Design of High-Speed Serial-Links in CMOS (Task ID: )

Size: px
Start display at page:

Download "Design of High-Speed Serial-Links in CMOS (Task ID: )"

Transcription

1 Design of High-Speed Serial-Links in CMOS (Task ID: ) SRC Research Review September 10, 2003 Won Namgoong University of Southern California SRC Review 9/10/03 W. Namgoong, USC 1

2 Design of High-Speed Serial- Links in CMOS Technical Thrust Circuit Design Students Kyongsu Lee Lei Feng SRC Review 9/10/03 W. Namgoong, USC 2

3 Accomplishments for 2003 Developed adaptive/synchronization techniques for frequency channelized receivers. Designed a serial-link prototype based on frequency channelization. Currently in fabrication. SRC Review 9/10/03 W. Namgoong, USC 3

4 Outline of Talk Adaptive frequency channelized receiver. Frequency channelized receiver implementation. Research plans for next year. SRC Review 9/10/03 W. Namgoong, USC 4

5 Background in Signaling Transistor mismatches. On-chip noise. Inter-symbol interference. Wire losses and package parasitics. Finite receiver/transmitter bandwidth. SRC Review 9/10/03 W. Namgoong, USC 5

6 Existing Architecture Time-Interleaved Receiver Sample at approx. Nyquist rate; 2-4 bit s (flash). sees the full bandwidth of the input signal. Sample/hold circuitry difficult to design. Sensitive to sampling jitter and sample-time offsets. Large input capacitance. SRC Review 9/10/03 W. Namgoong, USC 6

7 Frequency Channelized Receiver Achieves the same effective sampling frequency as timeinterleaved receiver using the same number of s. input bandwidth reduced. Sample/hold circuitry relaxed. More robust to sampling jitter even with mixer phase noise present. Reduced input bandwidth. SRC Review 9/10/03 W. Namgoong, USC 7

8 Adaptive Frequency Channelized Receiver Overview Adaptive synthesis filter bank. Equalize distortion caused by the propagation channel and reconstruct the channelized signal for detection. Analog analysis filter bank not accurately known at design time. Error signal based on the detected symbol. Digital interpolators. sampling frequency generally not an integer multiple of the symbol frequency. Interpolation must occur after synthesis filter bank. SRC Review 9/10/03 W. Namgoong, USC 8

9 Overall Receiver Structure s[l] Adaptive Filter Bank d ˆ[ n ] Timing/Detection Module Detection Interpolator Timing Controller Detector Timing Recovery aˆ [ m] Training Symbols Delay - + Backward Timing Prediction Adaptive Control Module Reference Interpolator Timing/detection module extracts timing information and detects transmitted symbol. Adaptive control module generates error signal used to update the adaptive synthesis filter bank. SRC Review 9/10/03 W. Namgoong, USC 9

10 Adaptive Filter Bank (1) x ( t) + n( t) s 0 [ l] H( jω) y [ n 0 ] γ G 0( z ) Re{ } d ˆ[ n ] H( jω) f sample s [ l 1 ] γ G ( z 1 ) exp{ j2πf sample t} H( jω) exp{ j2π ( M 1) f sample t} : : f sample s [ l M 1 ] f sample γ y [ n M 1 ] G M 1 ( z) e[n] d[n] - + Effective sampling frequency feff =γ f sample, where γ = 2M 1. Re{} applied since transmitted signal is a baseband real signal. SRC Review 9/10/03 W. Namgoong, USC 10

11 Adaptive Filter Bank (2) s 0 [ l] : : s [ l M 1 ] code channel 0 W ( 0,0 z) : W M ) ( 1,0 z W ( 0, γ 1 z : W ( M 1, γ 1 z ) ) Re{ } Re{ } code channel γ 1 z[ γl] e[ γl ] z[ γl + γ 1] e[ γl + γ 1] e[n] d ˆ[ n ] - + d[n] Synthesis filter bank is LPTV system with period γ. Each code channel estimates one of γ consecutive samples. LMS adapts each code channel independently: w [ l + 1] = w [ l ] + εs[ l ] e[ γl i] i i + SRC Review 9/10/03 W. Namgoong, USC 11

12 Timing/Detection Module d ˆ[ n ] Detection Interpolator u[m] Detector aˆ [ m] µ m Compute Fractional Interval Overflow η[n] NCO e T L[m] Loop Filter e T [m] M&M Timing Error Detector Timing Controller Timing Recovery Detection interpolator resamples to symbol rate. Timing recovery determines timing error that controls interpolator. SRC Review 9/10/03 W. Namgoong, USC 12

13 Adaptive Control Module n = n d ˆ[ n ] D r e[n'] Delay D r - + d[n'] Backward Timing Predictor Compute Past Overflow d ˆ[ n Overflow ] Reference Interpolator Compute Fractional Interval ξ n Symbols η[n] w NCO [n] NCO Backward timing predictor calculates timing information of delayed filter bank output based on current NCO state. Delayed for used in DD mode. Reference interpolator generates desired reference signal. SRC Review 9/10/03 W. Namgoong, USC 13

