GaN Transistors for Efficient Power Conversion

Size: px
Start display at page:

Download "GaN Transistors for Efficient Power Conversion"

Transcription

1 GaN Transistors for Efficient Power Conversion Alex Lidow and David Reusch Efficient Power Conversion 1

2 Agenda How GaN works and the state-of-theart Design Basics Design Examples What is in the future? 2

3 How GaN Works and the State-of-the-Art 3

4 Power Switch Wish List Lower On-Resistance Faster Less Capacitance Smaller Lower Cost 4

5 Material Comparison 5

6 State of the Art Theoretical on-resistance vs. blocking voltage capability for silicon, silicon carbide, and gallium nitride. 6

7 GaN Switch V AlGaN GaN 7

8 Now GaN we Switch have a switch That has high voltage blocking V capability, low on resistance, and is very, very fast. AlGaN GaN Depletion Mode = Normally On 8

9 Device Construction Concept Source Gate AlGaN Protection Dielectric Drain GaN Silicon 9

10 What about Normally Off devices? 10

11 Cascode GaN Device Reference: The Status of GaN Power Device Development at International Rectifier, PCIM

12 Cascode Penalty Cascode devices combine a depletion mode GaN transistor with a low voltage enhancement mode MOSFET Drain GaN Improves Gate Si Improves Source 12

13 Enhancement Mode A positive voltage from Gate-To-Source establishes an electron gas under the gate 13

14 Body Diode? A positive voltage from Gate-To-Drain also establishes an electron gas under the gate 14

15 Cross Section of an egan FET 15

16 Electrical Characteristics 16

17 egan FET Reverse Conduction MOSFET + Q RR egan FET + Zero Q RR 17

18 Normalized On Resistance On Resistance vs. Temperature egan FET MOSFET B About 20% Difference At 125 C Junction Temperature ( C) 18

19 Normalized Thershold Voltage Threshold vs. Temperature egan FET MOSFET A Junction Temperature ( C) 19

20 egan FET Transfer Characteristics EPC

21 MOSFET Transfer Characteristics Negative temperature coefficient region of silicon MOSFET Source:

22 egan FET Safe Operating Area 1 ms 10 ms 100 ms DC

23 egan FET Safe Operating Area 1 ms 10 ms 100 ms DC

24 egan FET Capacitances C GS C DS GaN Silicon C GD 24

25 Total Gate Charge BSC057N08NS EPC2001 = 100 V, 5.6 mω typ. BSC057N08 = 80 V, 4.7 mω typ. 25

26 Switching Comparison 100 V egan FET 5.6 mω 80 V Si MOSFET 10.3 mω 10 V/ div 20 ns/ div V IN =48 V V OUT =1 V I OUT =10 A f sw =300 khz L=10 µh egan FET T/SR: 100 V EPC2001 MOSFET T/SR: 80 V BSZ123N08NS3G 26

27 R DS(on) (mω) GaN Improvements x Generation Generation x Drain-to-Source Voltage (V) V GS =5 V 27

28 FOM=Q G R DS(on) (pc Ω) Gate Charge FOM Generation x x 1.4x Generation Drain-to-Source Voltage (V)

29 FOM=Q G R DS(on) (pc Ω) Gate Charge Figure of Merit EPC Gen 4 EPC Gen 2 Vendor A Vendor B Vendor C Vendor D Vendor E x x 4.2x Drain-to-Source Voltage (V) 29

30 FOM HS =(Q GD +Q GS2 ) R DS(on) (pc Ω) Hard Switching FOM Generation x x 2.4x Generation Drain-to-Source Voltage (V) V DS =0.5 V DSS, I DS =20 A

31 FOM HS =(Q GD +Q GS2 ) R DS(on) (pc Ω) Hard Switching FOM 100 EPC Gen 4 EPC Gen 2 Vendor A Vendor B Vendor C Vendor D Vendor E Si MOSFETs 2014 GaN Transistors x x 8x GaN Transistors Drain-to-Source Voltage (V) V DS =0.5 V DSS, I DS =20 A

32 Miller Ratio Miller Ratio=Q GD /Q GS EPC Gen 4 EPC Gen 2 Vendor A Vendor B Vendor C Vendor D Vendor E 2.5x 2x 2.5x Drain-to-Source Voltage (V) V DS =0.5 V DSS, I DS =20 A 32

33 FOM SS =(Q G +Q OSS ) R DS(on) (pc Ω) Soft-Switching Figure of Merit EPC Gen 4 EPC Gen 2 Vendor A Vendor B x x 2.4x Drain-to-Source Voltage (V) V DS =0.5 V DSS 33

34 egan FET Loss Mechanisms Like A MOSFET I²R Conduction Loss Capacitive Switching Losses Gate Drive Losses V I Switching Loss Not Like A MOSFET High Reverse Conduction Loss No Body Diode Reverse Recovery Loss Can be much, much better than comparable silicon MOSFET 34

35 Package Wish List Low parasitic resistance Low parasitic inductance Low thermal resistance Small size Low cost 35

36 Flip-Chip LGA Construction egan FET Silicon Solder Bar Copper Trace Printed Circuit Board Absolute minimum lead resistance and inductance! 36

37 LGA Construction Drain Contacts Interleaving to reduce layout inductance Substrate Gate Source Contacts 37

38 Size Comparison 200 V egan FET D-PAK 5.76 mm² Drawn To Scale 65.3 mm² 38

39 Design Basics 39

40 Design Basics Agenda Requirements for: Gate Driver Dead-time Layout Paralleling Thermal Measurement 40

41 Gate Drive 41

42 Low V GS(on) Overhead V GS(Max) = 6 V 42

43 Minimizing Overshoot V GS egan FET 2 V/ div 80 ns/ div 43

44 egan FET Drive Requirements To avoid overshoot: R G = R G(INT) + R G(EXT) R G 4( L L G C GS S ) R G(INT) R G(EXT) L G C GS L S Minimize gate loop inductance Separate source and sink transistors allowing for separate drive paths 44

45 Minimizing Overshoot V GS egan FET V GS egan FET 1 V/ div 20 ns/ div 45

46 egan FET Driver IC Bootstrap clamp limits (HS) supply Separate inputs allow accurate, dead-time management Optimized drive impedance Reference: Texas Instruments, Gate Drivers for Enhancement Mode GaN Power FETs 100 V Half-Bridge and Low-Side Drivers Enable Greater Efficiency, Power Density, and Simplicity, SNVB

47 Dead-time Requirements 47

48 Reverse Conduction Period V V SW C in T SR V SW V GS_T V GS_SR T Dead t 48

49 egan FET Reverse Conduction MOSFET + Q RR egan FET + Zero Q RR 49

50 Reverse Conduction Period V V SW C in T SR V SW V GS_T V GS_SR T Dead t 50

51 Dead-time Loss (W) Impact of Dead-time egan FET Si MOSFET w/o Q RR 0.2 egan FET w/schottky Dead-Time (ns) V IN =12 V, V OUT =1.2 V, I OUT =20 A, and f sw =1 MHz 51

52 Efficiency (%) Impact of Dead-time Si MOSFET T DEAD 2.5 ns egan FET T DEAD 2.5 ns egan FET T DEAD 5 ns egan FET T DEAD 10 ns w/o Schottky w/ Schottky Output Current (A) V IN =12 V, V OUT =1.2 V, and f sw =1 MHz 52

53 Fixed Dead-time Implementation Single PWM input Buffer RCD filters delay turn-on, but not turn-off Dead-time Inverter To LM5113 High side input To LM5113 Low side input Used on all EPC90XX boards 53

54 Layout 54

55 Ideal Hard Switching V IN I OFF t VR Q GD I DS t CF Q GS2 V DS V GS V PL V TH P tvr V IN I OFF Q GD 2 I G P tcf V IN I OFF Q GS2 2 I G t 55

56 FOM = (Q GD +Q GS2 )*R DSON (pc*ω) 100 V Device Comparison V egan FETs 100 V MOSFETs Q GS2 Q GS Q GS Q GS2 Q GD Q GD Q GD 10 Q GD Q GS V egan FET Gen2 Q GD 100 V egan FET Gen V MOSFET V MOSFET V MOSFET 3 V DS =0.5*V DS, I DS = 10 A 56

57 Power Loss(W) Converter Parasitics C in T SR L S : Common Source Inductance L Loop : High Frequency Power Loop Inductance Power Loss vs Parasitic Inductance Ls L Loop Parasitic Inductance (nh) V IN =12 V, V OUT =1.2 V, f sw =1 MHz, I OUT = 20 A 57

58 Power Loss (W) Efficiency (%) Package Impact on Efficiency Drain Gate Source SO-8 LFPAK DirectFET Device Loss Breakdown 90 82% 18% Package Die 73% 27% 47% 53% V IN =12V V OUT =1.2V I OUT =20A f sw =1MHz 18% 82% SO-8 LFPAK DirectFET LGA LGA egan LGA FET SO-8 LFPAK DirectFET LGA Switching Frequency (MHz) 58

