Chapter 3 Combinational Logic Design

Size: px
Start display at page:

Download "Chapter 3 Combinational Logic Design"

Transcription

1 Logic and Computer Design Fundamentals Chapter 3 Combinational Logic Design Part 2 Combinational Logic

2 Overview Part -Implementation Technology and Logic Design Design Concepts Fundamental concepts of design Design Procedure The major design steps: specification, formulation, optimization, technology mapping, and verification Technology Mapping From AND, OR, and NOT to other gate types Verification Does the designed circuit meet the specifications? Chapter 3-p2 IT32 2

3 Overview Part 2 Combinational Logic Functions and functional blocks Rudimentary logic functions Decoding Encoding Selecting Chapter 3-p2 IT32 3

4 Functions and Functional Blocks The functions considered are those found to be very useful in design. Corresponding to each of the functions is a combinational circuit implementation called a functional block. In the past, many functional blocks were implemented as SSI, MSI, and LSI circuits. Today, they are often simply parts within a VLSI circuits. Chapter 3-p2 IT32 4

5 Rudimentary Logic Functions Value fixing, transferring, inverting and enabling are the most elementary of combinational logic functions. Can be used on the inputs to functional blocks to implement other than the block s intended function Chapter 3-p2 IT32 5

6 Value fixing, transferring, and inverting functions Functions of a single variable X X F = F = X F = X F = V CC V DD F = F = X (c) F = X F = F = X F = X (a) (b) (d) Chapter 3-p2 IT32 6

7 Enabling Function Enabling permits an input signal to pass through to an output Disabling blocks an input signal from passing through to an output, replacing it with a fixed value The value on the output when it is disable can be, or Hi-Z (as for three-state buffers). a) When disabled, output b) When disabled, output X EN (a) F EN X F Chapter 3-p2 IT32 7 (b)

8 Decoders Convert binary information from n input lines to (max. of) 2 n output lines. Known as n-to-m-line decoder, or simply n:m or nxm decoder (m <= 2 n ). A n-to- 2 n decoder uses its n-bit input to determine which of 2 n outputs will be uniquely activated. Generate 2 n (or fewer) minterms of n input variables. Chapter 3-p2 IT32 8

9 Decoders Example: if codes,,, are used to identify four light bulbs, we may use a 2-bit decoder: 2-bit code X Y 2x4 Dec F F F 2 F 3 Bulb Bulb Bulb 2 Bulb 3 This is a 2x4 decoder which selects an output line based on the 2-bit code supplied. Truth table: X Y F F F 2 F 3 Chapter 3-p2 IT32 9

10 Decoders From truth table, circuit for 2x4 decoder is: X Y F F F 2 F 3 Note: Each output is a 2-variable minterm (X'Y', X'Y, XY' or XY) F = X'Y' F = X'Y F 2 = XY' F 3 = XY X Y Chapter 3-p2 IT32

11 Decoder Examples -to-2-line Decoder Chapter 3-p2 IT32

12 Decoder Examples 2-to-4-Line Decoder Note that the 2-4-line made up of 2 -to-2- line decoders and 4 AND gates. Chapter 3-p2 IT32 2

13 Decoders Design a 3x8 decoder. x y z F F F 2 F 3 F 4 F 5 F 6 F 7 F = x'y'z' F = x'y'z F 2 = x'yz' F 3 = x'yz F 4 = xy'z' F 5 = xy'z F 6 = xyz' F 7 = xyz x y z Chapter 3-p2 IT32 3

14 Decoders In general, for an n-bit code, a decoder could select up to 2 n lines: n-bit code n to 2 n : decoder : up to 2 n output lines Chapter 3-p2 IT32 4

15 Decoder with Enable In general, attach m-enabling circuits to the outputs See truth table below for function Note use of X s to denote both and Combination containing two X s represent four binary combinations Alternatively, can be viewed as distributing value of signal EN to EN of 4 outputs In this case, called a demultiplexer A A D EN A A D D D 2 D 3 D X X D 2 D 3 (a) (b) Chapter 3-p2 IT32 5

16 Decoder with Enable Design a 3x8 decoder. E x y z F F F 2 F 3 F 4 F 5 F 6 F 7 x x x F = x'y'z' F = x'y'z F 2 = x'yz' F 3 = x'yz F 4 = xy'z' F 5 = xy'z Enabel (E) F 6 = xyz' F 7 = xyz x y z Chapter 3-p2 IT32 6

17 Decoder Expansion Another way to design a decoder is to break it into smaller pieces. Notice some patterns in the table below: When S2 =, outputs Q-Q3are generated as in a 2-to-4 decoder. When S2 =, outputs Q4-Q7are generated as in a 2-to-4 decoder. Chapter 3-p2 IT32 7

18 Decoder Expansion Here s a 3-to-8 decoder built from two smaller 2-to-4 decoders. When S2=, the bottom 2-to-4 decoder is enabled and generates a for one of outputs Q, Q, Q2or Q3. When S2=, the top 2-to-4 decoder is enabled instead, and a will be output for either Q4, Q5, Q6or Q7. Chapter 3-p2 IT32 8

19 Decoder Expansion Activity Chapter 3-p2 IT32 9

20 Encoding Encoding - the opposite of decoding - the conversion of an m-bit input code to a n-bit output code with n m 2 n such that each valid code word produces a unique output code Circuits that perform encoding are called encoders An encoder has 2 n (or fewer) input lines and n output lines which generate the binary code corresponding to the input values Typically, an encoder converts a code containing exactly one bit that is to a binary code corresponding to the position in which the appears. Chapter 3-p2 IT32 2