14 Simulation Results Convergence Performance SRC Review 9/10/03 W. Namgoong, USC 14

15 Simulation Results Effect of Filter Taps SRC Review 9/10/03 W. Namgoong, USC 15

16 Simulation Results Effect of Bits SRC Review 9/10/03 W. Namgoong, USC 16

17 Summary of Adaptive Frequency Channelized Receiver Work Based on frequency channelized signals, an adaptive synchronization/detection scheme is described. Performance of proposed receiver is similar to that of a single channel receiver. Convergence time is slightly longer. SRC Review 9/10/03 W. Namgoong, USC 17

18 Implementation of Frequency Channelized Receiver A frequency channelized receiver excluding the digital back-end has been implemented in 0.25um CMOS. Symbol rate of 10Gsymbols/sec. Three frequency subbands and 10 3-bit s each operating at 1.24Gsamples/sec. Currently in fabrication. SRC Review 9/10/03 W. Namgoong, USC 18

19 System Architecture 2 Differential input signal 50Ω f - 3dB = fo 2fo I/Q LPF LPF fs = fo 2fo fo = 1.24G 4fo freq. LPF LPF Gray decoder & Output driver 4fo I/Q LPF SRC Review 9/10/03 W. Namgoong, USC 19

20 Quad-Phase Mixing 50Ω + VSIG + ILO + I + ILO - VSIG - ILO I + QLO + Q - ILO Q - QLO + ILO Conventional passive double balanced mixer. 50 ohm matching allows wide input bandwidth: ~6.5GHz. SRC Review 9/10/03 W. Namgoong, USC 20

21 Low Pass Filtering Buffer 4-stage Feedback LPF Gain [db] Ri RF RO RS 80dB/dec 20dB/dec Freq. VB RS RF Vc Vc adjusts gm of transistor M1 to control gain without affecting bandwidth. Ma M1 CMFB Achieves 20dB gain with 1.4GHz 3-dB bandwidth. SRC Review 9/10/03 W. Namgoong, USC 21

22 Architecture 2 Time-interleaved 3-bit LPF f 3dB = 1.24G architecture f s = 1.24G Each 3-bit samples at 1.24Gsps. Effective sampling rate/channel is 2.48Gsps. No offset scheme necessary. a6 a5 a4 a3 a2 a1 a0 V N V P ref latch sampler CLK comparator SRC Review 9/10/03 W. Namgoong, USC 22

23 Local Oscillator Frequency Generation differential 2fo Quad - phase 4 - phase 2fo drive mixer Freq. Divider 2 - phase fo drive, Code converter BPF LPF VCO Quad - phase 4 - phase 4fo drive mixer 4fo Freq. Doubler SRC Review 9/10/03 W. Namgoong, USC 23

24 Chip Layout & DECODER LPF MIXER & LO SIGNAL INTERFACE Freq. Doubler SRC Review 9/10/03 W. Namgoong, USC 24

25 Plans for Next Year Fabricate and test design prototype to verify main concepts. Develop/analyze more sophisticated adaptive reception algorithms based on maximumlikelihood sequence estimation (MLSE). Faster convergence speed and higher performance. Design transmitter/receiver to support higher rates. Multi-level signaling. OFDM based communication systems. SRC Review 9/10/03 W. Namgoong, USC 25

Channelized Digital Receivers for Impulse Radio

Channelized Digital Receivers for Impulse Radio Channelized Digital Receivers for Impulse Radio Won Namgoong Department of Electrical Engineering University of Southern California Los Angeles CA 989-56 USA ABSTRACT Critical to the design of a digital

More information

A 5-Gb/s 156-mW Transceiver with FFE/Analog Equalizer in 90-nm CMOS Technology Wang Xinghua a, Wang Zhengchen b, Gui Xiaoyan c,

A 5-Gb/s 156-mW Transceiver with FFE/Analog Equalizer in 90-nm CMOS Technology Wang Xinghua a, Wang Zhengchen b, Gui Xiaoyan c, 4th International Conference on Computer, Mechatronics, Control and Electronic Engineering (ICCMCEE 2015) A 5-Gb/s 156-mW Transceiver with FFE/Analog Equalizer in 90-nm CMOS Technology Wang Xinghua a,

More information

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2 ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2 20.2 A Digitally Calibrated 5.15-5.825GHz Transceiver for 802.11a Wireless LANs in 0.18µm CMOS I. Bouras 1, S. Bouras 1, T. Georgantas

More information

Multiple Reference Clock Generator

Multiple Reference Clock Generator A White Paper Presented by IPextreme Multiple Reference Clock Generator Digitial IP for Clock Synthesis August 2007 IPextreme, Inc. This paper explains the concept behind the Multiple Reference Clock Generator

More information

A Low Power 900MHz Superheterodyne Compressive Sensing Receiver for Sparse Frequency Signal Detection

A Low Power 900MHz Superheterodyne Compressive Sensing Receiver for Sparse Frequency Signal Detection A Low Power 900MHz Superheterodyne Compressive Sensing Receiver for Sparse Frequency Signal Detection Hamid Nejati and Mahmood Barangi 4/14/2010 Outline Introduction System level block diagram Compressive

More information

Ultra-high-speed Interconnect Technology for Processor Communication

Ultra-high-speed Interconnect Technology for Processor Communication Ultra-high-speed Interconnect Technology for Processor Communication Yoshiyasu Doi Samir Parikh Yuki Ogata Yoichi Koyanagi In order to improve the performance of storage systems and servers that make up

