CD54/74HC297, CD74HCT297

Size: px
Start display at page:

Download "CD54/74HC297, CD74HCT297"

Transcription

1 C5/7HC297, C7HCT297 ata sheet acquired from Harris Semiconductor SCHS177A November evised May 2000 High-Speed CMOS Logic igital Phase-Locked-Loop [ /Title (C7 HC297, C7 HCT29 7) /Subject Highpeed MOS ogic igial haseocked Features igital esign Avoids Analog Compensation Errors Easily Cascadable for Higher Order Loops Useful Frequency ange - K-Clock C to 55MHz (Typ) - I/-Clock C to 35MHz (Typ) ynamically Variable Bandwidth Very Narrow Bandwidth Attainable Power-On eset Output Capability - Standard XOP OUT, ECP OUT - Bus river I/ OUT Fanout (Over Temperature ange) - Standard Outputs LSTTL Loads - Bus river Outputs LSTTL Loads Balanced Propagation elay and Transition Times Significant Power eduction Compared to LSTTL Logic ICs HC297 Types - Operation to 6V - High Noise Immunity N IL = 30%, N IH = 30% of V CC at 5V C7HCT297 Types - Operation to 5.5V - irect LSTTL Input Logic Compatibility V IL = 0.8V (Max), V IH = 2V (Min) - CMOS Input Compatibility I I 1µA at V OL, V OH Pinout C5HC297 (CEIP) C7HC297, C7HCT29 (PIP) TOP VIEW B A EN CT /U I/ OUT GN V CC 15 C 1 13 φa 2 12 ECP OUT 11 XOP OUT 10 φb 9 φa 1 escription The HC297 and C7HCT297 are high-speed silicon gate CMOS devices that are pin-compatible with low power Schottky TTL (LSTTL). These devices are designed to provide a simple, cost-effective solution to high-accuracy, digital, phase-locked-loop applications. They contain all the necessary circuits, with the exception of the divide-by-n counter, to build first-order phase-locked-loops. Both EXCLUSIVE-O (XOP) and edge-controlled phase detectors (ECP) are provided for maximum flexibility. The input signals for the EXCLUSIVE-O phase detector must have a 50% duty factor to obtain the maximum lock-range. Proper partitioning of the loop function, with many of the building blocks external to the package, makes it easy for the designer to incorporate ripple cancellation (see Figure 2) or to cascade to higher order phase-locked-loops. The length of the up/down K-counter is digitally programmable according to the K-counter function table. With A, B, C and all LOW, the K-counter is disabled. With A HIGH and B, C and LOW, the K-counter is only three stages long, which widens the bandwidth or capture range and shortens the lock time of the loop. When A, B, C and are all programmed HIGH, the K-counter becomes seventeen stages long, which narrows the bandwidth or capture range and lengthens the lock time. eal-time control of loop bandwidth by manipulating the A to inputs can maximize the overall performance of the digital phase-locked-loop. The HC297 and C7HCT297 can perform the classic first order phase-locked-loop function without using analog components. The accuracy of the digital phase-locked-loop (PLL) is not affected by V CC and temperature variations but depends solely on accuracies of the K-clock and loop propagation delays. Ordering Information PAT NUMBE TEMP. ANGE ( o C) PACKAGE C5HC297F3A -55 to Ld CEIP C7HC297E -55 to Ld PIP C7HCT297E -55 to Ld PIP NOTES: 1. When ordering, use the entire part number. Add the suffix 96 to obtain the variant in the tape and reel. 2. Wafer or die for this part number is available which meets all electrical specifications. Please contact your local TI sales office or customer service for ordering information. CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures. Copyright 2000, Texas Instruments Incorporated 1

2 C5/7HC297, C7HCT297 The phase detector generates an error signal waveform that, at zero phase error, is a 50% duty factor square wave. At the limits of linear operation, the phase detector output will be either HIGH or LOW all of the time depending on the direction of the phase error (φin - φout). Within these limits the phase detector output varies linearly with the input phase error according to the gain K d, which is expressed in terms of phase detector output per cycle or phase error. The phase detector output can be defined to vary between ±1 according to the relation: phase detector output = %HIGH - %LOW The output of the phase detector will be K d φ e, where the phase error φ e = φin - φout. EXCLUSIVE-O phase detectors (XOP) and edge-controlled phase detectors (ECP) are commonly used digital types. The ECP is more complex than the XOP logic function but can be described generally as a circuit that changes states on one of the transitions of its inputs. The gain (K d ) for an XOP is because its output remains HIGH (XOP OUT = 1) for a phase error of one quarter cycle. Similarly, K d for the ECP is 2 since its output remains HIGH for a phase error of one half cycle. The type of phase detector will determine the zero-phase-error point, i.e., the phase separation of the phase detector inputs for a φe defined to be zero. For the basic PLL system of Figure 3, φe = 0 when the phase detector output is a square wave. The XOP inputs are one quarter cycle out-of-phase for zero phase error. For the ECP, φe = 0 when the inputs are one half cycle out of phase. The phase detector output controls the up/down input to the K-counter. The counter is clocked by input frequency Mf c which is a multiple M of the loop center frequency f c. When the K-counter recycles up, it generates a carry pulse. ecycling while counting down generates a borrow pulse. If the carry and the borrow outputs are conceptually combined into one output that is positive for a carry and negative for a borrow, and if the K-counter is considered as a frequency divider with the ratio Mf c /K, the output of the K-counter will equal the input frequency multiplied by the division ratio. Thus the output from the K-counter is (K d φ e Mf c )/K. The carry and borrow pulses go to the increment/decrement (I/) circuit which, in the absence of any carry or borrow pulses has an output that is one half of the input clock ( ). The input clock is just a multiple, 2N, of the loop center frequency. In response to a carry of borrow pulse, the I/ circuit will either add or delete a pulse at I/ OUT. Thus the output of the I/ circuit will be Nf c + (K d φ e Mf c )/2K. The output of the N-counter (or the output of the phaselocked-loop) is thus: f o = f c + (K d φ e Mf c )/2KN. If this result is compared to the equation for a first-order analog phase-locked-loop, the digital equivalent of the gain of the VCO is just Mf c /2KN or f c /K for M = 2N. Thus, the simple first-order phase-locked-loop with an adjustable K-counter is the equivalent of an analog phase-lockedloop with a programmable VCO gain. Functional iagram /U EN CT φa 1 φb φa C B A MOULO-K COUNTE CAY BOOW I/ CKT J F/F K FUNCTION TABLE EXCLUSIVE-O PHASE ETECTO φa 1 φb XOP OUT L L L L H H H L H H H L FUNCTION TABLE EGE-CONTOLLE PHASE ETECTO φa 2 φb ECP OUT H or L H H or L L H or L No Change H or L No Change H = Steady-State High Level, L = Steady-State Low Level, = LOW to HIGH φ Transition, = HIGH to LOW φ Transition K-COUNTE FUNCTION TABLE (IGITAL CONTOL) C B A MOULO (K) L L L L Inhibited L L L H 2 3 L L H L 2 L L H H 2 5 L H L L 2 6 L H L H 2 7 L H H L 2 8 L H H H 2 9 H L L L 2 10 H L L H 2 11 H L H L 2 12 H L H H 2 13 H H L L 2 1 H H L H 2 15 H H H L 2 16 H H H H I/ OUT 11 XOP OUT 12 ECP OUT 2

