Binary Adder and Subtractor circuit

Size: px
Start display at page:

Download "Binary Adder and Subtractor circuit"

Transcription

1 Digital circuit Experiment manual Experiment 9 inary dder and Subtractor circuit Part list. x. x. 8 x. x. 8 x Theory inary number addition n adder is a digital circuit that performs addition of numbers. In modern computers adders reside in the arithmetic logic unit (LU) where other operations are performed. For single bit adders, there are two general types. half adder has two inputs, generally labelled and, and two outputs, the sum S and carry C. S is the two-bit XOR of and, and C is the ND of and. Essentially the output of a half adder is the sum of two one-bit numbers, with C being the most significant of these two outputs. The second type of single bit adder is the full adder. The full adder takes into account a carry input such that multiple adders can be used to add larger numbers. To remove ambiguity between the input and output carry lines, the carry in is labelled C i or C in while the carry out is labelled C o or C out. Half adder The half adder format is + = + = + = + =, Carry =

2 8 Digital circuit Experiment manual Following is the logic table for a half adder : INPUT OUTPUT SUM (S) Carry (Co) The logic expression of half adder is : S = + = Co = The logic diagram of the Half adder is shown in Figure L9-. SUM S=+ SUM S=+ CRRY Co= CRRY Co= Figure L9- The -bit Half adder logic diagram

3 Digital circuit Experiment manual 9 S Ci Co Denominator () dder ต วทด ()(Co) ต วทด (Co) Carry in (Ci) SUM (S) Carry out ต วทด (Co) (Co) Figure L9- The logic diagram of -bit binary full adder Full adder full adder is a logical circuit that performs an addition operation on three binary digits. The full adder produces a sum and carry value, which are both binary digits. It can be combined with other full adders or work on its own. The logic expression of the full adder is : S = C + C + C + C Co = C + C + C + C We can minimization the Carry out logic expression as follows : Co = + C + C + C The full adder logic diagram is shown in the Figure L9-.

4 Digital circuit Experiment manual inary number subtraction In unsigned binary subtraction, two operands, called the subtrahend and the minuend, are subtracted to yield a result called the difference. In the operation Q = -, Q is the difference, is the minuend, and is the subtrahend. Unsigned binary subtraction is based on the following four operations: (i) - = (ii) - = (iii) - = (iv) - = The last operation shows how to obtain a positive result when subtracting a from a borrow from the next most significant bit. orrowing Rules: () If you are borrowing from a position that contains a, leave behind a in the borrowedfrom position. () If you are borrowing from a position that already contains a, you must borrow from a more significant digit that contains a. ll s up to that point become s, and the last borrowed-from digit becomes a. The truth table of the half subtractor is shhown below Diff (Q) orrow (o) Consider the half subtractor's truth table, we would see the subtractor operation similar the addition. It is Exclusive-OR operation.the different of half adder and subtractor is orrow output (o). The half subtractor logic diagram is shown in the Figure L9-

5 Digital circuit Experiment manual DIFFERENCE DIFF = + ORROW o = DIFF o Figure L9- The logic diagram of the half subtractor with orrow output In case the minuend value less than subtrahend, the borrow must happen. The orrow (in) will be add to the half subtractor. It is Full Subtractor ; FS. The truth table of the full subtractor is shown below Minuend () Subtrahend () orrow in (i) Diff (Q) orrow (o) The operation block diagram of the full subtractor is shown in the Figure L9- Half subtractor o i Full subtractor Q = DIFF Figure L9- Shows the internal diagram of full subtractor operation

6 Digital circuit Experiment manual Procedure Half adder 9. Construct the circuit in Figure L9-. pply the input with LOGIC SWITCH. The output is connected with LOGIC MONITOR on the experiment board. Record the result in the output table in Figure L9- IC/ IC/ IC/ IC/ 9 IC/ 8 S = SUM SUM (S) Carry (Co) IC,IC: 9 IC/ 8 IC/ C = CRRY Figure L9- The half adder experiment circuit for step Construct the circuit in Figure L9-. pply the input with LOGIC SWITCH. The output is connected with LOGIC MONITOR on the experiment board. Record the result in the output table in Figure L9- IC S SUM (S) Carry (Co) + V IC: 8 IC: 8 IC Co Figure L9- The half adder experiment circuit for step 9.

7 Digital circuit Experiment manual Full adder 9. Construct the circuit in Figure L9-. pply the input with LOGIC SWITCH. The output is connected with LOGIC MONITOR on the experiment board. Record the result in the output table in Figure L9- IC/ 9 IC/ 8 S Ci IC/ IC Co IC/ IC/ IC: 8 IC: 8 IC: Denominator () dder ต วทด ()(Co) Carry in ต วทด (Ci)(Co) SUM (S) Carry out ต วทด (Co) (Co) Figure L9- The full adder experiment circuit for step 9.

8 Digital circuit Experiment manual Half subtractor 9. Construct the circuit in Figure L9-8. pply the input with LOGIC SWITCH. The output is connected with LOGIC MONITOR on the experiment board. Record the result in the output table in Figure L9-8 IC Q IC IC o IC : 8 IC : IC : 8 Diff (Q) orrow (o) Figure L9-8 The half subtractor experiment circuit for step 9.

