Failure Mechanisms and Robustness of Wide Band-Gap Devices under short-circuits and unclamped inductive switching

Size: px
Start display at page:

Download "Failure Mechanisms and Robustness of Wide Band-Gap Devices under short-circuits and unclamped inductive switching"

Transcription

1 Failure Mechanisms and Robustness of Wide Band-Gap Devices under short-circuits and unclamped inductive switching Stéphane Lefebvre (Cnam), Zoubir Khatir (IFSTTAR), Mounira Berkani (UPEC), Denis Labrousse (Cnam) 1

2 Motivations Emergence of different SiC devices (BJT, JFET, MOSFET ) Temperature limitation of SiC crystal extended to above 600 C A very higher robustness of SiC devices compared to Si is expected Robustness of SiC device technologies have to be evaluated Failure modes must be identified Robustness tests have been performed under : Current limitation and Short Circuit Unclamped inductive switching Ageing under repetitive SC or UIS has been also characterized 2

3 Outline 1. Robustness of SiC JFET, BJT and MOSFET under UIS 2. Robustness of SiC JFET, BJT and MOSFET under current limitation and short circuit 3. Indirect estimation of die temperature under short circuit at failure 4. Aluminum reconstruction 5. Ageing under UIS and SC 6. Conclusion 3

4 Robustness under UIS (Unclamped Inductive Switching) Normally-on 1200V Vertical JFET (Semithouth) Current Increase Failure IGBT Leakage current JFET 10 µs Failure Different transistors have been tested - JFET - BJT - MOSFET 4

5 Vertical Normally-on JFET under UIS No C OSS for these kind of devices resulting in Self Active Clamping C GD C GS Waveforms at failure Failure - No breakdown between Drain and Source (active clamping) - Avalanche current between Drain and Gate is controled by R G - J FET is working in a linear mode during avalanche - Very high Robustness of these devices in avalanche 5

6 Vertical Normally-on JFET under UIS Effect of gate resistance during intrinsic active clamping Rg = Ohm Control of the avalanche current By the gate resistance 6

7 Vertical Normally off JFET under UIS Effect of the current increase during UIS Conduction of the transistor during UIS, avalanche current through D DG controlled by the gate resistance Similar behavior of N_off devices Compared to N_on devices Ec = 227 mj 7

8 MOSFET under UIS - Different generations of different manufacturers have been characterized in UIS Very low robustness of 1 st generation of MOSFET_B (1200V at 150 C) 2 nd generation of MOSFET_B (25 C) Just before failure E c =36 mj MOSFET_A (25 C) Just after failure E failure = 254 mj Robustness depending on MOSFET technology 8

9 Robustness under Short-Circuit or Current limitation modes Circuit breaker Device under Test (DUT) Gate drive SC duration (control SC energy) off on Current limitation Device is maintained in on-state until failure Gate drive off on off Short Circuit Device is maintained in on-state during a short time Short circuit duration is increased until failure 9

10 Robustness of SiC JFET under current limitation mode 10 JFET from SiCED 1200V, 15A Failure after 0,7ms (400V) 2,4J (about 60 J.cm -2 ) Failure

11 Robustness of SiC JFET under current limitation mode 11 Tests condition for robustness evaluation E = 540V, T C = 25 C Tsc=2ms On-state polarization of the gate to source junction due to leakage current between Drain and Gate Short-Circuit Between Gate and Source Failure (60 J/cm²)

12 Robustness of SiC JFET under current limitation mode 12 Tests condition for robustness evaluation E = 540V, T C = 25 C Tsc=2ms T SC =600µs

13 Robustness of SiC JFET under current limitation mode 13 Tests condition for robustness evaluation E = 540V, T C = 25 C Tsc=2ms T SC =780µs

14 Robustness of SiC JFET under current limitation mode 14 Tests condition for robustness evaluation E = 540V, T C = 25 C Tsc=2ms Failure between Gate and Source preceeds the failure between Drain and Source Unable to switch off V GS V GS Ec = 40J/cm 2 Failure V DRIVER T SC =805µs

15 Robustness of SiC JFET under short-circuit Adding a Schottky diode To limit gate to source increase 15 On-state polarization of the gate to source junction due to leakage current between drain and gate

16 Robustness of SiC JFET under Short Circuit Critical Energy T CASE = 25 C, E = 540 V T SC = 940µs Short-circuit duration lightly higher (950µs) - For SC duration = 950 µs : Device is not able to turn-off the current - Failure of the gate after 940 µs of SC - Drain current remains limited until failure - Failure of the gate preceeding the failure between Drain and Source E C = 37 J/cm² (on active area) 16

17 Robustness of SiC Vertical JFET under Short Circuit When Short Circuit duration increases : - Increase of the gate to source voltage at turn-off (effect of the gate resistance) - Significant tail current JFET Normally_ON_#1 (110mΩ) JFET Normally_ON_#2 (85mΩ) - High temperature is responsible for leakage current in the DG junction - Voltage drop accross gate resistance - JFET are operating in a linear mode before failure 17

18 Robustness of SiC Vertical JFET under Short Circuit Failure Failure JFET Normally_ON_#1 JFET Normally_ON_#2 - High current after channel swith-off - JFET operating in a linear mode - No failure of the gate - Delayed failure mode after thermal runaway? 18

19 Voltage V CE (V) Robustness of SiC BJT under current limitation Current I C (A) Voltage V BE (V) Current I B (A) 19 Destructive test of 1200V BJT at T CASE = 25 C, I B = 0.2 A V CE I C 30 Failure of the die in the off-state I B V BE Short Circuit of Base to Emiter Junction Time ( s) Time ( s)

20 Voltage V CE (V) Current I C (A) Voltage V BE (V) Current I B (A) Robustness of SiC BJT under Current limitation Failure of SiC BJT: I B =0.6 A, T CASE =25 C, E dis = 240 mj; T CASE =150 C E dis = 203 mj 800 T = 25 C T = 150 C T = 25 C T = 150 C V CE I B I C Moderate effect of Temperature on the robustness Time ( s) 25 Failure of the die in the off state 0-5 V BE Failure of BE junction (SC) Time ( s) 0 - Good robustness of BJT in SC mode - Base current controls the SC current - Interesting failure in the open state (circuit reconfiguration) - Very well adapted for circuit breaker applications 20

21 Robustness of SiC MOSFET under current limitation and short-circuit 21 Different 1200V tested devices (Generation 1 & 2, A & B) Different robustness and failure modes

22 Robustness of SiC MOSFET under current limitation MOSFET B, E = 600V, T CASE = 25 C Short-Ciruit between Gate and Source : Failure of the gate Control of the collector current after Short-Ciruit between Gate and Source MOSFET B, E = 600V, T CASE = 150 C - Failure of the Gate - SC of the GS electrodes - High «leakage» current between G&S after failure - Transient leakage GS current during short circuit 22

