UNIT II: Clocked Synchronous Sequential Circuits. CpE 411 Advanced Logic Circuits Design 1

Size: px
Start display at page:

Download "UNIT II: Clocked Synchronous Sequential Circuits. CpE 411 Advanced Logic Circuits Design 1"

Transcription

1 UNIT II: Clocked Synchronous Sequential Circuits CpE 411 Advanced Logic Circuits Design 1

2 Unit Outline Analysis of Sequential Circuits State Tables State Diagrams Flip-flop Excitation Tables Basic Design Procedure State Assignment Problem Design with Unused States CpE 411 Advanced Logic Circuits Design 2

3 Flip-flop Characteristic Tables (c) D Flip-flop D Q(t+1) State 0 0 Reset 1 1 Set (b) SR Flip-flop S R Q(t+1) State 0 0 Q(t) No change Reset Set 1 1? Undefined (d) T Flip-flop T Q(t+1) State 0 Q(t) No change 1 Q'(t) Complement CpE 411 Advanced Logic Circuits Design 3

4 Recall... Inputs Combinational Circuit Next State Outputs Storage Element Present State Block Diagram of a Sequential Circuit CpE 411 Advanced Logic Circuits Design 4

5 Recall... Inputs Combinational Circuit Next State Outputs Present State Flip-flops Clock pulses CpE 411 Advanced Logic Circuits Design 5

6 Analysis of Clocked Sequential Example 1 Circuits A sequential circuit with two D flip-flops, A and B; two inputs, x and y; and output, z, is specified by the following next-state and output equations: A(t+1) = x'y + xa B(t+1) = x'b + xa z = B (a) Draw the logic diagram of the circuit. (b) Derive the state table. (c) Derive the state diagram. CpE 411 Advanced Logic Circuits Design 6

7 Solution: (a) Logic Diagram CpE 411 Advanced Logic Circuits Design 7

8 Solution: (b) State Table Present State Inputs Next State Output A(t) B(t) x y A(t+1) B(t+1) z CpE 411 Advanced Logic Circuits Design 8

9 Solution: (c) State Diagram CpE 411 Advanced Logic Circuits Design 9

10 Activity: Individual or By Pair A sequential circuit has three D flip-flops, A, B, and C, and one input, x. It is described by the following flip-flop input functions: DA = (BC + B C)x + (BC + B C )x DB = A DC = B (a) Derive the state table for the circuit. (b) Draw two state diagrams: one for x = 0 and the other for x = 1. CpE 411 Advanced Logic Circuits Design 10

11 Flip-flops other than the D f/f Example 2 A sequential circuit has two JK flip-flops, one input x, and one output y. The logic diagram of the circuit is shown below. Derive the state table and the state diagram of the circuit. CpE 411 Advanced Logic Circuits Design 11

12 Logic Diagram CpE 411 Advanced Logic Circuits Design 12

13 Solution The first thing to do, when a logic diagram is given, is to obtain the flip-flop input and output functions. These are the ff.: JA = B KA = B JB = (Ax + A x) = A xnor x KB = (Ax + A x) = A xnor x y = ((A'x + Ax') + B') + ((A'x + Ax')' + B) = A xor x xor B To plot the next-state values in the state table, use the characteristic table of the JK flip-flop. CpE 411 Advanced Logic Circuits Design 13

14 Solution: (a) State Table Present State Input Next State Output Flip-flop Inputs A(t) B(t) x A(t+1) B(t+1) y JA KA JB KB CpE 411 Advanced Logic Circuits Design 14

15 Solution: (b) State Diagram CpE 411 Advanced Logic Circuits Design 15

16 Activity: Individual or By Pair A sequential circuit has two JK flip-flops, A and B; two inputs, x and y; and one output, z. The flip-flop input functions and the circuit output function are as follows: JA = Bx + B y KA = B xy JB = A x KB = A + xy z = Axy + Bx y (a) Draw the logic diagram of the circuit. (b) Tabulate the state table. (c) Derive the next-state equations for A and B. CpE 411 Advanced Logic Circuits Design 16

17 Designing using Flip-flops Characteristic tables will not be sufficient anymore Use excitation tables CpE 411 Advanced Logic Circuits Design 17

18 Flip-flop Excitation Tables CpE 411 Advanced Logic Circuits Design 18

19 Design Procedure The word description of the circuit behavior is stated. From the given information about the circuit, obtain the state table. The number of states may be reduced by state-reduction methods if the sequential circuit can be characterized by input-output relationships independent of the number of states. Assign binary values to each state if the state table obtained in step 2 or 3 contains letter symbols. CpE 411 Advanced Logic Circuits Design 19

20 Design Procedure Determine the number of flip-flops needed and assign a letter symbol to each. Choose the type of flip-flop to be used. From the state table, derive the circuit excitation and output tables. Using the map or any other simplification method, derive the circuit output functions and the flip-flop input functions. Draw the logic diagram. CpE 411 Advanced Logic Circuits Design 20

21 Example: State Diagram CpE 411 Advanced Logic Circuits Design 21

22 Solution: (a) State Table CpE 411 Advanced Logic Circuits Design 22

23 Solution: (b) State Excitation Table CpE 411 Advanced Logic Circuits Design 23

24 Solution: (c) K-maps CpE 411 Advanced Logic Circuits Design 24

25 Solution: (d) Logic Diagram CpE 411 Advanced Logic Circuits Design 25

26 Example: Word Problem Design a sequential circuit with two JK flip-flops, A and B, and two inputs, E and x. If E = 0, the circuit remains in the same state regardless of the value of x. When E = 1 and x = 1, the circuit goes through the state transitions from 00 to 01 to 10 to 11 back to 00, and repeats. When E = 1 and x = 0, the circuit goes through the state transitions from 00 to 11 to 10 to 01 back to 00, and repeats. CpE 411 Advanced Logic Circuits Design 26

