,

More information

FinFET vs. FD-SOI Key Advantages & Disadvantages

FinFET vs. FD-SOI Key Advantages & Disadvantages FinFET vs. FD-SOI Key Advantages & Disadvantages Amiad Conley Technical Marketing Manager Process Diagnostics & Control, Applied Materials ChipEx-2014, Apr 2014 1 Moore s Law The number of transistors

More information

Chapter 3 Basics Semiconductor Devices and Processing

Chapter 3 Basics Semiconductor Devices and Processing Chapter 3 Basics Semiconductor Devices and Processing 1 Objectives Identify at least two semiconductor materials from the periodic table of elements List n-type and p-type dopants Describe a diode and

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 11/6/2007 MOSFETs Lecture 6 BJTs- Lecture 1 Reading Assignment: Chapter 10 More Scalable Device Structures Vertical Scaling is important. For example,

More information

MSE 410/ECE 340: Electrical Properties of Materials Fall 2016 Micron School of Materials Science and Engineering Boise State University

MSE 410/ECE 340: Electrical Properties of Materials Fall 2016 Micron School of Materials Science and Engineering Boise State University MSE 410/ECE 340: Electrical Properties of Materials Fall 2016 Micron School of Materials Science and Engineering Boise State University Practice Final Exam 1 Read the questions carefully Label all figures

More information

InGaAs Nanoelectronics: from THz to CMOS

InGaAs Nanoelectronics: from THz to CMOS InGaAs Nanoelectronics: from THz to CMOS J. A. del Alamo Microsystems Technology Laboratories, MIT IEEE International Conference on Electron Devices and Solid-State Circuits Hong Kong, June 3, 2013 Acknowledgements:

More information

Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced.

Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced. Unit 1 Basic MOS Technology Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced. Levels of Integration:- i) SSI:-

More information

Atomic-layer deposition of ultrathin gate dielectrics and Si new functional devices

Atomic-layer deposition of ultrathin gate dielectrics and Si new functional devices Atomic-layer deposition of ultrathin gate dielectrics and Si new functional devices Anri Nakajima Research Center for Nanodevices and Systems, Hiroshima University 1-4-2 Kagamiyama, Higashi-Hiroshima,

More information

Lecture #29. Moore s Law

Lecture #29. Moore s Law Lecture #29 ANNOUNCEMENTS HW#15 will be for extra credit Quiz #6 (Thursday 5/8) will include MOSFET C-V No late Projects will be accepted after Thursday 5/8 The last Coffee Hour will be held this Thursday

More information

Leakage Current in Low Standby Power and High Performance Devices: Trends and Challenges

Leakage Current in Low Standby Power and High Performance Devices: Trends and Challenges Leakage Current in Low Standby Power and High Performance Devices: Trends and Challenges (Invited Paper) Geoffrey C-F Yeap Motorola Inc., DigitalDNA Laboratories, 3501 Ed Bluestein Blvd., MD: K10, Austin,

More information

Lecture 33 - The Short Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 30, 2007

Lecture 33 - The Short Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 30, 2007 6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 33-1 Lecture 33 - The Short Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 30, 2007 Contents: 1. MOSFET scaling

More information

III-V CMOS: Quo Vadis?

III-V CMOS: Quo Vadis? III-V CMOS: Quo Vadis? J. A. del Alamo, X. Cai, W. Lu, A. Vardi, and X. Zhao Microsystems Technology Laboratories Massachusetts Institute of Technology Compound Semiconductor Week 2018 Cambridge, MA, May

More information

Manufacturing Case Studies: Copy Exactly (CE!) and the two-year cycle at Intel

Manufacturing Case Studies: Copy Exactly (CE!) and the two-year cycle at Intel Manufacturing Case Studies: Copy Exactly (CE!) and the two-year cycle at Intel Paolo A. Gargini Director Technology Strategy Intel Fellow 1 Agenda 2-year cycle Copy Exactly Conclusions 2 I see no reason

More information

Sub-micron technology IC fabrication process trends SOI technology. Development of CMOS technology. Technology problems due to scaling

