CMOS Digital Integrated Circuits Lec 11 Sequential CMOS Logic Circuits

Size: px
Start display at page:

Download "CMOS Digital Integrated Circuits Lec 11 Sequential CMOS Logic Circuits"

Transcription

1 Lec Sequential CMOS Logic Circuits

2 Sequential Logic In Combinational Logic circuit Out Memory Sequential The output is determined by Current inputs Previous inputs Output = f(in, Previous In) The regenerative behavior of sequential circuits is due to either a direct or an indirect feedback connection between the output and input

3 Critical Components of Sequential Circuits Basic Regenerative Circuits Categories of Basic Regenerative Circuits. Bistable Circuits: Two stable states or operation modes, each of them can be attained under certain input and output conditions. The most widely used and the most important class which is used for the basic latch, flip-flop circuits, registers, and memory elements.. Monostable Circuits: One stable state or operation mode 3. Astable Circuits: No stable operating point or state which the circuit can preserve for a certain time period. The output oscillates without settling into a stable operating mode. Sequential Circuits Bistable Monostable Astable 3

4 Behavior of Bistable Elements (/7) Two Identical Cross-Coupled Inverter Circuit Voltage Transfer Curves» The output voltage of inverter () is equal to the input voltage of inverter (), and the output voltage of inverter () is equal to the input voltage of inverter ().» A and B are stable points: If the circuit is initially operating at one of them, it will preserve this state. The gain is smaller than unity. V i =V o A stable C unstable V i V o B stable V i =V o V o V i Energy 4

5 Behavior of Bistable Elements (/7)» C is an unstable point: The voltage gains of both inverters are larger than unity. A small voltage perturbation at this operating point will be amplified the operating point will move to one of the stable operating points, A or B. Energy Levels:» The potential energy is at its minimum at A and B, since the voltage gains of both inverters are equal to zero.» The potential energy is at its maximum at C, since the voltage gains of both inverters are maximum. (all four transistors are in saturation modes) V DD V DD V o V i V i V o V OH V th V OL V o V o t 5

6 Behavior of Bistable Elements (3/7) Analysis of the Output Voltages Let the initially operating point is at v o =v o =V th, and assume that the gate capacitance (C g ) of each inverter is much larger than the drain capacitance (C d ). The drain current of each inverter is equal to the gate current of the other inverter. i g = i d = g m v g i g = i d = g m v g g m is the small-signal transconductance of the inverter. The gate voltages can be expressed by gate charges, q and q v g = q / C g (Eq. B) v g = q / C g Also the small-signal gate currents can be expressed as i g = C g dv g /dt i g = C g dv g /dt (Eq. A) (Eq. C) i g i d v g vg i d i g 6

7 7 Behavior of Bistable Elements (4/7) Analysis of the Output Voltages Combine Eq. A and C, we have Replace the gate voltages by Eq. B, we obtain The above equations can be simplified to dt dq q C g dt dq q C g g m g m v g vg i g i d i d i g ; g C q q C g dt q d dt q d g C q C g m g g m m g g m dt dv C v g dt dv C v g g g g m g g g m

8 8 Behavior of Bistable Elements (5/7) Analysis of the Output Voltages Therefore, where q () = C g v g () Replace the gate charge pf both inverters with the corresponding out-put voltages variables, we have For large values of t, the above equations can be approximated as e e t t q q q q t q () () ' ' e e e e t o o t o o o t o o t o o o v v v v t v v v v v t v () () () () ' ' ' ' e e t o o o t o o o v v t v v v t v () () ' ' for t for t

9 Behavior of Bistable Elements (6/7) Analysis of the Output Voltages Depending on the polarity of the initial small perturbations dv o () and dv o (), the v o and v o will diverge from their initial values of V th to either V OL and V OH. The polarity of dv o must always be opposite to that of dv o, because of the charge-conservation principle. Therefore, v o and v o always diverge into opposite directions. VOH vo Vth unstable VOL vo VOL Vth VOH Phase-plane Representation 9 v o : V th V OH or V OL v o : V th V OL or V OH

10 Behavior of Bistable Elements (7/7) Analysis of the Output Voltages As a bistable circuit settles from unstable operating point to its stable point, a signal travels around INV loop n times. vo vo Loop v o (t)/v o ()e t/ If during interval t = T, the signal travels around the loop n times A n e T/ V OH V th V OL loop loop loop n A A v o e t/ v o A n t T

11 Naming Conventions A latch is level sensitive A register is edge-triggered There are many different naming conventions For instance, many books call edge-triggered elements flip-flops Digital Integrated Circuits nd

12 Latch versus Register Latch stores data when clock is low Register stores data when clock rises D D Clk Clk Clk Clk D D Digital Integrated Circuits nd

13 Latches 3 Digital Integrated Circuits nd

14 SR Latch Circuit The two cross-coupled inverters can perform a simple memory function of holding its state. However, the two-inverter circuit alone has no provision for allowing its state to be changed externally from one stable operating point to other. In order to allow such a change of state, we need to add simple switches which can be used to force or trigger the circuit from one operating point to the other. S R S R NOR-based SR Latch Schematic Diagram of SR Latch 4

15 SR Latch Circuit (Cont.) The below circuit shows the simple CMOS SR latch which consists of two triggering inputs, S (set) and R (reset). The SR Latch consists of two CMOS NOR gates. One of the input terminals of each NOR gate is used to cross-couple to the output of the other NOR gate. The second input enables triggering of the circuit. V DD V DD M 6 M 8 basic cross coupled inverter M 5 M 7 S M M M 3 M 4 R 5

16 SR Latch Circuit Truth Table Set: S=, R= n+ =, n+ =. The SR latch will be set regardless of its previous state. Reset: S=, R= n+ =, n+ =. The SR latch will be reset regardless of its previous state. Hold: S=, R= n+ = n, n+ = n. The previous states will be held. Not Allow: S=, R= n+ =, n+ = active high S R n+ n+ Operation n n Hold Set Reset Not Allowed Truth Table of NOR-based (active high inputs) SR latch 6

17 SR Latch Circuit Operation Modes of the Transistors S R n+ n+ Operation NMOS PMOS V OH V OL V OH V OL M, M on; M 3, M 4 off M 7, M 8 on; M 5, M 6 off V OL V OH V OL V OH M, M off; M 3, M 4 on M 7, M 8 off; M 5, M 6 on V OL V OL V OH V OL M, M 4 off; M, on M 6, M 8 on; M 7, on V OL V OL V OL V OH M, M 4 off; M 3, on M 6, M 8 on; M 5, on V DD V DD M 6 M 8 basic cross coupled inverter S M M 5 M 7 M M 3 M 4 R 7