3 C5/7HC297, C7HCT297 Absolute Maximum atings C Supply, V CC V to 7V C Input iode Current, I IK For V I < -0.5V or V I > V CC + 0.5V ±20mA C Output iode Current, I OK For V O < -0.5V or V O > V CC + 0.5V ±20mA C rain Current, per Output, I O For -0.5V < V O < V CC + 0.5V ±25mA C Output Source or Sink Current per Output Pin, I O For V O > -0.5V or V O < V CC + 0.5V ±25mA C V CC or Ground Current, I CC ±50mA Thermal Information Thermal esistance (Typical, Note 2) θ JA ( o C/W) PIP Package Maximum Junction Temperature o C Maximum Storage Temperature ange o C to 150 o C Maximum Lead Temperature (Soldering 10s) o C Operating Conditions Temperature ange, T A o C to 125 o C Supply ange, V CC HC Types V to 6V HCT Types V to 5.5V C Input or Output, V I, V O V to V CC Input ise and Fall Time 2V ns (Max).5V ns (Max) 6V ns (Max) CAUTION: Stresses above those listed in Absolute Maximum atings may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 3. θ JA is measured with the component mounted on an evaluation PC board in free air. C Electrical Specifications TEST CONITIONS 25 o C -0 o C TO 85 o C -55 o C TO 125 o C PAAMETE HC TYPES SYMBOL V I (V) I O (ma) V CC (V) MIN TYP MAX MIN MAX MIN MAX UNITS High Level Input V IH V V V Low Level Input V IL V V High Level Output CMOS Loads V OH V V IH or V V IL V V High Level Output TTL Loads -6 (Note ) -7.8 (Note ) V V Low Level Output CMOS Loads V OL V IH or V V IL V V Low Level Output TTL Loads (Note ) 5.2 (Note ) V V 3

4 C5/7HC297, C7HCT297 C Electrical Specifications (Continued) PAAMETE Input Leakage Current uiescent evice Current HCT TYPES High Level Input Low Level Input High Level Output CMOS Loads High Level Output TTL Loads Low Level Output CMOS Loads Low Level Output TTL Loads Input Leakage Current uiescent evice Current Additional uiescent evice Current Per Input Pin: 1 Unit Load (Note 3) SYMBOL I I I CC V CC or GN V CC or GN V IH to 5.5 V IL to 5.5 V OH V OL I I I CC I CC TEST CONITIONS 25 o C -0 o C TO 85 o C -55 o C TO 125 o C V I (V) I O (ma) V CC (V) MIN TYP MAX MIN MAX MIN MAX ±0.1 - ±1 - ±1 µa µa V V V IH or V V IL V V IH or V V IL V CC to GN V CC or GN V CC V ±0.1 - ±1 - ±1 µa µa -.5 to 5.5 NOTE:. For dual-supply systems theoretical worst case (V I = 2.V, V CC = 5.5V) specification is 1.8mA. 5. XOP, ECP UNITS µa HCT Input Loading Table INPUT UNIT LOAS EN CT, /U 0.3 A, B, C,,, φa 2 0.6, φa 1, φb 1.5 NOTE: Unit Load is I CC limit specified in C Electrical Specifications table, e.g., 360µA max at 25 o C.

5 C5/7HC297, C7HCT297 Prerequisite For Switching Function 25 o C -0 o C TO 85 o C -55 o C TO 125 o C PAAMETE SYMBOL V CC (V) MIN MAX MIN MAX MIN MAX UNITS HC TYPES Maximum Clock Frequency f MAX MHz MHz MHz Maximum Clock Frequency f MAX MHz MHz MHz Clock Pulse Width t w ns ns ns Clock Pulse Width t W ns ns ns Set-up Time t SU ns /U, EN CT to ns ns Hold Time t H ns /U, EN CT to ns ns HCT TYPES Maximum Clock Frequency f MAX MHz Maximum Clock Frequency f MAX MHz Clock Pulse Width t w ns Clock Pulse Width t w ns Set-up Time t SU ns /U, EN CT to Hold Time t H ns /U, EN CT to Switching Specifications Input t r, t f = 6ns PAAMETE SYMBOL TEST CONITIONS V CC (V) 25 o C -0 o C TO 85 o C -55 o C TO 125 o C TYP MAX MAX MAX UNITS HC TYPES Propagation elay, t PLH, t PHL C L = 50pF ns to I/ OUT ns ns 5

6 C5/7HC297, C7HCT297 Switching Specifications Input t r, t f = 6ns (Continued) PAAMETE SYMBOL TEST CONITIONS V CC (V) 25 o C -0 o C TO 85 o C -55 o C TO 125 o C TYP MAX MAX MAX UNITS Propagation elay, t PLH, t PHL C L = 50pF ns φa 1, φb to XOP OUT ns ns Propagation elay, t PHL, t PHL C L = 50pF ns φb, φa 2 to ECP OUT ns ns Output Transition Time XOP OUT ECP OUT t TLH C L = 50pF ns ns ns Output Transition Time t TLH C L = 50pF ns I/ OUT ns ns Input Capacitance C I pf HCT TYPES Propagation elay, t PLH, t PHL C L = 50pF ns to I/ OUT Propagation elay, t PLH, t PHL C L = 50pF ns φa 1, φb to XOP OUT Propagation elay, t PHL, t PHL C L = 50pF ns φb, φa 2 to ECP OUT Output Transition Time t TLH C L = 50pF ns XOP OUT Output Transition Time t TLH C L = 50pF ns ECP OUT Input Capacitance C I pf 6

7 C5/7HC297, C7HCT297 Logic iagram A B C MOULO-K COUNTE CONTOL CICUIT TO MOE CONTOLS 12-2 (11 STAGES NOT SHOWN) /U 6 1 M 13 M 1 M EN CT 3 POWE ON ESET M 1 M T FF13 M 1 1 = 1 1 BOOW CAY 5 INCEMENT/ECEMENT CICUIT 7 I/ OUT J K φa φb EXCLUSIVE-O PHASE ETECTO 11 XOP OUT 13 φa 2 S FF S FF EGE-CONTOLLE PHASE ETECTO 12 ECP OUT 7

8 C5/7HC297, C7HCT297 Mf C CAY /U EN CT IVIE-BY-K COUNTE BOOW XOP OUT φa 1 f OUT φ OUT φb I/ CICUIT 2Nf C ECP OUT J J f IN φ IN φa 2 ECP K FF I/ OUT IVIE-BY-N COUNTE FIGUE 1. PLL USING BOTH PHASE ETECTOS IN A IPPLE-CANCELLATION SCHEME Mf C CAY /U IVIE-BY-K COUNTE BOOW f OUT φ IN XOP OUT φa 1 φb I/ CICUIT 2Nf C I/ OUT f OUT φ OUT IVIE-BY-N COUNTE FIGUE 2. PLL USING EXCLUSIVE-O PHASE ETECTION CAY PULSE (INTENAL SIGNAL) BOOW PULSE (INTENAL SIGNAL) INPUT I/ OUT OUTPUT FIGUE 3. TIMING IAGAM: I/ OUT IN-LOCK CONITION 8