Sub-micron technology IC fabrication process trends SOI technology. Development of CMOS technology. Technology problems due to scaling Goodbye Microelectronics Welcome Nanoelectronics Sub-micron technology IC fabrication process trends SOI technology SiGe Tranzistor in 50nm process Virus The thickness of gate oxide= 1.2 nm!!! Today we

More information

ADVANCED MATERIALS AND PROCESSES FOR NANOMETER-SCALE FINFETS

ADVANCED MATERIALS AND PROCESSES FOR NANOMETER-SCALE FINFETS ADVANCED MATERIALS AND PROCESSES FOR NANOMETER-SCALE FINFETS Tsu-Jae King, Yang-Kyu Choi, Pushkar Ranade^ and Leland Chang Electrical Engineering and Computer Sciences Dept., ^Materials Science and Engineering

More information

Drain. Drain. [Intel: bulk-si MOSFETs]

Drain. Drain. [Intel: bulk-si MOSFETs] 1 Introduction For more than 40 years, the evolution and growth of very-large-scale integration (VLSI) silicon-based integrated circuits (ICs) have followed from the continual shrinking, or scaling, of

More information

Future MOSFET Devices using high-k (TiO 2 ) dielectric

Future MOSFET Devices using high-k (TiO 2 ) dielectric Future MOSFET Devices using high-k (TiO 2 ) dielectric Prerna Guru Jambheshwar University, G.J.U.S. & T., Hisar, Haryana, India, prernaa.29@gmail.com Abstract: In this paper, an 80nm NMOS with high-k (TiO

More information

MOSFET & IC Basics - GATE Problems (Part - I)

MOSFET & IC Basics - GATE Problems (Part - I) MOSFET & IC Basics - GATE Problems (Part - I) 1. Channel current is reduced on application of a more positive voltage to the GATE of the depletion mode n channel MOSFET. (True/False) [GATE 1994: 1 Mark]

More information

Nanoscale III-V CMOS

Nanoscale III-V CMOS Nanoscale III-V CMOS J. A. del Alamo Microsystems Technology Laboratories Massachusetts Institute of Technology SEMI Advanced Semiconductor Manufacturing Conference Saratoga Springs, NY; May 16-19, 2016

More information

InGaAs MOSFETs for CMOS:

InGaAs MOSFETs for CMOS: InGaAs MOSFETs for CMOS: Recent Advances in Process Technology J. A. del Alamo, D. Antoniadis, A. Guo, D.-H. Kim 1, T.-W. Kim 2, J. Lin, W. Lu, A. Vardi and X. Zhao Microsystems Technology Laboratories,

More information

INTRODUCTION: Basic operating principle of a MOSFET:

INTRODUCTION: Basic operating principle of a MOSFET: INTRODUCTION: Along with the Junction Field Effect Transistor (JFET), there is another type of Field Effect Transistor available whose Gate input is electrically insulated from the main current carrying

More information

420 Intro to VLSI Design

420 Intro to VLSI Design Dept of Electrical and Computer Engineering 420 Intro to VLSI Design Lecture 0: Course Introduction and Overview Valencia M. Joyner Spring 2005 Getting Started Syllabus About the Instructor Labs, Problem

More information

Nanometer-Scale InGaAs Field-Effect Transistors for THz and CMOS Technologies

Nanometer-Scale InGaAs Field-Effect Transistors for THz and CMOS Technologies Nanometer-Scale InGaAs Field-Effect Transistors for THz and CMOS Technologies J. A. del Alamo Microsystems Technology Laboratories, MIT ESSDERC-ESSCIRC 2013 Bucharest, Romania, September 16-20, 2013 Acknowledgements:

More information

Intel s High-k/Metal Gate Announcement. November 4th, 2003

Intel s High-k/Metal Gate Announcement. November 4th, 2003 Intel s High-k/Metal Gate Announcement November 4th, 2003 1 What are we announcing? Intel has made significant progress in future transistor materials Two key parts of this new transistor are: The gate

More information

Introducing 7-nm FinFET technology in Microwind

Introducing 7-nm FinFET technology in Microwind Introducing 7-nm FinFET technology in Microwind Etienne SICARD Professor INSA-Dgei, 135 Av de Rangueil 31077 Toulouse France www.microwind.org email: Etienne.sicard@insa-toulouse.fr This paper describes