23 Voltage V DS (V) Current I D (A) Voltage V GS (V) Current I G (A) Robustness of SiC MOSFET_A Under current limitation Failure of A-MOSFET: R G = 47Ω, T CASE = 25 C, E dis = 1153mJ; T= 150 C, E dis = 1128 mj 800 T = 25 C T = 150 C T = 25 C T = 150 C V DS V GS I D I G Time ( s) Time ( s) R G V Driver V GS Decrease of the Gate to Source Voltage results of a gate leakage current 23

24 Robustness of SiC MOSFET_A under current limitation Lower robustness at higher temperature 24 Increase of the drain currrent before failure : - Impact generation? Thermal generation? Temperature is too low - Diffusion current or other phenomenon? Gate Leakage current before failure : - Lower effect on V GS for R G = 10Ω - Degradation of the gate - Not necessary responsible for the failure

25 Robustness of SiC MOSFET_B under current limitation 25 Control of the Drain current with a high «leakage current» after turn-off Gate leakage current before failure Short circuit between Gate and Source at failure

26 Voltage V DS (V), V GS (VX20) Robustness of SiC MOSFET under Short Circuit Current I D (A) Voltage V DS (V), V GS (VX20) Current I D (A) MOSFET_A Failure in a SC mode between D&S MOSFET_B Failure in an open state between D&S 800 t sc = 10 s t sc = 11 s t sc = 12 s t sc = 10 s t sc = 11 s t sc = 12 s V DS V DS V GS failure V GS failure I D I D Time ( s) Time ( s) Delayed failure mode with short circuit between D&S and D&G Delayed failure mode with short circuit between G&S and no «failure» between D&S 26

27 Robustness of SiC MOSFET under Short Circuit 27 MOSFET B, E = 600V, T CASE = 25 C MOSFET B, E = 600V, T CASE = 150 C For high SC duration : - SC current is turned-off - Few μs after SC turn-off : Failure of the gate with a SC between Gate and Source - Delayed failure mode

28 Robustness of SiC MOSFET Under current limitation Microscoy from GPM Different failure modes depending on the manufacturer : - Failure after thermal runaway? and short circuit between D&S and D&G - Failure after SC between Gate and Source and open-state between D&S Very difficult to conclude : - Few tested devices - Technology not yet mature and rapidly changing 28

29 Saturation curent (A) Estimation of junction temperature during SC robustness tests Saturation curent (A) SiC JFET from SiCED (1200V 15A & 1300V 2A) E = 400V T cc =6µs Air streamer until 400 C Device Under Test Circuit breaker Short Circuit duration 1200V 15A JFET 1300V 2A JFET 25 C to 400 C by steps of 25 C 25 C to 400 C by steps of 25 C Time(µs) Time(µs) 29

30 Saturation curent (A) Saturation curent (A) Saturation curent (A) Estimation of junction temperature during SC robustness tests Under constant supply voltage, I SAT function of the temperature only 300 C < Temp < 350 C Over current due to the charge of C OSS 25 C 300 C 350 C Time(µs) 50 C Tamb = 25 C Fitted model 350 C I SAT I SAT exp( ) 0 0 Time(µs) Température ( C) 30

31 Estimation of junction temperature during SC robustness tests 31 Very high temperature at failure : - Similar to that encountered with Si devices - Close to aluminum melting temperature

32 Aluminum degradation during short-circuit Efficiency Aging of SJ MOSFET Under SC Al reconstruction Regular increase of metallization resistance 1,15J / Cycle After cycles Complete degradation of the Al layer 32

33 Aging of SIC devices under Short Circuit 33 - Dissipated energy << dissipated energy leading to one shot failure - Regular electrical characterizations during aging On-state resistance (T0247 or T0220) Including Source metalization and bond wire resistance R DSON Gate to Source resistance (JFET or BJT) R GS Including metalization and bond wire Resistance of Gate and Source Saturation current Leakage currents Threshold voltage

34 Aging of SIC JFET under SC E=540 V, Tc = 25 C, T SC = 200 µs (one shoot failure after 700 µs / 1300 µs) 200µs Repetition of the short circuit Until failure First observation is a significant decrease of the SC current during ageing After cycles 34

35 35 Aging of SIC JFET under SC E=540 V, Tc = 25 C, T SC = 200 µs R GS R DSON - Increase of the Gate to Source Resistance (40%) - Increase of the Drain to source Resistance (170%)

36 Aging of SIC JFET under SC E=540 V, Tc = 25 C, T SC = 200 µs Decrease of the saturation current Increase of Rsm and/or Rs-wire results in the decrease of Vgs-die in on-state Rsm : Source metallization resistance Rs-wire : Bond wire resistance - Significant decrease of the saturation current Which can be partially explained by the increase in the on-state resistance - Aluminum reconstruction and/or bond wire lift-off 36

37 Aging of SIC JFET under SC 37 Example of a representative failure First short-circuit After cycles Suddent increase of the gate to source voltage (~threshold voltage) Possible hypotheses : - Suddent apparition of a leakage current between source and gate which results (through Rg) in a return in conduction - Degradation of the gate pad passivations?

38 Aging of SIC JFET under SC 38 Failure after cycles V DS V GS don t cut off Failure of the gate Increase of I D I D V GS V DRIVER Failure Between D&S

39 Aging of SIC MOSFET under SC MOSFET_A R G Increase of V GS during ageing V Driver V GS 4.5µs Gate leakage current Drain leakage current Significant leakage current after more than 15 kcycles: Between Gate and Source (I GSS =10nA) and Drain and Source (I DSS > 300 µa) 39

40 Aging of SIC MOSFET under SC 40 R DSON = 41% Degradation of the source metallization or bond wires Aging : 0 à 21 kcc - High robustness of SiC MOSFET under repetitive Short Circuits - Weak of the gate - Gate leakage current seems to appear simultaneously with the device failure but is not necessary responsible for the failure Microscoy from GPM

41 Summary and conclusions Very high robustness of SiC JFET Similar robustness between Si and SiC devices for other devices? (J.cm -2 ) Melting of the aluminum metallization? Very interesting behavior of SiC BJT under short-circuit (control of the SC current by the base current) Failure of the BJT preceeding by a SC of the Base to Emitter junction resulting in the off-state failure between Collector and Emitter Similar results have been observed on MOSFET SiC for one manufacturer (physical short between Gate and Emitter?) Very interesting behavior of vertical JFET under UIS (self active clamping) 41