21 Octal-to-Binary Encoder A = D + D3 + D5 + D7 A= D2 + D3 + D6 + D7 A2= D4 + D5 + D6 + D7 Chapter 3-p2 IT32 2

22 Octal-to-Binary Encoder Chapter 3-p2 IT32 22

23 Selecting Selecting of data or information is a critical function in digital systems and computers Circuits that perform selecting have: A set of information inputs from which the selection is made A single output A set of control lines for making the selection Logic circuits that perform selecting are called multiplexers Selecting can also be done by three-state logic Chapter 3-p2 IT32 23

24 Multiplexers A multiplexer selects information from an input line and directs the information to an output line A typical multiplexer has n control inputs (S n -, S ) called selection inputs, 2 n information inputs (I 2 n -, I ), and one output Y A multiplexer can be designed to have m information inputs with m < 2 n as well as n selection inputs Chapter 3-p2 IT32 24

25 2-to--Line Multiplexer Since 2 = 2, n = The single selection variable S has two values: S = selects input I S = selects input I Truth Table The equation: Y = S I + SI Chapter 3-p2 IT32 25

26 2-to--Line Multiplexer The equation: Y = SI + SI The circuit: Decoder Enabling Circuits Note the regions of the multiplexer circuit shown: S -to-2-line Decoder 2 Enabling circuits 2-input OR gate I I Y Chapter 3-p2 IT32 26

27 2-to--Line Multiplexer (continued) To obtain a basis for multiplexer expansion, we combine the Enabling circuits and OR gate into a 2 2 AND- OR circuit: -to-2-line decoder 2 2 AND-OR In general, for an 2 n -to--line multiplexer: n-to-2 n -line decoder 2 n 2 AND-OR Chapter 3-p2 IT32 27

28 Example: 4-to--line Multiplexer 2-to-2 2 -line decoder AND-OR Condensed Truth Table Chapter 3-p2 IT32 28

29 Multiplexer Width Expansion Some IC packages have a few multiplexers in each package. The selection and enable inputs are common to all multiplexers within the package. Select vectors of bits instead of bits Chapter 3-p2 IT32 29

30 Multiplexer Width Expansion A A A2 A3 Y Y Y2 Y3 S (select) E (enable) B B B2 B3 E S Output Y X all s select A select B Quadruple 2: multiplexer Chapter 3-p2 IT32 3

31 Three-State Implementation Chapter 3-p2 IT32 3

32 Larger Multiplexers Larger multiplexers can be constructed from smaller ones. An 8-to- multiplexer can be constructed from smaller multiplexers like this (note placement of selector lines): I I I2 I3 I4 I5 I6 I7 4: MUX S S 4: MUX 2: MUX S2 Y S 2 S S Y I I I 2 I 3 I 4 I 5 I 6 I 7 S S Chapter 3-p2 IT32 32

33 Summary Decoder: For each possible input condition, one and only one output signal will be at logic n-to-2 n decoder is simply a minterm generator, with output corresponding to exactly one minterm. Encoders: Assign a unique output code (a binary number) for each input signal applied to the device Opposite of the decoder Chapter 3-p2 IT32 33

34 Summary Demultiplexer: Connects a single input line to one of n output lines, the specific output being determined by a selection code Multiplexers: Connects a single output line to one of n input lines, the specific input being determined by a selection code. Chapter 3-p2 IT32 34

Encoders. Lecture 23 5

Encoders. Lecture 23 5 -A decoder with enable input can function as a demultiplexer a circuit that receives information from a single line and directs it to one of 2 n possible output lines. The selection of a specific output

More information

Digital Logic and Design (Course Code: EE222) Lecture 14: Combinational Contd.. Decoders/Encoders

Digital Logic and Design (Course Code: EE222) Lecture 14: Combinational Contd.. Decoders/Encoders Indian Institute of Technology Jodhpur, Year 28 29 Digital Logic and Design (Course Code: EE222) Lecture 4: Combinational Contd.. Decoders/Encoders Course Instructor: Shree Prakash Tiwari Email: sptiwari@iitj.ac.in

More information

Unit 3. Logic Design

Unit 3. Logic Design EE 2: Digital Logic Circuit Design Dr Radwan E Abdel-Aal, COE Logic and Computer Design Fundamentals Unit 3 Chapter Combinational 3 Combinational Logic Logic Design - Introduction to Analysis & Design

More information

Digital Electronics 8. Multiplexer & Demultiplexer

Digital Electronics 8. Multiplexer & Demultiplexer 1 Module -8 Multiplexers and Demultiplexers 1 Introduction 2 Principles of Multiplexing and Demultiplexing 3 Multiplexer 3.1 Types of multiplexer 3.2 A 2 to 1 multiplexer 3.3 A 4 to 1 multiplexer 3.4 Multiplex

More information

Department of Electrical and Electronics Engineering Logic Circuits Laboratory EXPERIMENT-5 COMBINATIONAL LOGIC CIRCUITS

Department of Electrical and Electronics Engineering Logic Circuits Laboratory EXPERIMENT-5 COMBINATIONAL LOGIC CIRCUITS 5.1 Preliminary Study Simulate experiment using an available tool and prepare the preliminary report. 5.2 Aim of the Experiment Implementation and examination of MULTIPLEXER and DEMULTIPLEXER circuits

More information

Combinational Logic. Combinational Logic Design Process, Three State Buffers, Decoders, Multiplexers, Encoders, Demultiplexers, Other Considerations

Combinational Logic. Combinational Logic Design Process, Three State Buffers, Decoders, Multiplexers, Encoders, Demultiplexers, Other Considerations Combinational Logic Combinational Logic Design Process, Three State Buffers, Decoders, Multiplexers, Encoders, Demultiplexers, Other Considerations Copyright (c) 2012 Sean Key Combinational Logic Design

More information

Solutions. ICS 151 Final. Q1 Q2 Q3 Q4 Total Credit Score. Instructions: Student ID. (Last Name) (First Name) Signature