27 State Reduction Example: CpE 411 Advanced Logic Circuits Design 27

28 Reduced State Table CpE 411 Advanced Logic Circuits Design 28

29 State Assignment CpE 411 Advanced Logic Circuits Design 29

30 Reduced state table with binary assignment 1 CpE 411 Advanced Logic Circuits Design 30

31 Example Reduce the number of states in the following state table and tabulate the reduced state table. CpE 411 Advanced Logic Circuits Design 31

32 Example: Sequence Recognizer Design a circuit that recognizes the occurrence of a particular sequence of bits, regardless of where it occurs in a longer sequence. It has to have one input X, output Z, and direct resets on its flip-flops to initialize the state of the circuit to all zeros. The circuit is to recognize the occurrence of the sequence of bits 1101 on X by making Z equal to 1 when the previous inputs of the circuit were 110 and the current input is a 1. Otherwise, Z is 0. CpE 411 Advanced Logic Circuits Design 32

33 Design with D Flip-flops Design a clocked sequential circuit that operates according to the state table shown. CpE 411 Advanced Logic Circuits Design 33

34 Flip-flop Input and Output Equations CpE 411 Advanced Logic Circuits Design 34

35 Logic Diagram CpE 411 Advanced Logic Circuits Design 35

36 Design with Unused States CpE 411 Advanced Logic Circuits Design 36

37 Maps for Flip-flop Inputs CpE 411 Advanced Logic Circuits Design 37

38 Maps for Flip-flop Inputs and Output CpE 411 Advanced Logic Circuits Design 38

39 Logic Diagram with SR Flip-flops CpE 411 Advanced Logic Circuits Design 39

40 State Diagram CpE 411 Advanced Logic Circuits Design 40

41 Activity: Individual or By Pair Design the sequential circuit specified by the state diagram below using RS flip-flops. CpE 411 Advanced Logic Circuits Design 41

42 Design of Counters CpE 411 Advanced Logic Circuits Design 42

43 Maps for 3-bit binary counter CpE 411 Advanced Logic Circuits Design 43

44 Logic diagram of a 3-bit binary counter CpE 411 Advanced Logic Circuits Design 44

45 Counter w/ Nonbinary Sequence CpE 411 Advanced Logic Circuits Design 45

46 State diagram and logic diagram of counter CpE 411 Advanced Logic Circuits Design 46

47 Example: Nonbinary sequenced counter Design a counter with the following repeated binary sequence: 0, 1, 3, 5, 7. Use T flip-flops. Treat the unused states as don t-care conditions. Analyze the final circuit to ensure that it is self-correcting. If your design produces a nonself-correcting counter, you must modify the circuit to make it self-correcting. CpE 411 Advanced Logic Circuits Design 47

48 Activity: Individual or By Pair Design a counter with the following repeated binary sequence: 0, 1, 2, 4, 6. Use D flip-flops. If unused states should occur, make the counter reset to 0 on the next clock pulse. CpE 411 Advanced Logic Circuits Design 48

49 End of Unit II CpE 411 Advanced Logic Circuits Design 49

Computer Architecture: Part II. First Semester 2013 Department of Computer Science Faculty of Science Chiang Mai University

Computer Architecture: Part II. First Semester 2013 Department of Computer Science Faculty of Science Chiang Mai University Computer Architecture: Part II First Semester 2013 Department of Computer Science Faculty of Science Chiang Mai University Outline Combinational Circuits Flips Flops Flops Sequential Circuits 204231: Computer

More information

UNIT-III ASYNCHRONOUS SEQUENTIAL CIRCUITS TWO MARKS 1. What are secondary variables? -present state variables in asynchronous sequential circuits 2. What are excitation variables? -next state variables

More information

Chapter 5 Sequential Logic Circuits Part II Hiroaki Kobayashi 7/11/2011

Chapter 5 Sequential Logic Circuits Part II Hiroaki Kobayashi 7/11/2011 Chapter 5 Sequential Logic Circuits Part II Hiroaki Kobayashi 7//2 Ver. 72 7//2 Computer Engineering What is a Sequential Circuit? A circuit consists of a combinational logic circuit and internal memory

More information

Chapter 5 Sequential Logic Circuits Part II Hiroaki Kobayashi 6/30/2008

Chapter 5 Sequential Logic Circuits Part II Hiroaki Kobayashi 6/30/2008 Chapter 5 Sequential Logic Circuits Part II Hiroaki Kobayashi 6/3/28 6/3/28 Computer Engineering Basic Element for Sequential CircuitsSR Latch Latch Store one-bit information (two states of and ) Two inputs,

More information

logic system Outputs The addition of feedback means that the state of the circuit may change with time; it is sequential. logic system Outputs

logic system Outputs The addition of feedback means that the state of the circuit may change with time; it is sequential. logic system Outputs Sequential Logic The combinational logic circuits we ve looked at so far, whether they be simple gates or more complex circuits have clearly separated inputs and outputs. A change in the input produces

More information

LIST OF EXPERIMENTS. KCTCET/ /Odd/3rd/ETE/CSE/LM

LIST OF EXPERIMENTS. KCTCET/ /Odd/3rd/ETE/CSE/LM LIST OF EXPERIMENTS. Study of logic gates. 2. Design and implementation of adders and subtractors using logic gates. 3. Design and implementation of code converters using logic gates. 4. Design and implementation

More information

Brought to you by. Priti Srinivas Sajja. PS01CMCA02 Course Content. Tutorial Practice Material. Acknowldgement References. Website pritisajja.