18 SR Latch Circuit Transient Analysis For transient analysis, we have to consider an event which results in a state change, reset set, or set reset In either case, we note that both of the output nodes undergo simultaneous voltage transitions. One is from logic-low to logichigh, and the other is from logic-high to logic-low. The exact transient analysis need to solve two coupled differential equations. For simplicity, we can assume that the two events take place in sequence rather than simultaneously. (overestimation) Switching Time Calculation The total lumped capacitance at each output node can be approximated as C = C gb, +C gb,5 +C db,3 +C db,4 +C db,7 +C sb,7 +C db,8 C = C gb,3 +C gb,7 +C db, +C db, +C db,5 +C sb,5 +C db,6 8

19 SR Latch Circuit Transient Analysis (Cont.) Assuming that the latch is initially reset and that a set operation is being performed, the rise time associated with node can be estimated as rise, (SR-latch) = rise, (NOR)+ fall, (NOR) V DD V DD S M M C M 3 M 4 C M on rise, (NOR) R 9

20 SR Latch Circuit NAND-based (active low signals) V DD V DD basic cross coupled inverter S R active low S R n+ n+ Operation Not Allowed Set Reset n n Hold

21 Clocked Latch and Flip-Flop Circuits The previous SR latch circuits are asynchronous sequential circuits. The synchronization can be introduced through clock, which the outputs will respond to the input levels only during the active period of a clock pulse. Clocked SR Latch S SR Latch R When =, S, R have no influence of, Hold Set State: =, S=, R= n+ =, n+ = Reset State: =, S=, R= n+ =, n+ = Not Allowed: =, S=, R= Active High

22 AOI-based Implementation of Clocked NOR-based SR Latch The AOI-based implementation need a very small transistor count, compared with the circuit consisting of two AND and two NOR gates» NOR-based: transistors» AOI-based: transistors V DD V DD NOR SR Latch S M M M 3 M 4 R M

23 Operation of Clocked SR Latch Operation S R n+ n+ Hold X X n n Set Reset Not Allow S R Glitch Glitch Free When Glitch ON S (or R) occurs during =, is set (or reset). Level Sensitive: When =, any changes in S, R will effect. 3

24 Clocked NAND-based SR Latch S R When =, S and R have no influence of and Hold Operation S R n+ n+ Hold X X n n Set Reset Not Allow 4

25 OAI-based Implementation of Clocked NAND-based SR Latch The OAI-based implementation need a very small transistor count, compared with the circuit consisting of two OR and two NAND gates V DD V DD NAND SR Latch M M 4 5 S M Synchronous operation Level sensitive Not allowed input sequence M 3 (any changes in S and R as = will be reflected onto outputs) R

26 Clocked JK Latch NAND SR J S = hold = active No not allowed combination K R J K n n S R n+ n+ Operation Hold Hold Reset = Reset Set Set Toggle Toggle OSC 6

27 AOI-based Implementation of NOR-based Clocked JK Latch The AOI-based implementation has a very small transistor count, and a more compact circuit compared to all-nand realization. V DD V DD K J 7

28 JK Toggle Switch J =K= J= JK K= Latch T Iff JKP > T (awkward to implement) Output changes only once per clock period» No not allowed input» Timing issues» Level sensitive 8

29 Master-Slave Flip-Flop J S NAND m S NAND s K R SR m R SR s Two cascaded latches operating on opposite clock phases insures that the flip-flop is never transparent; i.e., a change occurring in the primary inputs is never reflected directly to the outputs. Eliminates oscillations when J = K =. Still level sensitive. Number of transistors:» NAND-based: 36» AOI-based: 8 9

30 D-Latch D-latch is obtained by modifying the clocked NOR-based SR latch circuit. The circuit has a single input D which is connected to S input, and D is also inverted and connected to R input. The applications of D-latch are primarily for temporary storage of data or as a delay element. D SR Latch If = n+ = D 3 If = n+ = n

31 D-Latch (Cont.) D-latch is a mux-based latch which can be represented as D D = + In = + In Negative latch (transparent when = ) Positive latch (transparent when = ) 3

32 D-Latch Implementation with Transmission Gates Transmission gate D-latch: Use switch-like properties of transmission gates D 3 Operation: For =, n+ =D and n+ =D. A bit is loaded. For =, n+ = n and n+ = n. Thus, a bit is stored. Note that Propagation delay to is less than delay to. What about changes in D relative to changes in? Setup time and Hold time relative to : Device counts for TG-based reduced from AOI/OAI» AOI-based: 4» TG-based: 8 (plus to invert clock)

33 D-Latch Implementation with Three-State D = D = Similar to the TG-based implementation, except as if connection between n and pfets in a driving inverter and input side of a driven transmission gate is served. Require addition of inverter at input first. VDD VDD VDD D 33

34 D-Latch Implementation with Three-State (Cont.) The first three-state inverter acts as the input switch. Accept the input signal when is high, the second three-state inverter is at its high impedance state, and = D. The first three-state inverter is inactive when the goes low, and the second three-state inverter completes the two-inverter loop, which preserves its state ( n+ = n ) VDD VDD VDD D 34

35 D-Latch Setup Time and Hold Time t setup D t hold t clock-to- 35 T setup : time before the negative- edge the D-input has to be stable» The setup time is the delay between the data input of the register and the storage element. As the data takes a finite time to travel to the storage point, the clock cannot be changed until the correct data value appears. T hold : time after the negative- edge D-input has to remain stable» The hold time relates to the delay between the clock input to the register and the storage element. That is, the data has to be held for this period while the clock travels to the point of storage. T clock-to- : Delay from the negative- edge to new value of output

36 Edge Triggered Master-Slave Operation Negative D-Latch D = D = D Positive D-Latch D = D = D 36

37 Positive Edge Triggered Master-Slave Flip-Flop Master Slave m m s s D For =. =: Master m tracks current D; D m s Slave s =previous D sample. = : Master stores m = D(new D sample). For = D m s 3. =:Master passes m = D to Slave output s 4. = : Slave locks in new D, and Master m begins tracking D. 37

38 DFF Transient Response 38

39 DFF Transient Response with Setup Time Violation 39

40 D Flip-Flop Clock Skew Issues In a TG or three-state implemented flip-flop, if and changes are skewed (misaligned) enough, then a change in Master can immediately propagate into Slave violating the master-slave (edgetriggered) concept. If global or shared drivers used, can use the following to reduce skew: IN Adjust devices sizes to match inverter delay For the global case, skew can also arise due to interconnect delay. 4

