LOGIC GATES AND LOGIC CIRCUITS A logic gate is an elementary building block of a Digital Circuit. Most logic gates have two inputs and one output.

Size: px
Start display at page:

Download "LOGIC GATES AND LOGIC CIRCUITS A logic gate is an elementary building block of a Digital Circuit. Most logic gates have two inputs and one output."

Transcription

1 LOGIC GATES AND LOGIC CIRCUITS A logic gate is an elementary building block of a Digital Circuit. Most logic gates have two inputs and one output. At any given moment, every terminal is in one of the two binary conditions low (0) or high (1), represented by different voltage levels..

2 LOGIC GATES The logic state of a terminal can, and generally does, change often, as the circuit processes data. In most logic gates, the low state is approximately zero volts (0 V), while the high state is approximately five volts positive (+5 V). There are seven basic logic gates: AND, OR, XOR, NOT, NAND, NOR, and XNOR

3 The AND gate This is a logical "and" operator. The output is "1 when both inputs are "1, Otherwise, the output is "0. The following illustration and table show the circuit symbol and logic combinations (truth table) for an AND gate. A dot (.) is used to show the AND operation i.e. A.B. Bear in mind that this dot is sometimes omitted i.e. AB

4 The OR gate This is a logical inclusive "or operator. The output is 1" if either or both of the inputs are 1. If both inputs are 0" then the output is 0. The circuit symbol and logic combinations (truth table) for an OR gate are as: A plus (+) is used to show the OR operation.

5 The XOR ( exclusive-or ) gate This is the logical "either/or. operator. The output is "1" if either, but not both, of the inputs are "1." The output is "0" if both inputs are "0" or if both inputs are "1." Another way of looking at this circuit is to observe that the output is 1 if the inputs are different, but 0 if the inputs are the same. It uses an encircled plus sign is used to show the XOR operation.

6 The circuit symbol and logic combinations (truth table) for an XOR gate are as:

7 The NOT gate This is a logical inverter. The NOT gate has only one input. It reverses the logic state. When the input is 1, the output is 0 and vice versa. The circuit symbol and logic combinations for an NOT gate are as:

8 The NAND gate The NAND gate operates as an AND gate followed by a NOT gate. It acts in the manner of the logical operation "and" followed by negation. The output is "0" if both inputs are "1." Otherwise, the output is "1. The circuit symbol and logic combinations for a NAND gate are as:

9 The NOR gate The NOR gate is a combination OR gate followed by an inverter. Its output is "1" if both inputs are "0." Otherwise, the output is "0. The circuit symbol and logic combinations for a NOR gate are as:

10 The XNOR gate The XNOR (exclusive-nor) gate is a combination XOR gate followed by an inverter. Its output is "1" if the inputs are the same, and "0" if the inputs are different. The circuit symbol and logic combinations for the XNOR gate are as:

11 Logic Circuits A logic circuit is a combination of a number of logic gates. Using combinations of logic gates, complex operations can be performed. In theory, there is no limit to the number of gates that can be arrayed together in a single device. But in practice, there is a limit to the number of gates that can be packed into a given physical space. Arrays of logic gates are found in digital Integrated Circuits (ICs). As IC technology advances, the required physical volume for each individual logic gate decreases and digital devices of the same or

12 Examples 1. Make a truth table for the logic circuit shown below. Z P Q Y A B C X

13 2. Using the logic circuit below find the state of the output X.

14 Assignment 1. Using the logic circuit below, write the truth table. 2. Using the logic circuit below, write the truth table. 3. Using the logic circuit below, write the truth table.

15 4. Draw and name a logic gate that can produce the truth table below.

16 The SEVEN-SEGMENT DECODER A seven segment decoder is a digital circuit designed to drive a very common type of digital display device (Seven-segment display). A Seven-segment display is a set of LED (or LCD) segments that render numerals 0 through 9 at the command of a four-bit code. Seven-segment displays are a very common numerical interface for digital electronic equipment.

17

18 ADDER (SUMMER) An adder or summer is a digital circuit that performs addition of numbers. In many computers and other kinds of processors, adders are used not only in the arithmetic logic units, but also in other parts of the processor, where they are used to calculate addresses, table indices, increment and decrement operators, and similar operations. The two basic types of adders are Half Adder and Full Adder.

19 HALF ADDER The half adder adds two single binary digits A and B. It has two outputs, sum (S) and carry (C). The carry signal represents an overflow into the next digit of a multi-digit addition. The addition of single bits can be done as shown: 0+0 = = = = 10 These are the least possible single-bit combinations. But the result for 1+1 is 10.

20 From the equation it is clear that this 1-bit adder can be easily implemented with the help of EXOR Gate for the output SUM and an AND Gate for the CARRY.

21 The implementation is as shown below.

22 FULL ADDER A full adder adds binary numbers and accounts for values carried in as well as out. A one-bit full adder adds three one-bit numbers, often written as A, B, and C in ; A and B are the operands, and C in is a bit carried in from the previous less significant stage. The main difference between a half-adder and a full-adder is that the full-adder has three inputs, where as the half adder has two inputs. The first two inputs are A and B and the third input is an input carry designated as CIN.

