Satish Chandra, Assistant Professor, P P N College, Kanpur 1

Size: px
Start display at page:

Download "Satish Chandra, Assistant Professor, P P N College, Kanpur 1"

Transcription

1 8/7/4 LOGIC GTES CE NPN Transistor Circuit COMINTIONL LOGIC Satish Chandra ssistant Professor Department of Physics P PN College, Kanpur circuit with an output signal that is logical function of the inputs. circuit with one or more input voltages but only one output voltage. They are of two types. asic gates NOT, OR & ND.. Combinational gates a) Universal gates NOR& NND b) rithmatic gates Ex OR & Ex NOR. Equivalent CE Circuit Transistor as a switch ZERO LRGE STURTION CUT OFF Logic Circuits SIC GTES OPEN SWITCH CLOSED SWITCH Transistor Inverter NOT Gate NOT Gate Y Y gate with only one input and one output. Output state is always opposite the input state n INVERTER. V in LOW HIGH V out HIGH LOW Y = Satish Chandra, ssistant Professor, P P N College, Kanpur

2 8/7/4 OR Gates Two input OR gate Three input OR gate CSE : is low and is low. CSE : is low and is high. CSE : is high and is low. CSE 4: is high and is high. Y Y = + Y = + + C C Y OR Gate Symbols OR Gate OR Gate Two input Three input Four input Y = + Y = + + C Y = + + C + D Two or more input signals but only one output signal. Output is high if any or all of the inputs are high. Logical Symbol OR gate performs logical addition oolean expression Y = + CSE : is low and is low. CSE : is low and is high. CSE : is high and is low. CSE 4: is high and is high. 4 5 ND Gates Two input ND Gate Three input ND Gate CSE : is low and is low. CSE : is low and is high. CSE : is high and is low. CSE 4: is high and is high. 6 Y Y =. 7 Y =..C C Y 8 Satish Chandra, ssistant Professor, P P N College, Kanpur

3 8/7/4 ND Gate Symbols ND Gate ND Gate Two input Three input Four input Y =. Y =..C Y =..C.D Two or more input signals but only one output signal. Output is high if all of the inputs are high. Logical lsymbol ND gate performs logical multiplication oolean expression Y =. CSE : is low and is low. CSE : is low and is high. CSE : is high and is low. CSE 4: is high and is high. 9 Logic Circuits OOLEN LGER oolean lgebra OR ddition Laws ND Multiplication + = Laws. = + =. = + =. = + =. = oolean lgebra Commutative Laws ssociative Laws + = + + ( + C) = ( + ) + C. =..(.C) = (.). C 4 oolean lgebra oolean lgebra Distributive Laws bsorptive Laws ( + C) =. +.C. +. = +.C = ( + ).( + C).( + ) =.( + ) = +. = + Complement Theorem = De Morgan s Theorem + =.. = + Logic Circuits UNIVERSL GTES & RITHMETIC GTES Satish Chandra, ssistant Professor, P P N College, Kanpur

4 8/7/4 NOR Gate CSE : is low and is low. CSE : is low and is high. CSE : is high and is low. CSE 4: is high and is high. NOR Gate Y Y = + NOR Gate Two or more input signals but only one output signal. Output is low if any or all of the inputs are high. Logical Symbol oolean expression Y = NOR Gate CSE : is low and is low. CSE : is low and is high. CSE : is high and is low. CSE 4: is high and is high. NOT Gate OR Gate ND Gate NOR as a Universal gate.. NND Gate CSE : is low and is low. CSE : is low and is high. CSE : is high and is low. CSE 4: is high and is high. NND Gate Y Y = NND Gate CSE : is low and is low. CSE : is low and is high. CSE : is high and is low. CSE 4: is high and is high. NND as a Universal gate.. NOT Gate OR Gate ND Gate Satish Chandra, ssistant Professor, P P N College, Kanpur 4

5 8/7/4 Ex OR Gate Ex OR Gate Ex OR Gate Y =. +. Y =. +. Y = Y Two or more input signals but only one output signal. Output is high if the inputs are different. Logical lsymbol oolean expression Y = Ex NOR Gate Ex NOR Gate Ex NOR Gate Y =. +. Y =. +. Y = Y Two or more input signals but only one output signal. Output is high if the inputs are same. Logical lsymbol oolean expression Y = PPLICTIONS PRITY CHECKER PPLICTIONS INRY TO GRY CODE CONVERTER INRY Y = for even parity Y = for odd parity 4 GRY INRY GRY 44 Logic Circuits RITHMETIC CIRCUITS 45 Satish Chandra, ssistant Professor, P P N College, Kanpur 5

6 8/7/4 HLF DDER HLF DDER FULL DDER n elementary circuit. Used to adds two binary digits at a time. It performs binary addition Consists of an XOR gate whose output gives the sum and an ND gate whose output gives the carry of addition. H CRRY SUM Carry Sum CRRY =. SUM = Used to add three binary digits at a time. It performs binary addition of two bits and a carry. Consists of two half hlfadders and an OR gate FULL DDER FULL DDER PRLLEL INRY DDER 9:8:8 PM Satish Chandra, P PN College, Kanpur 49 Input Carry F Output Carry Sum C in C out SUM 5 Used to add two binary numbers. For example 4 First column needs only a Half dder. For any other column (except First), use Full dder. 5 S S S S S 4 IT PRLLEL INRY DDER 4 IT PRLLEL INRY DDER HLF SUTRCTOR F CRRY F CRRY F CRRY H S 4 S S S S 5 F F F H 5 n elementary circuit used to subtract one binary digit from another. It performs binary subtraction handles two bits at a time and can be used for the LS column. Consists of an XOR gate whose output gives the difference and an ND gate whose output gives the borrow of subtraction. One input of ND gate inverts itself using the NOT gate. 54 Satish Chandra, ssistant Professor, P P N College, Kanpur 6