More information

A Serial Link Transceiver Based on 8 GSa/s A/D and D/A Converters

A Serial Link Transceiver Based on 8 GSa/s A/D and D/A Converters A Serial Link Transceiver Based on 8 GSa/s A/D and D/A Converters in 0.25µm m CMOS William Ellersick 1,3, Chih-Kong Ken Yang 2 Vladimir Stojanovic 1, Siamak Modjtahedi 2, Mark A. Horowitz 1 1 Stanford

More information

A Serial Link Transceiver Based on 8 GSa/s A/D and D/A Converters

A Serial Link Transceiver Based on 8 GSa/s A/D and D/A Converters A Serial Link Transceiver Based on 8 GSa/s A/D and D/A Converters in 0.25µm m CMOS William Ellersick 1,3, Chih-Kong Ken Yang 2 Vladimir Stojanovic 1, Siamak Modjtahedi 2, Mark A. Horowitz 1 1 Stanford

More information

How to turn an ADC into a DAC: A 110dB THD, 18mW DAC using sampling of the output and feedback to reduce distortion

How to turn an ADC into a DAC: A 110dB THD, 18mW DAC using sampling of the output and feedback to reduce distortion How to turn an ADC into a DAC: A 110dB THD, 18mW DAC using sampling of the output and feedback to reduce distortion Axel Thomsen, Design Manager Silicon Laboratories Inc. Austin, TX 1 Why this talk? A

More information

VLSI Broadband Communication Circuits

VLSI Broadband Communication Circuits Miscellaneous topics Department of Electrical Engineering Indian Institute of Technology, Madras Chennai, 600036, India 16 Nov. 2007 Outline Optimal equalizers LMS adaptation Validity of PLL linear model

More information

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5 ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5 20.5 A 2.4GHz CMOS Transceiver and Baseband Processor Chipset for 802.11b Wireless LAN Application George Chien, Weishi Feng, Yungping

More information

5.5: A 3.2 to 4GHz, 0.25µm CMOS Frequency Synthesizer for IEEE a/b/g WLAN

5.5: A 3.2 to 4GHz, 0.25µm CMOS Frequency Synthesizer for IEEE a/b/g WLAN 5.5: A 3.2 to 4GHz, 0.25µm CMOS Frequency Synthesizer for IEEE 802.11a/b/g WLAN Manolis Terrovitis, Michael Mack, Kalwant Singh, and Masoud Zargari 1 Atheros Communications, Sunnyvale, California 1 Atheros

More information

RF Integrated Circuits

RF Integrated Circuits Introduction and Motivation RF Integrated Circuits The recent explosion in the radio frequency (RF) and wireless market has caught the semiconductor industry by surprise. The increasing demand for affordable

More information

Reconfigurable and Simultaneous Dual Band Galileo/GPS Front-end Receiver in 0.13µm RFCMOS

Reconfigurable and Simultaneous Dual Band Galileo/GPS Front-end Receiver in 0.13µm RFCMOS Reconfigurable and Simultaneous Dual Band Galileo/GPS Front-end Receiver in 0.13µm RFCMOS A. Pizzarulli 1, G. Montagna 2, M. Pini 3, S. Salerno 4, N.Lofu 2 and G. Sensalari 1 (1) Fondazione Torino Wireless,

More information

Self Calibrated Image Reject Mixer

Self Calibrated Image Reject Mixer Self Calibrated Image Reject Mixer Project name: Self Calibrated Image Reject Mixer. Design number: 6313. Design password: Student names: Mostafa Elmala. Area: mm X mm. Technology: Technology is SCN4ME_SUBM,

More information

A 14-bit 2.5 GS/s DAC based on Multi-Clock Synchronization. Hegang Hou*, Zongmin Wang, Ying Kong, Xinmang Peng, Haitao Guan, Jinhao Wang, Yan Ren

A 14-bit 2.5 GS/s DAC based on Multi-Clock Synchronization. Hegang Hou*, Zongmin Wang, Ying Kong, Xinmang Peng, Haitao Guan, Jinhao Wang, Yan Ren Joint International Mechanical, Electronic and Information Technology Conference (JIMET 2015) A 14-bit 2.5 GS/s based on Multi-Clock Synchronization Hegang Hou*, Zongmin Wang, Ying Kong, Xinmang Peng,

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.976 High Speed Communication Circuits and Systems Spring 2003 Homework #4: Narrowband LNA s and Mixers

More information

95GHz Receiver with Fundamental Frequency VCO and Static Frequency Divider in 65nm Digital CMOS

95GHz Receiver with Fundamental Frequency VCO and Static Frequency Divider in 65nm Digital CMOS 95GHz Receiver with Fundamental Frequency VCO and Static Frequency Divider in 65nm Digital CMOS Ekaterina Laskin, Mehdi Khanpour, Ricardo Aroca, Keith W. Tang, Patrice Garcia 1, Sorin P. Voinigescu University

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECEN60: Network Theory Broadband Circuit Design Fall 014 Lecture 13: Frequency Synthesizer Examples Sam Palermo Analog & Mixed-Signal Center Texas A&M University Agenda Frequency Synthesizer Examples Design

More information

European Conference on Nanoelectronics and Embedded Systems for Electric Mobility

European Conference on Nanoelectronics and Embedded Systems for Electric Mobility European Conference on Nanoelectronics and Embedded Systems for Electric Mobility ecocity emotion 24-25 th September 2014, Erlangen, Germany Low Power Consideration in Transceiver Design for Internet of

More information

Frequency Synthesizers for RF Transceivers. Domine Leenaerts Philips Research Labs.