23 The output carry is designated as COUT and the normal output is designated as S. The truth-table and circuit diagram are shown:

2 Logic Gates THE INVERTER. A logic gate is an electronic circuit which makes logic decisions. It has one output and one or more inputs.

2 Logic Gates THE INVERTER. A logic gate is an electronic circuit which makes logic decisions. It has one output and one or more inputs. 2 Logic Gates A logic gate is an electronic circuit which makes logic decisions. It has one output and one or more inputs. THE INVERTER The inverter (NOT circuit) performs the operation called inversion

More information

EXPERIMENT NO 1 TRUTH TABLE (1)

EXPERIMENT NO 1 TRUTH TABLE (1) EPERIMENT NO AIM: To verify the Demorgan s theorems. APPARATUS REQUIRED: THEORY: Digital logic trainer and Patch cords. The digital signals are discrete in nature and can only assume one of the two values

More information

Experiment # 4. Binary Addition & Subtraction. Eng. Waleed Y. Mousa

Experiment # 4. Binary Addition & Subtraction. Eng. Waleed Y. Mousa Experiment # 4 Binary Addition & Subtraction Eng. Waleed Y. Mousa 1. Objectives: 1. To study adder and subtractor circuits using logic gates. 2. To construct and test various adders and subtractor circuits.

More information

Number system: the system used to count discrete units is called number. Decimal system: the number system that contains 10 distinguished

Number system: the system used to count discrete units is called number. Decimal system: the number system that contains 10 distinguished Number system: the system used to count discrete units is called number system Decimal system: the number system that contains 10 distinguished symbols that is 0-9 or digits is called decimal system. As

More information

Gates and Circuits 1

Gates and Circuits 1 1 Gates and Circuits Chapter Goals Identify the basic gates and describe the behavior of each Describe how gates are implemented using transistors Combine basic gates into circuits Describe the behavior

More information

Combinational Logic Circuits. Combinational Logic

Combinational Logic Circuits. Combinational Logic Combinational Logic Circuits The outputs of Combinational Logic Circuits are only determined by the logical function of their current input state, logic 0 or logic 1, at any given instant in time. The

More information

Chapter 3 Digital Logic Structures

Chapter 3 Digital Logic Structures Chapter 3 Digital Logic Structures Transistor: Building Block of Computers Microprocessors contain millions of transistors Intel Pentium 4 (2000): 48 million IBM PowerPC 750FX (2002): 38 million IBM/Apple

More information

UNIT III. Designing Combinatorial Circuits. Adders

UNIT III. Designing Combinatorial Circuits. Adders UNIT III Designing Combinatorial Circuits The design of a combinational circuit starts from the verbal outline of the problem and ends with a logic circuit diagram or a set of Boolean functions from which

More information

DIGITAL CIRCUITS AND SYSTEMS ASSIGNMENTS 1 SOLUTIONS

DIGITAL CIRCUITS AND SYSTEMS ASSIGNMENTS 1 SOLUTIONS DIGITAL CIRCUITS AND SYSTEMS ASSIGNMENTS 1 SOLUTIONS 1. Analog signal varies continuously between two amplitudes over the given interval of time. Between these limits of amplitude and time, the signal

More information

Subtractor Logic Schematic

Subtractor Logic Schematic Function Of Xor Gate In Parallel Adder Subtractor Logic Schematic metic functions, including half adder, half subtractor, full adder, independent logic gates to form desired circuits based on dif- by integrating

More information

Dr. Nicola Nicolici COE/EE2DI4 Midterm Test #1 Oct 18, 2006

Dr. Nicola Nicolici COE/EE2DI4 Midterm Test #1 Oct 18, 2006 COE/EE2DI4 Midterm Test #1 Fall 2006 Page 1 Dr. Nicola Nicolici COE/EE2DI4 Midterm Test #1 Oct 18, 2006 Instructions: This examination paper includes 10 pages and 20 multiple-choice questions starting

More information

Multiple input gates. The AND gate

Multiple input gates. The AND gate Multiple input gates Inverters and buffers exhaust the possibilities for single-input gate circuits. What more can be done with a single logic signal but to buffer it or invert it? To explore more logic

More information

Asst. Prof. Thavatchai Tayjasanant, PhD. Power System Research Lab 12 th Floor, Building 4 Tel: (02)

Asst. Prof. Thavatchai Tayjasanant, PhD. Power System Research Lab 12 th Floor, Building 4 Tel: (02) 2145230 Aircraft Electricity and Electronics Asst. Prof. Thavatchai Tayjasanant, PhD Email: taytaycu@gmail.com aycu@g a co Power System Research Lab 12 th Floor, Building 4 Tel: (02) 218-6527 1 Chapter

More information

Lab 2: Combinational Circuits Design

Lab 2: Combinational Circuits Design Lab : Combinational Circuits Design PURPOSE: The purpose of this laboratory assignment is to investigate the design of combinational circuits using SSI circuits and basic logic gates such as ANDs, ORs,