59 Efficiency (%) Layout Impact on Efficiency Measured Efficiency L Loop 0.4nH L Loop 1.0nH L Loop 1.7nH L Loop 40 V egan FET 2.2nH 40 V MOSFET Output Current (A) EPC Optimal Layout Ref: D. Reusch, J. Strydom, Understanding the Effect of PCB Layout on Circuit Performance in a High Frequency Gallium Nitride Based Point of Load Converter, APEC 2013 V IN =12 V, V OUT =1.2 V, f sw =1 MHz, L=300 nh 59

60 Layout Impact on Peak Voltage L Loop 1.0 nh L Loop 0.4 nh 70% Overshoot 30% Overshoot Switching Node Voltage V IN =12 V V OUT =1.2 V I OUT =20 A f sw =1 MHz L=150 nh 60

61 Conventional Lateral Layout Top View Side View Shield Layer 61

62 Conventional Vertical Layout Top View Side View Bottom View 62

63 EPC Optimal Layout Top View Side View Top View Inner Layer

64 Optimal Layout Implementation C IN C IN U 2 U 2 Q 1 Q 1 Q 2 Q

65 Layout Inductance Comparison Top View Test Cases Board Thickness (mils) Inner Layer Distance (mils) Design Design Design Design

66 Power Loss (W) Power Loss Comparison High Frequency Loop Inductance (nh) V IN =12 V V OUT =1.2 V I OUT =20 A f sw =1 MHz L=300 nh T/SR: EPC2015 Driver LM5113 Lateral Power Loop Optimal Power Loop Vertical Power Loop 66

67 Efficiency (%) Efficiency Comparison V MOSFET Vertical Design 1 40 V egan FET Optimal Design 1 Vertical Design 1 Lateral Design Output Current (A) V IN =12 V V OUT =1.2 V f sw =1 MHz L=300 nh GaN T/SR: EPC2015 Driver LM

68 Voltage Overshoot (%) Voltage Overshoot Comparison Lateral Power Loop Vertical Power Loop Optimal Power Loop High Frequency Loop Inductance (nh) V IN =12 V V OUT =1.2 V I OUT =20 A f sw =1 MHz L=300 nh T/SR: EPC2015 Driver LM

69 egan FET dv/dt (V/ns) Switching Speed Comparison High Frequency Loop Inductance (nh) V IN =12 V V OUT =1.2 V I OUT =20 A f sw =1 MHz L=300 nh T/SR: EPC2015 Driver LM5113 Optimal Power Loop Lateral Power Loop Vertical Power Loop 69

70 egan FET vs. MOSFET Si MOSFET egan FET 3 V/ div 20 ns/ div V IN =12 V V OUT =1.2 V I OUT =20 A f sw =1 MHz L=300 nh egan FET T/SR: EPC2015 MOSFET T:BSZ097N04 SR:BSZ040N

71 FOM=(Q GD +Q GS2 )*R DSON (pc*ω) Lower Voltage Comparison V MOSFETs Q GS2 Q GS V egan FET Q GS2 Q GD 30 V egan FET Q GS2 Q GD Q GD 25 V MOSFETs Q GS2 Q GS2 Q GD Q GD 0 40V egan FET Gen 2 Q GD 30V egan FET Gen 4 40 V MOSFET 1 40 V MOSFET 2 25V MOSFET 1 25V MOSFET

72 Efficiency (%) Lower Voltage Comparison V Discrete egan FET 40 V Discrete MOSFET 25 V Discrete MOSFET 30 V Module MOSFET Output Current (A) V IN =12 V V OUT =1.2 V f sw =1 MHz L=300 nh 72

73 Switching Comparison 40 V egan FET 30 V Si MOSFET Module 40 V Si MOSFET Switch Node Voltage 3 V/Div 20 ns/ div V IN =12 V V OUT =1.2 V I OUT =20 A f sw =1 MHz L=300 nh 73

74 EPC9107 Demonstration Board V IN =12-28 V V OUT =3.3 V I OUT =15 A f sw =1 MHz 2 x EPC2015 ~3V 15 A OUT V IN =28 V Switching Node Voltage V IN =28 V, I OUT =15 A ~1.1ns rise 15 A 20ns 5 V/ div 74

75 Efficiency (%) Higher Current Devices V MOSFET Module EPC EPC2015 EPC EPC Output Current (A) V IN =12 V V OUT =1.2 V f sw =0.5 MHz f sw =1 MHz 75

76 Power Loss (W) Higher Current Devices V MOSFET Module EPC EPC Output Current (A) V IN =12 V V OUT =1.2 V EPC EPC2023 f sw =0.5 MHz f sw =1 MHz 76

77 Paralleling High-Speed egan FETs 77

78 Parallel Power Devices? 78

79 Unbalanced Loop Inductance Q GS2 Q GD I DS1 I DS V DS I DS2 V GS2 V GS V DS2 V GS1 V TH V DS1 t 79

80 Current Difference (%) Loop Inductance Impact L S =0.10nH L S =0.15nH L S =0.20nH L S =0.25nH L S =0.50nH Loop Inductance Difference (nh) V IN =48 V I OUT =25 A egan FET T/SR: 100 V EPC

81 Single Loop Optimal Layout SR 4 SR 1 T 1-4 SR 1 SR 4 10 V/ div 5 ns/ div V IN =48 V V OUT =12 V I OUT =30 A f sw =300 khz L=3.3 µh GaN FET T/SR: 100 V EPC

82 Parallel Loop Optimal Layout T 1 T 3 SR 1 SR 3 SR 4 SR 4 SR 2 SR 4 T 2 T 4 SR 1 10 V/ div 5 ns/ div V IN =48 V V OUT =12 V I OUT =30 A f sw =300 khz L=3.3 µh GaN FET T/SR: 100 V EPC

83 Efficiency (%) Parallel Layout Performance ǁ egan FETs Proposed Four Distributed Power Loops Design Output Current (A) Conventional Single Power Loop Design V IN =48 V V OUT =12 V f sw =300 khz L=3.3 µh GaN FET T/SR: 4x100 V EPC Layer 2 oz PCB 83

84 Parallel Layout Implementation T 1 SR 1 T 3 SR 3 T 1-4 SR 1-4 SR 2 SR 4 T 2 T 4 V IN =48 V V OUT =12 V I OUT =30 A f sw =300 khz L=3.3 µh GaN FET T/SR: 100 V EPC

85 Maximum Temperature ( C) Parallel Layout Performance Proposed Four Distributed Power Loops Design Output Current (A) Conventional Single Power Loop Design V IN =48 V V OUT =12 V f sw =300 khz L=3.3 µh GaN FET T/SR: 100 V EPC2001 Fan Speed 200 LFM 4 Layer 2 oz PCB 85

86 Parallel egan FET Swithcing 1x egan FET 2x egan FET 4x egan FET 10 V/ div 5 ns/ div V IN =48 V V OUT =12 V I OUT =30 A/ number of devices f sw =300 khz GaN FET T/SR: 100 V EPC

87 Efficiency (%) Parallel Buck in IBC Applications kHz EPC EPC kHz EPC ǁ EPC khz Si Isolated IBC 245 khz Si Isolated IBC Output Current (A) 14 W V IN =48 V V OUT =12 V Fully Regulated IBC 87

88 Efficiency (%) Higher Current Devices V EPC Gen 2 80 V EPC Gen V MOSFET f sw =300 khz f sw =500 khz Output Current (A) V IN =48 V V OUT =12 V 88

89 Power Loss (W) Higher Current Devices V MOSFET EPC EPC2001 EPC EPC Output Current (A) f sw =300 khz f sw =500 khz V IN =48 V V OUT =12 V 89

90 Improved Thermal Performance Fan Speed=200 LFM f sw =300 khz V IN =48 V V OUT =12 V I OUT =30 A 90

91 Thermal 91

92 Thermal Management Silicon Substrate Active GaN Device Region R ƟCA R ƟJC T J R ƟJB R ƟBA 92

93 Packaging Advancements Single Sided Cooling Double Sided Cooling Double Sided Cooling R ƟJB << R ƟJC R ƟJB R ƟJC R ƟJB R ƟJC 93

94 R ƟJB, Thermal Resistance ( C/W) Package Comparisons R θjb_si R θjb_gan Device Area (mm 2 ) 94

95 R ƟJC, Thermal Resistance ( C/W) Package Comparisons R θjc_si R θjc_gan Device Area (mm 2 ) 95

96 Efficiency (%) Performance Comparison V egan FET 40 V MOSFET Output Current (A) V IN =12 V, V OUT =1.2 V, f sw =1 MHz, L=300 nh 96

97 Thermal Comparison GaN is 38% Smaller 13% Cooler V IN =12 V, V OUT =1.2 V, I OUT =20 A, f sw =1 MHz, L=300 nh 97

98 Maximum Temperature (C) Thermal Comparison egan FET MOSFET 0 LFM 200 LFM Output Current (A) V IN =12 V, V OUT =1.2 V, f sw =1 MHz, L=300 nh 98

99 Maximum Temperature ( C) Generation 4 Thermal Performance Natural Convection Output Current (A) V IN =12 V V OUT =1.2 V 200 LFM 400 LFM f sw =1 MHz 99