9 Digital circuit Experiment manual Full subtractor 9. Construct the circuit in Figure L9-9. pply the input with LOGIC SWITCH. The output is connected with LOGIC MONITOR on the experiment board. Record the result in the output table in Figure L9-9 i IC : 8 IC : IC : 8 IC : IC/ IC/ IC/ IC/ 9 IC/ 8 X o IC/ IC/ Minuend () Subtrahend () orrow in (i) Diff (Q) orrow (o) Figure L9-9 The full subtractor experiment circuit for step 9. INNOVTIVE EXPERIMENT

10 Digital circuit Experiment manual

Experiment # 3 Combinational Circuits (I) Binary Addition and Subtraction

Experiment # 3 Combinational Circuits (I) Binary Addition and Subtraction Experiment # 3 Combinational Circuits (I) Binary Addition and Subtraction Objectives: 1. To study adder and subtractor circuits using logic gates. 2. To construct and test various adders and subtractor

More information

Combinational Logic. Rab Nawaz Khan Jadoon DCS. Lecturer COMSATS Lahore Pakistan. Department of Computer Science

Combinational Logic. Rab Nawaz Khan Jadoon DCS. Lecturer COMSATS Lahore Pakistan. Department of Computer Science Combinational Logic Rab Nawaz Khan Jadoon DCS COMSATS Institute of Information Technology Lecturer COMSATS Lahore Pakistan Digital Logic and Computer Design 2 Combinational logic A combinational circuit

More information

Experiment # 4. Binary Addition & Subtraction. Eng. Waleed Y. Mousa

Experiment # 4. Binary Addition & Subtraction. Eng. Waleed Y. Mousa Experiment # 4 Binary Addition & Subtraction Eng. Waleed Y. Mousa 1. Objectives: 1. To study adder and subtractor circuits using logic gates. 2. To construct and test various adders and subtractor circuits.

More information

COMBINATIONAL LOGIC CIRCUIT First Class. Dr. AMMAR ABDUL-HAMED KHADER

COMBINATIONAL LOGIC CIRCUIT First Class. Dr. AMMAR ABDUL-HAMED KHADER COMBINATIONAL LOGIC CIRCUIT First Class 1 BASIC ADDER Adders are important in computers and also in other types of digital system in which numerical data are processed. An understanding of the basic operation

More information

UNIT III. Designing Combinatorial Circuits. Adders

UNIT III. Designing Combinatorial Circuits. Adders UNIT III Designing Combinatorial Circuits The design of a combinational circuit starts from the verbal outline of the problem and ends with a logic circuit diagram or a set of Boolean functions from which

More information

4:Combinational logic circuits. 3 July

4:Combinational logic circuits. 3 July 4:Combinational logic circuits 3 July 2014 1 overview What is combinational logic circuit? Examples of combinational logic circuits Binary-adder Binary-subtractor Binary-multiplier Decoders Multiplexers

More information

COMBINATIONAL CIRCUIT

COMBINATIONAL CIRCUIT Combinational circuit is a circuit in which we combine the different gates in the circuit, for example encoder, decoder, multiplexer and demultiplexer. Some of the characteristics of combinational circuits

More information

;UsetJand : Llto Record the truth. LAB EXERCISE 6.1 Binary Adders. Materials. Procedure

;UsetJand : Llto Record the truth. LAB EXERCISE 6.1 Binary Adders. Materials. Procedure In this lab' exercise you will learn to implement binary adders. You will learn about the half-adder and the full-adder. I. LAB EXERCISE 6.1 Binary Adders Objectiv~s LD-2 Logic Designer Materials 74L586

More information

Satish Chandra, Assistant Professor, P P N College, Kanpur 1

Satish Chandra, Assistant Professor, P P N College, Kanpur 1 8/7/4 LOGIC GTES CE NPN Transistor Circuit COMINTIONL LOGIC Satish Chandra ssistant Professor Department of Physics P PN College, Kanpur www.satish4.weebly.com circuit with an output signal that is logical

More information

UNIT-IV Combinational Logic

UNIT-IV Combinational Logic UNIT-IV Combinational Logic Introduction: The signals are usually represented by discrete bands of analog levels in digital electronic circuits or digital electronics instead of continuous ranges represented

More information

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI 6 DEPARTMENT: ECE QUESTION BANK SUBJECT NAME: DIGITAL SYSTEM DESIGN SEMESTER III SUBJECT CODE: EC UNIT : Design of Combinational Circuits PART -A ( Marks).

More information

LOGIC GATES AND LOGIC CIRCUITS A logic gate is an elementary building block of a Digital Circuit. Most logic gates have two inputs and one output.