HCD6N70S / HCU6N70S 700V N-Channel Super Junction MOSFET

HCD6N70S / HCU6N70S 700V N-Channel Super Junction MOSFET HCD6N70S / HCU6N70S 700V N-Channel Super Junction MOSFET FEATURES Originative New Design Superior Avalanche Rugged Technology Robust Gate Oxide Technology Very Low Intrinsic Capacitances Excellent Switching

More information

T C =25 unless otherwise specified. Symbol Parameter Value Units V DSS Drain-Source Voltage 40 V

T C =25 unless otherwise specified. Symbol Parameter Value Units V DSS Drain-Source Voltage 40 V 40V N-Channel Trench MOSFET June 205 BS = 40 V R DS(on) typ = 3.3mΩ = 30 A FEATURES Originative New Design Superior Avalanche Rugged Technology Excellent Switching Characteristics Unrivalled Gate Charge

More information

HFI50N06A / HFW50N06A 60V N-Channel MOSFET

HFI50N06A / HFW50N06A 60V N-Channel MOSFET HFI50N06A / HFW50N06A 60V N-Channel MOSFET Features Superior Avalanche Rugged Technology Robust Gate Oxide Technology Very Low Intrinsic Capacitances Excellent Switching Characteristics 100% Avalanche

More information

SMPS MOSFET HEXFET Power MOSFET. V DSS R DS(on) max I D. 320 P C = 25 C Power Dissipation 260 Linear Derating Factor.

SMPS MOSFET HEXFET Power MOSFET. V DSS R DS(on) max I D. 320 P C = 25 C Power Dissipation 260 Linear Derating Factor. Applications l High frequency DC-DC converters l UPS and Motor Control l Lead-Free Benefits l Low Gate-to-Drain Charge to Reduce Switching Losses l Fully Characterized Capacitance Including Effective C

More information

HCI70R500E 700V N-Channel Super Junction MOSFET

HCI70R500E 700V N-Channel Super Junction MOSFET HCI70R500E 700V N-Channel Super Junction MOSFET Features Very Low FOM (R DS(on) X Q g ) Extremely low switching loss Excellent stability and uniformity 100% Avalanche Tested Higher dv/dt ruggedness Application

More information

HFP4N65F / HFS4N65F 650V N-Channel MOSFET

HFP4N65F / HFS4N65F 650V N-Channel MOSFET HFP4N65F / HFS4N65F 650V N-Channel MOSFET Features Originative New Design Very Low Intrinsic Capacitances Excellent Switching Characteristics 100% Avalanche Tested RoHS Compliant Key Parameters May 2016

More information

SMPS MOSFET. V DSS Rds(on) max I D

SMPS MOSFET. V DSS Rds(on) max I D Applications Switch Mode Power Supply ( SMPS ) Uninterruptable Power Supply High speed power switching Lead-Free Benefits Low Gate Charge Qg results in Simple Drive Requirement Improved Gate, Avalanche

More information

T C =25 unless otherwise specified

T C =25 unless otherwise specified 800V N-Channel MOSFET FEATURES Originative New Design Superior Avalanche Rugged Technology Robust Gate Oxide Technology Very Low Intrinsic Capacitances Excellent Switching Characteristics Unrivalled Gate

More information

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Advanced Process Technology Dynamic dv/dt Rating 75 C Operating Temperature Fast Switching Fully Avalanche Rated Lead-Free G PD - 94822 IRFZ44EPbF HEXFET Power MOSFET D S V DSS = 60V R DS(on) = 0.023Ω

More information

HCD80R1K4E 800V N-Channel Super Junction MOSFET

HCD80R1K4E 800V N-Channel Super Junction MOSFET HCD80R1K4E 800V N-Channel Super Junction MOSFET Features Very Low FOM (R DS(on) X Q g ) Extremely low switching loss Excellent stability and uniformity 100% Avalanche Tested Application Switch Mode Power

More information

HRLD150N10K / HRLU150N10K 100V N-Channel Trench MOSFET

HRLD150N10K / HRLU150N10K 100V N-Channel Trench MOSFET HRLD15N1K / HRLU15N1K 1V N-Channel Trench MOSFET FEATURES Originative New Design Superior Avalanche Rugged Technology Excellent Switching Characteristics Unrivalled Gate Charge : 8 nc (Typ.) Extended Safe

More information

IRF7821PbF. HEXFET Power MOSFET

IRF7821PbF. HEXFET Power MOSFET Applications l High Frequency Point-of-Load Synchronous Buck Converter for Applications in Networking & Computing Systems. l Lead-Free Benefits l Very Low R DS(on) at 4.5V V GS l Low Gate Charge l Fully

More information

SMPS MOSFET. V DSS R DS(on) max I D A I DM. 320 P C = 25 C Power Dissipation 260 Linear Derating Factor. V/ns T J

SMPS MOSFET. V DSS R DS(on) max I D A I DM. 320 P C = 25 C Power Dissipation 260 Linear Derating Factor. V/ns T J Applications l High frequency DC-DC converters l UPS and Motor Control SMPS MOSFET Benefits l Low Gate-to-Drain Charge to Reduce Switching Losses l Fully Characterized Capacitance Including Effective C

More information

HCA60R080FT (Fast Recovery Diode Type) 600V N-Channel Super Junction MOSFET

HCA60R080FT (Fast Recovery Diode Type) 600V N-Channel Super Junction MOSFET HCA60R080FT (Fast Recovery Diode Type) 600V N-Channel Super Junction MOSFET Features Very Low FOM (R DS(on) X Q g ) Extremely low switching loss Excellent stability and uniformity 00% Avalanche Tested

More information

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) max I D Applications l l l l Switch Mode Power Supply (SMPS) Uninterruptible Power Supply High Speed Power Switching Lead-Free SMPS MOSFET PD - 9546 HEXFET Power MOSFET V DSS R DS(on) max I D 650V 0.93Ω 8.5A Benefits

More information

HCA80R250T 800V N-Channel Super Junction MOSFET

HCA80R250T 800V N-Channel Super Junction MOSFET HCA80R250T 800V N-Channel Super Junction MOSFET Features Very Low FOM (R DS(on) X Q g ) Extremely low switching loss Excellent stability and uniformity 100% Avalanche Tested Application Switch Mode Power

More information

AUTOMOTIVE MOSFET. HEXFET Power MOSFET Wiper Control

AUTOMOTIVE MOSFET. HEXFET Power MOSFET Wiper Control AUTOMOTIVE MOSFET PD -94A IRFBA405P Typical Applications Electric Power Steering (EPS) Anti-lock Braking System (ABS) HEXFET Power MOSFET Wiper Control D Climate Control V DSS = 55V Power Door Benefits