9 C5/7HC297, C7HCT297 øb INPUT øa 2 INPUT ECP OUT OUTPUT FIGUE. TIMING IAGAM: EGE CONTOLLE PHASE COMPAATO WAVEFOMS øb INPUT øa 1 INPUT XOP OUT OUTPUT FIGUE 5. TIMING IAGAM: EXCLUSIVE O PHASE ETECTO WAVEFOMS t W I/f MAX t PLH I/ OUT t PHL t TLH t THL FIGUE 6. WAVEFOMS SHOWING THE CLOCK ( ) TO OUTPUT (I/ OUT ) POPAGATION ELAYS, CLOCK PULSE WITH, OUTPUT TANSITION TIMES AN MAXIMUM CLOCK PULSE FEUENCY øb INPUT øa 1 INPUT XOP OUT OUTPUT t PLH t PLH t TLH t PLH t THL t PHL FIGUE 7. WAVEFOMS SHOWING THE PHASE INPUT (øb, øa 1 ) TO OUTPUT (XOP OUT ) POPAGATION ELAYS AN OUTPUT TANSITION TIMES 9

10 C5/7HC297, C7HCT297 øb INPUT øa 2 INPUT ECP OUT OUTPUT t PHL t PLH t TLH t THL FIGUE 8. WAVEFOMS SHOWING THE PHASE INPUT (øb, øa 2 ) TO OUTPUT (ECP OUT ) POPAGATION ELAYS AN OUTPUT TANSITION TIMES t H t H /U, EN CT INPUT t SU t SU INPUT t W 1/f MAX NOTE: The shaded areas indicate when the input is permitted to change for predictable output performance. FIGUE 9. WAVEFOMS SHOWING THE CLOCK ( ) PULSE WITH AN MAXIMUM CLOCK PULSE FEUENCY, AN THE INPUT (/U, EN CT ) TO CLOCK ( ) SETUP AN HOL TIMES 10

11 IMPOTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. Customers are responsible for their applications using TI components. In order to minimize risks associated with the customer s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI s publication of information regarding any third party s products or services does not constitute TI s approval, warranty or endorsement thereof. Copyright 2000, Texas Instruments Incorporated

CD54HC297, CD74HC297, CD74HCT297

CD54HC297, CD74HC297, CD74HCT297 C54HC297, C74HC297, C74HCT297 ata sheet acquired from Harris Semiconductor SCHS177B November 1997 - Revised May 2003 High-Speed CMOS Logic igital Phase-Locked Loop [ /Title (C74 HC297, C74 HCT29 7) /Subject

More information

CD54/74HC175, CD54/74HCT175

CD54/74HC175, CD54/74HCT175 CD54/74HC175, CD54/74HCT175 Data sheet acquired from Harris Semiconductor SCHS160A August 1997 - evised May 2000 High Speed CMOS Logic uad D-Type Flip-Flop with eset [ /Title (CD74 HC175, CD74 HCT17 5)

More information

CD74HC374, CD74HCT374, CD74HC574, CD74HCT574

CD74HC374, CD74HCT374, CD74HC574, CD74HCT574 ata sheet acquired from Harris Semiconductor SCHS183 February 1998 C74HC374, C74HCT374, C74HC574, C74HCT574 High Speed CMOS Logic Octal -Type Flip-Flop, Three-State Positive-Edge Triggered [ /Title (C74

More information

CD54/74HC02, CD54/74HCT02

CD54/74HC02, CD54/74HCT02 Data sheet acquired from Harris Semiconductor SCHS125A March 1998 - Revised May 2000 CD54/74HC02, CD54/74HCT02 High Speed CMOS Logic Quad Two-Input NOR Gate [ /Title (CD74H C02, CD74H CT02) /Subject High

More information

CD74HC73, CD74HCT73. Dual J-K Flip-Flop with Reset Negative-Edge Trigger. Features. Description. Ordering Information. Pinout

CD74HC73, CD74HCT73. Dual J-K Flip-Flop with Reset Negative-Edge Trigger. Features. Description. Ordering Information. Pinout Data sheet acquired from Harris Semiconductor SCHS134 February 1998 CD74HC73, CD74HCT73 Dual J-K Flip-Flop with Reset Negative-Edge Trigger [ /Title (CD74 HC73, CD74 HCT73 ) /Subject Dual -K liplop Features

More information

CD54/74HC74, CD54/74HCT74

CD54/74HC74, CD54/74HCT74 CD54/74HC74, CD54/74HCT74 Data sheet acquired from Harris Semiconductor SCHS124A January 1998 - Revised May 2000 Dual D Flip-Flop with Set and Reset Positive-Edge Trigger Features Description [ /Title

More information

CD74HC374, CD74HCT374, CD74HC574, CD74HCT574

CD74HC374, CD74HCT374, CD74HC574, CD74HCT574 ata sheet acquired from Harris Semiconductor SCHS183 February 1998 C74HC374, C74HCT374, C74HC574, C74HCT574 High Speed CMOS Logic Octal -Type Flip-Flop, Three-State Positive-Edge Triggered Features escription

More information

CD54/74HC10, CD54/74HCT10

CD54/74HC10, CD54/74HCT10 Data sheet acquired from Harris Semiconductor SCHS128A August 1997 - Revised May 2000 CD54/74HC10, CD54/74HCT10 High Speed CMOS Logic Triple 3-Input NAND Gate [ /Title (CD74 HC10, CD74 HCT10 ) /Subject

More information

CD74HC221, CD74HCT221

CD74HC221, CD74HCT221 Data sheet acquired from Harris Semiconductor SCHS66A November 997 - Revised April 999 CD74HC22, CD74HCT22 High Speed CMOS Logic Dual Monostable Multivibrator with Reset Features Description [ /Title (CD74

More information

CD54/74HC221, CD74HCT221

CD54/74HC221, CD74HCT221 Data sheet acquired from Harris Semiconductor SCHS166B November 1997 - Revised May 2000 CD54/74HC221, CD74HCT221 High Speed CMOS Logic Dual Monostable Multivibrator with Reset Features Description [ /Title

More information

CD74HC534, CD74HCT534, CD74HC564, CD74HCT564

CD74HC534, CD74HCT534, CD74HC564, CD74HCT564 Data sheet acquired from Harris Semiconductor SCHS188 January 1998 CD74HC534, CD74HCT534, CD74HC564, CD74HCT564 High Speed CMOS Logic Octal D-Type Flip-Flop, Three-State Inverting Positive-Edge Triggered

More information

CD54/74HC240, CD54/74HCT240, CD74HC241, CD54/74HCT241, CD54/74HC244, CD54/74HCT244 High Speed CMOS Logic Octal Buffer/Line Drivers, Three-State

CD54/74HC240, CD54/74HCT240, CD74HC241, CD54/74HCT241, CD54/74HC244, CD54/74HCT244 High Speed CMOS Logic Octal Buffer/Line Drivers, Three-State Data sheet acquired from Harris Semiconductor SCHS167A November 1997 - Revised May 2000 CD54/74HC240, CD54/74HCT240, HC241, CD54/74HCT241, CD54/74HC244, CD54/74HCT244 High Speed CMOS Logic Octal Buffer/Line