More information

Intel s Breakthrough in High-K Gate Dielectric Drives Moore s Law Well into the Future

Intel s Breakthrough in High-K Gate Dielectric Drives Moore s Law Well into the Future Page 1 Intel s Breakthrough in High-K Gate Dielectric Drives Moore s Law Well into the Future Robert S. Chau Intel Fellow, Technology and Manufacturing Group Director, Transistor Research Intel Corporation

More information

ISSCC 2003 / SESSION 1 / PLENARY / 1.1

ISSCC 2003 / SESSION 1 / PLENARY / 1.1 ISSCC 2003 / SESSION 1 / PLENARY / 1.1 1.1 No Exponential is Forever: But Forever Can Be Delayed! Gordon E. Moore Intel Corporation Over the last fifty years, the solid-state-circuits industry has grown

More information

Gallium nitride (GaN)

Gallium nitride (GaN) 80 Technology focus: GaN power electronics Vertical, CMOS and dual-gate approaches to gallium nitride power electronics US research company HRL Laboratories has published a number of papers concerning

More information

3-D Modelling of the Novel Nanoscale Screen-Grid Field Effect Transistor (SGFET)

3-D Modelling of the Novel Nanoscale Screen-Grid Field Effect Transistor (SGFET) 3-D Modelling of the Novel Nanoscale Screen-Grid Field Effect Transistor (SGFET) Pei W. Ding, Kristel Fobelets Department of Electrical Engineering, Imperial College London, U.K. J. E. Velazquez-Perez

More information

FinFET-based Design for Robust Nanoscale SRAM

FinFET-based Design for Robust Nanoscale SRAM FinFET-based Design for Robust Nanoscale SRAM Prof. Tsu-Jae King Liu Dept. of Electrical Engineering and Computer Sciences University of California at Berkeley Acknowledgements Prof. Bora Nikoli Zheng

More information

Session 3: Solid State Devices. Silicon on Insulator

Session 3: Solid State Devices. Silicon on Insulator Session 3: Solid State Devices Silicon on Insulator 1 Outline A B C D E F G H I J 2 Outline Ref: Taurand Ning 3 SOI Technology SOl materials: SIMOX, BESOl, and Smart Cut SIMOX : Synthesis by IMplanted

More information

DG-FINFET LOGIC DESIGN USING 32NM TECHNOLOGY

DG-FINFET LOGIC DESIGN USING 32NM TECHNOLOGY International Journal of Knowledge Management & e-learning Volume 3 Number 1 January-June 2011 pp. 1-5 DG-FINFET LOGIC DESIGN USING 32NM TECHNOLOGY K. Nagarjuna Reddy 1, K. V. Ramanaiah 2 & K. Sudheer

More information

Comparison of 32nm High-k Metal Gate Predictive Technology Model CMOS and MOSFET-Like CNFET compact Model Based Domino logic Circuits

Comparison of 32nm High-k Metal Gate Predictive Technology Model CMOS and MOSFET-Like CNFET compact Model Based Domino logic Circuits Comparison of 32nm High-k Metal Gate Predictive Technology Model CMOS and MOSFET-Like CNFET compact Model Based Domino logic Circuits Saravana Maruthamuthu, Wireless Group Infineon Technologies India Private

More information

A New Self-aligned Quantum-Well MOSFET Architecture Fabricated by a Scalable Tight-Pitch Process

A New Self-aligned Quantum-Well MOSFET Architecture Fabricated by a Scalable Tight-Pitch Process A New Self-aligned Quantum-Well MOSFET Architecture Fabricated by a Scalable Tight-Pitch Process Jianqiang Lin, Xin Zhao, Tao Yu, Dimitri A. Antoniadis, and Jesús A. del Alamo Microsystems Technology Laboratories,

More information

45nm Bulk CMOS Within-Die Variations. Courtesy of C. Spanos (UC Berkeley) Lecture 11. Process-induced Variability I: Random

45nm Bulk CMOS Within-Die Variations. Courtesy of C. Spanos (UC Berkeley) Lecture 11. Process-induced Variability I: Random 45nm Bulk CMOS Within-Die Variations. Courtesy of C. Spanos (UC Berkeley) Lecture 11 Process-induced Variability I: Random Random Variability Sources and Characterization Comparisons of Different MOSFET