Solutions. ICS 151 Final. Q1 Q2 Q3 Q4 Total Credit Score. Instructions: Student ID. (Last Name) (First Name) Signature ICS 151 Final Name Student ID Signature :, (Last Name) (First Name) : : Instructions: 1. Please verify that your paper contains 19 pages including this cover and 3 blank pages. 2. Write down your Student-Id

More information

ICS 151 Final. (Last Name) (First Name)

ICS 151 Final. (Last Name) (First Name) ICS 151 Final Name Student ID Signature :, (Last Name) (First Name) : : Instructions: 1. Please verify that your paper contains 19 pages including this cover and 3 blank pages. 2. Write down your Student-Id

More information

UNIT III. Designing Combinatorial Circuits. Adders

UNIT III. Designing Combinatorial Circuits. Adders UNIT III Designing Combinatorial Circuits The design of a combinational circuit starts from the verbal outline of the problem and ends with a logic circuit diagram or a set of Boolean functions from which

More information

MSI Design Examples. Designing a circuit that adds three 4-bit numbers

MSI Design Examples. Designing a circuit that adds three 4-bit numbers MSI Design Examples In this lesson, you will see some design examples using MSI devices. These examples are: Designing a circuit that adds three 4-bit numbers. Design of a 4-to-16 Decoder using five 2-to-4

More information

(CSC-3501) Lecture 6 (31 Jan 2008) Seung-Jong Park (Jay) CSC S.J. Park. Announcement

(CSC-3501) Lecture 6 (31 Jan 2008) Seung-Jong Park (Jay)   CSC S.J. Park. Announcement Seung-Jong Park (Jay) http://www.csc.lsu.edu/~sjpark Computer Architecture (CSC-3501) Lecture 6 (31 Jan 2008) 1 Announcement 2 1 Reminder A logic circuit is composed of: Inputs Outputs Functional specification

More information

COMBINATIONAL CIRCUIT

COMBINATIONAL CIRCUIT Combinational circuit is a circuit in which we combine the different gates in the circuit, for example encoder, decoder, multiplexer and demultiplexer. Some of the characteristics of combinational circuits

More information

Combinational Circuits: Multiplexers, Decoders, Programmable Logic Devices

Combinational Circuits: Multiplexers, Decoders, Programmable Logic Devices Combinational Circuits: Multiplexers, Decoders, Programmable Logic Devices Lecture 5 Doru Todinca Textbook This chapter is based on the book [RothKinney]: Charles H. Roth, Larry L. Kinney, Fundamentals

More information

Class Subject Code Subject Prepared By Lesson Plan for Time: Lesson. No 1.CONTENT LIST: Introduction to UnitII 2. SKILLS ADDRESSED: Learning I year, 02 sem CS6201 Digital Principles & System Design S.Seedhanadevi

More information

Combinational Circuits DC-IV (Part I) Notes

Combinational Circuits DC-IV (Part I) Notes Combinational Circuits DC-IV (Part I) Notes Digital Circuits have been classified as: (a) Combinational Circuits: In these circuits output at any instant of time depends on inputs present at that instant

More information

Project Part 1 A. The task was to design a 4 to 1 multiplexer that uses 8 bit buses on the inputs with an output of a single 8 bit bus.

Project Part 1 A. The task was to design a 4 to 1 multiplexer that uses 8 bit buses on the inputs with an output of a single 8 bit bus. Project Part 1 A Circuit Description and Diagrams: The task was to design a 4 to 1 multiplexer that uses 8 bit buses on the inputs with an output of a single 8 bit bus. Shown below is a jpeg screenshot

More information

Combinational logic. ! Regular logic: multiplexers, decoders, LUTs and FPGAs. ! Switches, basic logic and truth tables, logic functions

Combinational logic. ! Regular logic: multiplexers, decoders, LUTs and FPGAs. ! Switches, basic logic and truth tables, logic functions Combinational logic! Switches, basic logic and truth tables, logic functions! Algebraic expressions to gates! Mapping to different gates! Discrete logic gate components (used in labs and 2)! Canonical

More information

Combinational Logic Circuits. Combinational Logic

Combinational Logic Circuits. Combinational Logic Combinational Logic Circuits The outputs of Combinational Logic Circuits are only determined by the logical function of their current input state, logic 0 or logic 1, at any given instant in time. The

More information

Data output signals May or may not be same a input signals

Data output signals May or may not be same a input signals Combinational Logic Part 2 We ve been looking at simple combinational logic elements Gates, buffers, and drivers Now ready to go on to larger blocks MSI - Medium Scale Integration or Integrate Circuits

More information

CS302 Digital Logic Design Solved Objective Midterm Papers For Preparation of Midterm Exam

CS302 Digital Logic Design Solved Objective Midterm Papers For Preparation of Midterm Exam CS302 Digital Logic Design Solved Objective Midterm Papers For Preparation of Midterm Exam MIDTERM EXAMINATION 2011 (October-November) Q-21 Draw function table of a half adder circuit? (2) Answer: - Page

More information

TABLE 3-2 Truth Table for Code Converter Example

TABLE 3-2 Truth Table for Code Converter Example 997 by Prentice-Hall, Inc. Mano & Kime Upper Saddle River, New Jersey 7458 T-28 TABLE 3-2 Truth Table for Code Converter Example Decimal Digit Input BCD Output Excess-3 A B C D W Y Z 2 3 4 5 6 7 8 9 Truth

More information

16 Multiplexers and De-multiplexers using gates and ICs. (74150, 74154)

16 Multiplexers and De-multiplexers using gates and ICs. (74150, 74154) 16 Multiplexers and De-multiplexers using gates and ICs. (74150, 74154) Aim: To design multiplexers and De-multiplexers using gates and ICs. (74150, 74154) Components required: Digital IC Trainer kit,

More information

Lecture 02: Digital Logic Review

Lecture 02: Digital Logic Review CENG 3420 Lecture 02: Digital Logic Review Bei Yu byu@cse.cuhk.edu.hk CENG3420 L02 Digital Logic. 1 Spring 2017 Review: Major Components of a Computer CENG3420 L02 Digital Logic. 2 Spring 2017 Review:

More information

CHW 261: Logic Design

CHW 261: Logic Design CHW 6: Logic Design Instructors: Prof. Hala Zayed Dr. Ahmed Shalaby http://www.bu.edu.eg/staff/halazayed4 http://bu.edu.eg/staff/ahmedshalaby4# Slide Copyright 6 by Pearson Education, Inc. Upper Saddle

More information

Logic Families. Describes Process used to implement devices Input and output structure of the device. Four general categories.