100 Measurement 100

101 Voltage Measurement Do not use probe ground lead Do not let probe tip touch the low-side die! Ground probe against TP3 OR use wire ground Minimize loop Place probe tip in large via or exposed pad 101

102 Probe Options Tektronix PCB Jack Yokogawa Probe Hand-made Probe Adapter 102

103 High Speed Measurement 4GHz, 40Gsa/s oscilloscope 1GHz, 4Gsa/s oscilloscope 1GHz, 100:1, 1pF / 5k probe 500MHz, 10:1, 10pF / 10M probes 103

104 Design Basics Summary egan FETs raise the bar for power conversion performance Lower resistance per die area Better FOM s Better Packaging Improved PCB Layout Techniques Superior In-Circuit Performance Can parallel devices for higher current Avoid gate overshoot and long dead-times 104

105 Design Examples 105

106 Design Example Agenda Resonant Bus Converter Envelope Tracking Wireless Power LiDAR Class-D Audio 106

107 Resonant Bus Converter 107

108 Figure of Merit (FOM) History In 1989, Baliga derived a switching FOM BHFFOM = 1 R ON,SP C IN,SP In 1995, Kim et al proposed a new FOM NHFFOM = 1 R ON,SP C OSS,SP In 2004, Huang proposed a new FOM HDFOM = R ON,SP Q GD,SP 108

109 Resonant Bus Converter High Frequency DC/DC Transformer L K1 S 1 V GS(Q2,Q4) V GS(S2) Q 1 Q 4 4:1 I LK1 V GS(Q1,Q3) V GS(S1) D V IN + - I PRIM C O I PRIM I LM 48V Q 2 Q 3 L M V DS(Q1) t ZVS V IN L K2 I Lk1 S 2 t 0 t 1 t 2 t 3 Ref: Y. Ren, M. Xu, J. Sun, and F. C. Lee, A family of high power density unregulated bus converters, IEEE Trans. Power Electron., vol. 20, no. 5, pp , Sep

110 FOM=Q G R DS(on) (pc Ω) Gate Charge Figure of Merit EPC Gen 4 EPC Gen 2 Vendor A Vendor B Vendor C Vendor D Vendor E x x 4.2x Drain-to-Source Voltage (V) 110

111 P G = Q G V DR f s Output Charge Q OSS t ZVS I RMS P CON V t ZVS I I SW V DS t ZVS V GS t D T S t 111

112 FOM=Q OSS R DS(on) (pc Ω) Output Charge FOM EPC Gen 4 EPC Gen 2 Vendor A Vendor B 2.6x x 1.7x Drain-to-Source Voltage (V) V DS =0.5 V DSS 112

113 FOM=Q G \Q OSS R DS(on) (pc Ω) Soft-Switching FOM Q OSS x x 3.5x Q G Drain-to-Source Voltage (V) FOM SS = (Q OSS +Q G ) R DS(on) 113

114 FOM SS =(Q G +Q OSS ) R DS(on) (pc Ω) Soft-Switching FOM EPC Gen 4 EPC Gen 2 Vendor A Vendor B x x 2.4x FOM SS = (Q OSS +Q G ) R DS(on) Drain-to-Source Voltage (V) 114

115 egan FET vs. MOSFET Resonant Capacitors Secondary Devices Transformer Primary Devices Input Capacitors MOSFET vs. egan FET 115

116 ZVS Switching Comparison T ZVS = 42 ns egan FET V DS MOSFET V DS T ZVS = 87 ns MOSFET V GS egan FET V GS f sw = 1.2 MHz, V IN = 48 V, and V OUT 12 V 116

117 Duty Cycle Comparison D egan FET = 42% D MOSFET = 34% MOSFET V GS egan FET V DS egan FET V GS MOSFET V DS f sw = 1.2 MHz, V IN = 48 V, and V OUT 12 V 117

118 Efficiency (%) Power Loss (W) Efficiency Comparison MHz egan FET 1.2 MHz MOSFET 10 W 12 W 14 W MHz MOSFET 5 A MHz egan FET Output Current (A) Output Current (A) f sw = 1.2 MHz, V IN = 48 V, and V OUT 12 V 118

119 * EPC9105 Bus Converter EPC9105 Demonstration Board V IN, 12 V OUT, 350 W, 1.2 MHz L IN L K1 2 SR V IN+ C IN Q 1 Q 3 4:1 * * Q 6, Q 7 V OUT+ L OUT C RES C OUT V IN- Q 2 Q 4 L K2 2 SR Q 5, Q 8 V OUT

120 Envelope Tracking 120

121 Exabytes per Month Why Envelope Tracking? Source: Cisco VNI Mobile Data Traffic Forecast 66% Compound annual growth rate (CAGR) Same average Reference: Nujira.com website 121

122 Envelope Tracking Envelope Tracking Peak Power Fixed supply PAPR = 0dB Peak efficiency up to 65% Output Probability Average Power Output Power (dbm) 122

123 EPC8000 Series EPC8004 egan FET Gen 3 FOM EPC

124 Hard Switching FOM 124

125 Gate Return Gate Return HB Layout Top Layer Vias to next layer To BUS caps Supply Switch node Drain Sub Top Gate Source S Gate Current orthogonal to drain current Drain Sub Vias to next layer Bottom Gate Ground Source S 125

126 Gate Return Gate Return HB Layout Inner Layer 1 Optimum power loop return To gate drive Drain Sub Optimum gate loop return Source S To gate drive Drain Sub Optimum gate loop return Source S 126

127 Envelope Tracking Prototype Board Bus caps LM5113 EPC8005 EPC8005 SO-8 footprint 127

128 Efficiency High Frequency Efficiency 95% 90% 5 MHz 85% 80% 10 MHz EPC % 70% 65% Output Current (A) V IN =42 V V OUT =20 V 128

129 42V IN, 10 MHz Losses Conduction Switching C OSS Unaccounted losses EPC

130 No-Load Switching 10 MHz switching, no load, large dead-time 10V/div, 100mA/div, 10ns/div Expected commutation based on egan FET C OSS Initially slow rising edge Actual voltage commutation slopes are different, even though currents are the same 130

131 IC capacitance Bootstrap diode Level Shift Parasitic Losses Reverse recovery charge V DD V DD Switch-node rising edge LM5113 half-bridge driver 131

132 Loss Breakdown 10 MHz switching, no load, large dead-time 10V/div, 100mA/div, 10ns/div Switch-node voltage Bootstrap Q RR Actual commutation based on total C OSS including IC capacitance 132

133 42V IN, 10 MHz Losses Conduction Switching C OSS Unaccounted losses EPC

134 egan FET Limited Efficiency Calculated efficiency improvement 134

135 Wireless Power 135

136 Wireless Power The global wireless charging market is estimated to grow to $10B by 2018, a CAGR of 42.6% egan FETs enable higher efficiency and operation at safer frequencies 136

137 25mm Experimental System Setup Coil Feedback egan FETs RF connection Device Coil Device Board 50mm Source Board Source Coil RF connection 137

138 Coil Simplification Simplified representation of coil-set for easy comparison between topologies C devs L devs L src L dev C devp C out Z load Coil Set R DCload 138

139 Single Ended Class-E Switch voltage rating 3.56 Supply (V DD ). C OSS absorbed into matching network. Susceptible to load variation - high FET losses. Coil voltage V DD [V RMS ]. V DD V / I + L RFck L e C s 3.56 x V DD V DS Q 1 C sh Z load 50% I D Ideal Waveforms time 139

140 EPC2012 MOSFET Device Power [mw] FoM WPT [nc mω] SE-CE SE-CE Class-E Device Comparison FOM Gate Power dominant 1000 WPT R DS(on) Conduction Loss dominant Lowest Power Dissipation R DS(on) [mω] Q G Q GD MOSFET egan FET 140

141 Efficiency [%] Output Power [W] % 98.5 % Class-E Analysis Comparison Peak Power Device losses = 279 mw No Heat-Sink Required egan FET Eff. MOSFET Eff. egan FET Pout MOSFET Pout EPC2012 MOSFET 94.4% 85.2% DC Load Resistance [Ω]

142 ZVS Class-D Switch voltage rating = Supply (V DD ). C OSS voltage is transitioned by the ZVS tank. ZVS tank circuit does not carry load current. Coil voltage = ½ V DD [V RMS ]. + V DD V / I C s V DD Q 2 L ZVS V DS I D Q 1 C ZVS ZVS tank Z load 50% Ideal Waveforms time 142

143 EPC8009 EPC2007 MOSFET 2 MOSFET 3 FoM WPT [nc mω] V GS = 10 V Device Comparison ZVS-CD ZVS-CD FOM WPT R DS(on) Q G Q GD 143

144 Efficiency [%] 84 Coil becomes Capacitive Load Variation Results Fixed Supply Voltage Coil becomes Inductive η EPC2012 SE-CE η MOSFET 1 SE-CE η EPC8009 ZVS-CD η MOSFET 2 ZVS-CD η MOSFET 3 ZVS-CD DC Load Resistance [Ω] 144