41 Non-Bistable Sequential Schmitt Trigger The Schmitt trigger has an inverter-like voltage transfer characteristic, but with two different threshold voltages for increasing and decreasing input signals. In Out V out V OH VTC with hysteresis V OL Restores signal slopes (positive feedback) V M V M+ V in 4

42 Schmitt Trigger Application Noise Suppression 4 Digital Integrated Circuits nd

43 Schmitt Trigger The Circuit() V DD M M 4 V in X V out M M 3 Moves switching threshold of the first inverter 43

44 Schmitt Trigger Simulated VTC k M /(k M +k M4 ) V M.5 V X(V)..5 V M V x (V)..5 k = k = k = 3 k = V in (V) Voltage-transfer characteristics with hysteresis. (k M +k M3 )/k M V in (V) The effect of varying the ratio of the PMOS devicem 4. The width is k*.5 m. m Digital Integrated Circuits nd

45 Schmitt Trigger The Circuit() V DD M 4 M 3 M 6 In Out M X M 5 V DD M 45 Digital Integrated Circuits nd

46 Multivibrator Circuits R S Bistable Multivibrator flip-flop, Schmitt Trigger T Monostable Multivibrator one-shot Astable Multivibrator oscillator Digital Integrated Circuits nd 46

47 Transition-Triggered Monostable In DELAY t d Out t d Digital Integrated Circuits nd 47

48 Astable Multivibrators (Oscillators) N- Ring Oscillator simulated response of 5-stage oscillator Digital Integrated Circuits nd 48

CMOS Digital Integrated Circuits Analysis and Design

CMOS Digital Integrated Circuits Analysis and Design CMOS Digital Integrated Circuits Analysis and Design Chapter 8 Sequential MOS Logic Circuits 1 Introduction Combinational logic circuit Lack the capability of storing any previous events Non-regenerative

More information

! Sequential Logic. ! Timing Hazards. ! Dynamic Logic. ! Add state elements (registers, latches) ! Compute. " From state elements

! Sequential Logic. ! Timing Hazards. ! Dynamic Logic. ! Add state elements (registers, latches) ! Compute.  From state elements ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 19: April 2, 2019 Sequential Logic, Timing Hazards and Dynamic Logic Lecture Outline! Sequential Logic! Timing Hazards! Dynamic Logic 4 Sequential

More information

Electronic Circuits EE359A

Electronic Circuits EE359A Electronic Circuits EE359A Bruce McNair B206 bmcnair@stevens.edu 201-216-5549 1 Memory and Advanced Digital Circuits - 2 Chapter 11 2 Figure 11.1 (a) Basic latch. (b) The latch with the feedback loop opened.

More information

! Is it feasible? ! How do we decompose the problem? ! Vdd. ! Topology. " Gate choice, logical optimization. " Fanin, fanout, Serial vs.

! Is it feasible? ! How do we decompose the problem? ! Vdd. ! Topology.  Gate choice, logical optimization.  Fanin, fanout, Serial vs. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Design Space Exploration Lec 18: March 28, 2017 Design Space Exploration, Synchronous MOS Logic, Timing Hazards 3 Design Problem Problem Solvable!

More information

HIGH LOW Astable multivibrators HIGH LOW 1:1

HIGH LOW Astable multivibrators HIGH LOW 1:1 1. Multivibrators A multivibrator circuit oscillates between a HIGH state and a LOW state producing a continuous output. Astable multivibrators generally have an even 50% duty cycle, that is that 50% of

More information

Mux-Based Latches. Lecture 8. Sequential Circuits 1. Mux-Based Latch. Mux-Based Latch. Negative latch (transparent when CLK= 0)

Mux-Based Latches. Lecture 8. Sequential Circuits 1. Mux-Based Latch. Mux-Based Latch. Negative latch (transparent when CLK= 0) Mux-Based Latches Lecture 8 equential Circuits Negative latch (transparent when = 0) Positive latch (transparent when = ) Peter Cheung epartment of Electrical & Electronic Engineering Imperial College

More information

Module -18 Flip flops

Module -18 Flip flops 1 Module -18 Flip flops 1. Introduction 2. Comparison of latches and flip flops. 3. Clock the trigger signal 4. Flip flops 4.1. Level triggered flip flops SR, D and JK flip flops 4.2. Edge triggered flip

More information

B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics

B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics Sr. No. Date TITLE To From Marks Sign 1 To verify the application of op-amp as an Inverting Amplifier 2 To

More information

DESIGNING SEQUENTIAL LOGIC CIRCUITS

DESIGNING SEQUENTIAL LOGIC CIRCUITS chapter7.fm Page 296 Friday, January 18, 2002 9:09 AM CHAPTER 7 ESIGNING SEUENTIAL LOGIC CIRCUITS Implementation techniques for flip-flops, latches, oscillators, pulse generators, and Schmitt triggers

More information

電子電路. Memory and Advanced Digital Circuits

電子電路. Memory and Advanced Digital Circuits 電子電路 Memory and Advanced Digital Circuits Hsun-Hsiang Chen ( 陳勛祥 ) Department of Electronic Engineering National Changhua University of Education Email: chenhh@cc.ncue.edu.tw Spring 2010 2 Reference Microelectronic

More information

EE 42/100 Lecture 24: Latches and Flip Flops. Rev A 4/14/2010 (8:30 PM) Prof. Ali M. Niknejad

EE 42/100 Lecture 24: Latches and Flip Flops. Rev A 4/14/2010 (8:30 PM) Prof. Ali M. Niknejad A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 24 p. 1/15 EE 42/100 Lecture 24: Latches and Flip Flops ELECTRONICS Rev A 4/14/2010 (8:30 PM) Prof. Ali M. Niknejad University of California,

More information

! Review: Sequential MOS Logic. " SR Latch. " D-Latch. ! Timing Hazards. ! Dynamic Logic. " Domino Logic. ! Charge Sharing Setup.