More information

TO-220AB low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

TO-220AB low package cost of the TO-220 contribute to its wide acceptance throughout the industry. l Logic-Level Gate Drive l Advanced Process Technology l Ultra Low On-Resistance l Dynamic dv/dt Rating l 75 C Operating Temperature l Fast Switching l Fully Avalanche Rated l Lead-Free Description Fifth

More information

HCD80R600R 800V N-Channel Super Junction MOSFET

HCD80R600R 800V N-Channel Super Junction MOSFET HCD80R600R 800V N-Channel Super Junction MOSFET Features Very Low FOM (R DS(on) X Q g ) Extremely low switching loss Excellent stability and uniformity 00% Avalanche Tested Application Switch Mode Power

More information

IRF130, IRF131, IRF132, IRF133

IRF130, IRF131, IRF132, IRF133 October 1997 SEMICONDUCTOR IRF13, IRF131, IRF132, IRF133 12A and 14A, 8V and 1V,.16 and.23 Ohm, N-Channel Power MOSFETs Features Description 12A and 14A, 8V and 1V r DS(ON) =.16Ω and.23ω Single Pulse Avalanche

More information

FASTIRFET IRFHE4250DPbF

FASTIRFET IRFHE4250DPbF Q Q2 V DSS 25 25 V R DS(on) max (@V GS = 4.5V) 4..35 m Qg (typical) 3 35 nc FASTIRFET IRFHE4250DPbF HEXFET Power MOSFET I D (@T C = 25 C) 60 60 A Applications Control and Synchronous MOSFETs for synchronous

More information

T C =25 unless otherwise specified

T C =25 unless otherwise specified 500V N-Channel MOSFET BS = 500 V R DS(on) typ = 0.22 = 8A Apr 204 FEATURES TO-220F Originative New Design Superior Avalanche Rugged Technology Robust Gate Oxide Technology Very Low Intrinsic Capacitances

More information

UNISONIC TECHNOLOGIES CO., LTD

UNISONIC TECHNOLOGIES CO., LTD UNISONIC TECHNOLOGIES CO., LTD 6A, 6V N-CHANNEL POWER MOSFET DESCRIPTION The UTC 6N6 is N-channel enhancement mode power field effect transistors with stable off-state characteristics, fast switching speed,

More information

IRFB260NPbF HEXFET Power MOSFET

IRFB260NPbF HEXFET Power MOSFET Applications l High frequency DC-DC converters l Lead-Free PD - 95473 SMPS MOSFET IRFB260NPbF HEXFET Power MOSFET Benefits Low Gate-to-Drain Charge to Reduce Switching Losses Fully Characterized Capacitance

More information

UNISONIC TECHNOLOGIES CO., LTD UFC8N80K

UNISONIC TECHNOLOGIES CO., LTD UFC8N80K UNISONIC TECHNOLOGIES CO., LTD UFC8N80K 8A, 800V N-CHANNEL POWER MOSFET DESCRIPTION The UTC UFC8N80K provide excellent R DS(ON), low gate charge and operation with low gate voltages. This device is suitable

More information

IRF530NSPbF IRF530NLPbF

IRF530NSPbF IRF530NLPbF l Advanced Process Technology l Ultra Low On-Resistance l Dynamic dv/dt Rating l 175 C Operating Temperature l Fast Switching G l Fully Avalanche Rated l Lead-Free Description Advanced HEXFET Power MOSFETs

More information

T C =25 unless otherwise specified

T C =25 unless otherwise specified WFW11N90 900V N-Channel MOSFET BS = 900 V R DS(on) typ = 0.93 Ω = 11 A FEATURES TO-3P Originative New Design Superior Avalanche Rugged Technology Robust Gate Oxide Technology Very Low Intrinsic Capacitances

More information

SYNCHRONOUS RECTIFIER SURFACE MOUNT (SMD-2) 60V, N-CHANNEL. Absolute Maximum Ratings PD-94401B

SYNCHRONOUS RECTIFIER SURFACE MOUNT (SMD-2) 60V, N-CHANNEL. Absolute Maximum Ratings PD-94401B PD-9440B RAD-HARD SYNCHRONOUS RECTIFIER SURFACE MOUNT (SMD-2) 60V, N-CHANNEL Product Summary Part Number Radiation Level RDS(on) QG 00K Rads (Si) 6.mΩ 60nC IRHSLNA53064 300K Rads (Si) 6.mΩ 60nC IRHSLNA54064

More information

HCS80R1K4E 800V N-Channel Super Junction MOSFET

HCS80R1K4E 800V N-Channel Super Junction MOSFET HCS80R1K4E 800V N-Channel Super Junction MOSFET Features Very Low FOM (R DS(on) X Q g ) Extremely low switching loss Excellent stability and uniformity 100% Avalanche Tested Application Switch Mode Power

More information

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) max I D SMPS MOSFET PD - 9506A IRFR8N5DPbF IRFU8N5DPbF HEXFET Power MOSFET Applications High frequency DC-DC converters Lead-Free l l V DSS R DS(on) max I D 50V 0.25Ω 8A Benefits l Low Gate to Drain Charge to

More information

IRL3803VSPbF IRL3803VLPbF HEXFET Power MOSFET

IRL3803VSPbF IRL3803VLPbF HEXFET Power MOSFET l Logic-Level Gate Drive l Advanced Process Technology l Surface Mount (IRL3803VS) l Low-profile through-hole (IRL3803VL) l 175 C Operating Temperature l Fast Switching G l Fully Avalanche Rated l Lead-Free

More information

Robustness of SiC MOSFETs in short-circuit mode

Robustness of SiC MOSFETs in short-circuit mode Robustness of SiC MOSFETs in short-circuit mode Cheng Chen, Denis Labrousse, Stephane Lefebvre, Mickaël Petit, Cyril Buttay, Hervé Morel To cite this version: Cheng Chen, Denis Labrousse, Stephane Lefebvre,

More information

HCD80R650E 800V N-Channel Super Junction MOSFET

HCD80R650E 800V N-Channel Super Junction MOSFET HCD80R650E 800V N-Channel Super Junction MOSFET Features Very Low FOM (R DS(on) X Q g ) Extremely low switching loss Excellent stability and uniformity 100% Avalanche Tested Application Switch Mode Power

More information

HCS80R380R 800V N-Channel Super Junction MOSFET

HCS80R380R 800V N-Channel Super Junction MOSFET HCS8R38R 8V N-Channel Super Junction MOSFET Features Very Low FOM (R DS(on) X Q g ) Extremely low switching loss Excellent stability and uniformity % Avalanche Tested Application Switch Mode Power Supply

More information

T C =25 unless otherwise specified

T C =25 unless otherwise specified 800V N-Channel MOSFET BS = 800 V R DS(on) typ = 3.0 A Dec 2005 FEATURES Originative New Design Superior Avalanche Rugged Technology Robust Gate Oxide Technology Very Low Intrinsic Capacitances Excellent