LOGIC GATES AND LOGIC CIRCUITS A logic gate is an elementary building block of a Digital Circuit. Most logic gates have two inputs and one output. LOGIC GATES AND LOGIC CIRCUITS A logic gate is an elementary building block of a Digital Circuit. Most logic gates have two inputs and one output. At any given moment, every terminal is in one of the two

More information

EXPERIMENT NO 1 TRUTH TABLE (1)

EXPERIMENT NO 1 TRUTH TABLE (1) EPERIMENT NO AIM: To verify the Demorgan s theorems. APPARATUS REQUIRED: THEORY: Digital logic trainer and Patch cords. The digital signals are discrete in nature and can only assume one of the two values

More information

CHAPTER 5 DESIGN OF COMBINATIONAL LOGIC CIRCUITS IN QCA

CHAPTER 5 DESIGN OF COMBINATIONAL LOGIC CIRCUITS IN QCA 90 CHAPTER 5 DESIGN OF COMBINATIONAL LOGIC CIRCUITS IN QCA 5.1 INTRODUCTION A combinational circuit consists of logic gates whose outputs at any time are determined directly from the present combination

More information

Dr. Nicola Nicolici COE/EE2DI4 Midterm Test #1 Oct 18, 2006

Dr. Nicola Nicolici COE/EE2DI4 Midterm Test #1 Oct 18, 2006 COE/EE2DI4 Midterm Test #1 Fall 2006 Page 1 Dr. Nicola Nicolici COE/EE2DI4 Midterm Test #1 Oct 18, 2006 Instructions: This examination paper includes 10 pages and 20 multiple-choice questions starting

More information

Department of Electronics and Communication Engineering

Department of Electronics and Communication Engineering Department of Electronics and Communication Engineering Sub Code/Name: BEC3L2- DIGITAL ELECTRONICS LAB Name Reg No Branch Year & Semester : : : : LIST OF EXPERIMENTS Sl No Experiments Page No Study of

More information

DELD MODEL ANSWER DEC 2018

DELD MODEL ANSWER DEC 2018 2018 DELD MODEL ANSWER DEC 2018 Q 1. a ) How will you implement Full adder using half-adder? Explain the circuit diagram. [6] An adder is a digital logic circuit in electronics that implements addition

More information

Combinational Circuits DC-IV (Part I) Notes

Combinational Circuits DC-IV (Part I) Notes Combinational Circuits DC-IV (Part I) Notes Digital Circuits have been classified as: (a) Combinational Circuits: In these circuits output at any instant of time depends on inputs present at that instant

More information

FPGA IMPLENTATION OF REVERSIBLE FLOATING POINT MULTIPLIER USING CSA

FPGA IMPLENTATION OF REVERSIBLE FLOATING POINT MULTIPLIER USING CSA FPGA IMPLENTATION OF REVERSIBLE FLOATING POINT MULTIPLIER USING CSA Vidya Devi M 1, Lakshmisagar H S 1 1 Assistant Professor, Department of Electronics and Communication BMS Institute of Technology,Bangalore

More information

DESIGN OF 4 BIT BINARY ARITHMETIC CIRCUIT USING 1 S COMPLEMENT METHOD

DESIGN OF 4 BIT BINARY ARITHMETIC CIRCUIT USING 1 S COMPLEMENT METHOD e-issn 2455 1392 Volume 2 Issue 4, April 2016 pp. 176-187 Scientific Journal Impact Factor : 3.468 http://www.ijcter.com DESIGN OF 4 BIT BINARY ARITHMETIC CIRCUIT USING 1 S COMPLEMENT METHOD Dhrubojyoti

More information

Gates and Circuits 1

Gates and Circuits 1 1 Gates and Circuits Chapter Goals Identify the basic gates and describe the behavior of each Describe how gates are implemented using transistors Combine basic gates into circuits Describe the behavior

More information

Module 4: Design and Analysis of Combinational Circuits 1. Module-4. Design and Analysis of Combinational Circuits

Module 4: Design and Analysis of Combinational Circuits 1. Module-4. Design and Analysis of Combinational Circuits 1 Module-4 Design and Analysis of Combinational Circuits 4.1 Motivation: This topic develops the fundamental understanding and design of adder, substractor, code converter multiplexer, demultiplexer etc

More information

Subtractor Logic Schematic

Subtractor Logic Schematic Function Of Xor Gate In Parallel Adder Subtractor Logic Schematic metic functions, including half adder, half subtractor, full adder, independent logic gates to form desired circuits based on dif- by integrating

More information

LOGIC DIAGRAM: HALF ADDER TRUTH TABLE: A B CARRY SUM. 2012/ODD/III/ECE/DE/LM Page No. 1

LOGIC DIAGRAM: HALF ADDER TRUTH TABLE: A B CARRY SUM. 2012/ODD/III/ECE/DE/LM Page No. 1 LOGIC DIAGRAM: HALF ADDER TRUTH TABLE: A B CARRY SUM K-Map for SUM: K-Map for CARRY: SUM = A B + AB CARRY = AB 22/ODD/III/ECE/DE/LM Page No. EXPT NO: DATE : DESIGN OF ADDER AND SUBTRACTOR AIM: To design

More information

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Digital Computer Arithmetic ECE 666

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Digital Computer Arithmetic ECE 666 UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Digital Computer Arithmetic ECE 666 Part 5a Fast Addition Israel Koren ECE666/Koren Part.5a.1 Ripple-Carry Adders Addition - most

More information

UNIT-2: BOOLEAN EXPRESSIONS AND COMBINATIONAL LOGIC CIRCUITS

UNIT-2: BOOLEAN EXPRESSIONS AND COMBINATIONAL LOGIC CIRCUITS UNIT-2: BOOLEAN EXPRESSIONS AND COMBINATIONAL LOGIC CIRCUITS STRUCTURE 2. Objectives 2. Introduction 2.2 Simplification of Boolean Expressions 2.2. Sum of Products 2.2.2 Product of Sums 2.2.3 Canonical