More information

CD54/74HC139, CD54/74HCT139

CD54/74HC139, CD54/74HCT139 Data sheet acquired from Harris Semiconductor SCHS148B September 1997 - Revised May 2000 CD54/74HC139, CD54/74HCT139 High-Speed CMOS Logic Dual 2-to-4 Line Decoder/Demultiplexer [ /Title (CD74 HC139, CD74

More information

CD54/74HC374, CD54/74HCT374, CD54/74HC574, CD54/74HCT574

CD54/74HC374, CD54/74HCT374, CD54/74HC574, CD54/74HCT574 C54/74HC374, C54/74HCT374, C54/74HC574, C54/74HCT574 ata sheet acquired from Harris Semiconductor SCHS183B February 1998 - Revised May 2003 Features High-Speed CMOS Logic Octal -Type Flip-Flop, 3-State

More information

CD54/74HC123, CD54/74HCT123, CD74HC423, CD74HCT423

CD54/74HC123, CD54/74HCT123, CD74HC423, CD74HCT423 CD5/7HC13, CD5/7HCT13, CD7HC3, CD7HCT3 Data sheet acquired from Harris Semiconductor SCHS1A September 1997 - Revised May 000 High Speed CMOS Logic Dual Retriggerable Monostable Multivibrators with Resets

More information

CD74HC123, CD74HCT123, CD74HC423, CD74HCT423

CD74HC123, CD74HCT123, CD74HC423, CD74HCT423 Data sheet acquired from Harris Semiconductor SCHS1 September 1997 CD7HC13, CD7HCT13, CD7HC3, CD7HCT3 High Speed CMOS Logic Dual Retriggerable Monostable Multivibrators with Resets Features Description

More information

CD74HC4067, CD74HCT4067

CD74HC4067, CD74HCT4067 Data sheet acquired from Harris Semiconductor SCHS209 February 1998 CD74HC4067, CD74HCT4067 High-Speed CMOS Logic 16-Channel Analog Multiplexer/Demultiplexer [ /Title (CD74 HC406 7, CD74 HCT40 67) /Subject

More information

CD54HC297, CD74HC297, CD74HCT297

CD54HC297, CD74HC297, CD74HCT297 C54HC297, C74HC297, C74HCT297 ata sheet acquired from Harris Semiconductor SCHS177B November 1997 - Revised May 2003 High-Speed CMOS Logic igital Phase-Locked Loop [ /Title (C74 HC297, C74 HCT29 7) /Subject

More information

CD54HC4538, CD74HC4538, CD74HCT4538

CD54HC4538, CD74HC4538, CD74HCT4538 Data sheet acquired from Harris Semiconductor SCHS123 June 1998 CD54HC4538, CD74HC4538, CD74HCT4538 High Speed CMOS Logic Dual Retriggerable Precision Monostable Multivibrator Features Description [ /Title

More information

CD74AC86, CD54/74ACT86

CD74AC86, CD54/74ACT86 Data sheet acquired from Harris Semiconductor SCHSA September 998 - Revised May 000 CD7AC86, CD/7ACT86 Quad -Input Exclusive-OR Gate [ /Title (CD7 AC86, CD7 ACT86 ) /Subject Quad -Input xclu- ive- R ate)

More information

CD54/74HC4051, CD54/74HCT4051, CD54/74HC4052, CD74HCT4052, CD54/74HC4053, CD74HCT4053

CD54/74HC4051, CD54/74HCT4051, CD54/74HC4052, CD74HCT4052, CD54/74HC4053, CD74HCT4053 Data sheet acquired from Harris Semiconductor SCHS122B November 1997 - Revised May 2000 CD54/74HC4051, CD54/74HCT4051, CD54/74HC4052, CD74HCT4052, CD54/74HC4053, CD74HCT4053 High Speed CMOS Logic Analog

More information

CD54/74AC245, CD54/74ACT245

CD54/74AC245, CD54/74ACT245 CD54/74AC245, CD54/74ACT245 Data sheet acquired from Harris Semiconductor SCHS245B September 1998 - Revised October 2000 Octal-Bus Transceiver, Three-State, Non-Inverting Features Description [ /Title

More information

CD54/74HC540, CD74HCT540, CD54/74HC541, CD54/74HCT541

CD54/74HC540, CD74HCT540, CD54/74HC541, CD54/74HCT541 CD54/74HC540, CD74HCT540, CD54/74HC541, CD54/74HCT541 Data sheet acquired from Harris Semiconductor SCHS189C January 1998 - Revised July 2004 High-Speed CMOS Logic Octal Buffer and Line Drivers, Three-State

More information

CD54HC273, CD74HC273, CD54HCT273, CD74HCT273

CD54HC273, CD74HC273, CD54HCT273, CD74HCT273 Data sheet acquired from Harris Semiconductor SCHS174B February 1998 - Revised May 2003 CD54HC273, CD74HC273, CD54HCT273, CD74HCT273 High-Speed CMOS Logic Octal D-Type Flip-Flop with Reset [ /Title (CD74

More information

CD54HC221, CD74HC221, CD74HCT221. High-Speed CMOS Logic Dual Monostable Multivibrator with Reset. Features. Description

CD54HC221, CD74HC221, CD74HCT221. High-Speed CMOS Logic Dual Monostable Multivibrator with Reset. Features. Description Data sheet acquired from Harris Semiconductor SCHS166F November 1997 - Revised October 2003 CD54HC221, CD74HC221, CD74HCT221 High-Speed CMOS Logic Dual Monostable Multivibrator with Reset Features Description

More information

CD54HC173, CD74HC173, CD54HCT173, CD74HCT173 High-Speed CMOS Logic Quad D-Type Flip-Flop, Three-State Description Features

CD54HC173, CD74HC173, CD54HCT173, CD74HCT173 High-Speed CMOS Logic Quad D-Type Flip-Flop, Three-State Description Features CD54HC173, CD74HC173, CD54HCT173, CD74HCT173 [ /Title (CD74H C173, CD74H CT173) /Subject (High Speed CMOS Logic Quad D- Type Data sheet acquired from Harris Semiconductor SCHS158E February 1998 - Revised

More information

CD74HCT4514, CD74HCT LINE TO 16-LINE DECODERS/DEMULTIPLEXERS WITH INPUT LATCHES

CD74HCT4514, CD74HCT LINE TO 16-LINE DECODERS/DEMULTIPLEXERS WITH INPUT LATCHES 4.5-V to 5.5-V V CC Operation Fanout (Over Temperature Range) Standard s... 0 LSTTL Loads Bus-Driver s... 5 LSTTL Loads Wide Operating Temperature Range of 55 C to 25 C Balanced Propagation Delays and

More information

CD54/74HC4046A, CD54/74HCT4046A

CD54/74HC4046A, CD54/74HCT4046A CD5/7HC6A, CD5/7HCT6A Data sheet acquired from Harris Semiconductor SCHSC February 99 - Revised March High-Speed CMOS Logic Phase-Locked-Loop with VCO [ /Title (CD7 HC 6A, CD7 HCT 6A) /Subject (High- Speed

More information

CD74HC7046A, CD74HCT7046A

CD74HC7046A, CD74HCT7046A Data sheet acquired from Harris Semiconductor SCHS February 99 CD7HC706A, CD7HCT706A Phase-Locked Loop with VCO and Lock Detector [ /Title (CD7 HC70 6A, CD7 HCT70 6A) /Subject Phaseocked oop Features Center