7 8/7/4 HLF SUTRCTOR FULL SUTRCTOR FULL SUTRCTOR HS ORROW DIFFERENCE orrow Difference ORROW =. DIFFERENCE = Used to subtract two binary digits with one borrow digit at a time. It performs binary subtraction of two bits and a borrow and can be used for higher order columns. Consists of two half subtractors and an OR gate input orrow FS FULL SUTRCTOR Output orrow Difference o in o out Differ 58 PRLLEL INRY SUTRCTOR Used to subtract two binary numbers. For example First column needs only a Half Subtractor. For any other column (except First), use Full Subtractor. 59 S S S S 4 IT PRLLEL INRY SUTRCTOR orrow orrow FS FS orrow FS orrow HS S S S S 6 4 IT PRLLEL INRY SUTRCTOR FS FS FS HS 6 Logic Circuits DT PROCESSING CIRCUITS 6 MULTIPLEXERS Multiplex means many into one. circuit with many inputs but only one output. y applying control signals, only one selected input can be transmitted to the output. lso called a data selector, because the output bit depends on the input data bit that is selected. 6 Satish Chandra, ssistant Professor, P P N College, Kanpur 7

8 8/7/4 MULTIPLEXERS M CONTROL SIGNL Four to one Multiplexer Y MULTIPLEXERS D N INPUT SIGNLS MULTIPLEXER OUTPUT SIGNL D D D Y = D n where n is decimal equivalent of 9:8:8 PM Satish Chandra, P PN College, Kanpur SIXTEEN to one Multiplexer Sixteen to one Multiplexer SIXTEEN to one Multiplexer 745 Strobe G C D Y Y = D n D D D D D 4 W = Dn D 5 D 6 D 7 D 8 D 9 D D D D D 4 67 D 5 9:8:8 PM Satish Chandra, College, P P N Kanpur 68 x x H x x 69 SIXTEEN to one Multiplexer 745 W = En DEMULTIPLEXERS Demultiplex means one into many. circuit with only one input and many outputs. y applying control signals, input signal can be transmitted to any one of the output lines. INPUT SIGNL DEMULTIPLEXERS M CONTROL SIGNL DEMULTIPLEXER N OUTPUT SIGNLS 7 7 9:8:8 PM Satish Chandra, P PN College, Kanpur 7 Satish Chandra, ssistant Professor, P P N College, Kanpur 8

9 8/7/4 One to four Demultiplexer DEMULTIPLEXERS One to sixteen Demultiplexer Y Y Y Y Y n = D where n is decimal equivalent of One to Sixteen Demultiplexer 7454 One to sixteen Demultiplexer DECODER Decoder is similar to demultiplexer, with one exception there is no data input. Only inputs are the control bits DECODER M CONTROL SIGNL DECODER N OUTPUT SIGNLS One to Sixteen Decoder DT and STROE inputs are grounded. The bubbles at the output shows that the output is low when it is active. One to Sixteen Decoder 9:8:8 PM Satish Chandra, P PN College, Kanpur Satish Chandra, ssistant Professor, P P N College, Kanpur 9

10 8/7/4 CD TO DECIML DECODERS CD stands for inary Coded Decimal. CD number is a four bit binary group that represents one of the ten decimal digits through 9. Example: Decimal number 496 Decimal CD TO DECIML DECODERS No CD TO DECIML DECODERS CD INVLID ENCODER ENCODER DECIML TO CD ENCODER n encoder converts non digital data to digital data. n encoder has n = m, input lines and m output lines. Only one of the input line will be active. The output lines generate a binary code corresponding to the that input line. N INPUT SIGNL ENCODER M OUTPUT SIGNL 9:8:9 PM Satish Chandra, P P N College, Kanpur 85 9:8:9 PM Satish Chandra, P PN College, Kanpur 86 9:8:9 PM Satish Chandra, P P N College, Kanpur 87 DECIML TO CD ENCODER The decimal to CD encoder with inputs and 4 outputs. The switches to 9 are push button switches like a pocket calculator. When button is pressed, the C and D OR gates have high inputs, therefore output is CD= i.e. decimal is converted into its equivalent binary number. Similarly, if you press button 5, the output will be CD= and for switch 9, we get CD= DECIML TO CD ENCODER 7447 DECIML TO CD ENCODER 7447 TRUTH TLE 9:8:9 PM Satish Chandra, P P N College, Kanpur 88 9:8:9 PM Satish Chandra, P P N College, Kanpur 89 9:8:9 PM Satish Chandra, P P N College, Kanpur 9 Satish Chandra, ssistant Professor, P P N College, Kanpur

Logic Symbols with Truth Tables INVERTER A B NAND A B C NOR C A B A B C XNOR A B C A B Digital Logic 1

Logic Symbols with Truth Tables INVERTER A B NAND A B C NOR C A B A B C XNOR A B C A B Digital Logic 1 Slide Logic Symbols with Truth Tables UFFER INVERTER ND NND OR NOR XOR XNOR 6.7 Digital Logic Digital logic can be described in terms of standard logic symbols and their corresponding truth tables. The

More information

COMBINATIONAL CIRCUIT

COMBINATIONAL CIRCUIT Combinational circuit is a circuit in which we combine the different gates in the circuit, for example encoder, decoder, multiplexer and demultiplexer. Some of the characteristics of combinational circuits

More information

Binary Adder and Subtractor circuit

Binary Adder and Subtractor circuit Digital circuit Experiment manual Experiment 9 inary dder and Subtractor circuit Part list. x. x. 8 x. x. 8 x Theory inary number addition n adder is a digital circuit that performs addition of numbers.