More information

Function Table of an Odd-Parity Generator Circuit

Function Table of an Odd-Parity Generator Circuit Implementation of an Odd-Parity Generator Circuit The first step in implementing any circuit is to represent its operation in terms of a Truth or Function table. The function table for an 8-bit data as

More information

Logic Circuit Design

Logic Circuit Design Logic Circuit Design we have studied Truth Tables Logic gates Logic algebra K-maps 1 All these are tools Tools Truth Tables Logic gates Logic algebra K-maps 2 All these are tools Tools Truth Tables Logic

More information

Positive and Negative Logic

Positive and Negative Logic Course: B.Sc. Applied Physical Science (Computer Science) Year & Sem.: IInd Year, Sem - IIIrd Subject: Computer Science Paper No.: IX Paper Title: Computer System Architecture Lecture No.: 4 Lecture Title:

More information

In this lecture: Lecture 8: ROM & Programmable Logic Devices

In this lecture: Lecture 8: ROM & Programmable Logic Devices In this lecture: Lecture 8: ROM Programmable Logic Devices Dr Pete Sedcole Department of EE Engineering Imperial College London http://caseeicacuk/~nps/ (Floyd, 3 5, 3) (Tocci 2, 24, 25, 27, 28, 3 34)

More information

(CSC-3501) Lecture 6 (31 Jan 2008) Seung-Jong Park (Jay) CSC S.J. Park. Announcement

(CSC-3501) Lecture 6 (31 Jan 2008) Seung-Jong Park (Jay)   CSC S.J. Park. Announcement Seung-Jong Park (Jay) http://www.csc.lsu.edu/~sjpark Computer Architecture (CSC-3501) Lecture 6 (31 Jan 2008) 1 Announcement 2 1 Reminder A logic circuit is composed of: Inputs Outputs Functional specification

More information

2 Building Blocks. There is often the need to compare two binary values.

2 Building Blocks. There is often the need to compare two binary values. 2 Building Blocks 2.1 Comparators There is often the need to compare two binary values. This is done using a comparator. A comparator determines whether binary values A and B are: 1. A = B 2. A < B 3.

More information

1.) If a 3 input NOR gate has eight input possibilities, how many of those possibilities result in a HIGH output? (a.) 1 (b.) 2 (c.) 3 (d.) 7 (e.

1.) If a 3 input NOR gate has eight input possibilities, how many of those possibilities result in a HIGH output? (a.) 1 (b.) 2 (c.) 3 (d.) 7 (e. Name: Multiple Choice 1.) If a 3 input NOR gate has eight input possibilities, how many of those possibilities result in a HIGH output? (a.) 1 (b.) 2 (c.) 3 (d.) 7 (e.) 8 2.) The output of an OR gate with

More information

Lab Report: Digital Logic

Lab Report: Digital Logic Lab Report: Digital Logic Introduction The aim of the Digital Logic Lab was to construct a simple 4-bit Arithmetic Logic Unit (ALU) in order to demonstrate methods of using Boolean Algebra to manipulate

More information

Experiment # 3 Combinational Circuits (I) Binary Addition and Subtraction

Experiment # 3 Combinational Circuits (I) Binary Addition and Subtraction Experiment # 3 Combinational Circuits (I) Binary Addition and Subtraction Objectives: 1. To study adder and subtractor circuits using logic gates. 2. To construct and test various adders and subtractor

More information

Exercise 1: EXCLUSIVE OR/NOR Gate Functions

Exercise 1: EXCLUSIVE OR/NOR Gate Functions EXCLUSIVE-OR/NOR Gates Digital Logic Fundamentals Exercise 1: EXCLUSIVE OR/NOR Gate Functions EXERCISE OBJECTIVE When you have completed this exercise, you will be able to demonstrate the operation of

More information

Chapter 1: Digital logic

Chapter 1: Digital logic Chapter 1: Digital logic I. Overview In PHYS 252, you learned the essentials of circuit analysis, including the concepts of impedance, amplification, feedback and frequency analysis. Most of the circuits

More information

COMPUTER ORGANIZATION & ARCHITECTURE DIGITAL LOGIC CSCD211- DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF GHANA

COMPUTER ORGANIZATION & ARCHITECTURE DIGITAL LOGIC CSCD211- DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF GHANA COMPUTER ORGANIZATION & ARCHITECTURE DIGITAL LOGIC LOGIC Logic is a branch of math that tries to look at problems in terms of being either true or false. It will use a set of statements to derive new true

More information

Odd-Prime Number Detector The table of minterms is represented. Table 13.1

Odd-Prime Number Detector The table of minterms is represented. Table 13.1 Odd-Prime Number Detector The table of minterms is represented. Table 13.1 Minterm A B C D E 1 0 0 0 0 1 3 0 0 0 1 1 5 0 0 1 0 1 7 0 0 1 1 1 11 0 1 0 1 1 13 0 1 1 0 1 17 1 0 0 0 1 19 1 0 0 1 1 23 1 0 1