More information

ECE 340 Lecture 37 : Metal- Insulator-Semiconductor FET Class Outline:

ECE 340 Lecture 37 : Metal- Insulator-Semiconductor FET Class Outline: ECE 340 Lecture 37 : Metal- Insulator-Semiconductor FET Class Outline: Metal-Semiconductor Junctions MOSFET Basic Operation MOS Capacitor Things you should know when you leave Key Questions What is the

More information

InAs Quantum-Well MOSFET for logic and microwave applications

InAs Quantum-Well MOSFET for logic and microwave applications AWAD June 29 th 2012 Accelerating the next technology revolution InAs Quantum-Well MOSFET for logic and microwave applications T.-W. Kim, R. Hill, C. D. Young, D. Veksler, L. Morassi, S. Oktybrshky 1,

More information

FDSOI for Low Power System on Chip. M.HAOND STMicroelectronics, Crolles, France

FDSOI for Low Power System on Chip. M.HAOND STMicroelectronics, Crolles, France FDSOI for Low Power System on Chip M.HAOND STMicroelectronics, Crolles, France OUTLINE Introduction : Motivations for FDSOI FDSOI Presentation & Short Channel control MOS VT Construction Performance Analysis

More information

40nm Node CMOS Platform UX8

40nm Node CMOS Platform UX8 FUKAI Toshinori, IKEDA Masahiro, TAKAHASHI Toshifumi, NATSUME Hidetaka Abstract The UX8 is the latest process from NEC Electronics. It uses the most advanced exposure technology to achieve twice the gate

More information

Performance Comparison of CMOS and Finfet Based Circuits At 45nm Technology Using SPICE

Performance Comparison of CMOS and Finfet Based Circuits At 45nm Technology Using SPICE RESEARCH ARTICLE OPEN ACCESS Performance Comparison of CMOS and Finfet Based Circuits At 45nm Technology Using SPICE Mugdha Sathe*, Dr. Nisha Sarwade** *(Department of Electrical Engineering, VJTI, Mumbai-19)

More information

Jack Keil Wolf Lecture. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. MOSFET N-Type, P-Type.

Jack Keil Wolf Lecture. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. MOSFET N-Type, P-Type. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Jack Keil Wolf Lecture Lec 3: January 24, 2019 MOS Fabrication pt. 2: Design Rules and Layout http://www.ese.upenn.edu/about-ese/events/wolf.php

More information

Intel Technology Journal

Intel Technology Journal Volume 06 Issue 02 Published, May 16, 2002 ISSN 1535766X Intel Technology Journal Semiconductor Technology and Manufacturing This issue of the Intel Technology Journal describes Intel's state-of-the-art

More information

Active Technology for Communication Circuits

Active Technology for Communication Circuits EECS 242: Active Technology for Communication Circuits UC Berkeley EECS 242 Copyright Prof. Ali M Niknejad Outline Comparison of technology choices for communication circuits Si npn, Si NMOS, SiGe HBT,

More information

DESIGN OF 20 nm FinFET STRUCTURE WITH ROUND FIN CORNERS USING SIDE SURFACE SLOPE VARIATION

DESIGN OF 20 nm FinFET STRUCTURE WITH ROUND FIN CORNERS USING SIDE SURFACE SLOPE VARIATION Journal of Electron Devices, Vol. 18, 2013, pp. 1537-1542 JED [ISSN: 1682-3427 ] DESIGN OF 20 nm FinFET STRUCTURE WITH ROUND FIN CORNERS USING SIDE SURFACE SLOPE VARIATION Suman Lata Tripathi and R. A.