More information

-280 P C = 25 C Power Dissipation 170 Linear Derating Factor. W/ C V GS Gate-to-Source Voltage ± 20

-280 P C = 25 C Power Dissipation 170 Linear Derating Factor. W/ C V GS Gate-to-Source Voltage ± 20 Features Advanced Process Technology Ultra Low On-Resistance 150 C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Some Parameters Are Differrent from IRF4905S Lead-Free Description

More information

IRFZ48NS IRFZ48NL HEXFET Power MOSFET

IRFZ48NS IRFZ48NL HEXFET Power MOSFET l Advanced Process Technology l Surface Mount (IRFZ48NS) l Low-profile through-hole (IRFZ48NL) l 75 C Operating Temperature l Fast Switching l Fully Avalanche Rated Description Advanced HEXFET Power MOSFETs

More information

V DSS R DS(on) max I D

V DSS R DS(on) max I D PD- 94504 IRF1312 IRF1312S IRF1312L HEXFET Power MOSFET Applications High frequency DC-DC converters Motor Control Uninterrutible Power Supplies l l l V DSS R DS(on) max I D 80V 10mΩ 95A Benefits l Low

More information

V DSS R DS(on) max I D. 20V GS = 10V 8.9A. 71 P A = 25 C Power Dissipation 2.0 P A = 70 C Power Dissipation Linear Derating Factor

V DSS R DS(on) max I D. 20V GS = 10V 8.9A. 71 P A = 25 C Power Dissipation 2.0 P A = 70 C Power Dissipation Linear Derating Factor Applications Dual SO-8 MOSFET for POL converters in desktop, servers, graphics cards, game consoles and set-top box PD - 95858A IRF895 HEXFET Power MOSFET V DSS R DS(on) max I D 20V 8.3m:@V GS = V 8.9A

More information

SMPS MOSFET. V DSS R DS(on) max (mω) I D

SMPS MOSFET. V DSS R DS(on) max (mω) I D SMPS MOSFET PD- 94048 IRFR220N IRFU220N HEXFET Power MOSFET Applications l High frequency DC-DC converters V DSS R DS(on) max (mω) I D 200V 600 5.0A Benefits l Low Gate to Drain Charge to Reduce Switching

More information

V DSS R DS(on) max Qg (typ.) 60V GS = 10V 24nC

V DSS R DS(on) max Qg (typ.) 60V GS = 10V 24nC Applications l Synchronous Rectifier MOSFET for Isolated DC-DC Converters l Low Power Motor Drive Systems PD - 97436 IRF735PbF HEXFET Power MOSFET V DSS R DS(on) max Qg (typ.) 60V 7.8mΩ@V GS = 0V 24nC

More information

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Typical Applications l Industrial Motor Drive Benefits l Advanced Process Technology l Ultra Low On-Resistance l Dynamic dv/dt Rating l 75 C Operating Temperature l Fast Switching l Repetitive Avalanche

More information

AUTOMOTIVE MOSFET. C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

AUTOMOTIVE MOSFET. C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) PD -95487 Typical Applications 42 Volts Automotive Electrical Systems Electrical Power Steering (EPS) Integrated Starter Alternator Lead-Free Benefits Ultra Low On-Resistance Dynamic dv/dt Rating 75 C

More information

UNISONIC TECHNOLOGIES CO., LTD

UNISONIC TECHNOLOGIES CO., LTD UNISONIC TECHNOLOGIES CO., LTD 60 Amps, 60 Volts N-CHANNEL POWER MOSFET DESCRIPTION The UTC 60N06 is n-channel enhancement mode power field effect transistors with stable off-state characteristics, fast

More information

IRFR3709ZPbF IRFU3709ZPbF

IRFR3709ZPbF IRFU3709ZPbF Applications l High Frequency Synchronous Buck Converters for Computer Processor Power l High Frequency Isolated DC-DC Converters with Synchronous Rectification for Telecom and Industrial Use l Lead-Free

More information

PFP15T140 / PFB15T140

PFP15T140 / PFB15T140 FEATURES 1% EAS Test Super high density cell design Extremely Low Intrinsic Capacitances Remarkable Switching Characteristics Extended Safe Operating Area Lower R DS(ON) : 6. mω (Typ.) @ =1V 15V N-Channel

More information

AUTOMOTIVE MOSFET TO-220AB IRL1404Z. Absolute Maximum Ratings Max. I T C = 25 C Continuous Drain Current, V 10V (Silicon Limited)

AUTOMOTIVE MOSFET TO-220AB IRL1404Z. Absolute Maximum Ratings Max. I T C = 25 C Continuous Drain Current, V 10V (Silicon Limited) Features l Logic Level l Advanced Process Technology l Ultra Low On-Resistance l 175 C Operating Temperature l Fast Switching l Repetitive Avalanche Allowed up to Tjmax AUTOMOTIVE MOSFET Description Specifically

More information

Absolute Maximum Ratings Parameter Symbol IRF7809A V Units Drain-Source Voltage V DS. 30 V Gate-Source Voltage V GS = 25 C I D

Absolute Maximum Ratings Parameter Symbol IRF7809A V Units Drain-Source Voltage V DS. 30 V Gate-Source Voltage V GS = 25 C I D PD - 95212A IRF7809AVPbF N-Channel Application-Specific MOSFETs Ideal for CPU Core DC-DC Converters Low Conduction Losses Low Switching Losses Minimizes Parallel MOSFETs for high current applications 0%

More information

SMPS MOSFET. V DS 200 V V DS (Avalanche) min. 260 V R DS(ON) 10V 54 m: T J max 175 C TO-220AB. IRFB38N20DPbF

SMPS MOSFET. V DS 200 V V DS (Avalanche) min. 260 V R DS(ON) 10V 54 m: T J max 175 C TO-220AB. IRFB38N20DPbF Applications High frequency DC-DC converters Plasma Display Panel Lead-Free l l l SMPS MOSFET Benefits l Low Gate-to-Drain Charge to Reduce Switching Losses l Fully Characterized Capacitance Including

More information

Approved (Not Released) V DSS R DS(on) max Qg. 30V 3.5mΩ 36nC

Approved (Not Released) V DSS R DS(on) max Qg. 30V 3.5mΩ 36nC Approved (Not Released) PD - TBD Applications l Optimized for UPS/Inverter Applications l Low Voltage Power Tools Benefits l Best in Class Performance for UPS/Inverter Applications l Very Low RDS(on) at