More information

MSI Design Examples. Designing a circuit that adds three 4-bit numbers

MSI Design Examples. Designing a circuit that adds three 4-bit numbers MSI Design Examples In this lesson, you will see some design examples using MSI devices. These examples are: Designing a circuit that adds three 4-bit numbers. Design of a 4-to-16 Decoder using five 2-to-4

More information

LIST OF EXPERIMENTS. KCTCET/ /Odd/3rd/ETE/CSE/LM

LIST OF EXPERIMENTS. KCTCET/ /Odd/3rd/ETE/CSE/LM LIST OF EXPERIMENTS. Study of logic gates. 2. Design and implementation of adders and subtractors using logic gates. 3. Design and implementation of code converters using logic gates. 4. Design and implementation

More information

5. (Adapted from 3.25)

5. (Adapted from 3.25) Homework02 1. According to the following equations, draw the circuits and write the matching truth tables.the circuits can be drawn either in transistor-level or symbols. a. X = NOT (NOT(A) OR (A AND B

More information

Design and Analysis of a New Power Efficient Half Subtractor at Various Technologies

Design and Analysis of a New Power Efficient Half Subtractor at Various Technologies Design and Analysis of a New Power Efficient Half Subtractor at Various Technologies Shruti Lohan 1, Seema 2 P.G. Student, Department of Electronics and Communication Engineering, OITM, Hisar Haryana,

More information

FULL ADDER USING MULTIPLEXER

FULL ADDER USING MULTIPLEXER FULL ADDER USING MULTIPLEXER Amit Kumar,Adnan Sherwaniakash Singh Electronics and Communication Engineering. Dronacharya College of Engineering, Gurgaon. Abstract: - Full adder may well be a basic building

More information

Digital. Design. R. Ananda Natarajan B C D

Digital. Design. R. Ananda Natarajan B C D Digital E A B C D 0 1 2 3 4 5 6 Design 7 8 9 10 11 12 13 14 15 Y R. Ananda Natarajan Digital Design Digital Design R. ANANDA NATARAJAN Professor Department of Electronics and Instrumentation Engineering

More information

Datapath Components. Control vs. Datapath, Registers, Adders (Binary Addition) Copyright (c) 2012 Sean Key

Datapath Components. Control vs. Datapath, Registers, Adders (Binary Addition) Copyright (c) 2012 Sean Key atapath Components Control vs. atapath, Registers, Adders (Binary Addition) Copyright (c) 2012 ean Key ata vs. Control Most digital circuits can be divided into two parts Control Circuitry to control the

More information

Linear & Digital IC Applications (BRIDGE COURSE)

Linear & Digital IC Applications (BRIDGE COURSE) G. PULLAIAH COLLEGE OF ENGINEERING AND TECHNOLOGY Accredited by NAAC with A Grade of UGC, Approved by AICTE, New Delhi Permanently Affiliated to JNTUA, Ananthapuramu (Recognized by UGC under 2(f) and 12(B)

More information

TABLE 3-2 Truth Table for Code Converter Example

TABLE 3-2 Truth Table for Code Converter Example 997 by Prentice-Hall, Inc. Mano & Kime Upper Saddle River, New Jersey 7458 T-28 TABLE 3-2 Truth Table for Code Converter Example Decimal Digit Input BCD Output Excess-3 A B C D W Y Z 2 3 4 5 6 7 8 9 Truth

More information

Adder (electronics) - Wikipedia, the free encyclopedia

Adder (electronics) - Wikipedia, the free encyclopedia Page 1 of 7 Adder (electronics) From Wikipedia, the free encyclopedia (Redirected from Full adder) In electronics, an adder or summer is a digital circuit that performs addition of numbers. In many computers

More information

SRV ENGINEERING COLLEGE SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE SEMBODAI

SRV ENGINEERING COLLEGE SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE SEMBODAI SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE SEMBODAI 6489 (Approved By AICTE,Newdelhi Affiliated To ANNA UNIVERSITY::Chennai) CS 62 DIGITAL ELECTRONICS LAB (REGULATION-23) LAB MANUAL DEPARTMENT OF

More information

Structural VHDL Implementation of Wallace Multiplier

Structural VHDL Implementation of Wallace Multiplier International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 1829 Structural VHDL Implementation of Wallace Multiplier Jasbir Kaur, Kavita Abstract Scheming multipliers that

More information

Lab Report: Digital Logic

Lab Report: Digital Logic Lab Report: Digital Logic Introduction The aim of the Digital Logic Lab was to construct a simple 4-bit Arithmetic Logic Unit (ALU) in order to demonstrate methods of using Boolean Algebra to manipulate

More information

Spec. Instructor: Center

Spec. Instructor: Center PDHonline Course E379 (5 PDH) Digital Logic Circuits Volume III Spec ial Logic Circuits Instructor: Lee Layton, P.E 2012 PDH Online PDH Center 5272 Meadow Estatess Drive Fairfax, VA 22030-6658 Phone &

More information

Lecture 14: Datapath Functional Units Adders

Lecture 14: Datapath Functional Units Adders Lecture 14: Datapath Functional Units dders Mark Horowitz omputer Systems Laboratory Stanford University horowitz@stanford.edu MH EE271 Lecture 14 1 Overview Reading W&E 8.2.1 - dders References Hennessy