Frequency Synthesizers for RF Transceivers. Domine Leenaerts Philips Research Labs. Frequency Synthesizers for RF Transceivers Domine Leenaerts Philips Research Labs. Purpose Overview of synthesizer architectures for RF transceivers Discuss the most challenging RF building blocks Technology

More information

f o Fig ECE 6440 Frequency Synthesizers P.E. Allen Frequency Magnitude Spectral impurity Frequency Fig010-03

f o Fig ECE 6440 Frequency Synthesizers P.E. Allen Frequency Magnitude Spectral impurity Frequency Fig010-03 Lecture 010 Introduction to Synthesizers (5/5/03) Page 010-1 LECTURE 010 INTRODUCTION TO FREQUENCY SYNTHESIZERS (References: [1,5,9,10]) What is a Synthesizer? A frequency synthesizer is the means by which

More information

20Gb/s 0.13um CMOS Serial Link

20Gb/s 0.13um CMOS Serial Link 20Gb/s 0.13um CMOS Serial Link Patrick Chiang (pchiang@stanford.edu) Bill Dally (billd@csl.stanford.edu) Ming-Ju Edward Lee (ed@velio.com) Computer Systems Laboratory Stanford University Stanford University

More information

A 10Gbps Analog Adaptive Equalizer and Pulse Shaping Circuit for Backplane Interface

A 10Gbps Analog Adaptive Equalizer and Pulse Shaping Circuit for Backplane Interface Proceedings of the 5th WSEAS Int. Conf. on CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, Dallas, USA, November 1-3, 2006 225 A 10Gbps Analog Adaptive Equalizer and Pulse Shaping Circuit

More information

CMOS RFIC Design for Direct Conversion Receivers. Zhaofeng ZHANG Supervisor: Dr. Jack Lau

CMOS RFIC Design for Direct Conversion Receivers. Zhaofeng ZHANG Supervisor: Dr. Jack Lau CMOS RFIC Design for Direct Conversion Receivers Zhaofeng ZHANG Supervisor: Dr. Jack Lau Outline of Presentation Background Introduction Thesis Contributions Design Issues and Solutions A Direct Conversion

More information

Summary Last Lecture

Summary Last Lecture Interleaved ADCs EE47 Lecture 4 Oversampled ADCs Why oversampling? Pulse-count modulation Sigma-delta modulation 1-Bit quantization Quantization error (noise) spectrum SQNR analysis Limit cycle oscillations

More information

ADI 2006 RF Seminar. Chapter II RF/IF Components and Specifications for Receivers

ADI 2006 RF Seminar. Chapter II RF/IF Components and Specifications for Receivers ADI 2006 RF Seminar Chapter II RF/IF Components and Specifications for Receivers 1 RF/IF Components and Specifications for Receivers Fixed Gain and Variable Gain Amplifiers IQ Demodulators Analog-to-Digital

More information

Receiver Architecture

Receiver Architecture Receiver Architecture Receiver basics Channel selection why not at RF? BPF first or LNA first? Direct digitization of RF signal Receiver architectures Sub-sampling receiver noise problem Heterodyne receiver

More information

Dedication. To Mum and Dad

Dedication. To Mum and Dad Dedication To Mum and Dad Acknowledgment Table of Contents List of Tables List of Figures A B A B 0 1 B A List of Abbreviations Abstract Chapter1 1 Introduction 1.1. Motivation Figure 1. 1 The relative

More information

Digitally-Controlled RF Self- Interference Canceller for Full-Duplex Radios

Digitally-Controlled RF Self- Interference Canceller for Full-Duplex Radios Digitally-Controlled RF Self- nterference Canceller for Full-Duplex Radios Joose Tamminen 1, Matias Turunen 1, Dani Korpi 1, Timo Huusari 2, Yang-Seok Choi 2, Shilpa Talwar 2, and Mikko Valkama 1 1 Dept.

More information

Analog and RF circuit techniques in nanometer CMOS

Analog and RF circuit techniques in nanometer CMOS Analog and RF circuit techniques in nanometer CMOS Bram Nauta University of Twente The Netherlands http://icd.ewi.utwente.nl b.nauta@utwente.nl UNIVERSITY OF TWENTE. Outline Introduction Balun-LNA-Mixer

More information

ON SYMBOL TIMING RECOVERY IN ALL-DIGITAL RECEIVERS

ON SYMBOL TIMING RECOVERY IN ALL-DIGITAL RECEIVERS ON SYMBOL TIMING RECOVERY IN ALL-DIGITAL RECEIVERS 1 Ali A. Ghrayeb New Mexico State University, Box 30001, Dept 3-O, Las Cruces, NM, 88003 (e-mail: aghrayeb@nmsu.edu) ABSTRACT Sandia National Laboratories