More information

COMBINATIONAL CIRCUIT

COMBINATIONAL CIRCUIT Combinational circuit is a circuit in which we combine the different gates in the circuit, for example encoder, decoder, multiplexer and demultiplexer. Some of the characteristics of combinational circuits

More information

Gates and and Circuits

Gates and and Circuits Chapter 4 Gates and Circuits Chapter Goals Identify the basic gates and describe the behavior of each Describe how gates are implemented using transistors Combine basic gates into circuits Describe the

More information

UNIT-IV Combinational Logic

UNIT-IV Combinational Logic UNIT-IV Combinational Logic Introduction: The signals are usually represented by discrete bands of analog levels in digital electronic circuits or digital electronics instead of continuous ranges represented

More information

TABLE 3-2 Truth Table for Code Converter Example

TABLE 3-2 Truth Table for Code Converter Example 997 by Prentice-Hall, Inc. Mano & Kime Upper Saddle River, New Jersey 7458 T-28 TABLE 3-2 Truth Table for Code Converter Example Decimal Digit Input BCD Output Excess-3 A B C D W Y Z 2 3 4 5 6 7 8 9 Truth

More information

;UsetJand : Llto Record the truth. LAB EXERCISE 6.1 Binary Adders. Materials. Procedure

;UsetJand : Llto Record the truth. LAB EXERCISE 6.1 Binary Adders. Materials. Procedure In this lab' exercise you will learn to implement binary adders. You will learn about the half-adder and the full-adder. I. LAB EXERCISE 6.1 Binary Adders Objectiv~s LD-2 Logic Designer Materials 74L586

More information

Department of Electronics and Communication Engineering

Department of Electronics and Communication Engineering Department of Electronics and Communication Engineering Sub Code/Name: BEC3L2- DIGITAL ELECTRONICS LAB Name Reg No Branch Year & Semester : : : : LIST OF EXPERIMENTS Sl No Experiments Page No Study of

More information

DESIGN AND ANALYSIS OF LOW POWER 10- TRANSISTOR FULL ADDERS USING NOVEL X-NOR GATES

DESIGN AND ANALYSIS OF LOW POWER 10- TRANSISTOR FULL ADDERS USING NOVEL X-NOR GATES DESIGN AND ANALYSIS OF LOW POWER 10- TRANSISTOR FULL ADDERS USING NOVEL X-NOR GATES Basil George 200831005 Nikhil Soni 200830014 Abstract Full adders are important components in applications such as digital

More information

Combinational Circuits: Multiplexers, Decoders, Programmable Logic Devices

Combinational Circuits: Multiplexers, Decoders, Programmable Logic Devices Combinational Circuits: Multiplexers, Decoders, Programmable Logic Devices Lecture 5 Doru Todinca Textbook This chapter is based on the book [RothKinney]: Charles H. Roth, Larry L. Kinney, Fundamentals

More information

CS302 Digital Logic Design Solved Objective Midterm Papers For Preparation of Midterm Exam

CS302 Digital Logic Design Solved Objective Midterm Papers For Preparation of Midterm Exam CS302 Digital Logic Design Solved Objective Midterm Papers For Preparation of Midterm Exam MIDTERM EXAMINATION 2011 (October-November) Q-21 Draw function table of a half adder circuit? (2) Answer: - Page

More information

COMBINATIONAL LOGIC CIRCUIT First Class. Dr. AMMAR ABDUL-HAMED KHADER

COMBINATIONAL LOGIC CIRCUIT First Class. Dr. AMMAR ABDUL-HAMED KHADER COMBINATIONAL LOGIC CIRCUIT First Class 1 BASIC ADDER Adders are important in computers and also in other types of digital system in which numerical data are processed. An understanding of the basic operation

More information

Module 4: Design and Analysis of Combinational Circuits 1. Module-4. Design and Analysis of Combinational Circuits

Module 4: Design and Analysis of Combinational Circuits 1. Module-4. Design and Analysis of Combinational Circuits 1 Module-4 Design and Analysis of Combinational Circuits 4.1 Motivation: This topic develops the fundamental understanding and design of adder, substractor, code converter multiplexer, demultiplexer etc

More information

University of Technology

University of Technology University of Technology Lecturer: Dr. Sinan Majid Course Title: microprocessors 4 th year Lecture 7 & 8 NAND and XOR Implementations Combinational Design Procedure NAND-NAND & NOR-NOR Networks DeMorgan

More information

SRV ENGINEERING COLLEGE SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE SEMBODAI

SRV ENGINEERING COLLEGE SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE SEMBODAI SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE SEMBODAI 6489 (Approved By AICTE,Newdelhi Affiliated To ANNA UNIVERSITY::Chennai) CS 62 DIGITAL ELECTRONICS LAB (REGULATION-23) LAB MANUAL DEPARTMENT OF

More information

Logic diagram: a graphical representation of a circuit

Logic diagram: a graphical representation of a circuit LOGIC AND GATES Introduction to Logic (1) Logic diagram: a graphical representation of a circuit Each type of gate is represented by a specific graphical symbol Truth table: defines the function of a gate