! Review: Sequential MOS Logic.  SR Latch.  D-Latch. ! Timing Hazards. ! Dynamic Logic.  Domino Logic. ! Charge Sharing Setup. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 9: March 29, 206 Timing Hazards and Dynamic Logic Lecture Outline! Review: Sequential MOS Logic " SR " D-! Timing Hazards! Dynamic Logic "

More information

Multivibrators. Department of Electrical & Electronics Engineering, Amrita School of Engineering

Multivibrators. Department of Electrical & Electronics Engineering, Amrita School of Engineering Multivibrators Multivibrators Multivibrator is an electronic circuit that generates square, rectangular, pulse waveforms. Also called as nonlinear oscillators or function generators. Multivibrator is basically

More information

Chapter 4: FLIP FLOPS. (Sequential Circuits) By: Siti Sabariah Hj. Salihin ELECTRICAL ENGINEERING DEPARTMENT EE 202 : DIGITAL ELECTRONICS 1

Chapter 4: FLIP FLOPS. (Sequential Circuits) By: Siti Sabariah Hj. Salihin ELECTRICAL ENGINEERING DEPARTMENT EE 202 : DIGITAL ELECTRONICS 1 Chapter 4: FLIP FLOPS (Sequential Circuits) By: Siti Sabariah Hj. Salihin ELECTRICAL ENGINEERING DEPARTMENT 1 CHAPTER 4 : FLIP FLOPS Programme Learning Outcomes, PLO Upon completion of the programme, graduates

More information

First Optional Homework Problem Set for Engineering 1630, Fall 2014

First Optional Homework Problem Set for Engineering 1630, Fall 2014 First Optional Homework Problem Set for Engineering 1630, Fall 014 1. Using a K-map, minimize the expression: OUT CD CD CD CD CD CD How many non-essential primes are there in the K-map? How many included

More information

DESIGNING SEQUENTIAL LOGIC CIRCUITS

DESIGNING SEQUENTIAL LOGIC CIRCUITS chapter7.fm Page 270 Tuesday, April 18, 2000 8:52 PM CHAPTER 7 ESIGNING SEUENTIAL LOGIC CIRCUITS Implementation techniques for flip-flops, latches, oscillators, pulse generators, and Schmitt triggers n

More information

EECS 141: FALL 98 FINAL

EECS 141: FALL 98 FINAL University of California College of Engineering Department of Electrical Engineering and Computer Science J. M. Rabaey 511 Cory Hall TuTh9:30-11am ee141@eecs EECS 141: FALL 98 FINAL For all problems, you

More information

Chapter 6 Combinational CMOS Circuit and Logic Design. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Chapter 6 Combinational CMOS Circuit and Logic Design. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Chapter 6 Combinational CMOS Circuit and Logic Design Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Outline Advanced Reliable Systems (ARES) Lab. Jin-Fu Li,

More information

CMOS VLSI Design (A3425)

CMOS VLSI Design (A3425) CMOS VLSI Design (A3425) Unit III Static Logic Gates Introduction A static logic gate is one that has a well defined output once the inputs are stabilized and the switching transients have decayed away.

More information

CPE/EE 427, CPE 527 VLSI Design I: Homeworks 3 & 4

CPE/EE 427, CPE 527 VLSI Design I: Homeworks 3 & 4 CPE/EE 427, CPE 527 VLSI Design I: Homeworks 3 & 4 1 2 3 4 5 6 7 8 9 10 Sum 30 10 25 10 30 40 10 15 15 15 200 1. (30 points) Misc, Short questions (a) (2 points) Postponing the introduction of signals

More information

DIGITAL INTEGRATED CIRCUITS A DESIGN PERSPECTIVE 2 N D E D I T I O N

DIGITAL INTEGRATED CIRCUITS A DESIGN PERSPECTIVE 2 N D E D I T I O N DIGITAL INTEGRATED CIRCUITS A DESIGN PERSPECTIVE 2 N D E D I T I O N Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic CONTENTS PART I: THE FABRICS Chapter 1: Introduction (32 pages) 1.1 A Historical

More information

EE 42/100 Lecture 24: Latches and Flip Flops. Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad

EE 42/100 Lecture 24: Latches and Flip Flops. Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 24 p. 1/21 EE 42/100 Lecture 24: Latches and Flip Flops ELECTRONICS Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad University of California,

More information

Fan in: The number of inputs of a logic gate can handle.

Fan in: The number of inputs of a logic gate can handle. Subject Code: 17333 Model Answer Page 1/ 29 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model

More information

11. What is fall time (tf) in transistor? The time required for the collector current to fall from 90% to 10% of its DEPARTMENT OF ECE EC 6401 Electronic Circuits II UNIT-IV WAVE SHAPING AND MULTIVIBRATOR

More information

Spec. Instructor: Center

Spec. Instructor: Center PDHonline Course E379 (5 PDH) Digital Logic Circuits Volume III Spec ial Logic Circuits Instructor: Lee Layton, P.E 2012 PDH Online PDH Center 5272 Meadow Estatess Drive Fairfax, VA 22030-6658 Phone &

More information

Chapter 2 Combinational Circuits

Chapter 2 Combinational Circuits Chapter 2 Combinational Circuits SKEE2263 Digital Systems Mun im/ismahani/izam {munim@utm.my,e-izam@utm.my,ismahani@fke.utm.my} February 23, 26 Why CMOS? Most logic design today is done on CMOS circuits

More information

Baker Ch 13: Clocked Circuits

Baker Ch 13: Clocked Circuits Topics: 1. Intro Foil 2. CMOS Transmission Gate Definition 3. Delay of TG 4. Applications of TG-Selector 5. Applications of TG-MUX 6. TG vs. Pass Transistor 7. Applications of TG-OR, XOR, XNOR 8. SR Latch-NAND,

More information

Preface to Third Edition Deep Submicron Digital IC Design p. 1 Introduction p. 1 Brief History of IC Industry p. 3 Review of Digital Logic Gate

Preface to Third Edition Deep Submicron Digital IC Design p. 1 Introduction p. 1 Brief History of IC Industry p. 3 Review of Digital Logic Gate Preface to Third Edition p. xiii Deep Submicron Digital IC Design p. 1 Introduction p. 1 Brief History of IC Industry p. 3 Review of Digital Logic Gate Design p. 6 Basic Logic Functions p. 6 Implementation

More information

Digital Design and System Implementation. Overview of Physical Implementations

Digital Design and System Implementation. Overview of Physical Implementations Digital Design and System Implementation Overview of Physical Implementations CMOS devices CMOS transistor circuit functional behavior Basic logic gates Transmission gates Tri-state buffers Flip-flops

More information

SCHMITT TRIGGER. Typical ``real world'' signals consist of a superposition of a ``noise'' signal and a

SCHMITT TRIGGER. Typical ``real world'' signals consist of a superposition of a ``noise'' signal and a SCHMITT TRIGGER Typical ``real world'' signals consist of a superposition of a ``noise'' signal and a signal or signals of interest. For example, the signal at the bottom of Figure 19 shows a superposition