More information

UNISONIC TECHNOLOGIES CO., LTD UNA06R165M Advance POWER MOSFET

UNISONIC TECHNOLOGIES CO., LTD UNA06R165M Advance POWER MOSFET UNISONIC TECHNOLOGIES CO., LTD UNA06R165M Advance POWER MOSFET 60A, 60V N-CHANNEL ENHANCEMENT MODE TRENCH POWER MOSFET DESCRIPTION The UTC UNA06R165M is an N-channel Power MOSFET, it uses UTC s advanced

More information

C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting Torque, 6-32 or M3 screw 1.1 (10) N m (lbf in)

C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting Torque, 6-32 or M3 screw 1.1 (10) N m (lbf in) Typical Applications l Industrial Motor Drive Features l Advanced Process Technology l Ultra Low On-Resistance l 175 C Operating Temperature l Fast Switching l Repetitive Avalanche Allowed up to Tjmax

More information

UNISONIC TECHNOLOGIES CO., LTD UTT80P06 Preliminary Power MOSFET

UNISONIC TECHNOLOGIES CO., LTD UTT80P06 Preliminary Power MOSFET UNISONIC TECHNOLOGIES CO., LTD UTT80P06 Preliminary Power MOSFET -80A, -60V P-CHANNEL POWER MOSFET DESCRIPTION The UTC UTT80P06 is a P-channel power MOSFET using UTC s advanced technology to provide the

More information

V DSS R DS(on) max Qg. 560 P C = 25 C Maximum Power Dissipation g 140 P C = 100 C Maximum Power Dissipation g Linear Derating Factor

V DSS R DS(on) max Qg. 560 P C = 25 C Maximum Power Dissipation g 140 P C = 100 C Maximum Power Dissipation g Linear Derating Factor Applications l High Frequency Synchronous Buck Converters for Computer Processor Power l High Frequency Isolated DC-DC Converters with Synchronous Rectification for Telecom and Industrial Use Benefits

More information

IRFR24N15DPbF IRFU24N15DPbF

IRFR24N15DPbF IRFU24N15DPbF PD - 95370B IRFR24N5DPbF IRFU24N5DPbF Applications l High frequency DC-DC converters HEXFET Power MOSFET S R DS(on) max I D 50V 95mΩ 24A Benefits l Low Gate-to-Drain Charge to Reduce Switching Losses l

More information

V DSS R DS(on) max Qg (typ.) 30V GS = 10V 57nC

V DSS R DS(on) max Qg (typ.) 30V GS = 10V 57nC PD - 97407 Applications l Optimized for UPS/Inverter Applications l High Frequency Isolated DC-DC Converters with Synchronous Rectification for Telecom and Industrial Use l Power Tools HEXFET Power MOSFET

More information

UNISONIC TECHNOLOGIES CO., LTD UT50N04

UNISONIC TECHNOLOGIES CO., LTD UT50N04 UNISONIC TECHNOLOGIES CO., LTD 50A, 40V N-CHANNEL POWER MOSFET DESCRIPTION The UTC is a N-channel enhancement MOSFET using UTC s advanced technology to provide the customers with perfect R DS(ON) and high

More information

IRF3709ZCS IRF3709ZCL

IRF3709ZCS IRF3709ZCL PD - 95836 IRF3709ZCS IRF3709ZCL Applications l High Frequency Synchronous Buck Converters for Computer Processor Power HEXFET Power MOSFET V DSS R DSon) max Qg 30V 6.3m: 7nC Benefits l l l Low R DSon)

More information

UNISONIC TECHNOLOGIES CO., LTD UTT30P04 Preliminary Power MOSFET

UNISONIC TECHNOLOGIES CO., LTD UTT30P04 Preliminary Power MOSFET UNISONIC TECHNOLOGIES CO., LTD UTT30P04 Preliminary Power MOSFET -21A, -40V P-CHANNEL POWER MOSFET DESCRIPTION The UTC UTT30P04 is a P-channel power MOSFET providing customers with fast switching, ruggedized

More information

IRLR3717 IRLU3717 HEXFET Power MOSFET

IRLR3717 IRLU3717 HEXFET Power MOSFET Applications l High Frequency Synchronous Buck Converters for Computer Processor Power l High Frequency Isolated DC-DC Converters with Synchronous Rectification for Telecom and Industrial Use PD - 94718B

More information

IRLR8721PbF IRLU8721PbF

IRLR8721PbF IRLU8721PbF Applications l High Frequency Synchronous Buck Converters for Computer Processor Power l High Frequency Isolated DC-DC Converters with Synchronous Rectification for Telecom and Industrial Use l Lead-Free

More information

IRF3205S/L. HEXFET Power MOSFET V DSS = 55V. R DS(on) = 8.0mΩ I D = 110A

IRF3205S/L. HEXFET Power MOSFET V DSS = 55V. R DS(on) = 8.0mΩ I D = 110A l l l l l l Advanced Process Technology Ultra Low On-Resistance Dynamic dv/dt Rating 75 C Operating Temperature Fast Switching Fully Avalanche Rated Description Advanced HEXFET Power MOSFETs from International

More information

HCS70R350E 700V N-Channel Super Junction MOSFET

HCS70R350E 700V N-Channel Super Junction MOSFET HCS70R350E 700V N-Channel Super Junction MOSFET Features Very Low FOM (R DS(on) X Q g ) Extremely low switching loss Excellent stability and uniformity 100% Avalanche Tested Higher dv/dt ruggedness Application

More information

IRFI4212H-117P. Description. Key Parameters g V DS 100 V R DS(ON) 10V 58 m: Q g typ. 12 nc Q sw typ. 6.9 nc R G(int) typ. 3.

IRFI4212H-117P. Description. Key Parameters g V DS 100 V R DS(ON) 10V 58 m: Q g typ. 12 nc Q sw typ. 6.9 nc R G(int) typ. 3. DIGITAL AUDIO MOSFET PD - 97249A IRFI422H-7P Features Ÿ Integrated half-bridge package Ÿ Reduces the part count by half Ÿ Facilitates better PCB layout Ÿ Key parameters optimized for Class-D audio amplifier

More information

Super Junction MOSFET

Super Junction MOSFET 65V 94A * *G Denotes RoHS Compliant, Pb Free Terminal Finish. CO LMOS Power Semiconductors Super Junction MOSFET T-Max TM Ultra Low R DS(ON) Low Miller Capacitance Ultra Low Gate Charge, Q g Avalanche

More information

IRFP2907PbF. HEXFET Power MOSFET V DSS = 75V. R DS(on) = 4.5mΩ I D = 209A. Typical Applications. Benefits