More information

Design and Implementation of Complex Multiplier Using Compressors

Design and Implementation of Complex Multiplier Using Compressors Design and Implementation of Complex Multiplier Using Compressors Abstract: In this paper, a low-power high speed Complex Multiplier using compressor circuit is proposed for fast digital arithmetic integrated

More information

COMPUTER ARCHITECTURE AND ORGANIZATION

COMPUTER ARCHITECTURE AND ORGANIZATION DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING COMPUTER ARCHITECTURE AND ORGANIZATION (CSE18R174) LAB MANUAL Name of the Student:..... Register No Class Year/Sem/Class :. :. :... 1 This page is left intentionally

More information

Digital Electronics. Functions of Combinational Logic

Digital Electronics. Functions of Combinational Logic Digital Electronics Functions of Combinational Logic Half-dder Basic rules of binary addition are performed by a half adder, which has two binary inputs ( and B) and two binary outputs (Carry out and Sum).

More information

Subject: Analog and Digital Electronics Code:15CS32

Subject: Analog and Digital Electronics Code:15CS32 Subject: Analog and Digital Electronics Code:15CS32 Syllabus: The Basic Gates : Review of Basic Logic gates, Positive and Negative Logic, Introduction to HDL. Combinational Logic Circuits:Sum-of-Products

More information

5. (Adapted from 3.25)

5. (Adapted from 3.25) Homework02 1. According to the following equations, draw the circuits and write the matching truth tables.the circuits can be drawn either in transistor-level or symbols. a. X = NOT (NOT(A) OR (A AND B

More information

Binary Adder and Subtractor circuit

Binary Adder and Subtractor circuit Digital circuit Experiment manual Experiment 9 inary dder and Subtractor circuit Part list. x. x. 8 x. x. 8 x Theory inary number addition n adder is a digital circuit that performs addition of numbers.

More information

QUIZ. What do these bits represent?

QUIZ. What do these bits represent? QUIZ What do these bits represent? 1001 0110 1 QUIZ What do these bits represent? Unsigned integer: 1101 1110 Signed integer (2 s complement): Fraction: IBM 437 character: Latin-1 character: Huffman-compressed

More information

Digital Logic Design ELCT 201

Digital Logic Design ELCT 201 Faculty of Information Engineering and Technology Dr. Haitham Omran and Dr. Wassim Alexan Digital Logic Design ELCT 201 Winter 2017 Midterm Exam Second Chance Please tick the box of your major: IET MET

More information

OBJECTIVE TYPE QUESTIONS FOR PRACTICAL EXAMINATION Subject : Electronics-I ( EC 112)

OBJECTIVE TYPE QUESTIONS FOR PRACTICAL EXAMINATION Subject : Electronics-I ( EC 112) OBJECTIVE TYPE QUESTIONS FOR PRACTICAL EXAMINATION Subject : Electronics-I ( EC 112) 1. Which mathematical notation specifies the condition of periodicity for a continuous time signal? a. x(t) = x( t +T)

More information

Combinational Logic. Rab Nawaz Khan Jadoon DCS. Lecturer COMSATS Lahore Pakistan. Department of Computer Science

Combinational Logic. Rab Nawaz Khan Jadoon DCS. Lecturer COMSATS Lahore Pakistan. Department of Computer Science Combinational Logic Rab Nawaz Khan Jadoon DCS COMSATS Institute of Information Technology Lecturer COMSATS Lahore Pakistan Digital Logic and Computer Design 2 Combinational logic A combinational circuit

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 4.72 International Journal of Advance Engineering and Research Development Volume 5, Issue 01, January -2018 e-issn (O): 2348-4470 p-issn (P): 2348-6406 Comparative

More information

Digital Electronics Course Objectives

Digital Electronics Course Objectives Digital Electronics Course Objectives In this course, we learning is reported using Standards Referenced Reporting (SRR). SRR seeks to provide students with grades that are consistent, are accurate, and

More information

DIGITAL ELECTRONICS. Methods & diagrams : 1 Graph plotting : - Tables & analysis : - Questions & discussion : 6 Performance : 3

DIGITAL ELECTRONICS. Methods & diagrams : 1 Graph plotting : - Tables & analysis : - Questions & discussion : 6 Performance : 3 DIGITAL ELECTRONICS Marking scheme : Methods & diagrams : 1 Graph plotting : - Tables & analysis : - Questions & discussion : 6 Performance : 3 Aim: This experiment will investigate the function of the

More information

Chapter 3 Digital Logic Structures

Chapter 3 Digital Logic Structures Chapter 3 Digital Logic Structures Transistor: Building Block of Computers Microprocessors contain millions of transistors Intel Pentium 4 (2): 48 million IBM PowerPC 75FX (22): 38 million IBM/Apple PowerPC

More information

3.1 There are three basic logic functions from which all circuits can be designed: NOT (invert), OR, and

3.1 There are three basic logic functions from which all circuits can be designed: NOT (invert), OR, and EE 2449 Experiment 3 Jack Levine and Nancy Warter-Perez, Revised 6/12/17 CALIFORNIA STATE UNIVERSITY LOS ANGELES Department of Electrical and Computer Engineering EE-2449 Digital Logic Lab EXPERIMENT 3