Brought to you by. Priti Srinivas Sajja. PS01CMCA02 Course Content. Tutorial Practice Material. Acknowldgement References. Website pritisajja. Brought to you by Priti Srinivas Sajja PS01CMCA02 Course Content Tutorial Practice Material Acknowldgement References Website pritisajja.info Multiplexer Means many into one, also called data selector

More information

Number system: the system used to count discrete units is called number. Decimal system: the number system that contains 10 distinguished

Number system: the system used to count discrete units is called number. Decimal system: the number system that contains 10 distinguished Number system: the system used to count discrete units is called number system Decimal system: the number system that contains 10 distinguished symbols that is 0-9 or digits is called decimal system. As

More information

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING SEMESTER TWO EXAMINATION 2017/2018

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING SEMESTER TWO EXAMINATION 2017/2018 UNIVERSITY OF BOLTON [EES04] SCHOOL OF ENGINEERING BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING SEMESTER TWO EXAMINATION 2017/2018 INTERMEDIATE DIGITAL ELECTRONICS AND COMMUNICATIONS MODULE NO: EEE5002

More information

1 Q' 3. You are given a sequential circuit that has the following circuit to compute the next state:

1 Q' 3. You are given a sequential circuit that has the following circuit to compute the next state: UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences C50 Fall 2001 Prof. Subramanian Homework #3 Due: Friday, September 28, 2001 1. Show how to implement a T flip-flop starting

More information

NODIA AND COMPANY. Model Test Paper - I GATE Digital Electronics. Copyright By Publishers

NODIA AND COMPANY. Model Test Paper - I GATE Digital Electronics. Copyright By Publishers No part of this publication may be reproduced or distributed in any form or any means, electronic, mechanical, photocopying, or otherwise without the prior permission of the author. Model Test Paper -

More information

DIGITAL CIRCUITS AND SYSTEMS ASSIGNMENTS 1 SOLUTIONS

DIGITAL CIRCUITS AND SYSTEMS ASSIGNMENTS 1 SOLUTIONS DIGITAL CIRCUITS AND SYSTEMS ASSIGNMENTS 1 SOLUTIONS 1. Analog signal varies continuously between two amplitudes over the given interval of time. Between these limits of amplitude and time, the signal

More information

Chapter 4: FLIP FLOPS. (Sequential Circuits) By: Siti Sabariah Hj. Salihin ELECTRICAL ENGINEERING DEPARTMENT EE 202 : DIGITAL ELECTRONICS 1

Chapter 4: FLIP FLOPS. (Sequential Circuits) By: Siti Sabariah Hj. Salihin ELECTRICAL ENGINEERING DEPARTMENT EE 202 : DIGITAL ELECTRONICS 1 Chapter 4: FLIP FLOPS (Sequential Circuits) By: Siti Sabariah Hj. Salihin ELECTRICAL ENGINEERING DEPARTMENT 1 CHAPTER 4 : FLIP FLOPS Programme Learning Outcomes, PLO Upon completion of the programme, graduates

More information

EC O4 403 DIGITAL ELECTRONICS

EC O4 403 DIGITAL ELECTRONICS EC O4 403 DIGITAL ELECTRONICS Asynchronous Sequential Circuits - II 6/3/2010 P. Suresh Nair AMIE, ME(AE), (PhD) AP & Head, ECE Department DEPT. OF ELECTONICS AND COMMUNICATION MEA ENGINEERING COLLEGE Page2

More information

Serial Addition. Lecture 29 1

Serial Addition. Lecture 29 1 Serial Addition Operations in digital computers are usually done in parallel because that is a faster mode of operation. Serial operations are slower because a datapath operation takes several clock cycles,

More information

DIGITAL ELECTRONICS: LOGIC AND CLOCKS

DIGITAL ELECTRONICS: LOGIC AND CLOCKS DIGITL ELECTRONICS: LOGIC ND CLOCKS L 9 INTRO: INTRODUCTION TO DISCRETE DIGITL LOGIC, MEMORY, ND CLOCKS GOLS In this experiment, we will learn about the most basic elements of digital electronics, from

More information

Module-20 Shift Registers

Module-20 Shift Registers 1 Module-20 Shift Registers 1. Introduction 2. Types of shift registers 2.1 Serial In Serial Out (SISO) register 2.2 Serial In Parallel Out (SIPO) register 2.3 Parallel In Parallel Out (PIPO) register

More information

Module -18 Flip flops

Module -18 Flip flops 1 Module -18 Flip flops 1. Introduction 2. Comparison of latches and flip flops. 3. Clock the trigger signal 4. Flip flops 4.1. Level triggered flip flops SR, D and JK flip flops 4.2. Edge triggered flip

More information

Digital Electronics Course Objectives

Digital Electronics Course Objectives Digital Electronics Course Objectives In this course, we learning is reported using Standards Referenced Reporting (SRR). SRR seeks to provide students with grades that are consistent, are accurate, and

More information

Digital Logic Circuits

Digital Logic Circuits Digital Logic Circuits Let s look at the essential features of digital logic circuits, which are at the heart of digital computers. Learning Objectives Understand the concepts of analog and digital signals

More information

EECS 150 Homework 4 Solutions Fall 2008

EECS 150 Homework 4 Solutions Fall 2008 Problem 1: You have a 100 MHz clock, and need to generate 3 separate clocks at different frequencies: 20 MHz, 1kHz, and 1Hz. How many flip flops do you need to implement each clock if you use: a) a ring

More information

DIGITAL LOGIC WITH VHDL (Fall 2013) Unit 5

DIGITAL LOGIC WITH VHDL (Fall 2013) Unit 5 IGITAL LOGIC WITH VHL (Fall 2013) Unit 5 SEUENTIAL CIRCUITS Asynchronous sequential circuits: Latches Synchronous circuits: flip flops, counters, registers. COMBINATORIAL CIRCUITS In combinatorial circuits,

More information

2 Logic Gates THE INVERTER. A logic gate is an electronic circuit which makes logic decisions. It has one output and one or more inputs.