Logic Families. Describes Process used to implement devices Input and output structure of the device. Four general categories. Logic Families Characterizing Digital ICs Digital ICs characterized several ways Circuit Complexity Gives measure of number of transistors or gates Within single package Four general categories SSI - Small

More information

Logic Circuit Design

Logic Circuit Design Logic Circuit Design we have studied Truth Tables Logic gates Logic algebra K-maps 1 All these are tools Tools Truth Tables Logic gates Logic algebra K-maps 2 All these are tools Tools Truth Tables Logic

More information

Chapter 3 Digital Logic Structures

Chapter 3 Digital Logic Structures Chapter 3 Digital Logic Structures Transistor: Building Block of Computers Microprocessors contain millions of transistors Intel Pentium 4 (2): 48 million IBM PowerPC 75FX (22): 38 million IBM/Apple PowerPC

More information

LOGIC DIAGRAM: HALF ADDER TRUTH TABLE: A B CARRY SUM. 2012/ODD/III/ECE/DE/LM Page No. 1

LOGIC DIAGRAM: HALF ADDER TRUTH TABLE: A B CARRY SUM. 2012/ODD/III/ECE/DE/LM Page No. 1 LOGIC DIAGRAM: HALF ADDER TRUTH TABLE: A B CARRY SUM K-Map for SUM: K-Map for CARRY: SUM = A B + AB CARRY = AB 22/ODD/III/ECE/DE/LM Page No. EXPT NO: DATE : DESIGN OF ADDER AND SUBTRACTOR AIM: To design

More information

Chapter 3 Digital Logic Structures

Chapter 3 Digital Logic Structures Chapter 3 Digital Logic Structures Transistor: Building Block of Computers Microprocessors contain millions of transistors Intel Pentium 4 (2000): 48 million IBM PowerPC 750FX (2002): 38 million IBM/Apple

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 14 DATA TRANSFER

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 14 DATA TRANSFER C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 4 DATA TRANSFR FALL 23 A.P. FLZR To do "well" on this investigation you must not only get the right answers but must also do neat, complete and concise writeups

More information

LIST OF EXPERIMENTS. KCTCET/ /Odd/3rd/ETE/CSE/LM

LIST OF EXPERIMENTS. KCTCET/ /Odd/3rd/ETE/CSE/LM LIST OF EXPERIMENTS. Study of logic gates. 2. Design and implementation of adders and subtractors using logic gates. 3. Design and implementation of code converters using logic gates. 4. Design and implementation

More information

EXPERIMENT NO 1 TRUTH TABLE (1)

EXPERIMENT NO 1 TRUTH TABLE (1) EPERIMENT NO AIM: To verify the Demorgan s theorems. APPARATUS REQUIRED: THEORY: Digital logic trainer and Patch cords. The digital signals are discrete in nature and can only assume one of the two values

More information

4:Combinational logic circuits. 3 July

4:Combinational logic circuits. 3 July 4:Combinational logic circuits 3 July 2014 1 overview What is combinational logic circuit? Examples of combinational logic circuits Binary-adder Binary-subtractor Binary-multiplier Decoders Multiplexers

More information

Digital Electronics. Functions of Combinational Logic

Digital Electronics. Functions of Combinational Logic Digital Electronics Functions of Combinational Logic Half-dder Basic rules of binary addition are performed by a half adder, which has two binary inputs ( and B) and two binary outputs (Carry out and Sum).

More information

LOGIC GATES AND LOGIC CIRCUITS A logic gate is an elementary building block of a Digital Circuit. Most logic gates have two inputs and one output.

LOGIC GATES AND LOGIC CIRCUITS A logic gate is an elementary building block of a Digital Circuit. Most logic gates have two inputs and one output. LOGIC GATES AND LOGIC CIRCUITS A logic gate is an elementary building block of a Digital Circuit. Most logic gates have two inputs and one output. At any given moment, every terminal is in one of the two

More information

Digital Applications (CETT 1415) Credit: 4 semester credit hours (3 hours lecture, 4 hours lab) Prerequisite: CETT 1403 & CETT 1405

Digital Applications (CETT 1415) Credit: 4 semester credit hours (3 hours lecture, 4 hours lab) Prerequisite: CETT 1403 & CETT 1405 Digital Applications () Credit: 4 semester credit hours (3 hours lecture, 4 hours lab) Prerequisite: CETT 1403 & CETT 1405 Course Description This course covers digital techniques and numbering systems,

More information

Classification of Digital Circuits

Classification of Digital Circuits Classification of Digital Circuits Combinational logic circuits. Output depends only on present input. Sequential circuits. Output depends on present input and present state of the circuit. Combinational

More information

7.1. Unit 7. Fundamental Digital Building Blocks: Decoders & Multiplexers

7.1. Unit 7. Fundamental Digital Building Blocks: Decoders & Multiplexers 7. Unit 7 Fundamental Digital Building Blocks: Decoders & Multiplexers CHECKER / DECODER 7.2 7.3 Gates Gates can have more than 2 inputs but the functions stay the same AND = output = if ALL inputs are

More information

2 Building Blocks. There is often the need to compare two binary values.

2 Building Blocks. There is often the need to compare two binary values. 2 Building Blocks 2.1 Comparators There is often the need to compare two binary values. This is done using a comparator. A comparator determines whether binary values A and B are: 1. A = B 2. A < B 3.