More information

IMPORTANT NOTICE Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the

More information

MAX232, MAX232I DUAL EIA-232 DRIVER/RECEIVER

MAX232, MAX232I DUAL EIA-232 DRIVER/RECEIVER Operates With Single -V Power Supply LinBiCMOS Process Technology Two Drivers and Two Receivers ± 0-V Input Levels Low Supply Current...8 ma Typical Meets or Exceeds TIA/EIA-22-F and ITU Recommendation

More information

SN54HC365, SN74HC365 HEX BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS

SN54HC365, SN74HC365 HEX BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS High-Current -State s Drive Bus Lines, Buffer Memory Address Registers, or Drive up to LSTTL Loads True s Package Options Include Plastic Small-Outline (D) and Ceramic Flat (W) Packages, Ceramic Chip Carriers

More information

INTEGRATED CIRCUITS. 74ABT273A Octal D-type flip-flop. Product specification 1995 Sep 06 IC23 Data Handbook

INTEGRATED CIRCUITS. 74ABT273A Octal D-type flip-flop. Product specification 1995 Sep 06 IC23 Data Handbook INTEGRATE CIRCUITS 1995 Sep 06 IC23 ata Handbook FEATURES Eight edge-triggered -type flip-flops Buffered common clock Buffered asynchronous Master Reset Power-up reset See 74ABT377 for clock enable version

More information

INTEGRATED CIRCUITS. 74LVT V Octal D flip-flop. Product specification Supersedes data of 1994 May 11 IC23 Data Handbook.

INTEGRATED CIRCUITS. 74LVT V Octal D flip-flop. Product specification Supersedes data of 1994 May 11 IC23 Data Handbook. INTEGRATE CIRCUITS Supersedes data of 994 May IC23 ata Handbook 998 Feb 9 FEATURES Eight edge-triggered -type flip-flops Buffered common clock Buffered asynchronous Master Reset Output capability: +64mA/

More information

SN74LVC1G06 SINGLE INVERTER BUFFER/DRIVER WITH OPEN-DRAIN OUTPUT

SN74LVC1G06 SINGLE INVERTER BUFFER/DRIVER WITH OPEN-DRAIN OUTPUT and Open-Drain Accept Voltages up to 5.5 V Supports 5-V V CC Operation description This single inverter buffer/driver is designed for 1.65-V to 5.5-V V CC operation. DBV OR DCK PACKAGE (TOP VIEW) NC A

More information

DM74ALS169B Synchronous Four-Bit Up/Down Counters

DM74ALS169B Synchronous Four-Bit Up/Down Counters Synchronous Four-Bit Up/Down Counters General Description These synchronous presettable counters feature an internal carry look ahead for cascading in high speed counting applications. The DM74ALS169B

More information

CD54HC194, CD74HC194, CD74HCT194

CD54HC194, CD74HC194, CD74HCT194 Data sheet acquired from Harris Semiconductor SCHS164F September 1997 - Revised October 2003 CD54HC194, CD74HC194, CD74HCT194 High-Speed CMOS Logic 4-Bit Bidirectional Universal Shift Register Features

More information

SN54HC175, SN74HC175 QUADRUPLE D-TYPE FLIP-FLOPS WITH CLEAR

SN54HC175, SN74HC175 QUADRUPLE D-TYPE FLIP-FLOPS WITH CLEAR Contain Four Flip-Flops With Double-Rail Outputs Applications Include: Buffer/Storage Registers Shift Registers Pattern Generators Package Options Include Plastic Small-Outline (D), Thin Shrink Small-Outline

More information

54ACT11020, 74ACT11020 DUAL 4-INPUT POSITIVE-NAND GATES

54ACT11020, 74ACT11020 DUAL 4-INPUT POSITIVE-NAND GATES Inputs Are TTL-Voltage Compatible Flow-Through Architecture to Optimize PCB Layout Center-Pin V CC and GND Configurations to Minimize High-Speed Switching Noise EPIC (Enhanced-Performance Implanted CMOS)

More information

SN54HC132, SN74HC132 QUADRUPLE POSITIVE-NAND GATES WITH SCHMITT-TRIGGER INPUTS

SN54HC132, SN74HC132 QUADRUPLE POSITIVE-NAND GATES WITH SCHMITT-TRIGGER INPUTS Operation From Very Slow Input Transitions Temperature-Compensated Threshold Levels High Noise Immunity Same Pinouts as HC00 Package Options Include Plastic Small-Outline (D), Shrink Small-Outline (DB),

More information

DM74AS169A Synchronous 4-Bit Binary Up/Down Counter

DM74AS169A Synchronous 4-Bit Binary Up/Down Counter Synchronous 4-Bit Binary Up/Down Counter General Description These synchronous presettable counters feature an internal carry look ahead for cascading in high speed counting applications. The DM74AS169

More information

SN75150 DUAL LINE DRIVER

SN75150 DUAL LINE DRIVER Meets or Exceeds the Requirement of TIA/EIA-232-F and ITU Recommendation V.28 Withstands Sustained Output Short Circuit to Any Low-Impedance Voltage Between 25 V and 25 V 2-µs Maximum Transition Time Through

More information

SN75374 QUADRUPLE MOSFET DRIVER

SN75374 QUADRUPLE MOSFET DRIVER SLRS28 SEPTEMBER 1988 Quadruple Circuits Capable of Driving High-Capacitance Loads at High Speeds Output Supply Voltage Range From 5 V to 24 V Low Standby Power Dissipation V CC3 Supply Maximizes Output

More information

PRODUCT PREVIEW SN54AHCT257, SN74AHCT257 QUADRUPLE 2-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS. description

PRODUCT PREVIEW SN54AHCT257, SN74AHCT257 QUADRUPLE 2-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS. description Inputs Are TTL-Voltage Compatible EPIC (Enhanced-Performance Implanted CMOS) Process Package Options Include Plastic Small-Outline (D), Shrink Small-Outline (DB), Thin Very Small-Outline (DGV), Thin Shrink

More information

SN54ACT00, SN74ACT00 QUADRUPLE 2-INPUT POSITIVE-NAND GATES

SN54ACT00, SN74ACT00 QUADRUPLE 2-INPUT POSITIVE-NAND GATES SCAS AUGUST 99 REVISED MAY 99 Inputs Are TTL-Voltage Compatible EPIC (Enhanced-Performance Implanted CMOS) -µm Process Package Options Include Plastic Small-Outline (D), Shrink Small-Outline (DB), Thin

More information

SN54HC377, SN74HC377 OCTAL D-TYPE FLIP-FLOPS WITH CLOCK ENABLE

SN54HC377, SN74HC377 OCTAL D-TYPE FLIP-FLOPS WITH CLOCK ENABLE Eight Flip-Flops With Single-Rail Outputs Clock Enable Latched to Avoid False Clocking Applications Include: Buffer/Storage Registers Shift Registers Pattern Generators Package Options Include Plastic

More information

SN75158 DUAL DIFFERENTIAL LINE DRIVER

SN75158 DUAL DIFFERENTIAL LINE DRIVER SN78 Meets or Exceeds the Requirements of ANSI EIA/TIA--B and ITU Recommendation V. Single -V Supply Balanced-Line Operation TTL Compatible High Output Impedance in Power-Off Condition High-Current Active-Pullup