More information

Combinational Circuits DC-IV (Part I) Notes

Combinational Circuits DC-IV (Part I) Notes Combinational Circuits DC-IV (Part I) Notes Digital Circuits have been classified as: (a) Combinational Circuits: In these circuits output at any instant of time depends on inputs present at that instant

More information

(a) (b) (c) (d) (e) (a) (b) (c) (d) (e)

(a) (b) (c) (d) (e) (a) (b) (c) (d) (e) Exercises 97 Exercises Exercise 2. Write a oolean equation in sum-of-products canonical form for each of the truth tables in Figure 2.8. (d) (e) C C C D Figure 2.8 Truth tables for Exercises 2. and 2.3

More information

LOGIC DIAGRAM: HALF ADDER TRUTH TABLE: A B CARRY SUM. 2012/ODD/III/ECE/DE/LM Page No. 1

LOGIC DIAGRAM: HALF ADDER TRUTH TABLE: A B CARRY SUM. 2012/ODD/III/ECE/DE/LM Page No. 1 LOGIC DIAGRAM: HALF ADDER TRUTH TABLE: A B CARRY SUM K-Map for SUM: K-Map for CARRY: SUM = A B + AB CARRY = AB 22/ODD/III/ECE/DE/LM Page No. EXPT NO: DATE : DESIGN OF ADDER AND SUBTRACTOR AIM: To design

More information

Computer Organization and Components

Computer Organization and Components Computer Organization and Components I5, fall 25 Lecture 7: Combinational Logic ssociate Professor, KTH Royal Institute of Technology ssistant Research ngineer, University of California, erkeley lides

More information

DIGITAL LOGIC COMPUTER SCIENCE

DIGITAL LOGIC COMPUTER SCIENCE 29 DIGITL LOGIC COMPUTER SCIENCE Unit of ENGINEERS CREER GROUP Head O ce: S.C.O-2-22 - 23, 2 nd Floor, Sector-34/, Chandigarh-622 Website: www.engineerscareergroup.in Toll Free: 8-27-4242 E-Mail: ecgpublica

More information

Function Table of 74LS138, 3-to-8 Decoder +5V 6 G1 4 G2A 5 G2B. 4-to-16 Decoder using two 74LS139, 3-to-8 Decoder

Function Table of 74LS138, 3-to-8 Decoder +5V 6 G1 4 G2A 5 G2B. 4-to-16 Decoder using two 74LS139, 3-to-8 Decoder CS0 Digital Logic Design The XX8 -to-8 Decoder The -to-8, XX8 Decoder is also commonly used in logical circuits. Similar, to the -to- Decoder, the -to-8 Decoder has active-low outputs and three extra NOT

More information

Digital Electronics. Functions of Combinational Logic

Digital Electronics. Functions of Combinational Logic Digital Electronics Functions of Combinational Logic Half-dder Basic rules of binary addition are performed by a half adder, which has two binary inputs ( and B) and two binary outputs (Carry out and Sum).

More information

Function Table of an Odd-Parity Generator Circuit

Function Table of an Odd-Parity Generator Circuit Implementation of an Odd-Parity Generator Circuit The first step in implementing any circuit is to represent its operation in terms of a Truth or Function table. The function table for an 8-bit data as

More information

LIST OF EXPERIMENTS. KCTCET/ /Odd/3rd/ETE/CSE/LM

LIST OF EXPERIMENTS. KCTCET/ /Odd/3rd/ETE/CSE/LM LIST OF EXPERIMENTS. Study of logic gates. 2. Design and implementation of adders and subtractors using logic gates. 3. Design and implementation of code converters using logic gates. 4. Design and implementation

More information

EXPERIMENT NO 1 TRUTH TABLE (1)

EXPERIMENT NO 1 TRUTH TABLE (1) EPERIMENT NO AIM: To verify the Demorgan s theorems. APPARATUS REQUIRED: THEORY: Digital logic trainer and Patch cords. The digital signals are discrete in nature and can only assume one of the two values

More information

Computer Hardware Engineering (IS1200) Computer Organization and Components (IS1500) Fall 2017 Lecture 7: Combinational Logic

Computer Hardware Engineering (IS1200) Computer Organization and Components (IS1500) Fall 2017 Lecture 7: Combinational Logic Computer Hardware ngineering (I2) Computer Organization and Components (I5) Fall 27 Lecture 7: Combinational Logic Optional for I2, compulsory for I5 Fredrik Lundevall lides by David roman and Fredrik

More information

TABLE 3-2 Truth Table for Code Converter Example

TABLE 3-2 Truth Table for Code Converter Example 997 by Prentice-Hall, Inc. Mano & Kime Upper Saddle River, New Jersey 7458 T-28 TABLE 3-2 Truth Table for Code Converter Example Decimal Digit Input BCD Output Excess-3 A B C D W Y Z 2 3 4 5 6 7 8 9 Truth

More information

SRV ENGINEERING COLLEGE SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE SEMBODAI

SRV ENGINEERING COLLEGE SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE SEMBODAI SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE SEMBODAI 6489 (Approved By AICTE,Newdelhi Affiliated To ANNA UNIVERSITY::Chennai) CS 62 DIGITAL ELECTRONICS LAB (REGULATION-23) LAB MANUAL DEPARTMENT OF

More information

Data output signals May or may not be same a input signals

Data output signals May or may not be same a input signals Combinational Logic Part 2 We ve been looking at simple combinational logic elements Gates, buffers, and drivers Now ready to go on to larger blocks MSI - Medium Scale Integration or Integrate Circuits

More information

Synthesis of Balanced Quaternary Reversible Logic Circuit

Synthesis of Balanced Quaternary Reversible Logic Circuit Synthesis of alanced Quaternary Reversible Logic Circuit Jitesh Kumar Meena jiteshmeena8@gmail.com Sushil Chandra Jain scjain1@yahoo.com Hitesh Gupta hiteshnice@gmail.com Shubham Gupta guptashubham396@gmail.com

More information

Syllabus for: Electronics for F Y B Sc (Electronics) Semester- 1 (With effect from June 2014) PAPER I: Basic Electrical Circuits

Syllabus for: Electronics for F Y B Sc (Electronics) Semester- 1 (With effect from June 2014) PAPER I: Basic Electrical Circuits Unit I: Passive Devices Syllabus for: Electronics for F Y B Sc (Electronics) Semester- 1 (With effect from June 2014) PAPER I: Basic Electrical Circuits Resistors, Fixed resistors & variable resistors,