More information

Zota, Cezar B.; Lindelow, Fredrik; Wernersson, Lars Erik; Lind, Erik

Zota, Cezar B.; Lindelow, Fredrik; Wernersson, Lars Erik; Lind, Erik InGaAs tri-gate MOSFETs with record on-current Zota, Cezar B.; Lindelow, Fredrik; Wernersson, Lars Erik; Lind, Erik Published in: 6 IEEE International Electron Devices Meeting, IEDM 6 DOI:.9/IEDM.6.7886

More information

Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs

Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs J. A. del Alamo Microsystems Technology Laboratories, MIT Purdue University, West Lafayette, IN; September 29,

More information

Introduction to VLSI ASIC Design and Technology

Introduction to VLSI ASIC Design and Technology Introduction to VLSI ASIC Design and Technology Paulo Moreira CERN - Geneva, Switzerland Paulo Moreira Introduction 1 Outline Introduction Is there a limit? Transistors CMOS building blocks Parasitics

More information

2014, IJARCSSE All Rights Reserved Page 1352

2014, IJARCSSE All Rights Reserved Page 1352 Volume 4, Issue 3, March 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Double Gate N-MOSFET

More information

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 3, 2010

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 3, 2010 Low Power CMOS Inverter design at different Technologies Vijay Kumar Sharma 1, Surender Soni 2 1 Department of Electronics & Communication, College of Engineering, Teerthanker Mahaveer University, Moradabad

More information

Design and Analysis of Double Gate MOSFET Devices using High-k Dielectric

Design and Analysis of Double Gate MOSFET Devices using High-k Dielectric International Journal of Electrical Engineering. ISSN 0974-2158 Volume 7, Number 1 (2014), pp. 53-60 International Research Publication House http://www.irphouse.com Design and Analysis of Double Gate

More information

Practical Information

Practical Information EE241 - Spring 2010 Advanced Digital Integrated Circuits TuTh 3:30-5pm 293 Cory Practical Information Instructor: Borivoje Nikolić 550B Cory Hall, 3-9297, bora@eecs Office hours: M 10:30am-12pm Reader:

More information

Advanced PDK and Technologies accessible through ASCENT

Advanced PDK and Technologies accessible through ASCENT Advanced PDK and Technologies accessible through ASCENT MOS-AK Dresden, Sept. 3, 2018 L. Perniola*, O. Rozeau*, O. Faynot*, T. Poiroux*, P. Roseingrave^ olivier.faynot@cea.fr *Cea-Leti, Grenoble France;

More information

Improving CMOS Speed and Switching Energy with Vacuum-Gap Structures

Improving CMOS Speed and Switching Energy with Vacuum-Gap Structures Improving CMOS Speed and Switching Energy with Vacuum-Gap Structures Chenming Hu and Je Min Park Univ. of California, Berkeley -1- Outline Introduction Background and Motivation MOSFETs with Vacuum-Spacer

More information

Scaling Electronics: Kelin J. Kuhn Intel Fellow. Kelin Kuhn / MIT / April 4 th

Scaling Electronics: Kelin J. Kuhn Intel Fellow. Kelin Kuhn / MIT / April 4 th Scaling Electronics: Trends and Bottlenecks Kelin J. Kuhn Intel Fellow Director of Advanced Device Technology 1 Moore s Law Scaling of the SRAM 10.00 Bitcell Area ( m 2 ) 1.00 0.10 2X bitcell area scaling

More information

Lecture 8. Thin-Body MOSFET s Process II. Source/Drain Technologies Threshold Voltage Engineering

Lecture 8. Thin-Body MOSFET s Process II. Source/Drain Technologies Threshold Voltage Engineering Atom Probe Tomography for Dopants in FinFETs Lecture 8 A.K. Kambham (imec), VLSI-T 2012 Thin-Body MOSFET s Process II Source/Drain Technologies Threshold Voltage Engineering Reading: multiple research

More information

Sustaining the Si Revolution: From 3D Transistors to 3D Integration

Sustaining the Si Revolution: From 3D Transistors to 3D Integration Sustaining the Si Revolution: From 3D Transistors to 3D Integration Tsu Jae King Liu Department of Electrical Engineering and Computer Sciences University of California, Berkeley, CA USA February 23, 2015

More information

State-of-the-art device fabrication techniques

State-of-the-art device fabrication techniques State-of-the-art device fabrication techniques! Standard Photo-lithography and e-beam lithography! Advanced lithography techniques used in semiconductor industry Deposition: Thermal evaporation, e-gun

More information

The 3 D Tri Gate transistor is a variant of the FinFET developed at UC Berkeley, and is being used in Intel s 22nmgeneration. microprocessors.