More information

CD54/74HC374, CD54/74HCT374, CD54/74HC574, CD54/74HCT574

CD54/74HC374, CD54/74HCT374, CD54/74HC574, CD54/74HCT574 CD54/74HC374, CD54/74HCT374, CD54/74HC574, CD54/74HCT574 Data sheet acquired from Harris Semiconductor SCHS183C February 1998 - Revised May 2004 Features High-Speed CMOS Logic Octal D-Type Flip-Flop, 3-State

More information

ORDERING INFORMATION PACKAGE

ORDERING INFORMATION PACKAGE Member of Texas Instruments Widebus Family State-of-the-Art Advanced Low-Voltage BiCMOS (ALB) Technology Design for.-v Operation Schottky Diodes on All s to Eliminate Overshoot and Undershoot Industry

More information

SN54HC245, SN74HC245 OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

SN54HC245, SN74HC245 OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS High-Current -State s Drive Bus Lines Directly or up to LSTTL Loads Package Options Include Plastic Small-Outline (DW), Shrink Small-Outline (DB), Thin Shrink Small-Outline (PW), and Ceramic Flat (W) Packages,

More information

TC74ACT574P,TC74ACT574F,TC74ACT574FT

TC74ACT574P,TC74ACT574F,TC74ACT574FT TOSHIBA CMOS igital Integrated Circuit Silicon Monolithic TC74ACT574P,TC74ACT574F,TC74ACT574FT Octal -Type Flip-Flop with 3-State Output TC74ACT574P/F/FT The TC74ACT574 is an advanced high speed CMOS OCTAL

More information

SN54HC00, SN74HC00 QUADRUPLE 2-INPUT POSITIVE-NAND GATES

SN54HC00, SN74HC00 QUADRUPLE 2-INPUT POSITIVE-NAND GATES Package Options Include Plastic Small-Outline (D), Thin Shrink Small-Outline (PW), and Ceramic Flat (W) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 00-mil DIPs description

More information

ua9637ac DUAL DIFFERENTIAL LINE RECEIVER

ua9637ac DUAL DIFFERENTIAL LINE RECEIVER ua967ac Meets or Exceeds the Requirements of ANSI Standards EIA/TIA--B and EIA/TIA--B and ITU Recommendations V. and V. Operates From Single -V Power Supply Wide Common-Mode Voltage Range High Input Impedance

More information

MAX232, MAX232I DUAL EIA-232 DRIVER/RECEIVER

MAX232, MAX232I DUAL EIA-232 DRIVER/RECEIVER Operates With Single 5-V Power Supply LinBiCMOS Process Technology Two Drivers and Two Receivers ± 30-V Input Levels Low Supply Current...8 ma Typical Meets or Exceeds TIA/EIA-232-F and ITU Recommendation

More information

74ACT11374 OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOP WITH 3-STATE OUTPUTS

74ACT11374 OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOP WITH 3-STATE OUTPUTS Eight D-Type Flip-Flops in a Single Package -State Bus Driving True s Full Parallel Access for Loading Inputs Are TTL-Voltage Compatible Flow-Through Architecture Optimizes PCB Layout Center-Pin V CC and

More information

INTEGRATED CIRCUITS. 74F174 Hex D flip-flops. Product specification Oct 07. IC15 Data Handbook

INTEGRATED CIRCUITS. 74F174 Hex D flip-flops. Product specification Oct 07. IC15 Data Handbook INTEGRATE CIRCUITS Hex flip-flops 1988 Oct 07 IC15 ata Handbook Hex flip-flop FEATURES Six edge-triggered -type flip-flops Buffered common Clock Buffered, asynchronous Master Reset PIN CONFIGURATION MR

More information

SN54HC373, SN74HC373 OCTAL TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS

SN54HC373, SN74HC373 OCTAL TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS Eight High-Current Latches in a Single Package High-Current -State True s Can Drive up to LSTTL Loads Full Parallel Access for Loading Package Options Include Plastic Small-Outline (DW), Shrink Small-Outline

More information

INTEGRATED CIRCUITS. 74ABT574A Octal D-type flip-flop (3-State) Product specification 1995 May 22 IC23 Data Handbook

INTEGRATED CIRCUITS. 74ABT574A Octal D-type flip-flop (3-State) Product specification 1995 May 22 IC23 Data Handbook INTEGRATE CIRCUITS 995 May 22 IC23 ata Handbook FEATURES is flow-through pinout version of 74ABT374 Inputs and outputs on opposite side of package allow easy interface to microprocessors 3-State outputs

More information

MM74HC132 Quad 2-Input NAND Schmitt Trigger

MM74HC132 Quad 2-Input NAND Schmitt Trigger Quad 2-Input NAND Schmitt Trigger General Description The utilizes advanced silicon-gate CMOS technology to achieve the low power dissipation and high noise immunity of standard CMOS, as well as the capability

More information

CDC337 CLOCK DRIVER WITH 3-STATE OUTPUTS

CDC337 CLOCK DRIVER WITH 3-STATE OUTPUTS Low Output Skew, Low Pulse Skew for Clock-Distribution and Clock-Generation Applications TTL-Compatible Inputs and CMOS-Compatible Outputs Distributes One Clock Input to Eight Outputs Four Same-Frequency

More information

UNISONIC TECHNOLOGIES CO., LTD

UNISONIC TECHNOLOGIES CO., LTD UNISONIC TECHNOLOGIES CO., LT 8-STAGE SHIFT & STORE BUS REGISTER ESCRIPTION The U74HC4094 consists of an 8-stage shift register and an 8-stage -type latch with 3-stage parallel outputs. ata is shifted

More information

TPIC6B273 POWER LOGIC OCTAL D-TYPE LATCH

TPIC6B273 POWER LOGIC OCTAL D-TYPE LATCH POWER LOGIC OCTAL -TYPE LATC Low r S(on)... Ω Typical Avalanche Energy...3 mj Eight Power MOS-Transistor Outputs of -ma Continuous Current -ma Typical Current-Limiting Capability Output Clamp Voltage...