More information

Exercise 1: EXCLUSIVE OR/NOR Gate Functions

Exercise 1: EXCLUSIVE OR/NOR Gate Functions EXCLUSIVE-OR/NOR Gates Digital Logic Fundamentals Exercise 1: EXCLUSIVE OR/NOR Gate Functions EXERCISE OBJECTIVE When you have completed this exercise, you will be able to demonstrate the operation of

More information

Digital circuit Experiment manual

Digital circuit Experiment manual Digital circuit Experiment manual Digital circuit Experiment manual (C) Innovative Experiment Co.,Ltd. 2 Digital circuit Experiment manual Digital circuit Experiment manual 3 Contents Essential tools and

More information

Asst. Prof. Thavatchai Tayjasanant, PhD. Power System Research Lab 12 th Floor, Building 4 Tel: (02)

Asst. Prof. Thavatchai Tayjasanant, PhD. Power System Research Lab 12 th Floor, Building 4 Tel: (02) 2145230 Aircraft Electricity and Electronics Asst. Prof. Thavatchai Tayjasanant, PhD Email: taytaycu@gmail.com aycu@g a co Power System Research Lab 12 th Floor, Building 4 Tel: (02) 218-6527 1 Chapter

More information

First Name: Last Name: Lab Cover Page. Teaching Assistant to whom you are submitting

First Name: Last Name: Lab Cover Page. Teaching Assistant to whom you are submitting Student Information First Name School of Computer Science Faculty of Engineering and Computer Science Last Name Student ID Number Lab Cover Page Please complete all (empty) fields: Course Name: DIGITAL

More information

Lesson: Binary Arithmetic and Arithmetic Circuits-2. Lesson Developer: Dr. Divya Haridas

Lesson: Binary Arithmetic and Arithmetic Circuits-2. Lesson Developer: Dr. Divya Haridas Bary Arithmetic and Arithmetic Circuits-2 Lesson: Bary Arithmetic and Arithmetic Circuits-2 Lesson Developer: Dr. Divya Haridas College/ Department: Keshav Mahavidyalaya, University of Delhi 1 Institute

More information

Digital System Design

Digital System Design UNIT III COMBINATIONAL LOGIC DESIGN Decoders: A decoder is a multiple-input, multiple-output logic circuit that converts coded inputs into coded outputs, where the input and output codes are different.

More information

Gates and and Circuits

Gates and and Circuits Chapter 4 Gates and Circuits Chapter Goals Identify the basic gates and describe the behavior of each Describe how gates are implemented using transistors Combine basic gates into circuits Describe the

More information

Combinational Circuit Design using Advanced Quantum Dot Cellular Automata

Combinational Circuit Design using Advanced Quantum Dot Cellular Automata Combinational Circuit Design using Advanced Quantum Dot Cellular Automata Aditi Dhingra, Aprana Goel, Gourav Verma, Rashmi Chawla Department of Electronics and Communication Engineering YMCAUST, Faridabad

More information

Chapter 4: The Building Blocks: Binary Numbers, Boolean Logic, and Gates

Chapter 4: The Building Blocks: Binary Numbers, Boolean Logic, and Gates Chapter 4: The Building Blocks: Binary Numbers, Boolean Logic, and Gates Objectives In this chapter, you will learn about The binary numbering system Boolean logic and gates Building computer circuits

More information

I. Computational Logic and the Five Basic Logic Gates 1

I. Computational Logic and the Five Basic Logic Gates 1 EC312 Lesson 2: Computational Logic Objectives: a) Identify the logic circuit gates and reproduce the truth tables for NOT, ND, NND, OR, and NOR gates. b) Given a schematic of a logic circuit, determine

More information

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING (Regulation 2013) EE 6311 LINEAR AND DIGITAL INTEGRATED CIRCUITS LAB MANUAL 1 SYLLABUS OBJECTIVES: Working Practice in simulators / CAD Tools / Experiment

More information

DHANALAKSHMI COLLEGE OF ENGINEERING MANIMANGALAM. TAMBARAM, CHENNAI B.E. ELECTRICAL AND ELECTRONICS ENGINEERING III SEMESTER EE6311 Linear and Digital Integrated Circuits Laboratory LABORATORY MANUAL CLASS:

More information

Binary Addition. Boolean Algebra & Logic Gates. Recap from Monday. CSC 103 September 12, Binary numbers ( 1.1.1) How Computers Work

Binary Addition. Boolean Algebra & Logic Gates. Recap from Monday. CSC 103 September 12, Binary numbers ( 1.1.1) How Computers Work Binary Addition How Computers Work High level conceptual questions Boolean Algebra & Logic Gates CSC 103 September 12, 2007 What Are Computers? What do computers do? How do they do it? How do they affect

More information

ISSN Vol.04, Issue.05, May-2016, Pages:

ISSN Vol.04, Issue.05, May-2016, Pages: ISSN 2322-0929 Vol.04, Issue.05, May-2016, Pages:0332-0336 www.ijvdcs.org Full Subtractor Design of Energy Efficient, Low Power Dissipation Using GDI Technique M. CHAITANYA SRAVANTHI 1, G. RAJESH 2 1 PG

More information

Digital combinational circuit optimization using invasive weed optimization technique