145 LiDAR 145

146 LIght Detection And Ranging Autonomous vehicles Video games Geology Agriculture

147 LiDAR Courtesy of OmniPulse 147

148 Class-D Audio 148

149 Why egan FETs in Class-D Audio Low R DS(on) & Low C OSS + High Efficiency + High Damping Factor = Low open loop output Impedance = Low T-IMD Fast Switching & No Reverse Recovery (Q rr ) + High output linearity, Low Cross-over Distortion = Low THD 149

150 egan FET Class-D Audio Amplifier Bridge-Tied-Load (BTL) EPC2016 with LM5113 XLR Input ±30 V supply Q 1 L F1 L F2 Q 3 Q 2 C F1 C F2 Q 4 egan FET Power Stage: 250 W into 4 Ω at 440 khz without a heatsink XLR Input RCA Inputs Speaker Connections 150

151 A Look Into the Future 151

152 Breaking Down the Barriers Does it enable significant new capabilities? Is it easy to use? Is it VERY cost effective to the user? Is it reliable? 152

153 Breaking Down the Barriers Does it enable significant new capabilities? Is it easy to use? Is it VERY cost effective to the user? Is it reliable? 153

154 egan FETs are Faster Faster Transistors Faster transistors enable the systems to get smaller, more efficient, and lower cost

155 Key Applications Wireless Power Transmission RF DC-DC Envelope Tracking LiDAR RadHard Network and Server Power Supplies Point of Load Modules Energy Efficient Lighting Class D Audio Various Medical 155

156 Product Revenue Forecast 2018 Envelope Tracking 22% AC-DC 38% WiPo 18% LiDAR 6% DC-DC 9% NRE 1% Lighting 1% Audio 2% RadHard 1% MRI 2% 156

157 Breaking Down the Barriers Does it enable significant new capabilities? Is it easy to use? Is it VERY cost effective to the user? Is it reliable? 157

158 Is an egan FET Easy to Use? It s just like a MOSFET except The high frequency capability makes circuits using egan FETs sensitive to layout The lower V G(MAX) of 6 V makes it advisable to have V GS regulation in your gate drive circuitry 158

159 Educating 159

160 Universities with GaN Transistor Programs Universities all over the world are graduating well-trained engineers experienced in the use of GaN Transistors Virginia Tech University of California at Santa Barbara Rensselaer Polytechnic Institute Hong Kong University of Science and Technology Cornell University Katholieke Universiteit Leuven University of Bristol University of Glasgow University of Sheffield University of Warsaw University of Sydney Massachusetts Institute of Technology Cambridge University National Central University of Taiwan National Taiwan University Chang Gung University University of Florida Florida State University Case Western University Yale University University of Ohio, Toledo Ohio State University Kyushu Institute of Technology National Chiao Tung University University of Tennessee Auburn University University of Texas Yamaguchi University Universitat Kassel National Tsinghua University Mid Sweden University New Mexico State University University of Johannesburg University of Toronto Universita di Padova Delft University of Technology Missouri University of Science and Technology University of Maryland Insitituto Italiano di Technologia 160

161 Efficiency (%) Simplifying GaN- DrGaN PLUS DrGaN PLUS 300kHz DrGaN PLUS 500kHz 80V MOSFET 300kHz Output Current (A) V IN =48 V V OUT =12 V f sw =300 khz L=10 µh egan FET T/SR: 100 V EPC2001 MOSFET T/SR: 80 V BSZ123N08NS3G 161

162 Breaking Down the Barriers Does it enable significant new capabilities? Is it easy to use? Is it VERY cost effective to the user? Is it reliable? 162

163 Silicon vs. egan Product Costs Starting Material Epi Growth Wafer Fab Test Assembly lower higher same same lower lower ~same? lower same lower OVERALL higher lower! 163

164 Breaking Down the Barriers Does it enable significant new capabilities? Is it easy to use? Is it VERY cost effective to the user? Is it reliable? 164

165 High Temp Reverse Bias (HTRB) Part Number Stress V DS (V) Temperature ( o C) Sample Size Results (# of fails) Duration (Hrs) EPC EPC EPC EPC EPC EPC EPC Over 0.5 million accumulated device hours of reliability testing without failure across 891 devices

166 Time to Fail 100 V HTRB Acceleration FIT Rate vs V DS and Temperature 0.01% 1% % 35 C 20 yrs 10 yrs 150 C 90 C 166

167 HTGB Acceleration MTTF vs V GS FIT Rate vs V GS 1 FIT 10 yrs 167

168 High Temp Gate Bias (HTGB) Part Number Stress V GS (V) Temperature ( o C) Sample Size Results (# of fails) Duration (Hrs) EPC EPC EPC EPC EPC EPC EPC EPC EPC EPC EPC EPC EPC EPC EPC EPC EPC EPC EPC EPC EPC EPC EPC EPC EPC EPC EPC EPC EPC EPC EPC EPC fail in over 0.97 million accumulated device hours of HTGB reliability testing greater than 5V. 0 fail in over 0.6 million accumulated device hours of HTGB reliability testing greater than 5.5V

169 A Look Into the Future 169

170 Moore s Law Revival Gen V V Generation 3 Higher Frequency Launched September 2013 Generation 4 2 X Performance Improvement Launched June 2014 Half Bridge ICs September 2014 Generation 5 ~December 2014 High Voltage September

171 GaN Integration Generation 2/4 Discrete HB Generation 4 Monolithic 4:1 HB + Top Switch (T) Synchronous Rectifier (SR) SR T 33 % die size reduction 171

172 Efficiency (%) Monolithic Half Bridge GaN POL w/ Gen 4 Monolithic HB 33 % die size reduction GaN POL w/ Gen 4 Discrete Transistors f sw =2 MHz f sw =3 MHz f sw =4 MHz Output Current (A) V IN =12 V V OUT =1.2 V L=100 nh 172

173 Summary GaN transistors enable exciting new applications such as LiDAR, RF Envelope Tracking and Wireless Power Transmission GaN transistors have the potential to replace silicon power MOSFETs and LDMOS in power conversion applications with a low-cost and higher efficiency solution GaN technology is keeping Moore s Law alive! 173

GaN is Crushing Silicon. EPC - The Leader in GaN Technology IEEE PELS

GaN is Crushing Silicon. EPC - The Leader in GaN Technology IEEE PELS GaN is Crushing Silicon EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 1 Agenda How egan FETs work Hard Switched DC-DC converters High Efficiency point-of-load converter Envelope Tracking

More information

GaN Transistors for Efficient Power Conversion

GaN Transistors for Efficient Power Conversion GaN Transistors for Efficient Power Conversion Agenda How GaN works Electrical Characteristics Design Basics Design Examples Summary 2 2 How GaN Works 3 3 The Ideal Power Switch Block Infinite Voltage

More information

The egan FET Journey Continues

The egan FET Journey Continues The egan FET Journey Continues Understanding the Effect of PCB Layout on Circuit Performance in a High Frequency Gallium Nitride Based Point of Load Converter David Reusch and Johan Strydom Efficient Power

More information

Michael de Rooij Efficient Power Conversion Corporation

Michael de Rooij Efficient Power Conversion Corporation The egan FET Journey Continues Performance comparison using egan FETs in 6.78 MHz class E and ZVS class D Wireless Power Transfer Michael de Rooij Efficient Power Conversion Corporation EPC - The Leader

More information

GaN on Silicon Technology: Devices and Applications

GaN on Silicon Technology: Devices and Applications The egan FET Journey Continues GaN on Silicon Technology: Devices and Applications Alex Lidow Efficient Power Conversion Corporation EPC - The Leader in egan FETs May, 2013 PCIM 2013 www.epc-co.com 1 Agenda

More information

Introducing egan IC targeting Highly Resonant Wireless Power

Introducing egan IC targeting Highly Resonant Wireless Power Dr. M. A. de Rooij The egan FET Journey Continues Introducing egan IC targeting Highly Resonant Wireless Power Efficient Power Conversion Corporation EPC - The Leader in egan FETs www.epc-co.com 1 Agenda

More information

egan FET Wireless Energy Transfer Solutions Efficient Power Conversion Corporation

egan FET Wireless Energy Transfer Solutions Efficient Power Conversion Corporation The egan FET Journey Continues egan FET Wireless Energy Transfer Solutions Efficient Power Conversion Corporation www.epc-co.com 1 Agenda Wireless Power Topologies Overview Wireless Power Results for each

More information

Performance Comparison for A4WP Class-3 Wireless Power Compliance between egan FET and MOSFET in a ZVS Class D Amplifier

Performance Comparison for A4WP Class-3 Wireless Power Compliance between egan FET and MOSFET in a ZVS Class D Amplifier The egan FET Journey Continues Performance Comparison for A4WP Class-3 Wireless Power Compliance between egan FET and MOSFET in a ZVS Class D Amplifier EPC - The leader in GaN Technology www.epc-co.com

More information

Improving Performance of High Speed GaN Transistors Operating in Parallel for High Current Applications

Improving Performance of High Speed GaN Transistors Operating in Parallel for High Current Applications Improving Performance of High Speed GaN Transistors Operating in Parallel for High Current Applications David Reusch and Johan Strydom Efficient Power Conversion Corporation (EPC), El Segundo, CA, USA.