More information

LOGIC DIAGRAM: HALF ADDER TRUTH TABLE: A B CARRY SUM. 2012/ODD/III/ECE/DE/LM Page No. 1

LOGIC DIAGRAM: HALF ADDER TRUTH TABLE: A B CARRY SUM. 2012/ODD/III/ECE/DE/LM Page No. 1 LOGIC DIAGRAM: HALF ADDER TRUTH TABLE: A B CARRY SUM K-Map for SUM: K-Map for CARRY: SUM = A B + AB CARRY = AB 22/ODD/III/ECE/DE/LM Page No. EXPT NO: DATE : DESIGN OF ADDER AND SUBTRACTOR AIM: To design

More information

LIST OF EXPERIMENTS. KCTCET/ /Odd/3rd/ETE/CSE/LM

LIST OF EXPERIMENTS. KCTCET/ /Odd/3rd/ETE/CSE/LM LIST OF EXPERIMENTS. Study of logic gates. 2. Design and implementation of adders and subtractors using logic gates. 3. Design and implementation of code converters using logic gates. 4. Design and implementation

More information

Topic Notes: Digital Logic

Topic Notes: Digital Logic Computer Science 220 Assembly Language & Comp. Architecture Siena College Fall 20 Topic Notes: Digital Logic Our goal for the next couple of weeks is to gain a reasonably complete understanding of how

More information

Adder (electronics) - Wikipedia, the free encyclopedia

Adder (electronics) - Wikipedia, the free encyclopedia Page 1 of 7 Adder (electronics) From Wikipedia, the free encyclopedia (Redirected from Full adder) In electronics, an adder or summer is a digital circuit that performs addition of numbers. In many computers

More information

Exam #2 EE 209: Fall 2017

Exam #2 EE 209: Fall 2017 29 November 2017 Exam #2 EE 209: Fall 2017 Name: USCid: Session: Time: MW 10:30 11:50 / TH 11:00 12:20 (circle one) 1 hour 50 minutes Possible Score 1. 27 2. 28 3. 17 4. 16 5. 22 TOTAL 110 PERFECT 100

More information

Combinational Circuits DC-IV (Part I) Notes

Combinational Circuits DC-IV (Part I) Notes Combinational Circuits DC-IV (Part I) Notes Digital Circuits have been classified as: (a) Combinational Circuits: In these circuits output at any instant of time depends on inputs present at that instant

More information

Introduction to Electronics. Dr. Lynn Fuller

Introduction to Electronics. Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Introduction to Electronics Dr. Lynn Fuller Webpage: http://www.rit.edu/~lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035

More information

IES Digital Mock Test

IES Digital Mock Test . The circuit given below work as IES Digital Mock Test - 4 Logic A B C x y z (a) Binary to Gray code converter (c) Binary to ECESS- converter (b) Gray code to Binary converter (d) ECESS- To Gray code

More information

CHAPTER 5 DESIGN OF COMBINATIONAL LOGIC CIRCUITS IN QCA

CHAPTER 5 DESIGN OF COMBINATIONAL LOGIC CIRCUITS IN QCA 90 CHAPTER 5 DESIGN OF COMBINATIONAL LOGIC CIRCUITS IN QCA 5.1 INTRODUCTION A combinational circuit consists of logic gates whose outputs at any time are determined directly from the present combination

More information

COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design

COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design PH-315 COMINATIONAL and SEUENTIAL LOGIC CIRCUITS Hardware implementation and software design A La Rosa I PURPOSE: To familiarize with combinational and sequential logic circuits Combinational circuits

More information

An Optimized Wallace Tree Multiplier using Parallel Prefix Han-Carlson Adder for DSP Processors

An Optimized Wallace Tree Multiplier using Parallel Prefix Han-Carlson Adder for DSP Processors An Optimized Wallace Tree Multiplier using Parallel Prefix Han-Carlson Adder for DSP Processors T.N.Priyatharshne Prof. L. Raja, M.E, (Ph.D) A. Vinodhini ME VLSI DESIGN Professor, ECE DEPT ME VLSI DESIGN

More information

B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics

B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics Sr. No. Date TITLE To From Marks Sign 1 To verify the application of op-amp as an Inverting Amplifier 2 To

More information

Analog, Digital, and Logic

Analog, Digital, and Logic Analog, Digital, and Logic Analog and Digital A/D and D/A conversion Prof Carruthers (ECE @ BU) EK307 Notes Summer 2018 116 / 264 Analog and Digital Digital and Analog There are 10 kinds of people: those

More information

CHAPTER FORMULAS & NOTES

CHAPTER FORMULAS & NOTES Formulae For u SEMICONDUCTORS By Mir Mohammed Abbas II PCMB 'A' 1 Important Terms, Definitions & Formulae CHAPTER FORMULAS & NOTES 1 Intrinsic Semiconductor: The pure semiconductors in which the electrical

More information

Syllabus for: Electronics for F Y B Sc (Electronics) Semester- 1 (With effect from June 2014) PAPER I: Basic Electrical Circuits