The 3 D Tri Gate transistor is a variant of the FinFET developed at UC Berkeley, and is being used in Intel s 22nmgeneration. microprocessors. On May 4, 2011, Intel Corporation announced what it called the most radical shift in semiconductor technology in 50 years. A new 3 dimensional transistor design will enable the production of integrated

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 3: January 24, 2019 MOS Fabrication pt. 2: Design Rules and Layout Penn ESE 570 Spring 2019 Khanna Jack Keil Wolf Lecture http://www.ese.upenn.edu/about-ese/events/wolf.php

More information

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism;

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism; Chapter 3 Field-Effect Transistors (FETs) 3.1 Introduction Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism; The concept has been known

More information

Fundamentals of III-V Semiconductor MOSFETs

Fundamentals of III-V Semiconductor MOSFETs Serge Oktyabrsky Peide D. Ye Editors Fundamentals of III-V Semiconductor MOSFETs Springer Contents 1 Non-Silicon MOSFET Technology: A Long Time Coming 1 Jerry M. Woodall 1.1 Introduction 1 1.2 Brief and

More information

Low-Power VLSI. Seong-Ook Jung VLSI SYSTEM LAB, YONSEI University School of Electrical & Electronic Engineering

Low-Power VLSI. Seong-Ook Jung VLSI SYSTEM LAB, YONSEI University School of Electrical & Electronic Engineering Low-Power VLSI Seong-Ook Jung 2013. 5. 27. sjung@yonsei.ac.kr VLSI SYSTEM LAB, YONSEI University School of Electrical & Electronic Engineering Contents 1. Introduction 2. Power classification & Power performance

More information

Practical Information

Practical Information EE241 - Spring 2013 Advanced Digital Integrated Circuits MW 2-3:30pm 540A/B Cory Practical Information Instructor: Borivoje Nikolić 509 Cory Hall, 3-9297, bora@eecs Office hours: M 11-12, W 3:30pm-4:30pm

More information

EECS 151/251A Spring 2019 Digital Design and Integrated Circuits. Instructors: Wawrzynek. Lecture 8 EE141

EECS 151/251A Spring 2019 Digital Design and Integrated Circuits. Instructors: Wawrzynek. Lecture 8 EE141 EECS 151/251A Spring 2019 Digital Design and Integrated Circuits Instructors: Wawrzynek Lecture 8 EE141 From the Bottom Up IC processing CMOS Circuits (next lecture) EE141 2 Overview of Physical Implementations

More information

Device architectures for the 5nm technology node and beyond Nadine Collaert

Device architectures for the 5nm technology node and beyond Nadine Collaert Device architectures for the 5nm technology node and beyond Nadine Collaert Distinguished member of technical staff, imec Outline Introduction Beyond FinFET: lateral nanowires and vertical transistors

More information

LSI ON GLASS SUBSTRATES

LSI ON GLASS SUBSTRATES LSI ON GLASS SUBSTRATES OUTLINE Introduction: Why System on Glass? MOSFET Technology Low-Temperature Poly-Si TFT Technology System-on-Glass Technology Issues Conclusion System on Glass CPU SRAM DRAM EEPROM

More information

EC0306 INTRODUCTION TO VLSI DESIGN

EC0306 INTRODUCTION TO VLSI DESIGN EC0306 INTRODUCTION TO VLSI DESIGN UNIT I INTRODUCTION TO MOS CIRCUITS Why VLSI? Integration improves the design: o lower parasitics = higher speed; o lower power; o physically smaller. Integration reduces

More information

Design & Simulation of Multi Gate Piezoelectric FET Devices for Sensing Applications

Design & Simulation of Multi Gate Piezoelectric FET Devices for Sensing Applications Design & Simulation of Multi Gate Piezoelectric FET Devices for Sensing Applications Sunita Malik 1, Manoj Kumar Duhan 2 Electronics & Communication Engineering Department, Deenbandhu Chhotu Ram University

More information

6.012 Microelectronic Devices and Circuits

6.012 Microelectronic Devices and Circuits Page 1 of 13 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.012 Microelectronic Devices and Circuits Final Eam Closed Book: Formula sheet provided;

More information