More information

GaN Brings About a New Way of Thinking to Power Conversion Stephen Colino Efficient Power Conversion Corporation

GaN Brings About a New Way of Thinking to Power Conversion Stephen Colino Efficient Power Conversion Corporation GaN Brings About a New Way of Thinking to Power Conversion Stephen Colino Efficient Power Conversion Corporation 1 GaN Wide Bandgap Hetero Junction Distance electrons need to travel Si Conductivity GaN

More information

Efficient Power Conversion Corporation

Efficient Power Conversion Corporation The egan FET Journey Continues Wireless Energy Transfer Technology Drivers Michael de Rooij Efficient Power Conversion Corporation EPC - The Leader in egan FETs ECTC 2014 www.epc-co.com 1 Agenda Overview

More information

Michael de Rooij & Yuanzhe Zhang Comparison of 6.78 MHz Amplifier Topologies for 33W, Highly Resonant Wireless Power Transfer Efficient Power

Michael de Rooij & Yuanzhe Zhang Comparison of 6.78 MHz Amplifier Topologies for 33W, Highly Resonant Wireless Power Transfer Efficient Power Michael de Rooij & Yuanzhe Zhang Comparison of 6.78 MHz Amplifier Topologies for 33W, Highly Resonant Wireless Power Transfer Efficient Power Conversion Corporation Agenda Wireless power trends AirFuel

More information

Unlocking the Power of GaN PSMA Semiconductor Committee Industry Session

Unlocking the Power of GaN PSMA Semiconductor Committee Industry Session Unlocking the Power of GaN PSMA Semiconductor Committee Industry Session March 24 th 2016 Dan Kinzer, COO/CTO dan.kinzer@navitassemi.com 1 Mobility (cm 2 /Vs) EBR Field (MV/cm) GaN vs. Si WBG GaN material

More information

EPC8004 Enhancement Mode Power Transistor

EPC8004 Enhancement Mode Power Transistor Enhancement Mode Power Transistor, V R DS(on), mω, A G D S EFFICIENT POWER CONVERSION HAL Gallium Nitride is grown on Silicon Wafers and processed using standard CMOS equipment leveraging the infrastructure

More information

GaN Power ICs at 1 MHz+: Topologies, Technologies and Performance

GaN Power ICs at 1 MHz+: Topologies, Technologies and Performance GaN Power ICs at 1 MHz+: Topologies, Technologies and Performance PSMA Industry Session, Semiconductors Dan Kinzer, CTO/COO dan.kinzer@navitassemi.com March 2017 Power Electronics: Speed & Efficiency are

More information

Second Generation egan FETs are Lead Free and Offer Improved Performance Alex Lidow, CEO, Efficient Power Conversion Corporation

Second Generation egan FETs are Lead Free and Offer Improved Performance Alex Lidow, CEO, Efficient Power Conversion Corporation Second Generation egan FETs are Lead Free and Offer Improved Performance Alex Lidow, CEO, Efficient Power Conversion Corporation EFFICIENT POWER CONVERSION Since March, 11 Efficient Power Conversion Corporation

More information

Designing reliable and high density power solutions with GaN. Created by: Masoud Beheshti Presented by: Paul L Brohlin

Designing reliable and high density power solutions with GaN. Created by: Masoud Beheshti Presented by: Paul L Brohlin Designing reliable and high density power solutions with GaN Created by: Masoud Beheshti Presented by: Paul L Brohlin What will I get out of this presentation? Why GaN? Integration for System Performance

More information

Designing a 99% Efficient Totem Pole PFC with GaN. Serkan Dusmez, Systems and applications engineer

Designing a 99% Efficient Totem Pole PFC with GaN. Serkan Dusmez, Systems and applications engineer Designing a 99% Efficient Totem Pole PFC with GaN Serkan Dusmez, Systems and applications engineer 1 What will I get out of this session? Purpose: Why GaN Based Totem-pole PFC? Design guidelines for getting

More information

GaN in Practical Applications

GaN in Practical Applications in Practical Applications 1 CCM Totem Pole PFC 2 PFC: applications and topology Typical AC/DC PSU 85-265 V AC 400V DC for industrial, medical, PFC LLC 12, 24, 48V DC telecomm and server applications. PFC

More information

GS61004B 100V enhancement mode GaN transistor Preliminary Datasheet

GS61004B 100V enhancement mode GaN transistor Preliminary Datasheet Features 100V enhancement mode power switch Bottom-side cooled configuration R DS(on) = 15 mω I DS(max) = 45 A Ultra-low FOM Island Technology die Low inductance GaNPX package Easy gate drive requirements

More information

EPC2015 Enhancement Mode Power Transistor

EPC2015 Enhancement Mode Power Transistor EPC5 EPC5 Enhancement Mode Power Transistor V DSS, 4 V R DS(ON), 4 mw I D, A PRELIMINARY EFFICIENT POWER CONVERSION HAL Gallium Nitride is grown on Silicon Wafers and processed using standard CMOS equipment

More information

235 W Maximum Power Dissipation (whole module) 470 T J Junction Operating Temperature -40 to 150. Torque strength

235 W Maximum Power Dissipation (whole module) 470 T J Junction Operating Temperature -40 to 150. Torque strength Discontinued PRODUCT SUMMARY (TYPICAL) V DS (V) 600 R DS(on) (m ) 30 GaN Power Hybrid HEMT Half-Bridge Module Features High frequency operation Free-wheeling diode not required Applications Compact DC-DC

More information

Appendix: Power Loss Calculation

Appendix: Power Loss Calculation Appendix: Power Loss Calculation Current flow paths in a synchronous buck converter during on and off phases are illustrated in Fig. 1. It has to be noticed that following parameters are interrelated:

More information

EPC2007C Enhancement Mode Power Transistor

EPC2007C Enhancement Mode Power Transistor EPC7C EPC7C Enhancement Mode Power Transistor V DSS, V R DS(on), 3 mw I D, 6 A NEW PRODUCT EFFICIENT POWER CONVERSION HAL Gallium Nitride is grown on Silicon Wafers and processed using standard CMOS equipment

More information

GaAs PowerStages for Very High Frequency Power Supplies. Greg Miller Sr. VP - Engineering Sarda Technologies

GaAs PowerStages for Very High Frequency Power Supplies. Greg Miller Sr. VP - Engineering Sarda Technologies GaAs PowerStages for Very High Frequency Power Supplies Greg Miller Sr. VP - Engineering Sarda Technologies gmiller@sardatech.com Agenda Case for Higher Power Density Voltage Regulators Limitations of

More information

Driving egan TM Transistors for Maximum Performance

Driving egan TM Transistors for Maximum Performance Driving egan TM Transistors for Maximum Performance Johan Strydom: Director of Applications, Efficient Power Conversion Corporation Alex Lidow: CEO, Efficient Power Conversion Corporation The recent introduction

More information

Breaking Speed Limits with GaN Power ICs March 21 st 2016 Dan Kinzer, COO/CTO

Breaking Speed Limits with GaN Power ICs March 21 st 2016 Dan Kinzer, COO/CTO Breaking Speed Limits with GaN Power ICs March 21 st 2016 Dan Kinzer, COO/CTO dan.kinzer@navitassemi.com 1 Efficiency The Need for Speed Tomorrow? Today 100kHz 1MHz 10MHz Bulky, Heavy Small, Light & Expensive

More information

Fig. 1 - Enhancement mode GaN has a circuiut schematic similar to silicon MOSFETs with Gate (G), Drain (D), and Source (S).

Fig. 1 - Enhancement mode GaN has a circuiut schematic similar to silicon MOSFETs with Gate (G), Drain (D), and Source (S). GaN Basics: FAQs Sam Davis; Power Electronics Wed, 2013-10-02 Gallium nitride transistors have emerged as a high-performance alternative to silicon-based transistors, thanks to the technology's ability

More information

EPC2014 Enhancement Mode Power Transistor

EPC2014 Enhancement Mode Power Transistor EPC4 EPC4 Enhancement Mode Power Transistor V DSS, V R DS(ON), 6 mw I D, A NEW PRODUCT EFFICIENT POWER CONVERSION HAL Gallium Nitride is grown on Silicon Wafers and processed using standard CMOS equipment

More information

GS66516T Top-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

GS66516T Top-side cooled 650 V E-mode GaN transistor Preliminary Datasheet Features 650 V enhancement mode power switch Top-side cooled configuration R DS(on) = 25 mω I DS(max) = 60 A Ultra-low FOM Island Technology die Low inductance GaNPX package Easy gate drive requirements

More information

Designing High density Power Solutions with GaN Created by: Masoud Beheshti Presented by: Xaver Arbinger

Designing High density Power Solutions with GaN Created by: Masoud Beheshti Presented by: Xaver Arbinger Designing High density Power Solutions with GaN Created by: Masoud Beheshti Presented by: Xaver Arbinger Topics Why GaN? Integration for Higher System Performance Application Examples Taking GaN beyond

More information

EPC2107 Enhancement-Mode GaN Power Transistor Half-Bridge with Integrated Synchronous Bootstrap

EPC2107 Enhancement-Mode GaN Power Transistor Half-Bridge with Integrated Synchronous Bootstrap EPC7 Enhancement-Mode GaN Power Transistor Half-Bridge with Integrated Synchronous Bootstrap V DSS, V R DS(on), 9 m I D,.7 A EFFICIENT POWER CONVERSION HAL EPC7 Gallium Nitride is grown on Silicon Wafers

More information

Switch mode power supplies Low gate charge. Power factor correction modules Low intrinsic capacitance

Switch mode power supplies Low gate charge. Power factor correction modules Low intrinsic capacitance Description United Silicon Carbide's cascode products co-package its highperformance F3 SiC fast JFETs with a cascode optimized MOSFET to produce the only standard gate drive SiC device in the market today.