IRFP2907PbF. HEXFET Power MOSFET V DSS = 75V. R DS(on) = 4.5mΩ I D = 209A. Typical Applications. Benefits Typical Applications l Telecom applications requiring soft start Benefits l Advanced Process Technology l Ultra Low On-Resistance l Dynamic dv/dt Rating l 75 C Operating Temperature l Fast Switching l

More information

HCS90R1K5R 900V N-Channel Super Junction MOSFET

HCS90R1K5R 900V N-Channel Super Junction MOSFET HCS90RK5R 900V N-Channel Super Junction MOSFET Features Very Low FOM (R DS(on) X Q g ) Extremely low switching loss Excellent stability and uniformity 00% Avalanche Tested Application Switch Mode Power

More information

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) max I D SMPS MOSFET PD - 94445 HEXFET Power MOSFET Applications l High frequency DC-DC converters V DSS R DS(on) max I D 50V 85mΩ@V GS = V 2.6A Benefits l Low Gate to Drain Charge to Reduce Switching Losses l

More information

V DSS R DS(on) max I D 80V GS = 10V 3.6A

V DSS R DS(on) max I D 80V GS = 10V 3.6A HEXFET Power MOSFET Applications High frequency DC-DC converters Lead-Free l l V DSS R DS(on) max I D 80V 73m:@ = 0V 3.6A Benefits l Low Gate to Drain Charge to Reduce Switching Losses l Fully Characterized

More information

HCS80R850R 800V N-Channel Super Junction MOSFET

HCS80R850R 800V N-Channel Super Junction MOSFET HCS80R850R 800V N-Channel Super Junction MOSFET Features Very Low FOM (R DS(on) X Q g ) Extremely low switching loss Excellent stability and uniformity 00% Avalanche Tested Application Switch Mode Power

More information

8N Amps, 600/650 Volts N-CHANNEL POWER MOSFET 8N60 MOSFET N 600V 7.5A 1,2 OHM. Power MOSFET. DESCRIPTION FEATURES

8N Amps, 600/650 Volts N-CHANNEL POWER MOSFET 8N60 MOSFET N 600V 7.5A 1,2 OHM. Power MOSFET.   DESCRIPTION FEATURES MOSFET N 6V 7.5A,2 OHM 8N6 7.5 Amps,6/65 Volts N-CHANNEL POWER MOSFET DESCRIPTION The UTC 8N6 is a high voltage and high current power MOSFET, designed to have better characteristics, such as fast switching

More information

HCS65R110FE (Fast Recovery Diode Type) 650V N-Channel Super Junction MOSFET

HCS65R110FE (Fast Recovery Diode Type) 650V N-Channel Super Junction MOSFET HCS65R110FE (Fast Recovery Diode Type) 650V N-Channel Super Junction MOSFET Features Very Low FOM (R DS(on) X Q g ) Extremely low switching loss Excellent stability and uniformity 100% Avalanche Tested

More information

V DSS R DS(on) max Qg. 30V 4.8m: 15nC

V DSS R DS(on) max Qg. 30V 4.8m: 15nC PD - 9623 Applications l Optimized for UPS/Inverter Applications l High Frequency Synchronous Buck Converters for Computer Processor Power l High Frequency Isolated DC-DC Converters with Synchronous Rectification

More information

AUTOMOTIVE MOSFET. I D = 140A Fast Switching

AUTOMOTIVE MOSFET. I D = 140A Fast Switching IRF3808 AUTOMOTIVE MOSFET Typical Applications HEXFET Power MOSFET Integrated Starter Alternator D 42 Volts Automotive Electrical Systems V DSS = 75V Benefits Advanced Process Technology R DS(on) = 0.007Ω

More information

Absolute Maximum Ratings Parameter Max. Units

Absolute Maximum Ratings Parameter Max. Units PD-95882 PDP Switch IRGP45 Features Key parameters optimized for PDP sustain & Energy recovery applications 4A continuous collector current rating reduces component count High pulse current rating makes

More information

UNISONIC TECHNOLOGIES CO., LTD

UNISONIC TECHNOLOGIES CO., LTD UNISONIC TECHNOLOGIES CO., LTD 30A, 200V N-CHANNEL POWER MOSFET DESCRIPTION The UTC 30N20 is an N-channel mode Power FET, it uses UTC s advanced technology. This technology allows a minimum on-state resistance,

More information

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 23. V/ns T J. mj I AR

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 23. V/ns T J. mj I AR IRF36SPbF Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits Benefits l Improved Gate,

More information

IRF9910PbF HEXFET Power MOSFET R DS(on) max

IRF9910PbF HEXFET Power MOSFET R DS(on) max Applications l Dual SO-8 MOSFET for POL converters in desktop, servers, graphics cards, game consoles and set-top box l Lead-Free S Benefits l Very Low R DS(on) at 4.5V l Low Gate Charge l Fully Characterized

More information

5.0V 5.0V. 20µs PULSE WIDTH Tj = 25 C. Tj = 150 C. V DS, Drain-to-Source Voltage (V) T J = 150 C 1.5. V GS, Gate-to-Source Voltage (V)

5.0V 5.0V. 20µs PULSE WIDTH Tj = 25 C. Tj = 150 C. V DS, Drain-to-Source Voltage (V) T J = 150 C 1.5. V GS, Gate-to-Source Voltage (V) 9MT050XF "FULL-BRIDGE" FREDFET MTP HEXFET Power MOSFET Features Low On-Resistance High Performance Optimised Built-in Fast Recovery Diodes Fully Characterized Capacitance and Avalanche Voltage and Current

More information

18 N Amps, 500 Volts N-CHANNEL MOSFET. Power MOSFET DESCRIPTION FEATURES SYMBOL

18 N Amps, 500 Volts N-CHANNEL MOSFET. Power MOSFET DESCRIPTION FEATURES SYMBOL Power MOSFET 8 Amps, 500 Volts NCHANNEL MOSFET DESCRIPTION The YR 8N50 are NChannel enhancement mode power field effect transistors (MOSFET) which are produced using YR s proprietary,planar stripe, DMOS

More information

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) max I D Absolute Maximum Ratings SMPS MOSFET Applications l High Frequency Isolated DC-DC Converters with Synchronous Rectification for Telecom and Industrial Use l High Frequency Buck Converters for Server Processor

More information

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) max I D PD - 95355A SMPS MOSFET IRFR5N20DPbF IRFU5N20DPbF HEXFET Power MOSFET Applications High frequency DC-DC converters Lead-Free l l V DSS R DS(on) max I D 200V 65Ω 7A Benefits Low Gate-to-Drain Charge to

More information

Super Junction MOSFET

Super Junction MOSFET APT77N6BC6 APT77N6SC6 6V 77A.4Ω CO LMOS Power Semiconductors Super Junction MOSFET Ultra Low R DS(ON) TO-247 Low Miller Capacitance D 3 PAK Ultra Low Gate Charge, Q g Avalanche Energy Rated Extreme dv