Digital combinational circuit optimization using invasive weed optimization technique Digital combinational circuit optimization using invasive weed optimization technique Prabhat K. Patnaik 1, Dhruba. Panda 2, Santosh Kumar Pantina 1 1 Department of Electronics and communication Engineering,

More information

Laboratory Manual CS (P) Digital Systems Lab

Laboratory Manual CS (P) Digital Systems Lab Laboratory Manual CS 09 408 (P) Digital Systems Lab INDEX CYCLE I A. Familiarization of digital ICs and digital IC trainer kit 1 Verification of truth tables B. Study of combinational circuits 2. Verification

More information

EECS150 - Digital Design Lecture 23 - Arithmetic and Logic Circuits Part 4. Outline

EECS150 - Digital Design Lecture 23 - Arithmetic and Logic Circuits Part 4. Outline EECS150 - Digital Design Lecture 23 - Arithmetic and Logic Circuits Part 4 April 19, 2005 John Wawrzynek Spring 2005 EECS150 - Lec23-alc4 Page 1 Outline Shifters / Rotators Fixed shift amount Variable

More information

Digital Electronics. Functions of Combinational Logic

Digital Electronics. Functions of Combinational Logic Digital Electronics Functions of Combinational Logic Half-dder Basic rules of binary addition are performed by a half adder, which has two binary inputs ( and B) and two binary outputs (Carry out and Sum).

More information

A New Reversible SMT Gate and its Application to Design Low Power Circuits

A New Reversible SMT Gate and its Application to Design Low Power Circuits A New Reversible SMT Gate and its Application to Design Low Power Circuits Monika Tiwari 1, G.R. Mishra 2, O.P.Singh 2 M.Tech Student, Dept. of E.C.E, Amity University, Lucknow (U.P.), India 1 Associate

More information

Dhanalakshmi College of Engineering

Dhanalakshmi College of Engineering Dhanalakshmi College of Engineering Manimangalam, Tambaram, Chennai 601 301 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE6311 LINEAR AND DIGITAL INTEGRATED CIRCUITS LABORATORY III SEMESTER -

More information

Approximate Hybrid Equivalent Circuits. Again, the impedance looking into the output terminals is infinite so that. conductance is zero.

Approximate Hybrid Equivalent Circuits. Again, the impedance looking into the output terminals is infinite so that. conductance is zero. Again, the impedance looking into the output terminals is infinite so that conductance is zero. Hence, the four h-parameters of an ideal transistor connected in CE transistor are The hybrid equivalent

More information

COMPUTER ORGANIZATION & ARCHITECTURE DIGITAL LOGIC CSCD211- DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF GHANA

COMPUTER ORGANIZATION & ARCHITECTURE DIGITAL LOGIC CSCD211- DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF GHANA COMPUTER ORGANIZATION & ARCHITECTURE DIGITAL LOGIC LOGIC Logic is a branch of math that tries to look at problems in terms of being either true or false. It will use a set of statements to derive new true

More information

Chapter 1: Digital logic

Chapter 1: Digital logic Chapter 1: Digital logic I. Overview In PHYS 252, you learned the essentials of circuit analysis, including the concepts of impedance, amplification, feedback and frequency analysis. Most of the circuits

More information

Combinational Logic Circuits. Combinational Logic

Combinational Logic Circuits. Combinational Logic Combinational Logic Circuits The outputs of Combinational Logic Circuits are only determined by the logical function of their current input state, logic 0 or logic 1, at any given instant in time. The

More information

GATES AND SIMPLE DEVICES SUPPLEMENT

GATES AND SIMPLE DEVICES SUPPLEMENT GTES ND SIMPLE DEVICES SUPPLEMENT Dr. Ken Hoganson, ll Rights Reserved. SUPPLEMENT CONTENTS S.1 Selector.. 2 S.2 Multiplexor 3 S.3 Demultiplexor 3 S.4 Multiplexor/Demultiplexor Pair 4 S.5 Simple Memory

More information

Design and Optimization of Half Subtractor Circuits for Low-Voltage Low-Power Applications

Design and Optimization of Half Subtractor Circuits for Low-Voltage Low-Power Applications ABSTRACT Design and Optimization of Half Subtractor Circuits for Low-Voltage Low-Power Applications Abhishek Sharma,Gunakesh Sharma,Shipra ishra.tech. Embedded system & VLSI Design NIT,Gwalior.P. India

More information

Topic Notes: Digital Logic

Topic Notes: Digital Logic Computer Science 220 Assembly Language & Comp. Architecture Siena College Fall 20 Topic Notes: Digital Logic Our goal for the next couple of weeks is to gain a reasonably complete understanding of how

More information

Digital Electronics Course Objectives

Digital Electronics Course Objectives Digital Electronics Course Objectives In this course, we learning is reported using Standards Referenced Reporting (SRR). SRR seeks to provide students with grades that are consistent, are accurate, and

More information

A Highly Efficient Carry Select Adder

A Highly Efficient Carry Select Adder IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 4 October 2015 ISSN (online): 2349-784X A Highly Efficient Carry Select Adder Shiya Andrews V PG Student Department of Electronics

More information

High Speed, Low power and Area Efficient Processor Design Using Square Root Carry Select Adder