More information

HCD80R1K4E 800V N-Channel Super Junction MOSFET

HCD80R1K4E 800V N-Channel Super Junction MOSFET HCD80R1K4E 800V N-Channel Super Junction MOSFET Features Very Low FOM (R DS(on) X Q g ) Extremely low switching loss Excellent stability and uniformity 100% Avalanche Tested Application Switch Mode Power

More information

HCI70R500E 700V N-Channel Super Junction MOSFET

HCI70R500E 700V N-Channel Super Junction MOSFET HCI70R500E 700V N-Channel Super Junction MOSFET Features Very Low FOM (R DS(on) X Q g ) Extremely low switching loss Excellent stability and uniformity 100% Avalanche Tested Higher dv/dt ruggedness Application

More information

GS66516B Bottom-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

GS66516B Bottom-side cooled 650 V E-mode GaN transistor Preliminary Datasheet Features 650 V enhancement mode power switch Bottom-side cooled configuration R DS(on) = 25 mω I DS(max) = 60 A Ultra-low FOM Island Technology die Low inductance GaNPX package Easy gate drive requirements

More information

HCD6N70S / HCU6N70S 700V N-Channel Super Junction MOSFET

HCD6N70S / HCU6N70S 700V N-Channel Super Junction MOSFET HCD6N70S / HCU6N70S 700V N-Channel Super Junction MOSFET FEATURES Originative New Design Superior Avalanche Rugged Technology Robust Gate Oxide Technology Very Low Intrinsic Capacitances Excellent Switching

More information

GS61008P Bottom-side cooled 100 V E-mode GaN transistor Preliminary Datasheet

GS61008P Bottom-side cooled 100 V E-mode GaN transistor Preliminary Datasheet Features 100 V enhancement mode power switch Bottom-side cooled configuration R DS(on) = 7 mω I DS(max) = 90 A Ultra-low FOM Island Technology die Low inductance GaNPX package Easy gate drive requirements

More information

IRF6641TRPbF DIGITAL AUDIO MOSFET. Key Parameters V DS 200 V R DS(ON) V GS = 10V 51 m Qg typ. 34 nc R G(int) typ. 1.0

IRF6641TRPbF DIGITAL AUDIO MOSFET. Key Parameters V DS 200 V R DS(ON) V GS = 10V 51 m Qg typ. 34 nc R G(int) typ. 1.0 Features Latest MOSFET silicon technology Key parameters optimized for Class-D audio amplifier applications Low R DS(on) for improved efficiency Low Qg for better THD and improved efficiency Low Qrr for

More information

Designing Reliable and High-Density Power Solutions with GaN

Designing Reliable and High-Density Power Solutions with GaN Designing Reliable and High-Density Power Solutions with GaN 1 Detailed agenda Why is GaN Exciting GaN Fundamentals Cost and Reliability Totem Pole PFC Isolated LLC Motor Drive LiDAR Driving GaN Choosing

More information

Symbol Parameter Typical

Symbol Parameter Typical PRODUCT SUMMARY (TYPICAL) V DS (V) 650 R DS(on) (m ) 110 Q rr (nc) 54 Features Low Q rr Free-wheeling diode not required Low-side Quiet Tab for reduced EMI RoHS compliant High frequency operation Applications

More information

UF3C120080K4S. 1200V-80mW SiC Cascode DATASHEET. Description. Features. Typical applications CASE D (1) CASE G (4) KS (3) S (2) Rev.

UF3C120080K4S. 1200V-80mW SiC Cascode DATASHEET. Description. Features. Typical applications CASE D (1) CASE G (4) KS (3) S (2) Rev. 1V-8mW SiC Cascode Rev. A, January 19 DATASHEET UF3C18K4S CASE CASE D (1) Description United Silicon Carbide's cascode products co-package its highperformance F3 SiC fast JFETs with a cascode optimized

More information

Driving egan FETs in High Performance Power Conversion Systems

Driving egan FETs in High Performance Power Conversion Systems in High Performance Power Conversion Systems EFFICIENT POWER CONVERSION Alexander Lidow, Johan Strydom, and Michael de Rooij, Efficient Power Conversion Corporation Andrew Ferencz, Consultant for Efficient

More information

IRF3205S/L. HEXFET Power MOSFET V DSS = 55V. R DS(on) = 8.0mΩ I D = 110A

IRF3205S/L. HEXFET Power MOSFET V DSS = 55V. R DS(on) = 8.0mΩ I D = 110A l l l l l l Advanced Process Technology Ultra Low On-Resistance Dynamic dv/dt Rating 75 C Operating Temperature Fast Switching Fully Avalanche Rated Description Advanced HEXFET Power MOSFETs from International

More information

100V ENHANCEMENT MODE HIGH ELECTRON MOBILITY TRANSISTOR (HEMT) Michele Rossitto. Marketing Director MOSFETs and Power ICs

100V ENHANCEMENT MODE HIGH ELECTRON MOBILITY TRANSISTOR (HEMT) Michele Rossitto. Marketing Director MOSFETs and Power ICs 100V ENHANCEMENT MODE HIGH ELECTRON MOBILITY TRANSISTOR (HEMT) Michele Rossitto Marketing Director MOSFETs and Power ICs 100V GaN in PowerPAK 6 x 5 mm² Package Enhancement Mode GaN Transistor Superior

More information

GS66508T Top-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

GS66508T Top-side cooled 650 V E-mode GaN transistor Preliminary Datasheet Features 650 V enhancement mode power switch Top-side cooled configuration R DS(on) = 50 mω I DS(max) = 30 A Ultra-low FOM Island Technology die Low inductance GaNPX package Easy gate drive requirements

More information

IRFZ48NS IRFZ48NL HEXFET Power MOSFET

IRFZ48NS IRFZ48NL HEXFET Power MOSFET l Advanced Process Technology l Surface Mount (IRFZ48NS) l Low-profile through-hole (IRFZ48NL) l 75 C Operating Temperature l Fast Switching l Fully Avalanche Rated Description Advanced HEXFET Power MOSFETs

More information

Symbol Parameter Typical

Symbol Parameter Typical PRODUCT SUMMARY (TYPICAL) V DS (V) 600 R DS(on) ( ) 0.29 Q rr (nc) 29 Features Low Q rr Free-wheeling diode not required Low-side Quiet Tab for reduced EMI RoHS compliant High frequency operation Applications

More information

GS P Bottom-side cooled 100 V E-mode GaN transistor Preliminary Datasheet. Features. Applications. Description.

GS P Bottom-side cooled 100 V E-mode GaN transistor Preliminary Datasheet. Features. Applications. Description. Features 100 V enhancement mode power switch Bottom-side cooled configuration R DS(on) = 5 mω I DS(max) = 120 A Ultra-low FOM Island Technology die Low inductance GaNPX package Easy gate drive requirements

More information

Switch mode power supplies Low gate charge. Power factor correction modules Low intrinsic capacitance

Switch mode power supplies Low gate charge. Power factor correction modules Low intrinsic capacitance Description United Silicon Carbide's cascode products co-package its highperformance F3 SiC fast JFETs with a cascode optimized MOSFET to produce the only standard gate drive SiC device in the market today.

More information

Evaluation and Applications of 600V/650V Enhancement-Mode GaN Devices

Evaluation and Applications of 600V/650V Enhancement-Mode GaN Devices Evaluation and Applications of 600V/650V Enhancement-Mode GaN Devices Xiucheng Huang, Tao Liu, Bin Li, Fred C. Lee, and Qiang Li Center for Power Electronics Systems, Virginia Tech Blacksburg, VA, USA

More information

AN OPTIMIZED SPECIFIC MOSFET FOR TELECOMMUNICATION AND DATACOMMUNICATION APPLICATIONS

AN OPTIMIZED SPECIFIC MOSFET FOR TELECOMMUNICATION AND DATACOMMUNICATION APPLICATIONS This paper was originally presented at the Power Electronics Technology Exhibition & Conference, part of PowerSystems World 2005, held October 25-27, 2005, in Baltimore, MD. To inquire about PowerSystems

More information

I2-PAK G D S. T C = 25 C unless otherwise noted. Drain-Source Voltage 260 V. Symbol Parameter SLB40N26C/SLI40N26C Units R θjc

I2-PAK G D S. T C = 25 C unless otherwise noted. Drain-Source Voltage 260 V. Symbol Parameter SLB40N26C/SLI40N26C Units R θjc SLB40N26C / SLI40N26C 260V N-Channel MOSFET General Description This Power MOSFET is produced using Maple semi s advanced planar stripe DMOS technology. This advanced technology has been especially tailored