2 Logic Gates THE INVERTER. A logic gate is an electronic circuit which makes logic decisions. It has one output and one or more inputs. 2 Logic Gates A logic gate is an electronic circuit which makes logic decisions. It has one output and one or more inputs. THE INVERTER The inverter (NOT circuit) performs the operation called inversion

More information

Fan in: The number of inputs of a logic gate can handle.

Fan in: The number of inputs of a logic gate can handle. Subject Code: 17333 Model Answer Page 1/ 29 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model

More information

Computer Systems and Networks. ECPE 170 Jeff Shafer University of the Pacific. Digital Logic

Computer Systems and Networks. ECPE 170 Jeff Shafer University of the Pacific. Digital Logic ECPE 170 Jeff Shafer University of the Pacific Digital Logic 2 Homework Review 2.33(d) Convert 26.625 to IEEE 754 single precision floa9ng point: Format requirements for single precision (32 bit total

More information

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-378:

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-378: LCTRICAL AN COMPUTR NGINRING PARTMNT, OAKLAN UNIVRSITY C-378: Computer Hardware esign Winter 26 SYNCHRONOUS SUNTIAL CIRCUITS Notes - Unit 6 ASYNCHRONOUS CIRCUITS: LATCHS SR LATCH: R S R t+ t t+ t S restricted

More information

HAZARDS AND PULSE MODE SEQUENTIAL CIRCUITS

HAZARDS AND PULSE MODE SEQUENTIAL CIRCUITS Chapter 19 HAZARDS AND PULSE MODE SEQUENTIAL CIRCUITS Ch19L5-"Digital Principles and Design", Raj Kamal, Pearson Education, 2006 1 Lesson 5 Dynamic Hazards, Essential Hazards and Pulse mode sequential

More information

SIMULATION DESIGN TOOL LABORATORY MANUAL

SIMULATION DESIGN TOOL LABORATORY MANUAL SHANKERSINH VAGHELA BAPU INSTITUTE OF TECHNOLOGY SIMULATION DESIGN TOOL LABORATORY MANUAL B.E. 4 th SEMESTER-2015-16 SHANKERSINH VAGHELA BAPU INSTITUTE OF TECHNOLOGY Gandhinagar-Mansa Road, PO. Vasan,

More information

Sequential Logic Circuits

Sequential Logic Circuits LAB EXERCISE - 5 Page 1 of 6 Exercise 5 Sequential Logic Circuits 1 - Introduction Goal of the exercise The goals of this exercise are: - verify the behavior of simple sequential logic circuits; - measure

More information

Page 1. Last time we looked at: latches. flip-flop

Page 1. Last time we looked at: latches. flip-flop Last time we looked at: latches flip flops We saw that these devices hold a value depending on their inputs. A data input value is loaded into the register on the rise of the edge. Some circuits have additional

More information

LOGIC DIAGRAM: HALF ADDER TRUTH TABLE: A B CARRY SUM. 2012/ODD/III/ECE/DE/LM Page No. 1

LOGIC DIAGRAM: HALF ADDER TRUTH TABLE: A B CARRY SUM. 2012/ODD/III/ECE/DE/LM Page No. 1 LOGIC DIAGRAM: HALF ADDER TRUTH TABLE: A B CARRY SUM K-Map for SUM: K-Map for CARRY: SUM = A B + AB CARRY = AB 22/ODD/III/ECE/DE/LM Page No. EXPT NO: DATE : DESIGN OF ADDER AND SUBTRACTOR AIM: To design

More information

Sequential Logic Circuits

Sequential Logic Circuits Exercise 2 Sequential Logic Circuits 1 - Introduction Goal of the exercise The goals of this exercise are: - verify the behavior of simple sequential logic circuits; - measure the dynamic parameters of

More information

CHAPTER 5 DESIGNS AND ANALYSIS OF SINGLE ELECTRON TECHNOLOGY BASED MEMORY UNITS

CHAPTER 5 DESIGNS AND ANALYSIS OF SINGLE ELECTRON TECHNOLOGY BASED MEMORY UNITS 208 CHAPTER 5 DESIGNS AND ANALYSIS OF SINGLE ELECTRON TECHNOLOGY BASED MEMORY UNITS 5.1 INTRODUCTION The objective of this chapter is to design and verify the single electron technology based memory circuits

More information

A Logic Circuit Simulation for Choosing a Group or a Question using Register and Encoder

A Logic Circuit Simulation for Choosing a Group or a Question using Register and Encoder A Logic Circuit Simulation for Choosing a Group or a Question using Register and Encoder Lianly Rompis Electrical Engineering Study Program, Faculty of Engineering, Universitas Katolik De La Salle Manado;

More information

CS302 Digital Logic Design Solved Objective Midterm Papers For Preparation of Midterm Exam

CS302 Digital Logic Design Solved Objective Midterm Papers For Preparation of Midterm Exam CS302 Digital Logic Design Solved Objective Midterm Papers For Preparation of Midterm Exam MIDTERM EXAMINATION 2011 (October-November) Q-21 Draw function table of a half adder circuit? (2) Answer: - Page

More information

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700:

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700: LCTRICAL AN COMPUTR NGINRING PARTMNT, OAKLAN UNIVRSITY C-27: igital Logic esign Fall 27 SYNCHRONOUS SUNTIAL CIRCUITS Notes - Unit 6 ASYNCHRONOUS CIRCUITS: LATCHS SR LATCH: R S R t+ t t+ t S restricted

More information

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700:

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700: SYNCHRONOUS SUNTIAL CIRCUITS Notes - Unit 6 ASYNCHRONOUS CIRCUITS: LATCHS SR LATCH: R S R t+ t t+ t S restricted SR Latch S R S R SR LATCH WITH NABL: R R' S R t+ t t+ t t t S S' LATCH WITH NABL: This is

More information

Lecture 20: Several Commercial Counters & Shift Register

Lecture 20: Several Commercial Counters & Shift Register EE2: Switching Systems Lecture 2: Several Commercial Counters & Shift Register Prof. YingLi Tian Nov. 27, 27 Department of Electrical Engineering The City College of New York The City University of New

More information

COMPUTER ORGANIZATION & ARCHITECTURE DIGITAL LOGIC CSCD211- DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF GHANA

COMPUTER ORGANIZATION & ARCHITECTURE DIGITAL LOGIC CSCD211- DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF GHANA COMPUTER ORGANIZATION & ARCHITECTURE DIGITAL LOGIC LOGIC Logic is a branch of math that tries to look at problems in terms of being either true or false. It will use a set of statements to derive new true

More information

ECE 2300 Digital Logic & Computer Organization

ECE 2300 Digital Logic & Computer Organization ECE 2300 Digital Logic & Computer Organization Spring 2018 Timing Analysis Lecture 11: 1 Announcements Lab report guidelines are uploaded on CMS As part of the assignment for Lab 3 report Lab 4(A) prelab

More information

Digital Circuits Laboratory LAB no. 12. REGISTERS

Digital Circuits Laboratory LAB no. 12. REGISTERS REGISTERS are sequential logic circuits that store and/or shift binary sequences. can be classified in: memory registers (with parallel load) - latch shift registers (with serial load) combined registers

More information

3.1 There are three basic logic functions from which all circuits can be designed: NOT (invert), OR, and

3.1 There are three basic logic functions from which all circuits can be designed: NOT (invert), OR, and EE 2449 Experiment 3 Jack Levine and Nancy Warter-Perez, Revised 6/12/17 CALIFORNIA STATE UNIVERSITY LOS ANGELES Department of Electrical and Computer Engineering EE-2449 Digital Logic Lab EXPERIMENT 3

More information

EECS-140/141 Introduction to Digital Logic Design Lecture 7:Sequential Logic Basics

EECS-140/141 Introduction to Digital Logic Design Lecture 7:Sequential Logic Basics EECS-140/141 Introduction to Digital Logic Design Lecture 7:Sequential Logic Basics I. OVERVIEW I.A Combinational vs. Sequential Logic Combinational Logic (everything so far): Outputs depend entirely on

More information

Lecture 7: Components of Phase Locked Loop (PLL)

Lecture 7: Components of Phase Locked Loop (PLL) Lecture 7: Components of Phase Locked Loop (PLL) CSCE 6933/5933 Instructor: Saraju P. Mohanty, Ph. D. NOTE: The figures, text etc included in slides are borrowed from various books, websites, authors pages,

More information

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700:

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700: LCTRICAL AN COMPUTR NGINRING PARTMNT, OAKLAN UNIVRSITY C-27: igital Logic esign Winter 28 SYNCHRONOUS SUNTIAL CIRCUITS Notes - Unit 6 ASYNCHRONOUS CIRCUITS: LATCHS SR LATCH: R S R t+ t t+ t S restricted

More information

DIGITAL ELECTRONICS QUESTION BANK

DIGITAL ELECTRONICS QUESTION BANK DIGITAL ELECTRONICS QUESTION BANK Section A: 1. Which of the following are analog quantities, and which are digital? (a) Number of atoms in a simple of material (b) Altitude of an aircraft (c) Pressure

More information

Electronic Instrumentation

Electronic Instrumentation 5V 1 1 1 2 9 10 7 CL CLK LD TE PE CO 15 + 6 5 4 3 P4 P3 P2 P1 Q4 Q3 Q2 Q1 11 12 13 14 2-14161 Electronic Instrumentation Experiment 7 Digital Logic Devices and the 555 Timer Part A: Basic Logic Gates Part

More information

ENGG1015: lab 3. Sequential Logic

ENGG1015: lab 3. Sequential Logic ENGG1015: lab 3 Sequential Logic 1 st Semester 2012-13 This lab explores the world of sequential logic design. By the end of this lab, you will have implemented a working prototype of a Ball ounter that

More information

Written exam IE1204/5 Digital Design Friday 13/

Written exam IE1204/5 Digital Design Friday 13/ Written exam IE204/5 Digital Design Friday 3/ 207 08.00-2.00 General Information Examiner: Ingo Sander. Teacher: Kista, William Sandqvist tel 08-7904487 Teacher: Valhallavägen, Ahmed Hemani 08-7904469

More information

Lab #10: Finite State Machine Design

Lab #10: Finite State Machine Design Lab #10: Finite State Machine Design Zack Mattis Lab: 3/2/17 Report: 3/14/17 Partner: Brendan Schuster Purpose In this lab, a finite state machine was designed and fully implemented onto a protoboard utilizing

More information

ENGR-4300 Fall 2008 Test 3. Name. Section 1(MR 8:00) 2(TF 2:00) (circle one) Question I (20 points) Question II (15 points) Question III (20 points)