More information

Memory, Latches, & Registers

Memory, Latches, & Registers Memory, Latches, & Registers 1) Structured Logic Arrays 2) Memory Arrays 3) Transparent Latches 4) Saving a few bucks at toll booths 5) Edge-triggered Registers Friday s class will be a lecture rather

More information

Fig 1: The symbol for a comparator

Fig 1: The symbol for a comparator INTRODUCTION A comparator is a device that compares two voltages or currents and switches its output to indicate which is larger. They are commonly used in devices such as They are commonly used in devices

More information

ELECTRONICS ADVANCED SUPPLEMENTARY LEVEL

ELECTRONICS ADVANCED SUPPLEMENTARY LEVEL ELECTRONICS ADVANCED SUPPLEMENTARY LEVEL AIMS The general aims of the subject are : 1. to foster an interest in and an enjoyment of electronics as a practical and intellectual discipline; 2. to develop

More information

ECE 3110: Engineering Electronics II Fall Final Exam. Dec. 16, 8:00-10:00am. Name: (78 points total)

ECE 3110: Engineering Electronics II Fall Final Exam. Dec. 16, 8:00-10:00am. Name: (78 points total) Final Exam Dec. 16, 8:00-10:00am Name: (78 points total) Problem 1: Consider the emitter follower in Fig. 7, which is being used as an output stage. For Q 1, assume β = and initally assume that V BE =

More information

1 Signals and systems, A. V. Oppenhaim, A. S. Willsky, Prentice Hall, 2 nd edition, FUNDAMENTALS. Electrical Engineering. 2.

1 Signals and systems, A. V. Oppenhaim, A. S. Willsky, Prentice Hall, 2 nd edition, FUNDAMENTALS. Electrical Engineering. 2. 1 Signals and systems, A. V. Oppenhaim, A. S. Willsky, Prentice Hall, 2 nd edition, 1996. FUNDAMENTALS Electrical Engineering 2.Processing - Analog data An analog signal is a signal that varies continuously.

More information

logic system Outputs The addition of feedback means that the state of the circuit may change with time; it is sequential. logic system Outputs

logic system Outputs The addition of feedback means that the state of the circuit may change with time; it is sequential. logic system Outputs Sequential Logic The combinational logic circuits we ve looked at so far, whether they be simple gates or more complex circuits have clearly separated inputs and outputs. A change in the input produces

More information

Design of low-power, high performance flip-flops

Design of low-power, high performance flip-flops Int. Journal of Applied Sciences and Engineering Research, Vol. 3, Issue 4, 2014 www.ijaser.com 2014 by the authors Licensee IJASER- Under Creative Commons License 3.0 editorial@ijaser.com Research article

More information

High Speed Communication Circuits and Systems Lecture 14 High Speed Frequency Dividers

High Speed Communication Circuits and Systems Lecture 14 High Speed Frequency Dividers High Speed Communication Circuits and Systems Lecture 14 High Speed Frequency Dividers Michael H. Perrott March 19, 2004 Copyright 2004 by Michael H. Perrott All rights reserved. 1 High Speed Frequency

More information

NOVEMBER 28, 2016 COURSE PROJECT: CMOS SWITCHING POWER SUPPLY EE 421 DIGITAL ELECTRONICS ERIC MONAHAN

NOVEMBER 28, 2016 COURSE PROJECT: CMOS SWITCHING POWER SUPPLY EE 421 DIGITAL ELECTRONICS ERIC MONAHAN NOVEMBER 28, 2016 COURSE PROJECT: CMOS SWITCHING POWER SUPPLY EE 421 DIGITAL ELECTRONICS ERIC MONAHAN 1.Introduction: CMOS Switching Power Supply The course design project for EE 421 Digital Engineering

More information

Lecture 02: Digital Logic Review

Lecture 02: Digital Logic Review CENG 3420 Lecture 02: Digital Logic Review Bei Yu byu@cse.cuhk.edu.hk CENG3420 L02 Digital Logic. 1 Spring 2017 Review: Major Components of a Computer CENG3420 L02 Digital Logic. 2 Spring 2017 Review:

More information

UMAINE ECE Morse Code ROM and Transmitter at ISM Band Frequency

UMAINE ECE Morse Code ROM and Transmitter at ISM Band Frequency UMAINE ECE Morse Code ROM and Transmitter at ISM Band Frequency Jamie E. Reinhold December 15, 2011 Abstract The design, simulation and layout of a UMAINE ECE Morse code Read Only Memory and transmitter

More information

CHAPTER 5 DESIGNS AND ANALYSIS OF SINGLE ELECTRON TECHNOLOGY BASED MEMORY UNITS

CHAPTER 5 DESIGNS AND ANALYSIS OF SINGLE ELECTRON TECHNOLOGY BASED MEMORY UNITS 208 CHAPTER 5 DESIGNS AND ANALYSIS OF SINGLE ELECTRON TECHNOLOGY BASED MEMORY UNITS 5.1 INTRODUCTION The objective of this chapter is to design and verify the single electron technology based memory circuits

More information

Electronics. Digital Electronics

Electronics. Digital Electronics Electronics Digital Electronics Introduction Unlike a linear, or analogue circuit which contains signals that are constantly changing from one value to another, such as amplitude or frequency, digital

More information

R a) Explain the operation of RC high-pass circuit when exponential input is applied.

R a) Explain the operation of RC high-pass circuit when exponential input is applied. SET - 1 1. a) Explain the operation of RC high-pass circuit when exponential input is applied. 2x V ( e 1) V b) Verify V2 = = tanhx for a symmetrical square wave applied to a RC low 2x 2 ( e + 2 pass circuit.

More information

CHAPTER 6 PHASE LOCKED LOOP ARCHITECTURE FOR ADC

CHAPTER 6 PHASE LOCKED LOOP ARCHITECTURE FOR ADC 138 CHAPTER 6 PHASE LOCKED LOOP ARCHITECTURE FOR ADC 6.1 INTRODUCTION The Clock generator is a circuit that produces the timing or the clock signal for the operation in sequential circuits. The circuit

More information

EE584 Introduction to VLSI Design Final Project Document Group 9 Ring Oscillator with Frequency selector

EE584 Introduction to VLSI Design Final Project Document Group 9 Ring Oscillator with Frequency selector EE584 Introduction to VLSI Design Final Project Document Group 9 Ring Oscillator with Frequency selector Group Members Uttam Kumar Boda Rajesh Tenukuntla Mohammad M Iftakhar Srikanth Yanamanagandla 1 Table

More information

Digital Logic Circuits

Digital Logic Circuits Digital Logic Circuits Let s look at the essential features of digital logic circuits, which are at the heart of digital computers. Learning Objectives Understand the concepts of analog and digital signals