More information

University of Technology

University of Technology University of Technology Lecturer: Dr. Sinan Majid Course Title: microprocessors 4 th year Lecture 7 & 8 NAND and XOR Implementations Combinational Design Procedure NAND-NAND & NOR-NOR Networks DeMorgan

More information

Department of Electronics and Communication Engineering

Department of Electronics and Communication Engineering Department of Electronics and Communication Engineering Sub Code/Name: BEC3L2- DIGITAL ELECTRONICS LAB Name Reg No Branch Year & Semester : : : : LIST OF EXPERIMENTS Sl No Experiments Page No Study of

More information

EXPERIMENT #5 COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design

EXPERIMENT #5 COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design PH-315 La Rosa EXPERIMENT #5 COMINTIONL and SEUENTIL LOGIC CIRCUITS Hardware implementation and software design I PURPOSE: To familiarize with combinational and sequential logic circuits Combinational

More information

EE40 Lecture 35. Prof. Chang-Hasnain. 12/5/07 Reading: Ch 7, Supplementary Reader

EE40 Lecture 35. Prof. Chang-Hasnain. 12/5/07 Reading: Ch 7, Supplementary Reader EE4 Lecture 35 2/5/7 Reading: Ch 7, Supplementary Reader EE4 all 26 Slide Week 5 OUTLINE Need for Input Controlled Pull-Up CMOS Inverter nalysis CMOS Voltage Transfer Characteristic Combinatorial logic

More information

Module 4: Design and Analysis of Combinational Circuits 1. Module-4. Design and Analysis of Combinational Circuits

Module 4: Design and Analysis of Combinational Circuits 1. Module-4. Design and Analysis of Combinational Circuits 1 Module-4 Design and Analysis of Combinational Circuits 4.1 Motivation: This topic develops the fundamental understanding and design of adder, substractor, code converter multiplexer, demultiplexer etc

More information

UNIT-IV Combinational Logic

UNIT-IV Combinational Logic UNIT-IV Combinational Logic Introduction: The signals are usually represented by discrete bands of analog levels in digital electronic circuits or digital electronics instead of continuous ranges represented

More information

Digital Applications (CETT 1415) Credit: 4 semester credit hours (3 hours lecture, 4 hours lab) Prerequisite: CETT 1403 & CETT 1405

Digital Applications (CETT 1415) Credit: 4 semester credit hours (3 hours lecture, 4 hours lab) Prerequisite: CETT 1403 & CETT 1405 Digital Applications () Credit: 4 semester credit hours (3 hours lecture, 4 hours lab) Prerequisite: CETT 1403 & CETT 1405 Course Description This course covers digital techniques and numbering systems,

More information

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI 6 DEPARTMENT: ECE QUESTION BANK SUBJECT NAME: DIGITAL SYSTEM DESIGN SEMESTER III SUBJECT CODE: EC UNIT : Design of Combinational Circuits PART -A ( Marks).

More information

4:Combinational logic circuits. 3 July

4:Combinational logic circuits. 3 July 4:Combinational logic circuits 3 July 2014 1 overview What is combinational logic circuit? Examples of combinational logic circuits Binary-adder Binary-subtractor Binary-multiplier Decoders Multiplexers

More information

EE100Su08 Lecture #16 (August 1 st 2008)

EE100Su08 Lecture #16 (August 1 st 2008) EESu8 Lecture #6 (ugust st 28) OUTLINE Project next week: Pick up kits in your first lab section, work on the project in your first lab section, at home etc. and wrap up in the second lab section. USE

More information

Chapter 4 Logic Functions and Gates

Chapter 4 Logic Functions and Gates Chapter 4 Logic Functions and Gates CHPTER OJECTIVES Upon successful completion of this chapter, you will be able to: Describe the basic logic functions: ND, OR, and NOT. Draw simple switch circuits to

More information

GATES AND SIMPLE DEVICES SUPPLEMENT

GATES AND SIMPLE DEVICES SUPPLEMENT GTES ND SIMPLE DEVICES SUPPLEMENT Dr. Ken Hoganson, ll Rights Reserved. SUPPLEMENT CONTENTS S.1 Selector.. 2 S.2 Multiplexor 3 S.3 Demultiplexor 3 S.4 Multiplexor/Demultiplexor Pair 4 S.5 Simple Memory

More information

Odd-Prime Number Detector The table of minterms is represented. Table 13.1

Odd-Prime Number Detector The table of minterms is represented. Table 13.1 Odd-Prime Number Detector The table of minterms is represented. Table 13.1 Minterm A B C D E 1 0 0 0 0 1 3 0 0 0 1 1 5 0 0 1 0 1 7 0 0 1 1 1 11 0 1 0 1 1 13 0 1 1 0 1 17 1 0 0 0 1 19 1 0 0 1 1 23 1 0 1

More information

Combinational Logic Circuits. Combinational Logic

Combinational Logic Circuits. Combinational Logic Combinational Logic Circuits The outputs of Combinational Logic Circuits are only determined by the logical function of their current input state, logic 0 or logic 1, at any given instant in time. The

More information

Experiment # 3 Combinational Circuits (I) Binary Addition and Subtraction

Experiment # 3 Combinational Circuits (I) Binary Addition and Subtraction Experiment # 3 Combinational Circuits (I) Binary Addition and Subtraction Objectives: 1. To study adder and subtractor circuits using logic gates. 2. To construct and test various adders and subtractor

More information

Veer Narmad South Gujarat University, Surat

Veer Narmad South Gujarat University, Surat Unit I: Passive circuit elements (With effect from June 2017) Syllabus for: F Y B Sc (Electronics) Semester- 1 PAPER I: Basic Electrical Circuits Resistors, resistor types, power ratings, resistor colour