More information

IRLS3036PbF IRLSL3036PbF HEXFET Power MOSFET

IRLS3036PbF IRLSL3036PbF HEXFET Power MOSFET Applications l DC Motor Drive l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits G D S PD -97358

More information

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) PD -95487A Typical Applications l Industrial Motor Drive Benefits l Ultra Low On-Resistance l Dynamic dv/dt Rating l 75 C Operating Temperature l Fast Switching l Repetitive Avalanche Allowed up to Tjmax

More information

Robustness Study of SiC MOSFET Under Harsh Electrical and Thermal Constraints

Robustness Study of SiC MOSFET Under Harsh Electrical and Thermal Constraints Robustness Study of SiC MOSFET Under Harsh Electrical and Thermal Constraints To an in-depth physical failure analysis Safa Mbarek, Pascal Dherbécourt, Olivier Latry, François Fouquet* University of Rouen,

More information

SMPS MOSFET. V DSS R DS(on) typ. Trr typ. I D. 600V 385mΩ 130ns 15A

SMPS MOSFET. V DSS R DS(on) typ. Trr typ. I D. 600V 385mΩ 130ns 15A Applications Zero Voltage Switching SMPS Telecom and Server Power Supplies Uninterruptible Power Supplies Motor Control applications SMPS MOSFET PD - 9445A HEXFET Power MOSFET V DSS R DS(on) typ. Trr typ.

More information

V DSS R DS(on) max (mw)

V DSS R DS(on) max (mw) Typical Applications Relay replacement Anti-lock Braking System Air Bag Benefits Advanced Process Technology Ultra Low On-Resistance Fast Switching Repetitive Avalanche Allowed up to Tjmax AUTOMOTIVE MOSFET

More information

8 S1, D2. Storage Temperature Range Soldering Temperature, for 10 seconds 300 (1.6mm from case )

8 S1, D2. Storage Temperature Range Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Co-Pack Dual N-channel HEXFET Power MOSFET and Schottky Diode Ideal for Synchronous Buck DC-DC Converters Up to A Peak Output Low Conduction Losses Low Switching Losses Low Vf Schottky Rectifier D D 2

More information

A I T C = 25 C Continuous Drain Current, V 10V (Package Limited) 560 P C = 25 C Power Dissipation 330 Linear Derating Factor

A I T C = 25 C Continuous Drain Current, V 10V (Package Limited) 560 P C = 25 C Power Dissipation 330 Linear Derating Factor PD - 95758A Features l Designed to support Linear Gate Drive Applications l 175 C Operating Temperature l Low Thermal Resistance Junction - Case l Rugged Process Technology and Design l Fully Avalanche

More information

IRFR1018EPbF IRFU1018EPbF

IRFR1018EPbF IRFU1018EPbF PD - 9729A IRFR8EPbF IRFU8EPbF Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits Benefits

More information

TO Gate 2. Drain 3. Source. Item Sales Type Marking Package Packaging 1 SW P 088R06VT SW088R06VT TO-220 TUBE. Symbol Parameter Value Unit

TO Gate 2. Drain 3. Source. Item Sales Type Marking Package Packaging 1 SW P 088R06VT SW088R06VT TO-220 TUBE. Symbol Parameter Value Unit Features High ruggedness Low R DS(ON) (Typ 10mΩ)@V GS =4.5V Low R DS(ON) (Typ 8.2mΩ)@V GS =10V Low Gate Charge (Typ 48nC) Improved dv/dt Capability 100% Avalanche Tested Application: Electronic Ballast,

More information

IRFR24N15D IRFU24N15D

IRFR24N15D IRFU24N15D Applications l High frequency DC-DC converters SMPS MOSFET PD - 94392 IRFR24N5D IRFU24N5D HEXFET Power MOSFET V DSS R DS(on) max I D 50V 95mΩ 24A Benefits Low Gate-to-Drain Charge to Reduce Switching Losses

More information

SMPS MOSFET. V DSS R DS(on) typ. I D

SMPS MOSFET. V DSS R DS(on) typ. I D SMPS MOSFET Applications l Switch Mode Power Supply (SMPS) l Uninterruptible Power Supply l High Speed Power Switching l ZVS and High Frequency Circuit l PWM Inverters Benefits l Low Gate Charge Qg results

More information

12N60 12N65 Power MOSFET

12N60 12N65 Power MOSFET 12 Amps, 600/650 Volts N-CHANNEL POWER MOSFET DESCRIPTION 1 1 TO-220 ITO-220/TO-220F is a high voltage and high current power MOSFET, designed to have better characteristics, such as fast switching time,

More information

SMPS MOSFET. V DSS R DS(on) typ. I D

SMPS MOSFET. V DSS R DS(on) typ. I D Absolute Maximum Ratings SMPS MOSFET PD 93923B IRFPS40N50L Applications HEXFET Power MOSFET l Switch Mode Power Supply (SMPS) l UninterruptIble Power Supply V DSS R DS(on) typ. I D l High Speed Power Switching

More information

Enhancement Mode N-Channel Power MOSFET

Enhancement Mode N-Channel Power MOSFET SFG180N10x_Datasheet Enhancement Mode N-Channel Power MOSFET Features Low R DS(on) & FOM Extremely low switching loss Excellent stability and uniformity Fast switching and soft recovery Applications Consumer

More information

Enhancement Mode N-Channel Power MOSFET

Enhancement Mode N-Channel Power MOSFET OSG55R160xZF_Datasheet Enhancement Mode N-Channel Power MOSFET Features Ultra-fast and robust body diode Low RDS(on) & FOM Excellent low switching loss Excellent stability and uniformity Applications Lighting

More information

Enhancement Mode N-Channel Power MOSFET

Enhancement Mode N-Channel Power MOSFET SFG130N08xF_Datasheet Enhancement Mode N-Channel Power MOSFET Features Low R DS(on) & FOM Extremely low switching loss Excellent stability and uniformity Fast switching and soft recovery Applications Consumer

More information

AUTOMOTIVE MOSFET TO-220AB IRF I DM. 890 P C = 25 C Power Dissipation 330 Linear Derating Factor. 2.2 V GS Gate-to-Source Voltage ± 20

AUTOMOTIVE MOSFET TO-220AB IRF I DM. 890 P C = 25 C Power Dissipation 330 Linear Derating Factor. 2.2 V GS Gate-to-Source Voltage ± 20 Features l Advanced Process Technology l Ultra Low On-Resistance l 175 C Operating Temperature l Fast Switching l Repetitive Avalanche Allowed up to Tjmax AUTOMOTIVE MOSFET Description Specifically designed

More information