Syllabus for: Electronics for F Y B Sc (Electronics) Semester- 1 (With effect from June 2014) PAPER I: Basic Electrical Circuits Unit I: Passive Devices Syllabus for: Electronics for F Y B Sc (Electronics) Semester- 1 (With effect from June 2014) PAPER I: Basic Electrical Circuits Resistors, Fixed resistors & variable resistors,

More information

DESIGN AND IMPLEMENTATION OF AREA EFFICIENT, LOW-POWER AND HIGH SPEED 128-BIT REGULAR SQUARE ROOT CARRY SELECT ADDER

DESIGN AND IMPLEMENTATION OF AREA EFFICIENT, LOW-POWER AND HIGH SPEED 128-BIT REGULAR SQUARE ROOT CARRY SELECT ADDER DESIGN AND IMPLEMENTATION OF AREA EFFICIENT, LOW-POWER AND HIGH SPEED 128-BIT REGULAR SQUARE ROOT CARRY SELECT ADDER MURALIDHARAN.R [1],AVINASH.P.S.K [2],MURALI KRISHNA.K [3],POOJITH.K.C [4], ELECTRONICS

More information

Digital Electronic Concepts

Digital Electronic Concepts Western Technical College 10662137 Digital Electronic Concepts Course Outcome Summary Course Information Description Career Cluster Instructional Level Total Credits 4.00 Total Hours 108.00 This course

More information

On Built-In Self-Test for Adders

On Built-In Self-Test for Adders On Built-In Self-Test for s Mary D. Pulukuri and Charles E. Stroud Dept. of Electrical and Computer Engineering, Auburn University, Alabama Abstract - We evaluate some previously proposed test approaches

More information

Spec. Instructor: Center

Spec. Instructor: Center PDHonline Course E379 (5 PDH) Digital Logic Circuits Volume III Spec ial Logic Circuits Instructor: Lee Layton, P.E 2012 PDH Online PDH Center 5272 Meadow Estatess Drive Fairfax, VA 22030-6658 Phone &

More information

Lecture 3: Logic circuit. Combinational circuit and sequential circuit

Lecture 3: Logic circuit. Combinational circuit and sequential circuit Lecture 3: Logic circuit Combinational circuit and sequential circuit TRAN THI HONG HONG@IS.NAIST.JP Content Lecture : Computer organization and performance evaluation metrics Lecture 2: Processor architecture

More information

EXPERIMENT 5 Basic Digital Logic Circuits

EXPERIMENT 5 Basic Digital Logic Circuits ELEC 2010 Laborator Manual Eperiment 5 PRELAB Page 1 of 8 EXPERIMENT 5 Basic Digital Logic Circuits Introduction The eperiments in this laborator eercise will provide an introduction to digital electronic

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Computing Layers

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Computing Layers Chapter 3 Digital Logic Structures Original slides from Gregory Byrd, North Carolina State University Modified by Chris Wilcox, Sanjay Rajopadhye Colorado State University Computing Layers Problems Algorithms

More information

Digital. Design. R. Ananda Natarajan B C D

Digital. Design. R. Ananda Natarajan B C D Digital E A B C D 0 1 2 3 4 5 6 Design 7 8 9 10 11 12 13 14 15 Y R. Ananda Natarajan Digital Design Digital Design R. ANANDA NATARAJAN Professor Department of Electronics and Instrumentation Engineering

More information

Enhancement of Design Quality for an 8-bit ALU

Enhancement of Design Quality for an 8-bit ALU ABHIYANTRIKI An International Journal of Engineering & Technology (A Peer Reviewed & Indexed Journal) Vol. 3, No. 5 (May, 2016) http://www.aijet.in/ eissn: 2394-627X Enhancement of Design Quality for an

More information

Exercise 1: AND/NAND Logic Functions

Exercise 1: AND/NAND Logic Functions Exercise 1: AND/NAND Logic Functions EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine the operation of an AND and a NAND logic gate. You will verify your results

More information

Department of Electrical and Electronics Engineering Logic Circuits Laboratory EXPERIMENT-1 BASIC GATE CIRCUITS

Department of Electrical and Electronics Engineering Logic Circuits Laboratory EXPERIMENT-1 BASIC GATE CIRCUITS 1.1 Preliminary Study Simulate experiment using an available tool and prepare the preliminary report. 1.2 Aim of the Experiment Implementation and examination of logic gate circuits and their basic operations.