More information

Laboratory Manual CS (P) Digital Systems Lab

Laboratory Manual CS (P) Digital Systems Lab Laboratory Manual CS 09 408 (P) Digital Systems Lab INDEX CYCLE I A. Familiarization of digital ICs and digital IC trainer kit 1 Verification of truth tables B. Study of combinational circuits 2. Verification

More information

UNIT III. Designing Combinatorial Circuits. Adders

UNIT III. Designing Combinatorial Circuits. Adders UNIT III Designing Combinatorial Circuits The design of a combinational circuit starts from the verbal outline of the problem and ends with a logic circuit diagram or a set of Boolean functions from which

More information

Department of Electrical and Electronics Engineering Logic Circuits Laboratory EXPERIMENT-5 COMBINATIONAL LOGIC CIRCUITS

Department of Electrical and Electronics Engineering Logic Circuits Laboratory EXPERIMENT-5 COMBINATIONAL LOGIC CIRCUITS 5.1 Preliminary Study Simulate experiment using an available tool and prepare the preliminary report. 5.2 Aim of the Experiment Implementation and examination of MULTIPLEXER and DEMULTIPLEXER circuits

More information

Chapter 3 Combinational Logic Design

Chapter 3 Combinational Logic Design Logic and Computer Design Fundamentals Chapter 3 Combinational Logic Design Part 2 Combinational Logic Overview Part -Implementation Technology and Logic Design Design Concepts Fundamental concepts of

More information

I. Computational Logic and the Five Basic Logic Gates 1

I. Computational Logic and the Five Basic Logic Gates 1 EC312 Lesson 2: Computational Logic Objectives: a) Identify the logic circuit gates and reproduce the truth tables for NOT, ND, NND, OR, and NOR gates. b) Given a schematic of a logic circuit, determine

More information

2 Building Blocks. There is often the need to compare two binary values.

2 Building Blocks. There is often the need to compare two binary values. 2 Building Blocks 2.1 Comparators There is often the need to compare two binary values. This is done using a comparator. A comparator determines whether binary values A and B are: 1. A = B 2. A < B 3.

More information

UNIT-2: BOOLEAN EXPRESSIONS AND COMBINATIONAL LOGIC CIRCUITS

UNIT-2: BOOLEAN EXPRESSIONS AND COMBINATIONAL LOGIC CIRCUITS UNIT-2: BOOLEAN EXPRESSIONS AND COMBINATIONAL LOGIC CIRCUITS STRUCTURE 2. Objectives 2. Introduction 2.2 Simplification of Boolean Expressions 2.2. Sum of Products 2.2.2 Product of Sums 2.2.3 Canonical

More information

Experiment # 4. Binary Addition & Subtraction. Eng. Waleed Y. Mousa

Experiment # 4. Binary Addition & Subtraction. Eng. Waleed Y. Mousa Experiment # 4 Binary Addition & Subtraction Eng. Waleed Y. Mousa 1. Objectives: 1. To study adder and subtractor circuits using logic gates. 2. To construct and test various adders and subtractor circuits.

More information

Digital Logic Design ELCT 201

Digital Logic Design ELCT 201 Faculty of Information Engineering and Technology Dr. Haitham Omran and Dr. Wassim Alexan Digital Logic Design ELCT 201 Winter 2017 Midterm Exam Second Chance Please tick the box of your major: IET MET

More information

Digital Circuits Introduction

Digital Circuits Introduction Lecture #6 OUTLINE Logic inary representations Combinatorial logic circuits Chap 7-7.5 Reading EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu Digital Circuits Introduction nalog: signal amplitude

More information

Digital Applications (CETT 1415) Credit: 4 semester credit hours (3 hours lecture, 4 hours lab) Prerequisite: CETT 1403 & CETT 1405

Digital Applications (CETT 1415) Credit: 4 semester credit hours (3 hours lecture, 4 hours lab) Prerequisite: CETT 1403 & CETT 1405 Digital Applications (CETT 1415) Credit: 4 semester credit hours (3 hours lecture, 4 hours lab) Prerequisite: CETT 1403 & CETT 1405 Course Description This course covers digital techniques and numbering

More information

Electronics. Digital Electronics

Electronics. Digital Electronics Electronics Digital Electronics Introduction Unlike a linear, or analogue circuit which contains signals that are constantly changing from one value to another, such as amplitude or frequency, digital

More information

CS302 Digital Logic Design Solved Objective Midterm Papers For Preparation of Midterm Exam

CS302 Digital Logic Design Solved Objective Midterm Papers For Preparation of Midterm Exam CS302 Digital Logic Design Solved Objective Midterm Papers For Preparation of Midterm Exam MIDTERM EXAMINATION 2011 (October-November) Q-21 Draw function table of a half adder circuit? (2) Answer: - Page

More information

This Figure here illustrates the operation for a 2-input OR gate for all four possible input combinations.

This Figure here illustrates the operation for a 2-input OR gate for all four possible input combinations. Course: B.Sc. Applied Physical Science (Computer Science) Year & Sem.: IInd Year, Sem - IIIrd Subject: Computer Science Paper No.: IX Paper Title: Computer System Architecture Lecture No.: 5 Lecture Title:

More information

CHW 261: Logic Design

CHW 261: Logic Design CHW 6: Logic Design Instructors: Prof. Hala Zayed Dr. Ahmed Shalaby http://www.bu.edu.eg/staff/halazayed4 http://bu.edu.eg/staff/ahmedshalaby4# Slide Copyright 6 by Pearson Education, Inc. Upper Saddle

More information

NORTH MAHARASHTRA UNIVERSITY. F.Y. B. Sc. Electronics. Syllabus. Wieth effect from june2015

NORTH MAHARASHTRA UNIVERSITY. F.Y. B. Sc. Electronics. Syllabus. Wieth effect from june2015 Syllabus Wieth effect from june2015 Paper- I, Semester I ELE-111: Analog Electronics I Unit- I:Introduction to Basic Circuit Components Definition and unit, Circuit Symbol, Working Principle, Classification