More information

A 60-dB Image Rejection Filter Using Δ-Σ Modulation and Frequency Shifting

A 60-dB Image Rejection Filter Using Δ-Σ Modulation and Frequency Shifting A 60-dB Image Rejection Filter Using Δ-Σ Modulation and Frequency Shifting Toshihiro Konishi, Koh Tsuruda, Shintaro Izumi, Hyeokjong Lee, Hidehiro Fujiwara, Takashi Takeuchi, Hiroshi Kawaguchi, and Masahiko

More information

Analysis of Phase Noise Profile of a 1.1 GHz Phase-locked Loop

Analysis of Phase Noise Profile of a 1.1 GHz Phase-locked Loop Analysis of Phase Noise Profile of a 1.1 GHz Phase-locked Loop J. Handique, Member, IAENG and T. Bezboruah, Member, IAENG 1 Abstract We analyzed the phase noise of a 1.1 GHz phaselocked loop system for

More information

A 1MHz-64MHz Active RC TI-LPF with Variable Gain for SDR Receiver in 65-nm CMOS

A 1MHz-64MHz Active RC TI-LPF with Variable Gain for SDR Receiver in 65-nm CMOS 2017 5th International Conference on Computer, Automation and Power Electronics (CAPE 2017) A 1MHz-64MHz Active RC TI-LPF with Variable Gain for SDR Receiver in 65-nm CMOS Chaoxuan Zhang1, a, *, Xunping

More information

26.8: A 1.9GHz Single-Chip CMOS PHS Cellphone

26.8: A 1.9GHz Single-Chip CMOS PHS Cellphone 26.8: A 1.9GHz Single-Chip CMOS PHS Cellphone William W. Si, Srenik Mehta, Hirad Samavati, Manolis Terrovitis, Michael Mack, KeithOnodera, SteveJen, Susan Luschas, Justin Hwang, SuniMendis, DavidSu, BruceWooley

More information

Challenges in Designing CMOS Wireless System-on-a-chip

Challenges in Designing CMOS Wireless System-on-a-chip Challenges in Designing CMOS Wireless System-on-a-chip David Su Atheros Communications Santa Clara, California IEEE Fort Collins, March 2008 Introduction Outline Analog/RF: CMOS Transceiver Building Blocks

More information

Digital Signal Processing for Communication Systems

Digital Signal Processing for Communication Systems Digital Signal Processing for Communication Systems 1999. 7. 5. Prof. YONG HOON LEE DEPARTMENT OF ELECTRICAL ENGINEERING KAIST Contents 1. DSP for TDMA (IS-136) Mobile Communication 2. DSP for CDMA (IS-95)

More information

Mixed-Signal-Electronics

Mixed-Signal-Electronics 1 Mixed-Signal-Electronics PD Dr.-Ing. Stephan Henzler 2 Chapter 6 Nyquist Rate Analog-to-Digital Converters 3 Pipelined ADC 2 4 High-Speed ADC: Pipeline Processing Stephan Henzler Advanced Integrated

More information

2002 IEEE International Solid-State Circuits Conference 2002 IEEE

2002 IEEE International Solid-State Circuits Conference 2002 IEEE Outline 802.11a Overview Medium Access Control Design Baseband Transmitter Design Baseband Receiver Design Chip Details What is 802.11a? IEEE standard approved in September, 1999 12 20MHz channels at 5.15-5.35

More information

A-1.8V Operation Switchable Direct-Conversion Receiver with sub-harmonic mixer

A-1.8V Operation Switchable Direct-Conversion Receiver with sub-harmonic mixer , pp.94-98 http://dx.doi.org/1.14257/astl.216.135.24 A-1.8V Operation Switchable Direct-Conversion Receiver with sub-harmonic mixer Mi-young Lee 1 1 Dept. of Electronic Eng., Hannam University, Ojeong

More information

Short Range UWB Radio Systems. Finding the power/area limits of

Short Range UWB Radio Systems. Finding the power/area limits of Short Range UWB Radio Systems Finding the power/area limits of CMOS Bob Brodersen Ian O Donnell Mike Chen Stanley Wang Integrated Impulse Transceiver RF Front-End LNA Pulser Amp Analog CLK GEN PMF Digital

More information

A 2.2GHZ-2.9V CHARGE PUMP PHASE LOCKED LOOP DESIGN AND ANALYSIS

A 2.2GHZ-2.9V CHARGE PUMP PHASE LOCKED LOOP DESIGN AND ANALYSIS A 2.2GHZ-2.9V CHARGE PUMP PHASE LOCKED LOOP DESIGN AND ANALYSIS Diary R. Sulaiman e-mail: diariy@gmail.com Salahaddin University, Engineering College, Electrical Engineering Department Erbil, Iraq Key

More information

Digital Controller Chip Set for Isolated DC Power Supplies

Digital Controller Chip Set for Isolated DC Power Supplies Digital Controller Chip Set for Isolated DC Power Supplies Aleksandar Prodic, Dragan Maksimovic and Robert W. Erickson Colorado Power Electronics Center Department of Electrical and Computer Engineering

More information

Circuit Design for a 2.2 GByte/s Memory Interface

Circuit Design for a 2.2 GByte/s Memory Interface Circuit Design for a 2.2 GByte/s Memory Interface Stefanos Sidiropoulos Work done at Rambus Inc with A. Abhyankar, C. Chen, K. Chang, TJ Chin, N. Hays, J. Kim, Y. Li, G. Tsang, A. Wong, D. Stark Increasing