More information

CSCI "Decoders & Demultiplexers"

CSCI Decoders & Demultiplexers CSCI 2150 -- "Decoders & Demultiplexers" Reading: Digital Fundamentals section 6.8 The Need for Decoders Digital signals are often used to enable something. For example, we've spoken in class of the basic

More information

COMPUTER TECHNOLOGY 2015/2016 Exercises. Unit 7

COMPUTER TECHNOLOGY 2015/2016 Exercises. Unit 7 COMPUTER TECHNOLOGY 05/06 Exercises. Unit 7 Test. Identify the function of the figure below: A F ABC+ ABC B F ABC+ AB+ ABC C Neither A nor B are true ) About the circuit of the figure below, tick the true

More information

EE19D Digital Electronics. Lecture 1: General Introduction

EE19D Digital Electronics. Lecture 1: General Introduction EE19D Digital Electronics Lecture 1: General Introduction 1 What are we going to discuss? Some Definitions Digital and Analog Quantities Binary Digits, Logic Levels and Digital Waveforms Introduction to

More information

SRV ENGINEERING COLLEGE SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE SEMBODAI

SRV ENGINEERING COLLEGE SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE SEMBODAI SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE SEMBODAI 6489 (Approved By AICTE,Newdelhi Affiliated To ANNA UNIVERSITY::Chennai) CS 62 DIGITAL ELECTRONICS LAB (REGULATION-23) LAB MANUAL DEPARTMENT OF

More information

Laboratory Manual CS (P) Digital Systems Lab

Laboratory Manual CS (P) Digital Systems Lab Laboratory Manual CS 09 408 (P) Digital Systems Lab INDEX CYCLE I A. Familiarization of digital ICs and digital IC trainer kit 1 Verification of truth tables B. Study of combinational circuits 2. Verification

More information

UNIT-2: BOOLEAN EXPRESSIONS AND COMBINATIONAL LOGIC CIRCUITS

UNIT-2: BOOLEAN EXPRESSIONS AND COMBINATIONAL LOGIC CIRCUITS UNIT-2: BOOLEAN EXPRESSIONS AND COMBINATIONAL LOGIC CIRCUITS STRUCTURE 2. Objectives 2. Introduction 2.2 Simplification of Boolean Expressions 2.2. Sum of Products 2.2.2 Product of Sums 2.2.3 Canonical

More information

CS302 - Digital Logic Design Glossary By

CS302 - Digital Logic Design Glossary By CS302 - Digital Logic Design Glossary By ABEL : Advanced Boolean Expression Language; a software compiler language for SPLD programming; a type of hardware description language (HDL) Adder : A digital

More information

Digital Applications (CETT 1415) Credit: 4 semester credit hours (3 hours lecture, 4 hours lab) Prerequisite: CETT 1403 & CETT 1405

Digital Applications (CETT 1415) Credit: 4 semester credit hours (3 hours lecture, 4 hours lab) Prerequisite: CETT 1403 & CETT 1405 Digital Applications (CETT 1415) Credit: 4 semester credit hours (3 hours lecture, 4 hours lab) Prerequisite: CETT 1403 & CETT 1405 Course Description This course covers digital techniques and numbering

More information

Satish Chandra, Assistant Professor, P P N College, Kanpur 1

Satish Chandra, Assistant Professor, P P N College, Kanpur 1 8/7/4 LOGIC GTES CE NPN Transistor Circuit COMINTIONL LOGIC Satish Chandra ssistant Professor Department of Physics P PN College, Kanpur www.satish4.weebly.com circuit with an output signal that is logical

More information

Digital Logic Design ELCT 201

Digital Logic Design ELCT 201 Faculty of Information Engineering and Technology Dr. Haitham Omran and Dr. Wassim Alexan Digital Logic Design ELCT 201 Winter 2017 Midterm Exam Second Chance Please tick the box of your major: IET MET

More information

Timing and Power Optimization Using Mixed- Dynamic-Static CMOS

Timing and Power Optimization Using Mixed- Dynamic-Static CMOS Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2013 Timing and Power Optimization Using Mixed- Dynamic-Static CMOS Hao Xue Wright State University Follow

More information

DO NOT COPY DO NOT COPY

DO NOT COPY DO NOT COPY 456 Chapter 5 Combinational Logic Design Practices The first PAL devices were invented at Monolithic Memories, Inc. (MMI) in 978 by John Birkner and H. T. Chua. The inventors earned U.S. patent number

More information

Digital Electronic Concepts

Digital Electronic Concepts Western Technical College 10662137 Digital Electronic Concepts Course Outcome Summary Course Information Description Career Cluster Instructional Level Total Credits 4.00 Total Hours 108.00 This course

More information

Module 4: Design and Analysis of Combinational Circuits 1. Module-4. Design and Analysis of Combinational Circuits

Module 4: Design and Analysis of Combinational Circuits 1. Module-4. Design and Analysis of Combinational Circuits 1 Module-4 Design and Analysis of Combinational Circuits 4.1 Motivation: This topic develops the fundamental understanding and design of adder, substractor, code converter multiplexer, demultiplexer etc

More information

BEE 2233 Digital Electronics. Chapter 1: Introduction

BEE 2233 Digital Electronics. Chapter 1: Introduction BEE 2233 Digital Electronics Chapter 1: Introduction Learning Outcomes Understand the basic concept of digital and analog quantities. Differentiate the digital and analog systems. Compare the advantages