High Speed, Low power and Area Efficient Processor Design Using Square Root Carry Select Adder IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 9, Issue 2, Ver. VII (Mar - Apr. 2014), PP 14-18 High Speed, Low power and Area Efficient

More information

Government of Karnataka Department of Technical Education Board of Technical Examinations, Bengaluru

Government of Karnataka Department of Technical Education Board of Technical Examinations, Bengaluru Prerequisites Government of Karnataka Department of Technical Education Board of Technical Examinations, Bengaluru Course Title :Digital Electronics Lab I Course Code : 15EC2P Semester : II Course Group

More information

Sr. No. Instrument Specifications. TTL (Transistor-Transistor Logic) based on bipolar junction transistors

Sr. No. Instrument Specifications. TTL (Transistor-Transistor Logic) based on bipolar junction transistors MIT College of Engineering, Pune. Department of Electronics & Telecommunication (Electronics Lab) EXPERIMENT NO 01 TITLE OF THE EXPERIMENT: Verify four voltage and current parameters for TTL and CMOS (IC

More information

(CSC-3501) Lecture 6 (31 Jan 2008) Seung-Jong Park (Jay) CSC S.J. Park. Announcement

(CSC-3501) Lecture 6 (31 Jan 2008) Seung-Jong Park (Jay)   CSC S.J. Park. Announcement Seung-Jong Park (Jay) http://www.csc.lsu.edu/~sjpark Computer Architecture (CSC-3501) Lecture 6 (31 Jan 2008) 1 Announcement 2 1 Reminder A logic circuit is composed of: Inputs Outputs Functional specification

More information

Unit 3. Logic Design

Unit 3. Logic Design EE 2: Digital Logic Circuit Design Dr Radwan E Abdel-Aal, COE Logic and Computer Design Fundamentals Unit 3 Chapter Combinational 3 Combinational Logic Logic Design - Introduction to Analysis & Design

More information

An Efficient Higher Order And High Speed Kogge-Stone Based CSLA Using Common Boolean Logic

An Efficient Higher Order And High Speed Kogge-Stone Based CSLA Using Common Boolean Logic RESERCH RTICLE OPEN CCESS n Efficient Higher Order nd High Speed Kogge-Stone Based Using Common Boolean Logic Kuppampati Prasad, Mrs.M.Bharathi M. Tech (VLSI) Student, Sree Vidyanikethan Engineering College

More information

Rectifiers and Filters

Rectifiers and Filters Experiment No. : 1 Rectifiers and Filters Date: / / Aim : To design and testing of Full wave centre tapped transformer type and Bridge type rectifier circuits with and without Capacitor filter. Determination

More information

Chapter 1 Binary Systems

Chapter 1 Binary Systems EEA051 - Digital Logic 數位邏輯 Chapter 1 Binary Systems 吳俊興高雄大學資訊工程學系 September 2005 Chapter 1. Binary Systems 1-1 Digital Systems 1-2 Binary Numbers 1-3 Number Base Conversions 1-4 Octal and Hexadecimal

More information

2 Logic Gates THE INVERTER. A logic gate is an electronic circuit which makes logic decisions. It has one output and one or more inputs.

2 Logic Gates THE INVERTER. A logic gate is an electronic circuit which makes logic decisions. It has one output and one or more inputs. 2 Logic Gates A logic gate is an electronic circuit which makes logic decisions. It has one output and one or more inputs. THE INVERTER The inverter (NOT circuit) performs the operation called inversion

More information

An Optimized Implementation of CSLA and CLLA for 32-bit Unsigned Multiplier Using Verilog

An Optimized Implementation of CSLA and CLLA for 32-bit Unsigned Multiplier Using Verilog An Optimized Implementation of CSLA and CLLA for 32-bit Unsigned Multiplier Using Verilog 1 P.Sanjeeva Krishna Reddy, PG Scholar in VLSI Design, 2 A.M.Guna Sekhar Assoc.Professor 1 appireddigarichaitanya@gmail.com,

More information

Design of an Energy Efficient, Low Power Dissipation Full Subtractor Using GDI Technique

Design of an Energy Efficient, Low Power Dissipation Full Subtractor Using GDI Technique Design of an Energy Efficient, Low Power Dissipation Full Subtractor Using GDI Technique ABSTRACT: Rammohan Kurugunta M.Tech Student, Department of ECE, Intel Engineering College, Anantapur, Andhra Pradesh,

More information

Reinforce the categories of the numerals. Give the child the adult wording for numbers.

Reinforce the categories of the numerals. Give the child the adult wording for numbers. Aims Direct Development of order, concentration, coordination, independence and exactness. Reinforce the categories of the numerals. Give the child the adult wording for numbers. Indirect It is the place

More information

Number system: the system used to count discrete units is called number. Decimal system: the number system that contains 10 distinguished

Number system: the system used to count discrete units is called number. Decimal system: the number system that contains 10 distinguished Number system: the system used to count discrete units is called number system Decimal system: the number system that contains 10 distinguished symbols that is 0-9 or digits is called decimal system. As

More information

Design of QSD Multiplier Using VHDL

Design of QSD Multiplier Using VHDL International Journal on Recent and Innovation Trends in Computing and Communication ISSN: -869 Volume: 5 Issue: 8 85 Design of QSD Multiplier Using VHDL Pooja s. Rade, Ashwini M. Khode, Rajani N. Kapse,

More information

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST) DESIGN AND PERFORMANCE OF BAUGH-WOOLEY MULTIPLIER USING CARRY LOOK AHEAD ADDER T.Janani [1], R.Nirmal Kumar [2] PG Student,Asst.Professor,Department Of ECE Bannari Amman Institute of Technology, Sathyamangalam-638401.