More information

SN5407, SN5417, SN7407, SN7417 HEX BUFFERS/DRIVERS WITH OPEN-COLLECTOR HIGH-VOLTAGE OUTPUTS

SN5407, SN5417, SN7407, SN7417 HEX BUFFERS/DRIVERS WITH OPEN-COLLECTOR HIGH-VOLTAGE OUTPUTS Converts TTL Voltage Levels to MOS Levels High Sink-Current Capability Clamping Diodes Simplify System Design Open-Collector Driver for Indicator Lamps and Relays s Fully Compatible With Most TTL Circuits

More information

SN54ALS273, SN74ALS273 OCTAL D-TYPE FLIP-FLOPS WITH CLEAR

SN54ALS273, SN74ALS273 OCTAL D-TYPE FLIP-FLOPS WITH CLEAR WITH CLEA SDAS2A APIL 92 EVISED DECEMBE 99 Contain Eight Flip-Flops With Single-ail Outputs Buffered Clock and Direct-Clear Inputs Individual Data Input to Each Flip-Flop Applications Include: Buffer/Storage

More information

MC3486 QUADRUPLE DIFFERENTIAL LINE RECEIVER WITH 3-STATE OUTPUTS

MC3486 QUADRUPLE DIFFERENTIAL LINE RECEIVER WITH 3-STATE OUTPUTS Meets or Exceeds the Requirements of ANSI Standards EIA/TIA-422-B and EIA/TIA-423-B and ITU Recommendations V.10 and V.11 3-State, TTL-Compatible s Fast Transition Times Operates From Single 5-V Supply

More information

CPC7220KTR. Low Charge Injection, 8-Channel High Voltage Analog Switch INTEGRATED CIRCUITS DIVISION

CPC7220KTR. Low Charge Injection, 8-Channel High Voltage Analog Switch INTEGRATED CIRCUITS DIVISION Low Charge Injection, 8-Channel High Voltage Analog Switch Features Processed with BCMOS on SOI (Silicon On Insulator) Flexible High Voltage Supplies up to V PP -V NN =200V C to 10MHz Analog Signal Frequency

More information

CD54HC4046A, CD74HC4046A, CD54HCT4046A, CD74HCT4046A

CD54HC4046A, CD74HC4046A, CD54HCT4046A, CD74HCT4046A CD5HC6A, CD7HC6A, CD5HCT6A, CD7HCT6A Data sheet acquired from Harris Semiconductor SCHSE February 99 - Revised May 3 High-Speed CMOS Logic Phase-Locked Loop with VCO [ /Title (CD7 HC 6A, CD7 HCT 6A) /Subject

More information

ORDERING INFORMATION PACKAGE

ORDERING INFORMATION PACKAGE Member of Texas Instruments Widebus Family Latch-Up Performance Exceeds 250 ma Per JESD 17 ESD Protection Exceeds JESD 22 2000-V Human-Body Model (A114-A) 200-V Machine Model (A115-A) Bus Hold on Data

More information

TL780 SERIES POSITIVE-VOLTAGE REGULATORS

TL780 SERIES POSITIVE-VOLTAGE REGULATORS ±1% Output Tolerance at ±2% Output Tolerance Over Full Operating Range Thermal Shutdown description Internal Short-Circuit Current Limiting Pinout Identical to µa7800 Series Improved Version of µa7800

More information

SN74ALVCH V 20-BIT BUS-INTERFACE FLIP-FLOP WITH 3-STATE OUTPUTS

SN74ALVCH V 20-BIT BUS-INTERFACE FLIP-FLOP WITH 3-STATE OUTPUTS Member of the Texas Instruments Widebus Family EPIC (Enhanced-Performance Implanted CMOS) Submicron Process ESD Protection Exceeds 200 Per MIL-STD-883, Method 3015; Exceeds 20 Using Machine Model (C =

More information

CD54/74HC30, CD54/74HCT30

CD54/74HC30, CD54/74HCT30 CD54/74HC30, CD54/74HCT30 Data sheet acquired from Harris Semiconductor SCHS121D August 1997 - Revised September 2003 High Speed CMOS Logic 8-Input NAND Gate [ /Title (CD54H C30, CD74H C30, CD74H CT30)

More information

TL594 PULSE-WIDTH-MODULATION CONTROL CIRCUITS

TL594 PULSE-WIDTH-MODULATION CONTROL CIRCUITS Complete PWM Power Control Circuitry Uncommitted Outputs for 200-mA Sink or Source Current Output Control Selects Single-Ended or Push-Pull Operation Internal Circuitry Prohibits Double Pulse at Either

More information

MC3487 QUADRUPLE DIFFERENTIAL LINE DRIVER

MC3487 QUADRUPLE DIFFERENTIAL LINE DRIVER Meets or Exceeds Requirements of ANSI EIA/TIA-422-B and ITU Recommendation V. -State, TTL-Compatible s Fast Transition Times High-Impedance Inputs Single -V Supply Power-Up and Power-Down Protection Designed

More information

NE556, SA556, SE556 DUAL PRECISION TIMERS

NE556, SA556, SE556 DUAL PRECISION TIMERS DUAL PECISION TIMES Two Precision Timing Circuits per Package Astable or Monostable Operation TTL-Compatible Output Can Sink or Source Up to 150 ma Active Pullup or Pulldown Designed to be Interchangeable

More information

SN54LVC14A, SN74LVC14A HEX SCHMITT-TRIGGER INVERTERS

SN54LVC14A, SN74LVC14A HEX SCHMITT-TRIGGER INVERTERS Typical V OLP ( Ground Bounce) 2 V at V CC = 3.3 V, T A = 25 C s Accept Voltages to 5.5 V Latch-Up Performance Exceeds 100 ma Per JESD

More information

SN54ALS08, SN54AS08, SN74ALS08, SN74AS08 QUADRUPLE 2-INPUT POSITIVE-AND GATES

SN54ALS08, SN54AS08, SN74ALS08, SN74AS08 QUADRUPLE 2-INPUT POSITIVE-AND GATES SNALS0, SNAS0, SN7ALS0, SN7AS0 Package Options Include Plastic Small-Outline (D) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 00-mil DIPs description These devices contain

More information

TPS1120, TPS1120Y DUAL P-CHANNEL ENHANCEMENT-MODE MOSFETS

TPS1120, TPS1120Y DUAL P-CHANNEL ENHANCEMENT-MODE MOSFETS Low r DS(on)... 0.18 Ω at V GS = 10 V 3-V Compatible Requires No External V CC TTL and CMOS Compatible Inputs V GS(th) = 1.5 V Max ESD Protection Up to 2 kv per MIL-STD-883C, Method 3015 1SOURCE 1GATE

More information

74ABT377A Octal D-type flip-flop with enable

74ABT377A Octal D-type flip-flop with enable INTEGRATE CIRCUITS Replaces data sheet 74ABT377 of 1995 Sep 06 IC3 ata Handbook 1997 Feb 6 FEATURES Ideal for addressable register applicatio 8-bit positive edge-triggered register Enable for address and

More information

ORDERING INFORMATION PACKAGE

ORDERING INFORMATION PACKAGE Member of Texas Instruments Widebus Family Latch-Up Performance Exceeds 250 ma Per JESD 17 description This 16-bit (dual-octal) noninverting bus transceiver contains two separate supply rails; B port has

More information

74AC11873 DUAL 4-BIT D-TYPE LATCH WITH 3-STATE OUTPUTS SCAS095 JANUARY 1990 REVISED APRIL 1993

74AC11873 DUAL 4-BIT D-TYPE LATCH WITH 3-STATE OUTPUTS SCAS095 JANUARY 1990 REVISED APRIL 1993 3-State Buffer-Type s Drive Bus Lines Directly Bus-Structured Pinout Flow-Through Architecture Optimizes PCB Layout Center-Pin V CC and Configuratio Minimize High-Speed Switching Noise EPIC (Enhanced-Performance

More information

SN74ALVCH BIT BUS-INTERFACE FLIP-FLOP WITH 3-STATE OUTPUTS

SN74ALVCH BIT BUS-INTERFACE FLIP-FLOP WITH 3-STATE OUTPUTS Member of the Texas Instruments Widebus Family EPIC (Enhanced-Performance Implanted CMOS) Submicron Process ESD Protection Exceeds 200 Per MIL-STD-883, Method 3015; Exceeds 20 Using Machine Model (C =