More information

Logic and Computer Design Fundamentals. Chapter 6 Selected Design Topics. Part 1 The Design Space

Logic and Computer Design Fundamentals. Chapter 6 Selected Design Topics. Part 1 The Design Space Logic and Computer Design Fundamentals Chapter 6 Selected Design Topics Part 1 The Design Space Charles Kime & Thomas Kaminski 2008 Pearson Education, Inc. (Hyperlinks are active in View Show mode) Overview

More information

Department of Electronics and Communication Engineering

Department of Electronics and Communication Engineering Department of Electronics and Communication Engineering Sub Code/Name: BEC3L2- DIGITAL ELECTRONICS LAB Name Reg No Branch Year & Semester : : : : LIST OF EXPERIMENTS Sl No Experiments Page No Study of

More information

(a) (b) (c) (d) (e) (a) (b) (c) (d) (e)

(a) (b) (c) (d) (e) (a) (b) (c) (d) (e) Exercises 97 Exercises Exercise 2. Write a oolean equation in sum-of-products canonical form for each of the truth tables in Figure 2.8. (d) (e) C C C D Figure 2.8 Truth tables for Exercises 2. and 2.3

More information

2-BIT MAGNITUDE COMPARATOR DESIGN USING DIFFERENT LOGIC STYLES

2-BIT MAGNITUDE COMPARATOR DESIGN USING DIFFERENT LOGIC STYLES 2-BIT MAGNITUDE COMPARATOR DESIGN USING DIFFERENT LOGIC STYLES 1 Shruthi B, Assistant professor, GSSSIETW, Mysuru 2 Ashwini K R Assistant professor, GSSSIETW, Mysuru ABSTRACT: 2-bit magnitude comparator

More information

Unit 1 Foundations in Electronics - Lesson 1.1 Introduction to Electronics Standards Essential Question Enduring Understandings

Unit 1 Foundations in Electronics - Lesson 1.1 Introduction to Electronics Standards Essential Question Enduring Understandings Course: DIGITAL ELECTRONICS- PROJECT LEAD THE WAY (DE-PLTW) Year: 2017-2018 Teacher: Mr. Christopher Reynolds/ Mr. Kenneth Rice Unit 1 Foundations in Electronics - Lesson 1.1 Introduction to Electronics

More information

JEFFERSON COLLEGE COURSE SYLLABUS ETC255 INTRODUCTION TO DIGITAL CIRCUITS. 6 Credit Hours. Prepared by: Dennis Eimer

JEFFERSON COLLEGE COURSE SYLLABUS ETC255 INTRODUCTION TO DIGITAL CIRCUITS. 6 Credit Hours. Prepared by: Dennis Eimer JEFFERSON COLLEGE COURSE SYLLABUS ETC255 INTRODUCTION TO DIGITAL CIRCUITS 6 Credit Hours Prepared by: Dennis Eimer Revised Date: August, 2007 By Dennis Eimer Division of Technology Dr. John Keck, Dean

More information

7.1. Unit 7. Fundamental Digital Building Blocks: Decoders & Multiplexers

7.1. Unit 7. Fundamental Digital Building Blocks: Decoders & Multiplexers 7. Unit 7 Fundamental Digital Building Blocks: Decoders & Multiplexers CHECKER / DECODER 7.2 7.3 Gates Gates can have more than 2 inputs but the functions stay the same AND = output = if ALL inputs are

More information

Combinational Logic Design CH002

Combinational Logic Design CH002 Combinational Logic Design CH002 Figure 2.1 Circuit as a black box with inputs, outputs, and specifications Figure 2.2 Elements and nodes Figure 2.3 Combinational logic circuit Figure 2.4 Two OR implementations

More information

Propagation Delay, Circuit Timing & Adder Design. ECE 152A Winter 2012

Propagation Delay, Circuit Timing & Adder Design. ECE 152A Winter 2012 Propagation Delay, Circuit Timing & Adder Design ECE 152A Winter 2012 Reading Assignment Brown and Vranesic 2 Introduction to Logic Circuits 2.9 Introduction to CAD Tools 2.9.1 Design Entry 2.9.2 Synthesis

More information

Propagation Delay, Circuit Timing & Adder Design

Propagation Delay, Circuit Timing & Adder Design Propagation Delay, Circuit Timing & Adder Design ECE 152A Winter 2012 Reading Assignment Brown and Vranesic 2 Introduction to Logic Circuits 2.9 Introduction to CAD Tools 2.9.1 Design Entry 2.9.2 Synthesis

More information

Paper No. Name of the Paper Theory marks Practical marks Periods per week Semester-I I Semiconductor

Paper No. Name of the Paper Theory marks Practical marks Periods per week Semester-I I Semiconductor Swami Ramanand Teerth Marathwada University, Nanded B. Sc. First Year Electronics Syllabus Semester system (To be implemented from Academic Year 2009-10) Name of the Theory marks Practical marks Periods

More information

Asst. Prof. Thavatchai Tayjasanant, PhD. Power System Research Lab 12 th Floor, Building 4 Tel: (02)

Asst. Prof. Thavatchai Tayjasanant, PhD. Power System Research Lab 12 th Floor, Building 4 Tel: (02) 2145230 Aircraft Electricity and Electronics Asst. Prof. Thavatchai Tayjasanant, PhD Email: taytaycu@gmail.com aycu@g a co Power System Research Lab 12 th Floor, Building 4 Tel: (02) 218-6527 1 Chapter

More information

Lecture Topics ECE 341. Lecture # 4. Decoder. 2-to-4 Decoder Circuit

Lecture Topics ECE 341. Lecture # 4. Decoder. 2-to-4 Decoder Circuit ECE 34 Lecture # 4 Instructor: Zeshan Chishti zeshan@ece.pdx.edu October 8, 24 Portland State University Lecture Topics Decoders Multiplexers Programmable Logic Devices (PLDs) General Structure of PLDs