More information

Electronic Instrumentation

Electronic Instrumentation 5V 1 1 1 2 9 10 7 CL CLK LD TE PE CO 15 + 6 5 4 3 P4 P3 P2 P1 Q4 Q3 Q2 Q1 11 12 13 14 2-14161 Electronic Instrumentation Experiment 7 Digital Logic Devices and the 555 Timer Part A: Basic Logic Gates Part

More information

Memory, Latches, & Registers

Memory, Latches, & Registers Memory, Latches, & Registers 1) Structured Logic Arrays 2) Memory Arrays 3) Transparent Latches 4) Saving a few bucks at toll booths 5) Edge-triggered Registers 1 General Table Lookup Synthesis A B 00

More information

EE 42/100 Lecture 23: CMOS Transistors and Logic Gates. Rev A 4/15/2012 (10:39 AM) Prof. Ali M. Niknejad

EE 42/100 Lecture 23: CMOS Transistors and Logic Gates. Rev A 4/15/2012 (10:39 AM) Prof. Ali M. Niknejad A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 23 p. 1/16 EE 42/100 Lecture 23: CMOS Transistors and Logic Gates ELECTRONICS Rev A 4/15/2012 (10:39 AM) Prof. Ali M. Niknejad University

More information

1. LINEAR WAVE SHAPING

1. LINEAR WAVE SHAPING Aim: 1. LINEAR WAVE SHAPING i) To design a low pass RC circuit for the given cutoff frequency and obtain its frequency response. ii) To observe the response of the designed low pass RC circuit for the

More information

ELECTRONIC CIRCUITS. Time: Three Hours Maximum Marks: 100

ELECTRONIC CIRCUITS. Time: Three Hours Maximum Marks: 100 EC 40 MODEL TEST PAPER - 1 ELECTRONIC CIRCUITS Time: Three Hours Maximum Marks: 100 Answer five questions, taking ANY TWO from Group A, any two from Group B and all from Group C. All parts of a question

More information

ASTABLE MULTIVIBRATOR

ASTABLE MULTIVIBRATOR 555 TIMER ASTABLE MULTIIBRATOR MONOSTABLE MULTIIBRATOR 555 TIMER PHYSICS (LAB MANUAL) PHYSICS (LAB MANUAL) 555 TIMER Introduction The 555 timer is an integrated circuit (chip) implementing a variety of

More information

EECS150 - Digital Design Lecture 19 CMOS Implementation Technologies. Recap and Outline

EECS150 - Digital Design Lecture 19 CMOS Implementation Technologies. Recap and Outline EECS150 - Digital Design Lecture 19 CMOS Implementation Technologies Oct. 31, 2013 Prof. Ronald Fearing Electrical Engineering and Computer Sciences University of California, Berkeley (slides courtesy

More information

Digital Microelectronic Circuits ( ) Pass Transistor Logic. Lecture 9: Presented by: Adam Teman

Digital Microelectronic Circuits ( ) Pass Transistor Logic. Lecture 9: Presented by: Adam Teman Digital Microelectronic Circuits (361-1-3021 ) Presented by: Adam Teman Lecture 9: Pass Transistor Logic 1 Motivation In the previous lectures, we learned about Standard CMOS Digital Logic design. CMOS

More information

Module 4 : Propagation Delays in MOS Lecture 19 : Analyzing Delay for various Logic Circuits

Module 4 : Propagation Delays in MOS Lecture 19 : Analyzing Delay for various Logic Circuits Module 4 : Propagation Delays in MOS Lecture 19 : Analyzing Delay for various Logic Circuits Objectives In this lecture you will learn the following Ratioed Logic Pass Transistor Logic Dynamic Logic Circuits

More information

Government Polytechnic Muzaffarpur Name of the Lab: Applied Electronics Lab

Government Polytechnic Muzaffarpur Name of the Lab: Applied Electronics Lab Government Polytechnic Muzaffarpur Name of the Lab: Applied Electronics Lab Subject Code: 1620408 Experiment-1 Aim: To obtain the characteristics of field effect transistor (FET). Theory: The Field Effect

More information

ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers

ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers Objective Design, simulate and layout various inverting amplifiers. Introduction Inverting amplifiers are fundamental building blocks of electronic

More information

Logic Families. Describes Process used to implement devices Input and output structure of the device. Four general categories.

Logic Families. Describes Process used to implement devices Input and output structure of the device. Four general categories. Logic Families Characterizing Digital ICs Digital ICs characterized several ways Circuit Complexity Gives measure of number of transistors or gates Within single package Four general categories SSI - Small

More information

R & D Electronics DIGITAL IC TRAINER. Model : DE-150. Feature: Object: Specification:

R & D Electronics DIGITAL IC TRAINER. Model : DE-150. Feature: Object: Specification: DIGITAL IC TRAINER Model : DE-150 Object: To Study the Operation of Digital Logic ICs TTL and CMOS. To Study the All Gates, Flip-Flops, Counters etc. To Study the both the basic and advance digital electronics

More information

The steeper the phase shift as a function of frequency φ(ω) the more stable the frequency of oscillation

The steeper the phase shift as a function of frequency φ(ω) the more stable the frequency of oscillation It should be noted that the frequency of oscillation ω o is determined by the phase characteristics of the feedback loop. the loop oscillates at the frequency for which the phase is zero The steeper the

More information

Chapter 13: Introduction to Switched- Capacitor Circuits

Chapter 13: Introduction to Switched- Capacitor Circuits Chapter 13: Introduction to Switched- Capacitor Circuits 13.1 General Considerations 13.2 Sampling Switches 13.3 Switched-Capacitor Amplifiers 13.4 Switched-Capacitor Integrator 13.5 Switched-Capacitor

More information

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET)

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET) Difference between BJTs and FETs Transistors can be categorized according to their structure, and two of the more commonly known transistor structures, are the BJT and FET. The comparison between BJTs

More information

HAZARDS AND PULSE MODE SEQUENTIAL CIRCUITS

HAZARDS AND PULSE MODE SEQUENTIAL CIRCUITS Chapter 19 HAZARDS AND PULSE MODE SEQUENTIAL CIRCUITS Ch19L5-"Digital Principles and Design", Raj Kamal, Pearson Education, 2006 1 Lesson 5 Dynamic Hazards, Essential Hazards and Pulse mode sequential

More information

Winter 14 EXAMINATION Subject Code: Model Answer P a g e 1/28

Winter 14 EXAMINATION Subject Code: Model Answer P a g e 1/28 Subject Code: 17333 Model Answer P a g e 1/28 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model

More information

Topic 6. CMOS Static & Dynamic Logic Gates. Static CMOS Circuit. NMOS Transistors in Series/Parallel Connection

Topic 6. CMOS Static & Dynamic Logic Gates. Static CMOS Circuit. NMOS Transistors in Series/Parallel Connection NMOS Transistors in Series/Parallel Connection Topic 6 CMOS Static & Dynamic Logic Gates Peter Cheung Department of Electrical & Electronic Engineering Imperial College London Transistors can be thought

More information

Additional Programs for the Electronics Module Part No

Additional Programs for the Electronics Module Part No Additional Programs for the Electronics Module Part No. 5263 Contents:. Additional programs for the Electronics Module....2 Wiring of the inputs and outputs... 2.3 Additional programs for digital technology...