More information

A Highly Efficient Carry Select Adder

A Highly Efficient Carry Select Adder IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 4 October 2015 ISSN (online): 2349-784X A Highly Efficient Carry Select Adder Shiya Andrews V PG Student Department of Electronics

More information

Practical Workbook Logic Design & Switching Theory

Practical Workbook Logic Design & Switching Theory Practical Workbook Logic Design & Switching Theory Name : Year : Batch : Roll No : Department: Second Edition Fall 2017-18 Dept. of Computer & Information Systems Engineering NED University of Engineering

More information

Course Outline Cover Page

Course Outline Cover Page College of Micronesia FSM P.O. Box 159 Kolonia, Pohnpei Course Outline Cover Page Digital Electronics I VEE 135 Course Title Department and Number Course Description: This course provides the students

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 ISSN 645 ANALYSIS AND IMPLEMENTATION OF TRIVIAL DELAY BASED ADDERS G.Priyadarshini,J.Robert Theivadas,Ranganathan Vijayaraghavan ABSTRACT- In present-day, all digital devices are designed to be portable in

More information

Chapter 4: The Building Blocks: Binary Numbers, Boolean Logic, and Gates

Chapter 4: The Building Blocks: Binary Numbers, Boolean Logic, and Gates Chapter 4: The Building Blocks: Binary Numbers, Boolean Logic, and Gates Objectives In this chapter, you will learn about The binary numbering system Boolean logic and gates Building computer circuits

More information

High Speed, Low power and Area Efficient Processor Design Using Square Root Carry Select Adder

High Speed, Low power and Area Efficient Processor Design Using Square Root Carry Select Adder IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 9, Issue 2, Ver. VII (Mar - Apr. 2014), PP 14-18 High Speed, Low power and Area Efficient

More information

CMOS VLSI Design (A3425)

CMOS VLSI Design (A3425) CMOS VLSI Design (A3425) Unit III Static Logic Gates Introduction A static logic gate is one that has a well defined output once the inputs are stabilized and the switching transients have decayed away.

More information

CHAPTER 3 BASIC & COMBINATIONAL LOGIC CIRCUIT

CHAPTER 3 BASIC & COMBINATIONAL LOGIC CIRCUIT CHAPTER 3 BASIC & COMBINATIONAL LOGIC CIRCUIT CHAPTER CONTENTS 3.1 Introduction to Basic Gates 3.2 Analysing A Combinational Logic Circuit 3.3 Design A Combinational Logic Circuit From Boolean Expression

More information

Course Overview. Course Overview

Course Overview. Course Overview Course Overview Where does this course fit into the Electrical Engineering curriculum? Page 5 Course Overview Where does this course fit into the Computer Engineering curriculum? Page 6 3 Course Content

More information

Fig.16.1: Digital systems and analog systems

Fig.16.1: Digital systems and analog systems UNIT 16 LOGIC GATES Structure Introduction Objectives Boolean Algebra Logic Gates AND Gate OR Gate NOT Gate NAND Gate NOR Gate NAND and NOR Gates as Universal Gates Circuits for Logic Gates Elementary

More information

ICS312 Machine-level and Systems Programming

ICS312 Machine-level and Systems Programming Computer Architecture and Programming: Examples and Sample Problems ICS312 Machine-level and Systems Programming Henri Casanova (henric@hawaii.edu) 0000 1100 Somehow, the is initialized to some content,

More information

Implementation of Reversible Arithmetic and Logic Unit (ALU)

Implementation of Reversible Arithmetic and Logic Unit (ALU) Implementation of Reversible Arithmetic and Logic Unit (ALU) G.Vimala Student, Department of Electronics and Communication Engineering, Dr K V Subba Reddy Institute of Technology, Dupadu, Kurnool,AP, India.

More information

Digital Fundamentals. Lab 4 EX-OR Circuits & Combinational Circuit Design

Digital Fundamentals. Lab 4 EX-OR Circuits & Combinational Circuit Design Richland College School of Engineering & Technology Rev. 0 B. Donham Rev. 1 (7/2003) J. Horne Rev. 2 (1/2008) J. Bradbury Digital Fundamentals CETT 1425 Lab 4 EX-OR Circuits & Combinational Circuit Design

More information

Veer Narmad South Gujarat University, Surat

Veer Narmad South Gujarat University, Surat Unit I: Passive circuit elements (With effect from June 2017) Syllabus for: F Y B Sc (Electronics) Semester- 1 PAPER I: Basic Electrical Circuits Resistors, resistor types, power ratings, resistor colour

More information

DELD UNIT 3. Question Option A Option B Option C Option D Correct Option A B C

DELD UNIT 3. Question Option A Option B Option C Option D Correct Option A B C Class : S.E.Comp Matoshri College of Engineering and Research Center Nasik Department of Computer Engineering Digital Elecronics and Logic Design (DELD) UNIT - III Subject : DELD Sr. No. Question Option

More information

Lecture #1. Course Overview

Lecture #1. Course Overview Lecture #1 OUTLINE Course overview Introduction: integrated circuits Analog vs. digital signals Lecture 1, Slide 1 Course Overview EECS 40: One of five EECS core courses (with 20, 61A, 61B, and 61C) introduces

More information

ELECTROVATE. Electromania Problem Statement Discussion

ELECTROVATE. Electromania Problem Statement Discussion ELECTROVATE Electromania Problem Statement Discussion An Competition Basic Circuiting What is Electromania? Innovation Debugging Lets Revise the Basics Electronics Digital Analog Digital Electronics Similar

More information

Digital Logic Circuits

Digital Logic Circuits Digital Logic Circuits Let s look at the essential features of digital logic circuits, which are at the heart of digital computers. Learning Objectives Understand the concepts of analog and digital signals

More information