More information

A Sub-0.75 RMS-Phase-Error Differentially-Tuned Fractional-N Synthesizer with On-Chip LDO Regulator and Analog-Enhanced AFC Technique

A Sub-0.75 RMS-Phase-Error Differentially-Tuned Fractional-N Synthesizer with On-Chip LDO Regulator and Analog-Enhanced AFC Technique A Sub-0.75 RMS-Phase-Error Differentially-Tuned Fractional-N Synthesizer with On-Chip LDO Regulator and Analog-Enhanced AFC Technique Lei Lu, Lingbu Meng, Liang Zou, Hao Min and Zhangwen Tang Fudan University,

More information

QUAD 5V RAIL-TO-RAIL PRECISION OPERATIONAL AMPLIFIER

QUAD 5V RAIL-TO-RAIL PRECISION OPERATIONAL AMPLIFIER ADVANCED LINEAR DEVICES, INC. ALD472A/ALD472B ALD472 QUAD 5V RAILTORAIL PRECISION OPERATIONAL AMPLIFIER GENERAL DESCRIPTION The ALD472 is a quad monolithic precision CMOS railtorail operational amplifier

More information

CHAPTER 6 PHASE LOCKED LOOP ARCHITECTURE FOR ADC

CHAPTER 6 PHASE LOCKED LOOP ARCHITECTURE FOR ADC 138 CHAPTER 6 PHASE LOCKED LOOP ARCHITECTURE FOR ADC 6.1 INTRODUCTION The Clock generator is a circuit that produces the timing or the clock signal for the operation in sequential circuits. The circuit

More information

Maximizing GSPS ADC SFDR Performance: Sources of Spurs and Methods of Mitigation

Maximizing GSPS ADC SFDR Performance: Sources of Spurs and Methods of Mitigation Maximizing GSPS ADC SFDR Performance: Sources of Spurs and Methods of Mitigation Marjorie Plisch Applications Engineer, Signal Path Solutions November 2012 1 Outline Overview of the issue Sources of spurs

More information

Jurianto Joe. IDA UWB Seminar Feb. 25, 2003

Jurianto Joe. IDA UWB Seminar Feb. 25, 2003 Cellonics UWB Signal Generation and Recovery Jurianto Joe IDA UWB Seminar Feb. 25, 2003 Outline Cellonics UWB method wo schools of thought in using 3.1-10.6 GHz band for UWB Cellonics and other UWB methods

More information

A10-Gb/slow-power adaptive continuous-time linear equalizer using asynchronous under-sampling histogram

A10-Gb/slow-power adaptive continuous-time linear equalizer using asynchronous under-sampling histogram LETTER IEICE Electronics Express, Vol.10, No.4, 1 8 A10-Gb/slow-power adaptive continuous-time linear equalizer using asynchronous under-sampling histogram Wang-Soo Kim and Woo-Young Choi a) Department

More information

8-Bit, high-speed, µp-compatible A/D converter with track/hold function ADC0820

8-Bit, high-speed, µp-compatible A/D converter with track/hold function ADC0820 8-Bit, high-speed, µp-compatible A/D converter with DESCRIPTION By using a half-flash conversion technique, the 8-bit CMOS A/D offers a 1.5µs conversion time while dissipating a maximum 75mW of power.

More information

Chapter 6. Case Study: 2.4-GHz Direct Conversion Receiver. 6.1 Receiver Front-End Design

Chapter 6. Case Study: 2.4-GHz Direct Conversion Receiver. 6.1 Receiver Front-End Design Chapter 6 Case Study: 2.4-GHz Direct Conversion Receiver The chapter presents a 0.25-µm CMOS receiver front-end designed for 2.4-GHz direct conversion RF transceiver and demonstrates the necessity and

More information

A 1.9GHz Single-Chip CMOS PHS Cellphone

A 1.9GHz Single-Chip CMOS PHS Cellphone A 1.9GHz Single-Chip CMOS PHS Cellphone IEEE JSSC, Vol. 41, No.12, December 2006 William Si, Srenik Mehta, Hirad Samavati, Manolis Terrovitis, Michael Mack, Keith Onodera, Steve Jen, Susan Luschas, Justin

More information

5.4: A 5GHz CMOS Transceiver for IEEE a Wireless LAN

5.4: A 5GHz CMOS Transceiver for IEEE a Wireless LAN 5.4: A 5GHz CMOS Transceiver for IEEE 802.11a Wireless LAN David Su, Masoud Zargari, Patrick Yue, Shahriar Rabii, David Weber, Brian Kaczynski, Srenik Mehta, Kalwant Singh, Sunetra Mendis, and Bruce Wooley

More information

Development of a sampling ASIC for fast detector signals

Development of a sampling ASIC for fast detector signals Development of a sampling ASIC for fast detector signals Hervé Grabas Work done in collaboration with Henry Frisch, Jean-François Genat, Eric Oberla, Gary Varner, Eric Delagnes, Dominique Breton. Signal

More information

Phase interpolation technique based on high-speed SERDES chip CDR Meidong Lin, Zhiping Wen, Lei Chen, Xuewu Li

Phase interpolation technique based on high-speed SERDES chip CDR Meidong Lin, Zhiping Wen, Lei Chen, Xuewu Li 5th International Conference on Computer Sciences and Automation Engineering (ICCSAE 2015) Phase interpolation technique based on high-speed SERDES chip CDR Meidong Lin, Zhiping Wen, Lei Chen, Xuewu Li

More information

A Flying-Adder Architecture of Frequency and Phase Synthesis With Scalability

A Flying-Adder Architecture of Frequency and Phase Synthesis With Scalability IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 5, OCTOBER 2002 637 A Flying-Adder Architecture of Frequency and Phase Synthesis With Scalability Liming Xiu, Member, IEEE,

More information

To learn fundamentals of high speed I/O link equalization techniques.