More information

Integrated Circuit: Classification:

Integrated Circuit: Classification: Integrated Circuit: It is a miniature, low cost electronic circuit consisting of active and passive components that are irreparably joined together on a single crystal chip of silicon. Classification:

More information

Subtractor Logic Schematic

Subtractor Logic Schematic Function Of Xor Gate In Parallel Adder Subtractor Logic Schematic metic functions, including half adder, half subtractor, full adder, independent logic gates to form desired circuits based on dif- by integrating

More information

12-nm Novel Topologies of LPHP: Low-Power High- Performance 2 4 and 4 16 Mixed-Logic Line Decoders

12-nm Novel Topologies of LPHP: Low-Power High- Performance 2 4 and 4 16 Mixed-Logic Line Decoders 12-nm Novel Topologies of LPHP: Low-Power High- Performance 2 4 and 4 16 Mixed-Logic Line Decoders Mr.Devanaboina Ramu, M.tech Dept. of Electronics and Communication Engineering Sri Vasavi Institute of

More information

Syllabus: Digital Electronics (DE) (Project Lead The Way)

Syllabus: Digital Electronics (DE) (Project Lead The Way) Course Overview: Digital electronics and micro computers. This is a course in applied logic that encompasses the application of electronic circuits and devices. Computer simulation software is used to

More information

University of Technology

University of Technology University of Technology Lecturer: Dr. Sinan Majid Course Title: microprocessors 4 th year Lecture 7 & 8 NAND and XOR Implementations Combinational Design Procedure NAND-NAND & NOR-NOR Networks DeMorgan

More information

Gates and Circuits 1

Gates and Circuits 1 1 Gates and Circuits Chapter Goals Identify the basic gates and describe the behavior of each Describe how gates are implemented using transistors Combine basic gates into circuits Describe the behavior

More information

Overview. This lab exercise requires. A windows computer running Xilinx WebPack A Digilent board. Contains material Digilent, Inc.

Overview. This lab exercise requires. A windows computer running Xilinx WebPack A Digilent board. Contains material Digilent, Inc. Module 6: Combinational Circuit Blocks Revision: August 30, 2007 Overview This lab introduces several combinational circuits that are frequently used by digital designers, including a data selector (also

More information

COLLEGE OF ENGINEERING, NASIK

COLLEGE OF ENGINEERING, NASIK Pune Vidyarthi Griha s COLLEGE OF ENGINEERING, NASIK LAB MANUAL DIGITAL ELECTRONICS LABORATORY Subject Code: 2246 27-8 PUNE VIDYARTHI GRIHA S COLLEGE OF ENGINEERING,NASHIK. INDEX Batch : - Sr.No Title

More information

Multiple input gates. The AND gate

Multiple input gates. The AND gate Multiple input gates Inverters and buffers exhaust the possibilities for single-input gate circuits. What more can be done with a single logic signal but to buffer it or invert it? To explore more logic

More information

De Morgan s second theorem: The complement of a product is equal to the sum of the complements.

De Morgan s second theorem: The complement of a product is equal to the sum of the complements. Q. What is Gate? State and prove De Morgan s theorems. nswer: digital circuit having one or more input signals but only one output signal is called a gate. De Morgan s first theorem: The complement of

More information

Computer Architecture and Organization:

Computer Architecture and Organization: Computer Architecture and Organization: L03: Register transfer and System Bus By: A. H. Abdul Hafez Abdul.hafez@hku.edu.tr, ah.abdulhafez@gmail.com 1 CAO, by Dr. A.H. Abdul Hafez, CE Dept. HKU Outlines

More information

DIGITAL ELECTRONICS. Methods & diagrams : 1 Graph plotting : - Tables & analysis : - Questions & discussion : 6 Performance : 3

DIGITAL ELECTRONICS. Methods & diagrams : 1 Graph plotting : - Tables & analysis : - Questions & discussion : 6 Performance : 3 DIGITAL ELECTRONICS Marking scheme : Methods & diagrams : 1 Graph plotting : - Tables & analysis : - Questions & discussion : 6 Performance : 3 Aim: This experiment will investigate the function of the

More information

Practical Workbook Logic Design & Switching Theory

Practical Workbook Logic Design & Switching Theory Practical Workbook Logic Design & Switching Theory Name : Year : Batch : Roll No : Department: Second Edition Fall 2017-18 Dept. of Computer & Information Systems Engineering NED University of Engineering

More information

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI 6 DEPARTMENT: ECE QUESTION BANK SUBJECT NAME: DIGITAL SYSTEM DESIGN SEMESTER III SUBJECT CODE: EC UNIT : Design of Combinational Circuits PART -A ( Marks).

More information

DIGITAL LOGIC CIRCUITS

DIGITAL LOGIC CIRCUITS LOGIC APPLICATIONS DIGITAL LOGIC CIRCUITS Noticed an analogy between the operations of switching devices, such as telephone switching circuits, and the operations of logical connectives What happens when

More information

Topic Notes: Digital Logic

Topic Notes: Digital Logic Computer Science 220 Assembly Language & Comp. Architecture Siena College Fall 20 Topic Notes: Digital Logic Our goal for the next couple of weeks is to gain a reasonably complete understanding of how

More information

UNIT-IV Combinational Logic

UNIT-IV Combinational Logic UNIT-IV Combinational Logic Introduction: The signals are usually represented by discrete bands of analog levels in digital electronic circuits or digital electronics instead of continuous ranges represented

More information

Electrical, Electronic and Communications Engineering Technology/Technician CIP Task Grid

Electrical, Electronic and Communications Engineering Technology/Technician CIP Task Grid Secondary Task List 100 SAFETY 101 Describe OSHA safety regulations. 102 Identify, select, and demonstrate proper hand tool use for electronics work. 103 Recognize the types and usages of fire extinguishers.