More information

Manipulate Boolean expression using Boolean theorem and

Manipulate Boolean expression using Boolean theorem and LERNING OUTOMES 6 th EDITION t the end of this course, the students would be able to: Differentiate between digital and analogue system principles. onvert numbers between different numerical systems and

More information

Asst. Prof. Thavatchai Tayjasanant, PhD. Power System Research Lab 12 th Floor, Building 4 Tel: (02)

Asst. Prof. Thavatchai Tayjasanant, PhD. Power System Research Lab 12 th Floor, Building 4 Tel: (02) 2145230 Aircraft Electricity and Electronics Asst. Prof. Thavatchai Tayjasanant, PhD Email: taytaycu@gmail.com aycu@g a co Power System Research Lab 12 th Floor, Building 4 Tel: (02) 218-6527 1 Chapter

More information

Logic diagram: a graphical representation of a circuit

Logic diagram: a graphical representation of a circuit LOGIC AND GATES Introduction to Logic (1) Logic diagram: a graphical representation of a circuit Each type of gate is represented by a specific graphical symbol Truth table: defines the function of a gate

More information

2 Logic Gates THE INVERTER. A logic gate is an electronic circuit which makes logic decisions. It has one output and one or more inputs.

2 Logic Gates THE INVERTER. A logic gate is an electronic circuit which makes logic decisions. It has one output and one or more inputs. 2 Logic Gates A logic gate is an electronic circuit which makes logic decisions. It has one output and one or more inputs. THE INVERTER The inverter (NOT circuit) performs the operation called inversion

More information

(CSC-3501) Lecture 6 (31 Jan 2008) Seung-Jong Park (Jay) CSC S.J. Park. Announcement

(CSC-3501) Lecture 6 (31 Jan 2008) Seung-Jong Park (Jay)   CSC S.J. Park. Announcement Seung-Jong Park (Jay) http://www.csc.lsu.edu/~sjpark Computer Architecture (CSC-3501) Lecture 6 (31 Jan 2008) 1 Announcement 2 1 Reminder A logic circuit is composed of: Inputs Outputs Functional specification

More information

Digital Electronics 8. Multiplexer & Demultiplexer

Digital Electronics 8. Multiplexer & Demultiplexer 1 Module -8 Multiplexers and Demultiplexers 1 Introduction 2 Principles of Multiplexing and Demultiplexing 3 Multiplexer 3.1 Types of multiplexer 3.2 A 2 to 1 multiplexer 3.3 A 4 to 1 multiplexer 3.4 Multiplex

More information

Digital Fundamentals

Digital Fundamentals Digital Fundamentals Tenth Edition Floyd hapter 5 Floyd, Digital Fundamentals, th ed 28 Pearson Education 29 Pearson Education, Upper Saddle River, NJ 7458. ll Rights Reserved ombinational Logic ircuits

More information

05/11/2006. Lecture What does a computer do? Logic Manipulation. Data manipulation

05/11/2006. Lecture What does a computer do? Logic Manipulation. Data manipulation 5//26 What does a computer do? Logic Manipulation Transistors Digital Logic Computers Computers store and manipulate information Information is represented digitally, as voltages Digital format avoids

More information

PREVIEW COPY. Digital Logic Systems. Table of Contents. Digital Logic Fundamentals...3. Logic Building Blocks Medium- and Large-Scale ICs...

PREVIEW COPY. Digital Logic Systems. Table of Contents. Digital Logic Fundamentals...3. Logic Building Blocks Medium- and Large-Scale ICs... Digital Logic Systems Table of Contents Lesson One Lesson Two Lesson Three Digital Logic Fundamentals...3 Logic uilding locks...9 Medium- and Large-Scale ICs...35 Lesson Four Functional Logic Systems...5

More information

FUNCTION OF COMBINATIONAL LOGIC CIRCUIT

FUNCTION OF COMBINATIONAL LOGIC CIRCUIT HAPTER FUNTION OF OMBINATIONAL LOGI IRUIT OUTLINE HALF-ADDER ANF FULL ADDER IRUIT -BIT PARALLEL BINARY RIPPLE ARRY ADDER -BIT PARALLEL BINARY ARRY LOOK- AHEAD ADDER BD ADDER IRUIT DEODER ENODER MULTIPLEXER

More information

Number system: the system used to count discrete units is called number. Decimal system: the number system that contains 10 distinguished

Number system: the system used to count discrete units is called number. Decimal system: the number system that contains 10 distinguished Number system: the system used to count discrete units is called number system Decimal system: the number system that contains 10 distinguished symbols that is 0-9 or digits is called decimal system. As

More information

NORTH MAHARASHTRA UNIVERSITY, JALGAON

NORTH MAHARASHTRA UNIVERSITY, JALGAON , JALGAON Syllabus for F.Y.B.Sc. Semester I and II ELECTRONICS (w. e. f. June 2012) F.Y. B. Sc. Subject Electronics Syllabus Structure Semester Code Title Number of Lectures ELE-111 Paper I : Analog Electronics

More information

Combinational Logic Design CH002

Combinational Logic Design CH002 Combinational Logic Design CH002 Figure 2.1 Circuit as a black box with inputs, outputs, and specifications Figure 2.2 Elements and nodes Figure 2.3 Combinational logic circuit Figure 2.4 Two OR implementations

More information

DIGITAL ELECTRONICS: LOGIC AND CLOCKS

DIGITAL ELECTRONICS: LOGIC AND CLOCKS DIGITL ELECTRONICS: LOGIC ND CLOCKS L 9 INTRO: INTRODUCTION TO DISCRETE DIGITL LOGIC, MEMORY, ND CLOCKS GOLS In this experiment, we will learn about the most basic elements of digital electronics, from

More information

CHAPTER 2 LITERATURE STUDY

CHAPTER 2 LITERATURE STUDY CHAPTER LITERATURE STUDY. Introduction Multipliction involves two bsic opertions: the genertion of the prtil products nd their ccumultion. Therefore, there re two possible wys to speed up the multipliction:

More information

Analysis procedure. To obtain the output Boolean functions from a logic diagram, proceed as follows:

Analysis procedure. To obtain the output Boolean functions from a logic diagram, proceed as follows: Combinational Logic Logic circuits for digital systems may be combinational or sequential. combinational circuit consists of input variables, logic gates, and output variables. 1 nalysis procedure To obtain

More information

EEE 301 Digital Electronics

EEE 301 Digital Electronics EEE 301 Digital Electronics Lecture 1 Course Contents Introduction to number systems and codes. Analysis and synthesis of digital logic circuits: Basic logic functions, Boolean algebra,combinational logic

More information

Government of Karnataka Department of Technical Education Board of Technical Examinations, Bengaluru

Government of Karnataka Department of Technical Education Board of Technical Examinations, Bengaluru Prerequisites Government of Karnataka Department of Technical Education Board of Technical Examinations, Bengaluru Course Title :Digital Electronics Lab I Course Code : 15EC2P Semester : II Course Group

More information

Logic Gates with Boolean Functions

Logic Gates with Boolean Functions 4 Logic Gates with oolean Functions In this chapter you will learn about, ² signals used in electronic science ² basic logic gates and combinational logic gates ² representing oolean expressions using

More information

EE260: Digital Design, Spring n More Logic Gates n NAND and NOR Gates

EE260: Digital Design, Spring n More Logic Gates n NAND and NOR Gates EE26: igital esign, Spring 28 -eb-8 EE 26: Introduction to igital esign oolean lgebra: Logic Synthesis and Timing Hazards ao Zheng epartment of Electrical Engineering University of Hawaiʻi at Mānoa Overview

More information

R & D Electronics DIGITAL IC TRAINER. Model : DE-150. Feature: Object: Specification:

R & D Electronics DIGITAL IC TRAINER. Model : DE-150. Feature: Object: Specification: DIGITAL IC TRAINER Model : DE-150 Object: To Study the Operation of Digital Logic ICs TTL and CMOS. To Study the All Gates, Flip-Flops, Counters etc. To Study the both the basic and advance digital electronics

More information

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING (Regulation 2013) EE 6311 LINEAR AND DIGITAL INTEGRATED CIRCUITS LAB MANUAL 1 SYLLABUS OBJECTIVES: Working Practice in simulators / CAD Tools / Experiment

More information

Digital Fundamentals

Digital Fundamentals 07/ago/2017 Digital Fundamentals ELEVENTH EDITION CHPTER 1 Introductory Concepts Digital electronics uses circuits that have two states, which are represented by two different voltage levels called HIGH

More information

ANALOGUE AND DIGITAL ELECTRONICS STUDENT S WORKBOOK U3: DIGITAL ELECTRONICS

ANALOGUE AND DIGITAL ELECTRONICS STUDENT S WORKBOOK U3: DIGITAL ELECTRONICS NLOGUE ND DIGITL ELECTRONICS STUDENT S WORKBOOK U3: DIGITL ELECTRONICS Joaquim Crisol Llicència D, Generalitat de Catalunya NILE Norwich, pril of 211 Table of contents Table of contents 3 DIGITL ELECTRONICS....

More information

CHAPTER 3 BASIC & COMBINATIONAL LOGIC CIRCUIT

CHAPTER 3 BASIC & COMBINATIONAL LOGIC CIRCUIT CHAPTER 3 BASIC & COMBINATIONAL LOGIC CIRCUIT CHAPTER CONTENTS 3.1 Introduction to Basic Gates 3.2 Analysing A Combinational Logic Circuit 3.3 Design A Combinational Logic Circuit From Boolean Expression

More information

Chapter 4: The Building Blocks: Binary Numbers, Boolean Logic, and Gates

Chapter 4: The Building Blocks: Binary Numbers, Boolean Logic, and Gates Chapter 4: The Building Blocks: Binary Numbers, Boolean Logic, and Gates Objectives In this chapter, you will learn about The binary numbering system Boolean logic and gates Building computer circuits

More information

Combinational Circuits: Multiplexers, Decoders, Programmable Logic Devices

Combinational Circuits: Multiplexers, Decoders, Programmable Logic Devices Combinational Circuits: Multiplexers, Decoders, Programmable Logic Devices Lecture 5 Doru Todinca Textbook This chapter is based on the book [RothKinney]: Charles H. Roth, Larry L. Kinney, Fundamentals

More information

Subtractor Logic Schematic

Subtractor Logic Schematic Function Of Xor Gate In Parallel Adder Subtractor Logic Schematic metic functions, including half adder, half subtractor, full adder, independent logic gates to form desired circuits based on dif- by integrating

More information

Fan in: The number of inputs of a logic gate can handle.

Fan in: The number of inputs of a logic gate can handle. Subject Code: 17333 Model Answer Page 1/ 29 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model

More information

Aspects of Digital Electronics Chemistry 838

Aspects of Digital Electronics Chemistry 838 spects of Digital Electronics hemistry 838 Thomas V. tkinson, Ph.D. Senior cademic Specialist Department of hemistry Michigan State University East Lansing, MI 48824 Table of ontents TLE OF ONTENTS...

More information

Unit level 4 Credit value 15. Introduction. Learning Outcomes

Unit level 4 Credit value 15. Introduction. Learning Outcomes Unit 20: Unit code Digital Principles T/615/1494 Unit level 4 Credit value 15 Introduction While the broad field of electronics covers many aspects, it is digital electronics which now has the greatest

More information

Lecture 15 Analysis of Combinational Circuits

Lecture 15 Analysis of Combinational Circuits Lecture 15 Analysis of Combinational Circuits Designing Combinational Logic Circuits A logic circuit having 3 inputs, A, B, C will have its output HIGH only when a majority of the inputs are HIGH. Step

More information

Digital Logic. Software. Digital Logic. Boolean value (bit): 0 or 1. Transistors (more in lab) 1/26/16. Program, Application. Programming Language

Digital Logic. Software. Digital Logic. Boolean value (bit): 0 or 1. Transistors (more in lab) 1/26/16. Program, Application. Programming Language /26/6 S 24, Fall 24 S 24, Fall 24 Program, pplication Digital Logic Software Programming Language ompiler/interpreter Operating System Instruction Set rchitecture Gateway to computer science Hardware Microarchitecture

More information

De Morgan s second theorem: The complement of a product is equal to the sum of the complements.