More information

High Speed PWM Controller

High Speed PWM Controller High Speed PWM Controller FEATURES Compatible with Voltage or Current Mode Topologies Practical Operation Switching Frequencies to 1MHz 50ns Propagation Delay to Output High Current Dual Totem Pole Outputs

More information

MM74HC132 Quad 2-Input NAND Schmitt Trigger

MM74HC132 Quad 2-Input NAND Schmitt Trigger Quad 2-Input NAND Schmitt Trigger General Description The MM74HC132 utilizes advanced silicon-gate CMOS technology to achieve the low power dissipation and high noise immunity of standard CMOS, as well

More information

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below. Important notice ear Customer, On 7 February 2017 the former NXP Standard Product business became a new company with the tradename Nexperia. Nexperia is an industry leading supplier of iscrete, Logic and

More information

SN54HC191, SN74HC191 4-BIT SYNCHRONOUS UP/DOWN BINARY COUNTERS

SN54HC191, SN74HC191 4-BIT SYNCHRONOUS UP/DOWN BINARY COUNTERS Single Down/Up Count-Control Line Look-Ahead Circuitry Enhances Speed of Cascaded Counters Fully Synchronous in Count Modes Asynchronously Presettable With Load Control Package Options Include Plastic

More information

MM74HCU04 Hex Inverter

MM74HCU04 Hex Inverter MM74HCU04 Hex Inverter General Description The MM74HCU04 inverters utilize advanced silicon-gate CMOS technology to achieve operating speeds similar to LS-TTL gates with the low power consumption of standard

More information

SN74S ASYNCHRONOUS FIRST-IN, FIRST-OUT MEMORY WITH 3-STATE OUTPUTS

SN74S ASYNCHRONOUS FIRST-IN, FIRST-OUT MEMORY WITH 3-STATE OUTPUTS Independent Asychronous Inputs and Outputs 16 Words by 5 Bits DC to 10-MHz Rate 3-State Outputs Packaged in Standard Plastic 300-mil DIPs description This 80-bit active-element memory is a monolithic Schottky-clamped

More information

SN75C185 LOW-POWER MULTIPLE DRIVERS AND RECEIVERS

SN75C185 LOW-POWER MULTIPLE DRIVERS AND RECEIVERS Meets or Exceeds the Requirements of TIA/EIA-232-F and ITU Recommendation V.28 Single Chip With Easy Interface Between UART and Serial-Port Connector Less Than 9-mW Power Consumption Wide Driver Supply

More information

M74HCT04. Hex inverter. Features. Description

M74HCT04. Hex inverter. Features. Description Hex inverter Features High speed: t PD = 11 ns (typ.) at =4.5V Low power dissipation: I CC = 1 μa (max.) at T A =25 C Compatible with TTL outputs: V IH = 2 V (min.) V IL = 0.8 V (max) Balanced propagation

More information

DS Tap High Speed Silicon Delay Line

DS Tap High Speed Silicon Delay Line www.dalsemi.com FEATURES All-silicon timing circuit Five delayed clock phases per input Precise tap-to-tap nominal delay tolerances of ±0.75 and ±1 ns Input-to-tap 1 delay of 5 ns Nominal Delay tolerances

More information

SN54HCT373, SN74HCT373 OCTAL TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS

SN54HCT373, SN74HCT373 OCTAL TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS Inputs Are TTL-Voltage Compatible Eight High-Current Latches in a Single Package High-Current -State True s Can Drive up to LSTTL Loads Full Parallel Access for Loading Package Optio Include Plastic Small-Outline

More information

NE/SA5090 Addressable relay driver INTEGRATED CIRCUITS. Product data Supersedes data of 1994 Aug 31 File under Integrated Circuits; IC11 Data Handbook

NE/SA5090 Addressable relay driver INTEGRATED CIRCUITS. Product data Supersedes data of 1994 Aug 31 File under Integrated Circuits; IC11 Data Handbook INTEGRATE CIRCUITS Supersedes data of 1994 Aug 31 File under Integrated Circuits; IC11 ata Handbook 2001 Aug 03 ESCRIPTION The addressable relay driver is a high-current latched driver, similar in function

More information

Advanced Regulating Pulse Width Modulators

Advanced Regulating Pulse Width Modulators Advanced Regulating Pulse Width Modulators FEATURES Complete PWM Power Control Circuitry Uncommitted Outputs for Single-ended or Push-pull Applications Low Standby Current 8mA Typical Interchangeable with

More information

TPS CHANNEL POWER SUPPLY SUPERVISOR

TPS CHANNEL POWER SUPPLY SUPERVISOR 3-CHANNEL POWE SUPPLY SUPEVISO Over Voltage Protection and Lock Out for 5 V, 3.3 V, and 12 V Under Voltage Protection and Lock Out for 5 V and 3.3 V Fault Protection Output with Open Drain Output Stage

More information

CPC7232KTR. 8-Channel HV Analog Switch with Built-in Bleeder Resistors INTEGRATED CIRCUITS DIVISION

CPC7232KTR. 8-Channel HV Analog Switch with Built-in Bleeder Resistors INTEGRATED CIRCUITS DIVISION 8-Channel HV Analog Switch with Built-in Bleeder Resistors Features Processed with BCMOS on SOI (Silicon on Insulator) Flexible High Voltage Supplies up to V PP -V NN =200V Internal Output Bleeder Resistors

More information

Advanced Regulating Pulse Width Modulators

Advanced Regulating Pulse Width Modulators Advanced Regulating Pulse Width Modulators FEATURES Complete PWM Power Control Circuitry Uncommitted Outputs for Single-ended or Push-pull Applications Low Standby Current 8mA Typical Interchangeable with

More information

Voltage-to-Frequency and Frequency-to-Voltage CONVERTER

Voltage-to-Frequency and Frequency-to-Voltage CONVERTER Voltage-to-Frequency and Frequency-to-Voltage CONVERTER FEATURES OPERATION UP TO 500kHz EXCELLENT LINEARITY ±0.0% max at 0kHz FS ±0.05% max at 00kHz FS V/F OR F/V CONVERSION MONOTONIC VOLTAGE OR CURRENT

More information

Complementary Switch FET Drivers

Complementary Switch FET Drivers Complementary Switch FET Drivers application INFO available FEATURES Single Input (PWM and TTL Compatible) High Current Power FET Driver, 1.0A Source/2A Sink Auxiliary Output FET Driver, 0.5A Source/1A

More information

14 STAGE BINARY COUNTER/OSCILLATOR

14 STAGE BINARY COUNTER/OSCILLATOR 14 STAGE BINAY COUNTE/OSCILLATO The is an high speed CMOS 14-STAGE BINAY COUNTE/OSCILLATO fabricated with silicon gate C 2 MOS technology. The oscillator configuration allows design of either C or crystal

More information

NC7ST00 TinyLogic HST 2-Input NAND Gate

NC7ST00 TinyLogic HST 2-Input NAND Gate TinyLogic HST 2-Input NAND Gate General Description The is a single 2-Input high performance CMOS NAND Gate, with TTL-compatible inputs. Advanced Silicon Gate CMOS fabrication assures high speed and low

More information