To learn fundamentals of high speed I/O link equalization techniques. 1 ECEN 720 High-Speed Links: Circuits and Systems Lab5 Equalization Circuits Objective To learn fundamentals of high speed I/O link equalization techniques. Introduction An ideal cable could propagate

More information

CMOS High Speed A/D Converter Architectures

CMOS High Speed A/D Converter Architectures CHAPTER 3 CMOS High Speed A/D Converter Architectures 3.1 Introduction In the previous chapter, basic key functions are examined with special emphasis on the power dissipation associated with its implementation.

More information

A Single-Chip 2.4-GHz Direct-Conversion CMOS Receiver for Wireless Local Loop using Multiphase Reduced Frequency Conversion Technique

A Single-Chip 2.4-GHz Direct-Conversion CMOS Receiver for Wireless Local Loop using Multiphase Reduced Frequency Conversion Technique 800 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 5, MAY 2001 A Single-Chip 2.4-GHz Direct-Conversion CMOS Receiver for Wireless Local Loop using Multiphase Reduced Frequency Conversion Technique

More information

on-chip Design for LAr Front-end Readout

on-chip Design for LAr Front-end Readout Silicon-on on-sapphire (SOS) Technology and the Link-on on-chip Design for LAr Front-end Readout Ping Gui, Jingbo Ye, Ryszard Stroynowski Department of Electrical Engineering Physics Department Southern

More information

l To emphasize the measurement issues l To develop in-depth understanding of noise n timing noise, phase noise in RF systems! n noise in converters!

l To emphasize the measurement issues l To develop in-depth understanding of noise n timing noise, phase noise in RF systems! n noise in converters! Purpose! Measurement Methods and Applications to High-Performance Timing Test! Mani Soma! Univ of Washington, Seattle! l To emphasize the measurement issues critical in high-frequency test! l To develop

More information

A Wide-Bandwidth 2.4GHz ISM Band Fractional-N PLL with Adaptive Phase Noise Cancellation. Outline

A Wide-Bandwidth 2.4GHz ISM Band Fractional-N PLL with Adaptive Phase Noise Cancellation. Outline A Wide-Bandwidth 2.4GHz ISM Band Fractional-N PLL with Adaptive Phase Noise Cancellation Ashok Swaminathan,2, Kevin J. Wang, Ian Galton University of California, San Diego, CA 2 NextWave Broadband, San

More information

TIMING recovery (TR) is one of the most challenging receiver

TIMING recovery (TR) is one of the most challenging receiver IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 53, NO. 12, DECEMBER 2006 1393 A Baud-Rate Timing Recovery Scheme With a Dual-Function Analog Filter Faisal A. Musa, Student Member, IEEE,

More information

20 GHz Low Power QVCO and De-skew Techniques in 0.13µm Digital CMOS. Masum Hossain & Tony Chan Carusone University of Toronto

20 GHz Low Power QVCO and De-skew Techniques in 0.13µm Digital CMOS. Masum Hossain & Tony Chan Carusone University of Toronto 20 GHz Low Power QVCO and De-skew Techniques in 0.13µm Digital CMOS Masum Hossain & Tony Chan Carusone University of Toronto masum@eecg.utoronto.ca Motivation Data Rx3 Rx2 D-FF D-FF Rx1 D-FF Clock Clock

More information

Improvement of Output Impedance Modulation Effect of High Speed DAC

Improvement of Output Impedance Modulation Effect of High Speed DAC nternational Conference on Artificial ntelligence and Engineering Applications (AEA 2016) mprovement of Output mpedance Modulation Effect of High Speed DAC Dongmei Zhu a, Xiaodan Zhou b, Jun Liu c, Luncai

More information

Architectures and circuits for timeinterleaved. Sandeep Gupta Teranetics, Santa Clara, CA

Architectures and circuits for timeinterleaved. Sandeep Gupta Teranetics, Santa Clara, CA Architectures and circuits for timeinterleaved ADC s Sandeep Gupta Teranetics, Santa Clara, CA Outline Introduction to time-interleaved architectures. Conventional Sampling architectures and their application

More information

High Performance Digital Fractional-N Frequency Synthesizers

High Performance Digital Fractional-N Frequency Synthesizers High Performance Digital Fractional-N Frequency Synthesizers Michael Perrott October 16, 2008 Copyright 2008 by Michael H. Perrott All rights reserved. Why Are Digital Phase-Locked Loops Interesting? PLLs

More information

Wideband Sampling by Decimation in Frequency

Wideband Sampling by Decimation in Frequency Wideband Sampling by Decimation in Frequency Martin Snelgrove http://www.kapik.com 192 Spadina Ave. Suite 218 Toronto, Ontario, M5T2C2 Canada Copyright Kapik Integration 2011 WSG: New Architectures for