More information

TECHNO INDIA BATANAGAR (DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING) QUESTION BANK- 2018

TECHNO INDIA BATANAGAR (DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING) QUESTION BANK- 2018 TECHNO INDIA BATANAGAR (DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING) QUESTION BANK- 2018 Paper Setter Detail Name Designation Mobile No. E-mail ID Raina Modak Assistant Professor 6290025725 raina.modak@tib.edu.in

More information

Analog Electronic Circuits Lab-manual

Analog Electronic Circuits Lab-manual 2014 Analog Electronic Circuits Lab-manual Prof. Dr Tahir Izhar University of Engineering & Technology LAHORE 1/09/2014 Contents Experiment-1:...4 Learning to use the multimeter for checking and indentifying

More information

Course Outline Cover Page

Course Outline Cover Page College of Micronesia FSM P.O. Box 159 Kolonia, Pohnpei Course Outline Cover Page Digital Electronics I VEE 135 Course Title Department and Number Course Description: This course provides the students

More information

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING SEMESTER TWO EXAMINATION 2017/2018

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING SEMESTER TWO EXAMINATION 2017/2018 UNIVERSITY OF BOLTON [EES04] SCHOOL OF ENGINEERING BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING SEMESTER TWO EXAMINATION 2017/2018 INTERMEDIATE DIGITAL ELECTRONICS AND COMMUNICATIONS MODULE NO: EEE5002

More information

FILTER_0/Prog. Delay Combination Function Macrocells Pin 3 GPIO RC Oscillator. 2-bit LUT2_0 or DFF0. 3bit LUT3_0 or DFF2

FILTER_0/Prog. Delay Combination Function Macrocells Pin 3 GPIO RC Oscillator. 2-bit LUT2_0 or DFF0. 3bit LUT3_0 or DFF2 GreenPAK Ultra-small Programmable Mixed-signal Matrix Features Pin Configuration Logic & Mixed Signal Circuits Highly Versatile Macro Cells 1.8 V (±5%) to 5 V (±10%) Supply Operating Temperature Range:

More information

A Bottom-Up Approach to on-chip Signal Integrity

A Bottom-Up Approach to on-chip Signal Integrity A Bottom-Up Approach to on-chip Signal Integrity Andrea Acquaviva, and Alessandro Bogliolo Information Science and Technology Institute (STI) University of Urbino 6029 Urbino, Italy acquaviva@sti.uniurb.it

More information

Digital circuits. Bởi: Sy Hien Dinh

Digital circuits. Bởi: Sy Hien Dinh Digital circuits Bởi: Sy Hien Dinh This module presents the basic concepts of MOSFET digital logic circuits. We will examine NMOS logic circuits, which contain only n-channel transistors, and complementary

More information

Physics 116B TLC555 Timer Circuit

Physics 116B TLC555 Timer Circuit Physics 116B TLC555 Timer Circuit Physics116B, 1/17/07 D. Pellett 1 TLC555 Timer Circuit Variation on widely-used 555 timer using MOSFETs rather than BJTs Can be used to make (among other things): Schmitt

More information

The Effect of Threshold Voltages on the Soft Error Rate. - V Degalahal, N Rajaram, N Vijaykrishnan, Y Xie, MJ Irwin

The Effect of Threshold Voltages on the Soft Error Rate. - V Degalahal, N Rajaram, N Vijaykrishnan, Y Xie, MJ Irwin The Effect of Threshold Voltages on the Soft Error Rate - V Degalahal, N Rajaram, N Vijaykrishnan, Y Xie, MJ Irwin Outline Introduction Soft Errors High Threshold ( V t ) Charge Creation Logic Attenuation

More information

German- Jordanian University

German- Jordanian University German- Jordanian University School of Electrical Engineering and Information Technology Digital Electronics Laboratory ECE 5420 Updated version of Dr. Mansour Abbadi manual Prepared by Eng. Samira Khraiwesh

More information

Lecture 7: Components of Phase Locked Loop (PLL)

Lecture 7: Components of Phase Locked Loop (PLL) Lecture 7: Components of Phase Locked Loop (PLL) CSCE 6933/5933 Instructor: Saraju P. Mohanty, Ph. D. NOTE: The figures, text etc included in slides are borrowed from various books, websites, authors pages,

More information

ECEN 720 High-Speed Links: Circuits and Systems

ECEN 720 High-Speed Links: Circuits and Systems 1 ECEN 720 High-Speed Links: Circuits and Systems Lab4 Receiver Circuits Objective To learn fundamentals of receiver circuits. Introduction Receivers are used to recover the data stream transmitted by

More information

JEFFERSON COLLEGE COURSE SYLLABUS ETC255 INTRODUCTION TO DIGITAL CIRCUITS. 6 Credit Hours. Prepared by: Dennis Eimer

JEFFERSON COLLEGE COURSE SYLLABUS ETC255 INTRODUCTION TO DIGITAL CIRCUITS. 6 Credit Hours. Prepared by: Dennis Eimer JEFFERSON COLLEGE COURSE SYLLABUS ETC255 INTRODUCTION TO DIGITAL CIRCUITS 6 Credit Hours Prepared by: Dennis Eimer Revised Date: August, 2007 By Dennis Eimer Division of Technology Dr. John Keck, Dean

More information

ECE 3110: Engineering Electronics II Fall Final Exam. Dec. 10, 8:00-10:00am. Name: (70 points total)

ECE 3110: Engineering Electronics II Fall Final Exam. Dec. 10, 8:00-10:00am. Name: (70 points total) Final Exam Dec. 10, 8:00-10:00am Name: (70 points total) Problem 1: [Small Signal Concepts] Consider the circuit shown in Fig. 1. The voltage-controlled current source is nonlinear, with the relationship

More information

Q1. Explain the Astable Operation of multivibrator using 555 Timer IC.