More information

8 S1, D2. Storage Temperature Range Soldering Temperature, for 10 seconds 300 (1.6mm from case )

8 S1, D2. Storage Temperature Range Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Co-Pack Dual N-channel HEXFET Power MOSFET and Schottky Diode Ideal for Synchronous Buck DC-DC Converters Up to A Peak Output Low Conduction Losses Low Switching Losses Low Vf Schottky Rectifier D D 2

More information

GS66516B Bottom-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

GS66516B Bottom-side cooled 650 V E-mode GaN transistor Preliminary Datasheet Features 650 V enhancement mode power switch Bottom-side cooled configuration R DS(on) = 25 mω I DS(max) = 60 A Ultra-low FOM Island Technology die Low inductance GaNPX package Easy gate drive requirements

More information

EPC2016C Enhancement Mode Power Transistor

EPC2016C Enhancement Mode Power Transistor EPC6C EPC6C Enhancement Mode Power Transistor V DSS, V R DS(on), 6 mω I D, 8 A G D S EFFICIENT POWER CONVERSION HAL Gallium Nitride s exceptionally high electron mobility and low temperature coefficient

More information

HCS65R110FE (Fast Recovery Diode Type) 650V N-Channel Super Junction MOSFET

HCS65R110FE (Fast Recovery Diode Type) 650V N-Channel Super Junction MOSFET HCS65R110FE (Fast Recovery Diode Type) 650V N-Channel Super Junction MOSFET Features Very Low FOM (R DS(on) X Q g ) Extremely low switching loss Excellent stability and uniformity 100% Avalanche Tested

More information

IRFI4212H-117P. Description. Key Parameters g V DS 100 V R DS(ON) 10V 58 m: Q g typ. 12 nc Q sw typ. 6.9 nc R G(int) typ. 3.

IRFI4212H-117P. Description. Key Parameters g V DS 100 V R DS(ON) 10V 58 m: Q g typ. 12 nc Q sw typ. 6.9 nc R G(int) typ. 3. DIGITAL AUDIO MOSFET PD - 97249A IRFI422H-7P Features Ÿ Integrated half-bridge package Ÿ Reduces the part count by half Ÿ Facilitates better PCB layout Ÿ Key parameters optimized for Class-D audio amplifier

More information

IRFR3709ZPbF IRFU3709ZPbF

IRFR3709ZPbF IRFU3709ZPbF Applications l High Frequency Synchronous Buck Converters for Computer Processor Power l High Frequency Isolated DC-DC Converters with Synchronous Rectification for Telecom and Industrial Use l Lead-Free

More information

GS66508P Bottom-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

GS66508P Bottom-side cooled 650 V E-mode GaN transistor Preliminary Datasheet Features 650 V enhancement mode power switch Bottom-side cooled configuration R DS(on) = 50 mω I DS(max) = 30 A Ultra-low FOM Island Technology die Low inductance GaNPX package Easy gate drive requirements

More information

The Quest for High Power Density

The Quest for High Power Density The Quest for High Power Density Welcome to the GaN Era Power Conversion Technology Drivers Key design objectives across all applications: High power density High efficiency High reliability Low cost 2

More information

HCD80R650E 800V N-Channel Super Junction MOSFET

HCD80R650E 800V N-Channel Super Junction MOSFET HCD80R650E 800V N-Channel Super Junction MOSFET Features Very Low FOM (R DS(on) X Q g ) Extremely low switching loss Excellent stability and uniformity 100% Avalanche Tested Application Switch Mode Power

More information

35mW V SiC Cascode UJ3C120040K3S Datasheet. Description. Typical Applications. Maximum Ratings

35mW V SiC Cascode UJ3C120040K3S Datasheet. Description. Typical Applications. Maximum Ratings Description United Silicon Carbide's cascode products co-package its highperformance G3 SiC JFETs with a cascode optimized MOSFET to produce the only standard gate drive SiC device in the market today.

More information

IRF6602/IRF6602TR1 HEXFET Power MOSFET

IRF6602/IRF6602TR1 HEXFET Power MOSFET l Application Specific MOSFETs l Ideal for CPU Core DC-DC Converters l Low Conduction Losses l Low Switching Losses l Low Profile (

More information

TPH3207WS TPH3207WS. GaN Power Low-loss Switch PRODUCT SUMMARY (TYPICAL) Absolute Maximum Ratings (T C =25 C unless otherwise stated)

TPH3207WS TPH3207WS. GaN Power Low-loss Switch PRODUCT SUMMARY (TYPICAL) Absolute Maximum Ratings (T C =25 C unless otherwise stated) PRODUCT SUMMARY (TYPICAL) V DS (V) 650 R DS(on) (m ) 35 Q rr (nc) 175 Features Low Q rr Free-wheeling diode not required Quiet Tab for reduced EMI at high dv/dt GSD pin layout improves high speed design

More information

GaN Power ICs: Integration Drives Performance

GaN Power ICs: Integration Drives Performance GaN Power ICs: Integration Drives Performance Stephen Oliver, VP Sales & Marketing stephen.oliver@navitassemi.com Bodo s Power Conference, Munich December 5 th, 2017 Navitas Semiconductor Inc. World s

More information

IRF7821PbF. HEXFET Power MOSFET

IRF7821PbF. HEXFET Power MOSFET Applications l High Frequency Point-of-Load Synchronous Buck Converter for Applications in Networking & Computing Systems. l Lead-Free Benefits l Very Low R DS(on) at 4.5V V GS l Low Gate Charge l Fully

More information

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) max I D SMPS MOSFET PD - 9506A IRFR8N5DPbF IRFU8N5DPbF HEXFET Power MOSFET Applications High frequency DC-DC converters Lead-Free l l V DSS R DS(on) max I D 50V 0.25Ω 8A Benefits l Low Gate to Drain Charge to

More information

HRLD150N10K / HRLU150N10K 100V N-Channel Trench MOSFET

HRLD150N10K / HRLU150N10K 100V N-Channel Trench MOSFET HRLD15N1K / HRLU15N1K 1V N-Channel Trench MOSFET FEATURES Originative New Design Superior Avalanche Rugged Technology Excellent Switching Characteristics Unrivalled Gate Charge : 8 nc (Typ.) Extended Safe

More information

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Advanced Process Technology Dynamic dv/dt Rating 75 C Operating Temperature Fast Switching Fully Avalanche Rated Lead-Free G PD - 94822 IRFZ44EPbF HEXFET Power MOSFET D S V DSS = 60V R DS(on) = 0.023Ω

More information

High Current Voltage Regulator Module (VRM) Uses DirectFET MOSFETs to Achieve Current Densities of 25A/in2 at 1MHz to Power 32-bit Servers

High Current Voltage Regulator Module (VRM) Uses DirectFET MOSFETs to Achieve Current Densities of 25A/in2 at 1MHz to Power 32-bit Servers High Current Voltage Regulator Module (VRM) Uses DirectFET MOSFETs to Achieve Current Densities of 25A/in2 at 1MHz to Power 32-bit Servers Ralph Monteiro, Carl Blake and Andrew Sawle, Arthur Woodworth

More information

High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications

High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications WHITE PAPER High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications Written by: C. R. Swartz Principal Engineer, Picor Semiconductor

More information

Switch mode power supplies Excellent reverse recovery. Power factor correction modules Low gate charge Motor drives Low intrinsic capacitance

Switch mode power supplies Excellent reverse recovery. Power factor correction modules Low gate charge Motor drives Low intrinsic capacitance Description United Silicon Carbide's cascode products co-package its xj series highperformance SiC JFETs with a cascode optimized MOSFET to produce the only standard gate drive SiC device in the market

More information

T C =25 unless otherwise specified. Symbol Parameter Value Units V DSS Drain-Source Voltage 40 V

T C =25 unless otherwise specified. Symbol Parameter Value Units V DSS Drain-Source Voltage 40 V 40V N-Channel Trench MOSFET June 205 BS = 40 V R DS(on) typ = 3.3mΩ = 30 A FEATURES Originative New Design Superior Avalanche Rugged Technology Excellent Switching Characteristics Unrivalled Gate Charge

More information

V DSS R DS(on) max I D. 20V GS = 10V 8.9A. 71 P A = 25 C Power Dissipation 2.0 P A = 70 C Power Dissipation Linear Derating Factor

V DSS R DS(on) max I D. 20V GS = 10V 8.9A. 71 P A = 25 C Power Dissipation 2.0 P A = 70 C Power Dissipation Linear Derating Factor Applications Dual SO-8 MOSFET for POL converters in desktop, servers, graphics cards, game consoles and set-top box PD - 95858A IRF895 HEXFET Power MOSFET V DSS R DS(on) max I D 20V 8.3m:@V GS = V 8.9A

More information

GS66508T Top-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

GS66508T Top-side cooled 650 V E-mode GaN transistor Preliminary Datasheet Features 650 V enhancement mode power switch Top-side cooled configuration R DS(on) = 50 mω I DS(max) = 30 A Ultra-low FOM Island Technology die Low inductance GaNPX package Easy gate drive requirements

More information

GS66508T Top-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

GS66508T Top-side cooled 650 V E-mode GaN transistor Preliminary Datasheet Features 650 V enhancement mode power switch Top-side cooled configuration R DS(on) = 50 mω I DS(max) = 30 A Ultra-low FOM Island Technology die Low inductance GaNPX package Easy gate drive requirements

More information

27mW - 650V SiC Cascode UJ3C065030K3S Datasheet. Description. Typical Applications. Maximum Ratings

27mW - 650V SiC Cascode UJ3C065030K3S Datasheet. Description. Typical Applications. Maximum Ratings Description United Silicon Carbide's cascode products co-package its highperformance G3 SiC JFETs with a cascode optimized MOSFET to produce the only standard gate drive SiC device in the market today.