ENGR-4300 Fall 2008 Test 3. Name. Section 1(MR 8:00) 2(TF 2:00) (circle one) Question I (20 points) Question II (15 points) Question III (20 points) ENGR-43 Fall 8 Test 3 Name Section (MR 8:) (TF :) (circle one) Question I ( points) Question II (5 points) Question III ( points) Question I ( points) Question (5 points) Total ( points): On all questions:

More information

Digital Electronic Concepts

Digital Electronic Concepts Western Technical College 10662137 Digital Electronic Concepts Course Outcome Summary Course Information Description Career Cluster Instructional Level Total Credits 4.00 Total Hours 108.00 This course

More information

Electronics. Digital Electronics

Electronics. Digital Electronics Electronics Digital Electronics Introduction Unlike a linear, or analogue circuit which contains signals that are constantly changing from one value to another, such as amplitude or frequency, digital

More information

CMOS Digital Integrated Circuits Lec 11 Sequential CMOS Logic Circuits

CMOS Digital Integrated Circuits Lec 11 Sequential CMOS Logic Circuits Lec Sequential CMOS Logic Circuits Sequential Logic In Combinational Logic circuit Out Memory Sequential The output is determined by Current inputs Previous inputs Output = f(in, Previous In) The regenerative

More information

Practical Workbook Logic Design & Switching Theory

Practical Workbook Logic Design & Switching Theory Practical Workbook Logic Design & Switching Theory Name : Year : Batch : Roll No : Department: Second Edition Fall 2017-18 Dept. of Computer & Information Systems Engineering NED University of Engineering

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) SUMMER-16 EXAMINATION Model Answer

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) SUMMER-16 EXAMINATION Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

Objective Questions. (a) Light (b) Temperature (c) Sound (d) all of these

Objective Questions. (a) Light (b) Temperature (c) Sound (d) all of these Objective Questions Module 1: Introduction 1. Which of the following is an analog quantity? (a) Light (b) Temperature (c) Sound (d) all of these 2. Which of the following is a digital quantity? (a) Electrical

More information

COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design

COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design PH-315 COMINATIONAL and SEUENTIAL LOGIC CIRCUITS Hardware implementation and software design A La Rosa I PURPOSE: To familiarize with combinational and sequential logic circuits Combinational circuits

More information

Exercises: Fundamentals of Computer Engineering 1 PAGE: 1

Exercises: Fundamentals of Computer Engineering 1 PAGE: 1 Exercises: Fundamentals of Computer Engineering PAGE: Exercise Minimise the following using the laws of Boolean algebra. f = a + ab + ab.2 f ( ) ( ) ( ) 2 = c bd + bd + ac b + d + cd a + b + ad( b + c)

More information

CHAPTER 16 SEQUENTIAL CIRCUIT DESIGN. Click the mouse to move to the next page. Use the ESC key to exit this chapter.

CHAPTER 16 SEQUENTIAL CIRCUIT DESIGN. Click the mouse to move to the next page. Use the ESC key to exit this chapter. CHPTER 6 SEQUENTIL CIRCUIT DESIGN Click the mouse to move to the next page. Use the ESC key to exit this chapter. Contents 6. Summary of Design Procedure for Sequential Circuits 6.2 Design ExampleCode

More information

IES Digital Mock Test

IES Digital Mock Test . The circuit given below work as IES Digital Mock Test - 4 Logic A B C x y z (a) Binary to Gray code converter (c) Binary to ECESS- converter (b) Gray code to Binary converter (d) ECESS- To Gray code

More information

PWM System. Microcomputer Architecture and Interfacing Colorado School of Mines Professor William Hoff

PWM System. Microcomputer Architecture and Interfacing Colorado School of Mines Professor William Hoff PWM System 1 Pulse Width Modulation (PWM) Pulses are continuously generated which have different widths but the same period between leading edges Duty cycle (% high) controls the average analog voltage

More information

EXPERIMENT #5 COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design

EXPERIMENT #5 COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design PH-315 La Rosa EXPERIMENT #5 COMINTIONL and SEUENTIL LOGIC CIRCUITS Hardware implementation and software design I PURPOSE: To familiarize with combinational and sequential logic circuits Combinational

More information

SRV ENGINEERING COLLEGE SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE SEMBODAI

SRV ENGINEERING COLLEGE SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE SEMBODAI SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE SEMBODAI 6489 (Approved By AICTE,Newdelhi Affiliated To ANNA UNIVERSITY::Chennai) CS 62 DIGITAL ELECTRONICS LAB (REGULATION-23) LAB MANUAL DEPARTMENT OF

More information

Lecture 02: Digital Logic Review

Lecture 02: Digital Logic Review CENG 3420 Lecture 02: Digital Logic Review Bei Yu byu@cse.cuhk.edu.hk CENG3420 L02 Digital Logic. 1 Spring 2017 Review: Major Components of a Computer CENG3420 L02 Digital Logic. 2 Spring 2017 Review:

More information

CONTENTS Sl. No. Experiment Page No

CONTENTS Sl. No. Experiment Page No CONTENTS Sl. No. Experiment Page No 1a Given a 4-variable logic expression, simplify it using Entered Variable Map and realize the simplified logic expression using 8:1 multiplexer IC. 2a 3a 4a 5a 6a 1b

More information

ERRATUM: In accordance with the standardized nomenciaure adopted at NRAO, the term "instrumental. meridian" should now be "instrumental equator".