More information

Logic Design I (17.341) Fall Lecture Outline

Logic Design I (17.341) Fall Lecture Outline Logic Design I (17.341) Fall 2011 Lecture Outline Class # 07 October 31, 2011 / November 07, 2011 Dohn Bowden 1 Today s Lecture Administrative Main Logic Topic Homework 2 Course Admin 3 Administrative

More information

Chapter 3. H/w s/w interface. hardware software Vijaykumar ECE495K Lecture Notes: Chapter 3 1

Chapter 3. H/w s/w interface. hardware software Vijaykumar ECE495K Lecture Notes: Chapter 3 1 Chapter 3 hardware software H/w s/w interface Problems Algorithms Prog. Lang & Interfaces Instruction Set Architecture Microarchitecture (Organization) Circuits Devices (Transistors) Bits 29 Vijaykumar

More information

Function Table of 74LS138, 3-to-8 Decoder +5V 6 G1 4 G2A 5 G2B. 4-to-16 Decoder using two 74LS139, 3-to-8 Decoder

Function Table of 74LS138, 3-to-8 Decoder +5V 6 G1 4 G2A 5 G2B. 4-to-16 Decoder using two 74LS139, 3-to-8 Decoder CS0 Digital Logic Design The XX8 -to-8 Decoder The -to-8, XX8 Decoder is also commonly used in logical circuits. Similar, to the -to- Decoder, the -to-8 Decoder has active-low outputs and three extra NOT

More information

CMOS Digital Logic Design with Verilog. Chapter1 Digital IC Design &Technology

CMOS Digital Logic Design with Verilog. Chapter1 Digital IC Design &Technology CMOS Digital Logic Design with Verilog Chapter1 Digital IC Design &Technology Chapter Overview: In this chapter we study the concept of digital hardware design & technology. This chapter deals the standard

More information

Logic Symbols with Truth Tables INVERTER A B NAND A B C NOR C A B A B C XNOR A B C A B Digital Logic 1

Logic Symbols with Truth Tables INVERTER A B NAND A B C NOR C A B A B C XNOR A B C A B Digital Logic 1 Slide Logic Symbols with Truth Tables UFFER INVERTER ND NND OR NOR XOR XNOR 6.7 Digital Logic Digital logic can be described in terms of standard logic symbols and their corresponding truth tables. The

More information

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING (Regulation 2013) EE 6311 LINEAR AND DIGITAL INTEGRATED CIRCUITS LAB MANUAL 1 SYLLABUS OBJECTIVES: Working Practice in simulators / CAD Tools / Experiment

More information

A Simulation Study of an Elevator Control System using Digital Logic

A Simulation Study of an Elevator Control System using Digital Logic A Simulation Study of an Elevator Control System using Digital Logic Md. Mohsinur Rahman Adnan #1, Md. Zunaid Sikder #2, Mohammed Mushfiquzzoha #3, Mahdi Zulfikar #4 #1 Department of EEE, Shahjalal University

More information

Digital Integrated CircuitDesign

Digital Integrated CircuitDesign Digital Integrated CircuitDesign Lecture 13 Building Blocks (Multipliers) Register Adder Shift Register Adib Abrishamifar EE Department IUST Acknowledgement This lecture note has been summarized and categorized

More information

A 2-bit/step SAR ADC structure with one radix-4 DAC

A 2-bit/step SAR ADC structure with one radix-4 DAC A 2-bit/step SAR ADC structure with one radix-4 DAC M. H. M. Larijani and M. B. Ghaznavi-Ghoushchi a) School of Engineering, Shahed University, Tehran, Iran a) ghaznavi@shahed.ac.ir Abstract: In this letter,

More information

Name: Class: Date: 1. As more electronic systems have been designed using digital technology, devices have become smaller and less powerful.

Name: Class: Date: 1. As more electronic systems have been designed using digital technology, devices have become smaller and less powerful. Name: Class: Date: DE Midterm Review 2 True/False Indicate whether the statement is true or false. 1. As more electronic systems have been designed using digital technology, devices have become smaller

More information

Basic Characteristics of Digital ICs

Basic Characteristics of Digital ICs ECEN202 Section 2 Characteristics of Digital IC s Part 1: Specification of characteristics An introductory look at digital IC s: Logic families Basic construction and operation Operating characteristics

More information

ELECTROVATE. Electromania Problem Statement Discussion

ELECTROVATE. Electromania Problem Statement Discussion ELECTROVATE Electromania Problem Statement Discussion An Competition Basic Circuiting What is Electromania? Innovation Debugging Lets Revise the Basics Electronics Digital Analog Digital Electronics Similar

More information

Aim. Lecture 1: Overview Digital Concepts. Objectives. 15 Lectures

Aim. Lecture 1: Overview Digital Concepts. Objectives. 15 Lectures Aim Lecture 1: Overview Digital Concepts to give a first course in digital electronics providing you with both the knowledge and skills required to design simple digital circuits and preparing you for

More information

8.1. Unit 8. Fundamental Digital Building Blocks: Decoders & Multiplexers

8.1. Unit 8. Fundamental Digital Building Blocks: Decoders & Multiplexers 8. Unit 8 Fundamental Digital Building Blocks: Decoders & Multiplexers 8.2 Checkers / Decoders Recall AND gates output '' for only a single combination OR gates output '' for only a single combination

More information

Elektrische Parameter Grundlagen der technischen Informatik

Elektrische Parameter Grundlagen der technischen Informatik Elektrische Parameter Grundlagen der technischen Informatik Wintersemester 28/9 Folien basierend auf F. Vahid und S. Werner Wintersemester 28/9 Review - Multiple-Output Circuits Many circuits have more

More information