More information

80mW - 650V SiC Cascode UJ3C065080K3S Datasheet. Description. Typical Applications. Maximum Ratings

80mW - 650V SiC Cascode UJ3C065080K3S Datasheet. Description. Typical Applications. Maximum Ratings Description United Silicon Carbide's cascode products co-package its highperformance G3 SiC JFETs with a cascode optimized MOSFET to produce the only standard gate drive SiC device in the market today.

More information

GS61008T Top-side cooled 100 V E-mode GaN transistor Preliminary Datasheet

GS61008T Top-side cooled 100 V E-mode GaN transistor Preliminary Datasheet Features 100 V enhancement mode power switch Top-side cooled configuration R DS(on) = 7 mω I DS(max) = 90 A Ultra-low FOM Island Technology die Low inductance GaNPX package Easy gate drive requirements

More information

GS61008T Top-side cooled 100 V E-mode GaN transistor Preliminary Datasheet

GS61008T Top-side cooled 100 V E-mode GaN transistor Preliminary Datasheet Features 100 V enhancement mode power switch Top-side cooled configuration R DS(on) = 7 mω I DS(max) = 90 A Ultra-low FOM Island Technology die Low inductance GaNPX package Easy gate drive requirements

More information

GS61008P Bottom-side cooled 100 V E-mode GaN transistor Preliminary Datasheet. Features. Applications. Description. Circuit Symbol.

GS61008P Bottom-side cooled 100 V E-mode GaN transistor Preliminary Datasheet. Features. Applications. Description. Circuit Symbol. Features 100 V enhancement mode power switch Bottom-side cooled configuration R DS(on) = 7 mω I DS(max) = 90 A Ultra-low FOM Island Technology die Low inductance GaNPX package Easy gate drive requirements

More information

Development Board EPC9066 Quick Start Guide. EPC V Half Bridge with Sync FET Bootstrap Gate Drive

Development Board EPC9066 Quick Start Guide. EPC V Half Bridge with Sync FET Bootstrap Gate Drive Development Board Quick Start Guide EPC800 0 Half Bridge with Sync FET Bootstrap Gate Drive DESCRIPTION The development board is a 0 maximum device voltage,.7 A maximum output current, half bridge with

More information

Power of GaN. Enabling designers to create smaller, more efficient and higher-performing AC/DC power supplies

Power of GaN. Enabling designers to create smaller, more efficient and higher-performing AC/DC power supplies Power of GaN Enabling designers to create smaller, more efficient and higher-performing AC/DC power supplies Steve Tom Product Line Manager, GaN Products stom@ti.com Solving power and energy-management

More information

egan FETs Enable Low Power High Frequency Wireless Energy Converters M. A. de Rooij & J. T. Strydom Efficient Power Conversion

egan FETs Enable Low Power High Frequency Wireless Energy Converters M. A. de Rooij & J. T. Strydom Efficient Power Conversion The egan FET Journey Continues egan FETs Enable Low Power High Frequency Wireless Energy Converters M. A. de Rooij & J. T. Strydom Efficient Power Conversion 1 EPC - The Leader in egan FETs March, 2013

More information

V DSS R DS(on) max Qg. 560 P C = 25 C Maximum Power Dissipation g 140 P C = 100 C Maximum Power Dissipation g Linear Derating Factor

V DSS R DS(on) max Qg. 560 P C = 25 C Maximum Power Dissipation g 140 P C = 100 C Maximum Power Dissipation g Linear Derating Factor Applications l High Frequency Synchronous Buck Converters for Computer Processor Power l High Frequency Isolated DC-DC Converters with Synchronous Rectification for Telecom and Industrial Use Benefits

More information

IRLR8721PbF IRLU8721PbF

IRLR8721PbF IRLU8721PbF Applications l High Frequency Synchronous Buck Converters for Computer Processor Power l High Frequency Isolated DC-DC Converters with Synchronous Rectification for Telecom and Industrial Use l Lead-Free

More information

AN2239 APPLICATION NOTE

AN2239 APPLICATION NOTE AN2239 APPLICATION NOTE Maximizing Synchronous Buck Converter Efficiency with Standard STripFETs with Integrated Schottky Diodes Introduction This document explains the history, improvements, and performance

More information

C3M J. Silicon Carbide Power MOSFET C3M TM MOSFET Technology. N-Channel Enhancement Mode. Features. Package. Benefits.

C3M J. Silicon Carbide Power MOSFET C3M TM MOSFET Technology. N-Channel Enhancement Mode. Features. Package. Benefits. C3M0280090J Silicon Carbide Power MOSFET C3M TM MOSFET Technology N-Channel Enhancement Mode V DS I D @ 25 C R DS(on) 900 V 11 A 280 mω Features Package New C3M SiC MOSFET technology High blocking voltage

More information

V DSS R DS(on) max Qg (typ.) 60V GS = 10V 24nC

V DSS R DS(on) max Qg (typ.) 60V GS = 10V 24nC Applications l Synchronous Rectifier MOSFET for Isolated DC-DC Converters l Low Power Motor Drive Systems PD - 97436 IRF735PbF HEXFET Power MOSFET V DSS R DS(on) max Qg (typ.) 60V 7.8mΩ@V GS = 0V 24nC

More information

SLD8N6 65S / SLU8N65 5S

SLD8N6 65S / SLU8N65 5S SLD8N65S / SLU8N65S 650V N-Channel MOSFET General Description This Power MOSFET is produced using Maple semi s advanced planar stripe DMOS technology. This advanced technology has been especially tailored

More information

500V N-Channel MOSFET

500V N-Channel MOSFET SLD5N50S2 / SLU5N50S2 500V N-Channel MOSFET General Description This Power MOSFET is produced using Maple semi s advanced planar stripe DMOS technology. This advanced technology has been especially tailored

More information

IRF3709ZCS IRF3709ZCL

IRF3709ZCS IRF3709ZCL PD - 95836 IRF3709ZCS IRF3709ZCL Applications l High Frequency Synchronous Buck Converters for Computer Processor Power HEXFET Power MOSFET V DSS R DSon) max Qg 30V 6.3m: 7nC Benefits l l l Low R DSon)

More information

TPH3202PS TPH3202PS. GaN Power Low-loss Switch PRODUCT SUMMARY (TYPICAL) TO-220 Package. Absolute Maximum Ratings (T C =25 C unless otherwise stated)

TPH3202PS TPH3202PS. GaN Power Low-loss Switch PRODUCT SUMMARY (TYPICAL) TO-220 Package. Absolute Maximum Ratings (T C =25 C unless otherwise stated) PRODUCT SUMMARY (TYPICAL) V DS (V) 600 R DS(on) ( ) 0.29 Q rr (nc) 29 Features Low Q rr Free-wheeling diode not required Low-side Quiet Tab for reduced EMI GSD pin layout improves high speed design RoHS

More information

IR3101 Series 1.6A, 500V

IR3101 Series 1.6A, 500V Half-Bridge FredFet and Integrated Driver Features Output power FredFets in half-bridge configuration High side gate drive designed for bootstrap operation Bootstrap diode integrated into package. Lower

More information

IRF6646 DirectFET Power MOSFET

IRF6646 DirectFET Power MOSFET Typical R DS(on) (Ω) V GS, Gate-to-Source Voltage (V) l RoHS compliant containing no lead or bromide l Low Profile (

More information

HFI50N06A / HFW50N06A 60V N-Channel MOSFET

HFI50N06A / HFW50N06A 60V N-Channel MOSFET HFI50N06A / HFW50N06A 60V N-Channel MOSFET Features Superior Avalanche Rugged Technology Robust Gate Oxide Technology Very Low Intrinsic Capacitances Excellent Switching Characteristics 100% Avalanche

More information

IRFF230 JANTX2N6798 JANTXV2N6798

IRFF230 JANTX2N6798 JANTXV2N6798 PD-90431E JANTX2N6798 JANTXV2N6798 REPETITIVE AVALANCHE AND dv/dt RATED HEXFET TRANSISTORS THRU-HOLE TO-205AF (TO-39) 200V, N-CHANNEL REF: MIL-PRF-19500/557 Product Summary Part Number BVDSS RDS(on) I

More information

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) max I D SMPS MOSFET PD - 94445 HEXFET Power MOSFET Applications l High frequency DC-DC converters V DSS R DS(on) max I D 50V 85mΩ@V GS = V 2.6A Benefits l Low Gate to Drain Charge to Reduce Switching Losses l

More information