ERRATUM: In accordance with the standardized nomenciaure adopted at NRAO, the term instrumental. meridian should now be instrumental equator. ERRATUM: In accordance with the standardized nomenciaure adopted at NRAO, the term "instrumental. meridian" should now be "instrumental equator". NATIONAL RADIO ASTRONOMY OBSERVATORY Green Bank, West Virginia

More information

Winter 14 EXAMINATION Subject Code: Model Answer P a g e 1/28

Winter 14 EXAMINATION Subject Code: Model Answer P a g e 1/28 Subject Code: 17333 Model Answer P a g e 1/28 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model

More information

I.E.S-(Conv.)-2007 ELECTRONICS AND TELECOMMUNICATION ENGINEERING PAPER - II Time Allowed: 3 hours Maximum Marks : 200 Candidates should attempt Question No. 1 which is compulsory and FOUR more questions

More information

Computer Architecture and Organization:

Computer Architecture and Organization: Computer Architecture and Organization: L03: Register transfer and System Bus By: A. H. Abdul Hafez Abdul.hafez@hku.edu.tr, ah.abdulhafez@gmail.com 1 CAO, by Dr. A.H. Abdul Hafez, CE Dept. HKU Outlines

More information

HIGH LOW Astable multivibrators HIGH LOW 1:1

HIGH LOW Astable multivibrators HIGH LOW 1:1 1. Multivibrators A multivibrator circuit oscillates between a HIGH state and a LOW state producing a continuous output. Astable multivibrators generally have an even 50% duty cycle, that is that 50% of

More information

Classification of Digital Circuits

Classification of Digital Circuits Classification of Digital Circuits Combinational logic circuits. Output depends only on present input. Sequential circuits. Output depends on present input and present state of the circuit. Combinational

More information

Keywords: VLSI; CMOS; Pass Transistor Logic (PTL); Gate Diffusion Input (GDI); Parellel In Parellel Out (PIPO); RAM. I.

Keywords: VLSI; CMOS; Pass Transistor Logic (PTL); Gate Diffusion Input (GDI); Parellel In Parellel Out (PIPO); RAM. I. Comparison and analysis of sequential circuits using different logic styles Shofia Ram 1, Rooha Razmid Ahamed 2 1 M. Tech. Student, Dept of ECE, Rajagiri School of Engg and Technology, Cochin, Kerala 2

More information

Adder Comparator 7 segment display Decoder for 7 segment display D flip flop Analysis of sequential circuits. Sequence detector

Adder Comparator 7 segment display Decoder for 7 segment display D flip flop Analysis of sequential circuits. Sequence detector Lecture 3 Adder Comparator 7 segment display Decoder for 7 segment display D flip flop Analysis of sequential circuits Counter Sequence detector TNGE11 Digitalteknik, Lecture 3 1 Adder TNGE11 Digitalteknik,

More information

Digital Electronics. A. I can list five basic safety rules for electronics. B. I can properly display large and small numbers in proper notation,

Digital Electronics. A. I can list five basic safety rules for electronics. B. I can properly display large and small numbers in proper notation, St. Michael Albertville High School Teacher: Scott Danielson September 2016 Content Skills Learning Targets Standards Assessment Resources & Technology CEQ: WHAT MAKES DIGITAL ELECTRONICS SO IMPORTANT

More information

DIGITAL DESIGN WITH SM CHARTS

DIGITAL DESIGN WITH SM CHARTS DIGITAL DESIGN WITH SM CHARTS By: Dr K S Gurumurthy, UVCE, Bangalore e-notes for the lectures VTU EDUSAT Programme Dr. K S Gurumurthy, UVCE, Blore Page 1 19/04/2005 DIGITAL DESIGN WITH SM CHARTS The utility

More information

EE6301 DIGITAL LOGIC CIRCUITS LT P C UNIT I NUMBER SYSTEMS AND DIGITAL LOGIC FAMILIES 9

EE6301 DIGITAL LOGIC CIRCUITS LT P C UNIT I NUMBER SYSTEMS AND DIGITAL LOGIC FAMILIES 9 EE6301 DIGITAL LOGIC CIRCUITS LT P C 3 1 0 4 UNIT I NUMBER SYSTEMS AND DIGITAL LOGIC FAMILIES 9 Review of number systems, binary codes, error detection and correction codes (Parity and Hamming code)- Digital

More information

E-Tec Module Part No

E-Tec Module Part No E-Tec Module Part No.108227 1. Additional programs for the fischertechnik Electronics Module For fans of digital technology, these additional functions are provided in the "E-Tec module". Four additional

More information

6.111 Lecture # 19. Controlling Position. Some General Features of Servos: Servomechanisms are of this form:

6.111 Lecture # 19. Controlling Position. Some General Features of Servos: Servomechanisms are of this form: 6.111 Lecture # 19 Controlling Position Servomechanisms are of this form: Some General Features of Servos: They are feedback circuits Natural frequencies are 'zeros' of 1+G(s)H(s) System is unstable if

More information

B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics

B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics Sr. No. Date TITLE To From Marks Sign 1 To verify the application of op-amp as an Inverting Amplifier 2 To

More information

Department of Electronics and Communication Engineering

Department of Electronics and Communication Engineering Department of Electronics and Communication Engineering Sub Code/Name: BEC3L2- DIGITAL ELECTRONICS LAB Name Reg No Branch Year & Semester : : : : LIST OF EXPERIMENTS Sl No Experiments Page No Study of

More information

Additional Programs for the Electronics Module Part No

Additional Programs for the Electronics Module Part No Additional Programs for the Electronics Module Part No. 5263 Contents:. Additional programs for the Electronics Module....2 Wiring of the inputs and outputs... 2.3 Additional programs for digital technology...