Q1. Explain the Astable Operation of multivibrator using 555 Timer IC. Q1. Explain the Astable Operation of multivibrator using 555 Timer I. Answer: The following figure shows the 555 Timer connected for astable operation. A V PIN 8 PIN 7 B 5K PIN6 - S Q 5K PIN2 - Q PIN3

More information

8. Combinational MOS Logic Circuits

8. Combinational MOS Logic Circuits 8. Combinational MOS Introduction Combinational logic circuits, or gates, witch perform Boolean operations on multiple input variables and determine the output as Boolean functions of the inputs, are the

More information

COMPUTER ORGANIZATION & ARCHITECTURE DIGITAL LOGIC CSCD211- DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF GHANA

COMPUTER ORGANIZATION & ARCHITECTURE DIGITAL LOGIC CSCD211- DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF GHANA COMPUTER ORGANIZATION & ARCHITECTURE DIGITAL LOGIC LOGIC Logic is a branch of math that tries to look at problems in terms of being either true or false. It will use a set of statements to derive new true

More information

SET - 1 1. a) Write the application of attenuator b) State the clamping theorem c) Write the application of Monostable multi vibrator d) Draw the diagram for Diode two input AND gate e) Define the terms

More information

An accurate track-and-latch comparator

An accurate track-and-latch comparator An accurate track-and-latch comparator K. D. Sadeghipour a) University of Tabriz, Tabriz 51664, Iran a) dabbagh@tabrizu.ac.ir Abstract: In this paper, a new accurate track and latch comparator circuit

More information

Introduction to IC-555. Compiled By: Chanakya Bhatt EE, IT-NU

Introduction to IC-555. Compiled By: Chanakya Bhatt EE, IT-NU Introduction to IC-555 Compiled By: Chanakya Bhatt EE, IT-NU Introduction SE/NE 555 is a Timer IC introduced by Signetics Corporation in 1970 s. It is basically a monolithic timing circuit that produces

More information

5. CMOS Gates: DC and Transient Behavior

5. CMOS Gates: DC and Transient Behavior 5. CMOS Gates: DC and Transient Behavior Jacob Abraham Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 2017 September 18, 2017 ECE Department, University

More information

21/10/58. M2-3 Signal Generators. Bill Hewlett and Dave Packard s 1 st product (1939) US patent No HP 200A s schematic

21/10/58. M2-3 Signal Generators. Bill Hewlett and Dave Packard s 1 st product (1939) US patent No HP 200A s schematic M2-3 Signal Generators Bill Hewlett and Dave Packard s 1 st product (1939) US patent No.2267782 1 HP 200A s schematic 2 1 The basic structure of a sinusoidal oscillator. A positive feedback loop is formed

More information

ML4818 Phase Modulation/Soft Switching Controller

ML4818 Phase Modulation/Soft Switching Controller Phase Modulation/Soft Switching Controller www.fairchildsemi.com Features Full bridge phase modulation zero voltage switching circuit with programmable ZV transition times Constant frequency operation

More information

PHYSICAL STRUCTURE OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag

PHYSICAL STRUCTURE OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag PHYSICAL STRUCTURE OF CMOS INTEGRATED CIRCUITS Dr. Mohammed M. Farag Outline Integrated Circuit Layers MOSFETs CMOS Layers Designing FET Arrays EE 432 VLSI Modeling and Design 2 Integrated Circuit Layers

More information

DLL Based Frequency Multiplier

DLL Based Frequency Multiplier DLL Based Frequency Multiplier Final Project Report VLSI Chip Design Project Project Group 4 Version 1.0 Status Reviewed Approved Ameya Bhide Ameya Bhide TSEK06 VLSI Design Project 1 of 29 Group 4 PROJECT

More information

Unit WorkBook 1 Level 4 ENG U22 Electronic Circuits and Devices 2018 UniCourse Ltd. All Rights Reserved. Sample

Unit WorkBook 1 Level 4 ENG U22 Electronic Circuits and Devices 2018 UniCourse Ltd. All Rights Reserved. Sample Pearson BTEC Level 4 Higher Nationals in Engineering (RQF) Unit 22: Electronic Circuits and Devices Unit Workbook 1 in a series of 4 for this unit Learning Outcome 1 Operational Amplifiers Page 1 of 23

More information

Lecture 11: Clocking

Lecture 11: Clocking High Speed CMOS VLSI Design Lecture 11: Clocking (c) 1997 David Harris 1.0 Introduction We have seen that generating and distributing clocks with little skew is essential to high speed circuit design.

More information

Design of Low Power High Speed Fully Dynamic CMOS Latched Comparator

Design of Low Power High Speed Fully Dynamic CMOS Latched Comparator International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 10, Issue 4 (April 2014), PP.01-06 Design of Low Power High Speed Fully Dynamic

More information

LINEAR IC APPLICATIONS

LINEAR IC APPLICATIONS 1 B.Tech III Year I Semester (R09) Regular & Supplementary Examinations December/January 2013/14 1 (a) Why is R e in an emitter-coupled differential amplifier replaced by a constant current source? (b)

More information

SPG Monolithic Event Detector Interface SP42400P

SPG Monolithic Event Detector Interface SP42400P SPG Monolithic Event Detector Interface SP42400P General description: The SP42400P is a monolithic device fabricated in CMOS technology. Its generic function is to detect low to medium frequency, low voltage

More information

Draw in the space below a possible arrangement for the resistor and capacitor. encapsulated components

Draw in the space below a possible arrangement for the resistor and capacitor. encapsulated components 1). An encapsulated component is known to consist of a resistor and a capacitor. It has two input terminals and two output terminals. A 5V, 1kHz square wave signal is connected to the input terminals and

More information

UNIT-III GATE LEVEL DESIGN

UNIT-III GATE LEVEL DESIGN UNIT-III GATE LEVEL DESIGN LOGIC GATES AND OTHER COMPLEX GATES: Invert(nmos, cmos, Bicmos) NAND Gate(nmos, cmos, Bicmos) NOR Gate(nmos, cmos, Bicmos) The module (integrated circuit) is implemented in terms

More information

A Variable-Frequency Parallel I/O Interface with Adaptive Power Supply Regulation

A Variable-Frequency Parallel I/O Interface with Adaptive Power Supply Regulation WA 17.6: A Variable-Frequency Parallel I/O Interface with Adaptive Power Supply Regulation Gu-Yeon Wei, Jaeha Kim, Dean Liu, Stefanos Sidiropoulos 1, Mark Horowitz 1 Computer Systems Laboratory, Stanford

More information