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION 1.1 Project Background High speed multiplication is another critical function in a range of very large scale integration (VLSI) applications. Multiplications are expensive and slow

More information

REALIZATION OF FPGA BASED Q-FORMAT ARITHMETIC LOGIC UNIT FOR POWER ELECTRONIC CONVERTER APPLICATIONS

REALIZATION OF FPGA BASED Q-FORMAT ARITHMETIC LOGIC UNIT FOR POWER ELECTRONIC CONVERTER APPLICATIONS 17 Chapter 2 REALIZATION OF FPGA BASED Q-FORMAT ARITHMETIC LOGIC UNIT FOR POWER ELECTRONIC CONVERTER APPLICATIONS In this chapter, analysis of FPGA resource utilization using QALU, and is compared with

More information

Implementation of Reversible Arithmetic and Logic Unit (ALU)

Implementation of Reversible Arithmetic and Logic Unit (ALU) Implementation of Reversible Arithmetic and Logic Unit (ALU) G.Vimala Student, Department of Electronics and Communication Engineering, Dr K V Subba Reddy Institute of Technology, Dupadu, Kurnool,AP, India.

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) MODEL ANSWER

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) MODEL ANSWER Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

Function Table of an Odd-Parity Generator Circuit

Function Table of an Odd-Parity Generator Circuit Implementation of an Odd-Parity Generator Circuit The first step in implementing any circuit is to represent its operation in terms of a Truth or Function table. The function table for an 8-bit data as

More information

DESIGN OF MODIFIED AND UNERRING FOUR BIT BINARY SIGNED SUBTRACTOR

DESIGN OF MODIFIED AND UNERRING FOUR BIT BINARY SIGNED SUBTRACTOR e-issn 2455 1392 Volume 4 Issue 9, September 2018 pp. 9 16 Scientific Journal Impact Factor : 4.23 http://www.ijcter.com DESIGN OF MODIFIED AND UNERRING FOUR BIT BINARY SIGNED SUBTRACTOR Hemant Singh Bisht

More information

SIMULATION DESIGN TOOL LABORATORY MANUAL

SIMULATION DESIGN TOOL LABORATORY MANUAL SHANKERSINH VAGHELA BAPU INSTITUTE OF TECHNOLOGY SIMULATION DESIGN TOOL LABORATORY MANUAL B.E. 4 th SEMESTER-2015-16 SHANKERSINH VAGHELA BAPU INSTITUTE OF TECHNOLOGY Gandhinagar-Mansa Road, PO. Vasan,

More information

Digital Circuits Introduction

Digital Circuits Introduction Lecture #6 OUTLINE Logic inary representations Combinatorial logic circuits Chap 7-7.5 Reading EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu Digital Circuits Introduction nalog: signal amplitude

More information

COMPUTER ARCHITECTURE AND ORGANIZATION

COMPUTER ARCHITECTURE AND ORGANIZATION DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING COMPUTER ARCHITECTURE AND ORGANIZATION (CSE18R174) LAB MANUAL Name of the Student:..... Register No Class Year/Sem/Class :. :. :... 1 This page is left intentionally

More information

EE100Su08 Lecture #16 (August 1 st 2008)

EE100Su08 Lecture #16 (August 1 st 2008) EESu8 Lecture #6 (ugust st 28) OUTLINE Project next week: Pick up kits in your first lab section, work on the project in your first lab section, at home etc. and wrap up in the second lab section. USE

More information

International Journal of Scientific & Engineering Research Volume 3, Issue 12, December ISSN

International Journal of Scientific & Engineering Research Volume 3, Issue 12, December ISSN International Journal of Scientific & Engineering Research Volume 3, Issue 12, December-2012 1 Optimized Design and Implementation of an Iterative Logarithmic Signed Multiplier Sanjeev kumar Patel, Vinod

More information

EEE 301 Digital Electronics

EEE 301 Digital Electronics EEE 301 Digital Electronics Lecture 1 Course Contents Introduction to number systems and codes. Analysis and synthesis of digital logic circuits: Basic logic functions, Boolean algebra,combinational logic

More information

UC Berkeley CS61C : Machine Structures

UC Berkeley CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c UC Berkeley CS61C : Machine Structures Lecture 25 Representations of Combinational Logic Circuits Senior Lecturer SOE Dan Garcia www.cs.berkeley.edu/~ddgarcia Conway s Life

More information

Building Blocks for Digital Design

Building Blocks for Digital Design 3 Building Blocks for Digital Design 2008, David E Winkel The construction of most digital systems is a large task. Disciplined designers in any field will subdivide the original task into manageable subunits

More information

Survey of VLSI Adders

Survey of VLSI Adders Survey of VLSI Adders Swathy.S 1, Vivin.S 2, Sofia Jenifer.S 3, Sinduja.K 3 1UG Scholar, Dept. of Electronics and Communication Engineering, SNS College of Technology, Coimbatore- 641035, Tamil Nadu, India

More information