More information

GATE Online Free Material

GATE Online Free Material Subject : Digital ircuits GATE Online Free Material 1. The output, Y, of the circuit shown below is (a) AB (b) AB (c) AB (d) AB 2. The output, Y, of the circuit shown below is (a) 0 (b) 1 (c) B (d) A 3.

More information

Power Efficient D Flip Flop Circuit Using MTCMOS Technique in Deep Submicron Technology

Power Efficient D Flip Flop Circuit Using MTCMOS Technique in Deep Submicron Technology Efficient D lip lop Circuit Using MTCMOS Technique in Deep Submicron Technology Abhijit Asthana PG Scholar in VLSI Design at ITM, Gwalior Prof. Shyam Akashe Coordinator of PG Programmes in VLSI Design,

More information

0 0 Q Q Q Q

0 0 Q Q Q Q Question 1) Flip Flops and Counters (15 points) a) Fill in the truth table for a JK flip flop. Use Q or Q to denote the previous value of Q and Q. (6 pts) J K CLK Q Q Q Q 1 1 1 1 1 1 Q Q b) In Figure 1a

More information

Course Outline Cover Page

Course Outline Cover Page College of Micronesia FSM P.O. Box 159 Kolonia, Pohnpei Course Outline Cover Page Digital Electronics I VEE 135 Course Title Department and Number Course Description: This course provides the students

More information

Level 6 Graduate Diploma in Engineering Electro techniques

Level 6 Graduate Diploma in Engineering Electro techniques 9210-137 Level 6 Graduate Diploma in Engineering Electro techniques Sample Paper You should have the following for this examination one answer book non-programmable calculator pen, pencil, ruler, drawing

More information

Chemistry Hour Exam 1

Chemistry Hour Exam 1 Chemistry 838 - Hour Exam 1 Fall 23 Department of Chemistry Michigan State University East Lansing, MI 48824 Name Student Number Question Points Score 1 15 2 15 3 15 4 15 5 15 6 15 7 15 8 15 9 15 Total

More information

Combinational Logic. Rab Nawaz Khan Jadoon DCS. Lecturer COMSATS Lahore Pakistan. Department of Computer Science

Combinational Logic. Rab Nawaz Khan Jadoon DCS. Lecturer COMSATS Lahore Pakistan. Department of Computer Science Combinational Logic Rab Nawaz Khan Jadoon DCS COMSATS Institute of Information Technology Lecturer COMSATS Lahore Pakistan Digital Logic and Computer Design 2 Combinational logic A combinational circuit

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications The IC06 74HC/HCT/HCU/HCMOS Logic Package Information The IC06 74HC/HCT/HCU/HCMOS

More information

CS302 - Digital Logic Design Glossary By

CS302 - Digital Logic Design Glossary By CS302 - Digital Logic Design Glossary By ABEL : Advanced Boolean Expression Language; a software compiler language for SPLD programming; a type of hardware description language (HDL) Adder : A digital

More information

Spec. Instructor: Center

Spec. Instructor: Center PDHonline Course E379 (5 PDH) Digital Logic Circuits Volume III Spec ial Logic Circuits Instructor: Lee Layton, P.E 2012 PDH Online PDH Center 5272 Meadow Estatess Drive Fairfax, VA 22030-6658 Phone &

More information

On Built-In Self-Test for Adders

On Built-In Self-Test for Adders On Built-In Self-Test for s Mary D. Pulukuri and Charles E. Stroud Dept. of Electrical and Computer Engineering, Auburn University, Alabama Abstract - We evaluate some previously proposed test approaches

More information

First Name: Last Name: Lab Cover Page. Teaching Assistant to whom you are submitting

First Name: Last Name: Lab Cover Page. Teaching Assistant to whom you are submitting Student Information First Name School of Computer Science Faculty of Engineering and Computer Science Last Name Student ID Number Lab Cover Page Please complete all (empty) fields: Course Name: DIGITAL

More information

CD4541BC Programmable Timer

CD4541BC Programmable Timer CD4541BC Programmable Timer General Description The CD4541BC Programmable Timer is designed with a 16-stage binary counter, an integrated oscillator for use with an external capacitor and two resistors,

More information

UC Berkeley CS61C : Machine Structures

UC Berkeley CS61C : Machine Structures CS61C L22 Representations of Combinatorial Logic Circuits (1) inst.eecs.berkeley.edu/~cs61c UC Berkeley CS61C : Machine Structures Lecture 22 Representations of Combinatorial Logic Circuits 27-3-9 TA David

More information

Hashemite University Mechatronics Engineering Department Logic and Electronics Laboratory Manual

Hashemite University Mechatronics Engineering Department Logic and Electronics Laboratory Manual Hashemite University Mechatronics Engineering Department Logic and Electronics Laboratory Manual The Hashemite University Faculty of Engineering Department of Mechatronics Engineering Logic and Electronics

More information

CSE 260 Digital Computers: Organization and Logical Design. Midterm Solutions

CSE 260 Digital Computers: Organization and Logical Design. Midterm Solutions CSE 260 Digital Computers: Organization and Logical Design Midterm Solutions Jon Turner 2/28/2008 1. (10 points). The figure below shows a simulation of the washu-1 processor, with some items blanked out.

More information

Syllabus: Digital Electronics (DE) (Project Lead The Way)

Syllabus: Digital Electronics (DE) (Project Lead The Way) Course Overview: Digital electronics and micro computers. This is a course in applied logic that encompasses the application of electronic circuits and devices. Computer simulation software is used to

More information

Logic Circuit Design

Logic Circuit Design Logic Circuit Design we have studied Truth Tables Logic gates Logic algebra K-maps 1 All these are tools Tools Truth Tables Logic gates Logic algebra K-maps 2 All these are tools Tools Truth Tables Logic

More information