De Morgan s second theorem: The complement of a product is equal to the sum of the complements. Q. What is Gate? State and prove De Morgan s theorems. nswer: digital circuit having one or more input signals but only one output signal is called a gate. De Morgan s first theorem: The complement of

More information

Winter 14 EXAMINATION Subject Code: Model Answer P a g e 1/28

Winter 14 EXAMINATION Subject Code: Model Answer P a g e 1/28 Subject Code: 17333 Model Answer P a g e 1/28 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model

More information

Combinational Logic Gates in CMOS

Combinational Logic Gates in CMOS Combinational Logic Gates in CMOS References: dapted from: Digital Integrated Circuits: Design Perspective, J. Rabaey UC Principles of CMOS VLSI Design: Systems Perspective, 2nd Ed., N. H. E. Weste and

More information

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM. Course Title: Digital Electronics (Code: )

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM. Course Title: Digital Electronics (Code: ) GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM Course Title: Digital Electronics (Code: 3322402) Diploma Programmes in which this course is offered Semester in which offered Power

More information

Multiple input gates. The AND gate

Multiple input gates. The AND gate Multiple input gates Inverters and buffers exhaust the possibilities for single-input gate circuits. What more can be done with a single logic signal but to buffer it or invert it? To explore more logic

More information

Gates and Circuits 1

Gates and Circuits 1 1 Gates and Circuits Chapter Goals Identify the basic gates and describe the behavior of each Describe how gates are implemented using transistors Combine basic gates into circuits Describe the behavior

More information

DIGITAL ELECTRONICS. Methods & diagrams : 1 Graph plotting : - Tables & analysis : - Questions & discussion : 6 Performance : 3

DIGITAL ELECTRONICS. Methods & diagrams : 1 Graph plotting : - Tables & analysis : - Questions & discussion : 6 Performance : 3 DIGITAL ELECTRONICS Marking scheme : Methods & diagrams : 1 Graph plotting : - Tables & analysis : - Questions & discussion : 6 Performance : 3 Aim: This experiment will investigate the function of the

More information

Gujarat University B. Sc. Electronics Semester I: ELE (Effective from: )

Gujarat University B. Sc. Electronics Semester I: ELE (Effective from: ) Unit - I: Components and Instrumentation: Gujarat University B. Sc. Electronics Semester I: ELE - 101 Passive Circuit devices: Resistors, nonlinear resistors, inductors, types of inductors, capacitors,

More information

Topic Notes: Digital Logic

Topic Notes: Digital Logic Computer Science 220 Assembly Language & Comp. Architecture Siena College Fall 20 Topic Notes: Digital Logic Our goal for the next couple of weeks is to gain a reasonably complete understanding of how

More information

16 Multiplexers and De-multiplexers using gates and ICs. (74150, 74154)

16 Multiplexers and De-multiplexers using gates and ICs. (74150, 74154) 16 Multiplexers and De-multiplexers using gates and ICs. (74150, 74154) Aim: To design multiplexers and De-multiplexers using gates and ICs. (74150, 74154) Components required: Digital IC Trainer kit,

More information

IES Digital Mock Test

IES Digital Mock Test . The circuit given below work as IES Digital Mock Test - 4 Logic A B C x y z (a) Binary to Gray code converter (c) Binary to ECESS- converter (b) Gray code to Binary converter (d) ECESS- To Gray code

More information

COLLEGE OF ENGINEERING, NASIK

COLLEGE OF ENGINEERING, NASIK Pune Vidyarthi Griha s COLLEGE OF ENGINEERING, NASIK LAB MANUAL DIGITAL ELECTRONICS LABORATORY Subject Code: 2246 27-8 PUNE VIDYARTHI GRIHA S COLLEGE OF ENGINEERING,NASHIK. INDEX Batch : - Sr.No Title

More information

Design of high performance Quaternary adders

Design of high performance Quaternary adders 2011 41st IEEE International Symposium on Multiple-Valued Logic Design of high performance Quaternary adders Vasundara Patel K S Dept of ECE, MSCE MS College of Engg, VTU angalore, India e-mail: vasundara.rs@gmail.com

More information

Dr. Nicola Nicolici COE/EE2DI4 Midterm Test #1 Oct 18, 2006

Dr. Nicola Nicolici COE/EE2DI4 Midterm Test #1 Oct 18, 2006 COE/EE2DI4 Midterm Test #1 Fall 2006 Page 1 Dr. Nicola Nicolici COE/EE2DI4 Midterm Test #1 Oct 18, 2006 Instructions: This examination paper includes 10 pages and 20 multiple-choice questions starting

More information

In this lecture: Lecture 8: ROM & Programmable Logic Devices

In this lecture: Lecture 8: ROM & Programmable Logic Devices In this lecture: Lecture 8: ROM Programmable Logic Devices Dr Pete Sedcole Department of EE Engineering Imperial College London http://caseeicacuk/~nps/ (Floyd, 3 5, 3) (Tocci 2, 24, 25, 27, 28, 3 34)

More information

Digital Systems Principles and Applications TWELFTH EDITION. 3-3 OR Operation With OR Gates. 3-4 AND Operations with AND gates

Digital Systems Principles and Applications TWELFTH EDITION. 3-3 OR Operation With OR Gates. 3-4 AND Operations with AND gates Digital Systems Principles and Applications TWELFTH EDITION CHAPTER 3 Describing Logic Circuits Part -2 J. Bernardini 3-3 OR Operation With OR Gates An OR gate is a circuit with two or more inputs, whose

More information