More information

Gert Veale / Christo Nel Grintek Ewation

Gert Veale / Christo Nel Grintek Ewation Phase noise in RF synthesizers Gert Veale / Christo Nel Grintek Ewation Introduction & Overview Where are RF synthesizers used? What is phase noise? Phase noise eects Classic RF synthesizer architecture

More information

An Optimal Design of Ring Oscillator and Differential LC using 45 nm CMOS Technology

An Optimal Design of Ring Oscillator and Differential LC using 45 nm CMOS Technology IJIRST International Journal for Innovative Research in Science & Technology Volume 2 Issue 10 March 2016 ISSN (online): 2349-6010 An Optimal Design of Ring Oscillator and Differential LC using 45 nm CMOS

More information

YEDITEPE UNIVERSITY ENGINEERING FACULTY COMMUNICATION SYSTEMS LABORATORY EE 354 COMMUNICATION SYSTEMS

YEDITEPE UNIVERSITY ENGINEERING FACULTY COMMUNICATION SYSTEMS LABORATORY EE 354 COMMUNICATION SYSTEMS YEDITEPE UNIVERSITY ENGINEERING FACULTY COMMUNICATION SYSTEMS LABORATORY EE 354 COMMUNICATION SYSTEMS EXPERIMENT 3: SAMPLING & TIME DIVISION MULTIPLEX (TDM) Objective: Experimental verification of the

More information

Quadrature Generation Techniques in CMOS Relaxation Oscillators. S. Aniruddhan Indian Institute of Technology Madras Chennai, India

Quadrature Generation Techniques in CMOS Relaxation Oscillators. S. Aniruddhan Indian Institute of Technology Madras Chennai, India Quadrature Generation Techniques in CMOS Relaxation Oscillators S. Aniruddhan Indian Institute of Technology Madras Chennai, India Outline Introduction & Motivation Quadrature Relaxation Oscillators (QRXO)

More information

Radio Research Directions. Behzad Razavi Communication Circuits Laboratory Electrical Engineering Department University of California, Los Angeles

Radio Research Directions. Behzad Razavi Communication Circuits Laboratory Electrical Engineering Department University of California, Los Angeles Radio Research Directions Behzad Razavi Communication Circuits Laboratory Electrical Engineering Department University of California, Los Angeles Outline Introduction Millimeter-Wave Transceivers - Applications

More information

Digital-Centric RF-CMOS technology

Digital-Centric RF-CMOS technology 1 Digital-Centric RF-CMOS technology Akira Department of Physical Electronics Tokyo Institute of Technology Contents 2 Digital-centric CMOS tuner technology Conventional AM/FM tuner Analog-centric CMOS

More information

Lecture 160 Examples of CDR Circuits in CMOS (09/04/03) Page 160-1

Lecture 160 Examples of CDR Circuits in CMOS (09/04/03) Page 160-1 Lecture 160 Examples of CDR Circuits in CMOS (09/04/03) Page 160-1 LECTURE 160 CDR EXAMPLES INTRODUCTION Objective The objective of this presentation is: 1.) Show two examples of clock and data recovery

More information

A 2.4 GHZ RECEIVER IN SILICON-ON-SAPPHIRE MICHAEL PETERS. B.S., Kansas State University, 2009 A REPORT

A 2.4 GHZ RECEIVER IN SILICON-ON-SAPPHIRE MICHAEL PETERS. B.S., Kansas State University, 2009 A REPORT A 2.4 GHZ RECEIVER IN SILICON-ON-SAPPHIRE by MICHAEL PETERS B.S., Kansas State University, 2009 A REPORT submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department

More information

Fast CMOS Transimpedance Amplifier and Comparator circuit for readout of silicon strip detectors at LHC experiments

Fast CMOS Transimpedance Amplifier and Comparator circuit for readout of silicon strip detectors at LHC experiments Fast CMOS Transimpedance Amplifier and Comparator circuit for readout of silicon strip detectors at LHC experiments Jan Kaplon - CERN Wladek Dabrowski - FPN/UMM Cracow Pepe Bernabeu IFIC Valencia Carlos

More information

/$ IEEE

/$ IEEE IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 53, NO. 11, NOVEMBER 2006 1205 A Low-Phase Noise, Anti-Harmonic Programmable DLL Frequency Multiplier With Period Error Compensation for

More information

Low-Noise Amplifiers

Low-Noise Amplifiers 007/Oct 4, 31 1 General Considerations Noise Figure Low-Noise Amplifiers Table 6.1 Typical LNA characteristics in heterodyne systems. NF IIP 3 db 10 dbm Gain 15 db Input and Output Impedance 50 Ω Input

More information

2. ADC Architectures and CMOS Circuits

2. ADC Architectures and CMOS Circuits /58 2. Architectures and CMOS Circuits Francesc Serra Graells francesc.serra.graells@uab.cat Departament de Microelectrònica i Sistemes Electrònics Universitat Autònoma de Barcelona paco.serra@imb-cnm.csic.es

More information

Fundamentals of Data Converters. DAVID KRESS Director of Technical Marketing

Fundamentals of Data Converters. DAVID KRESS Director of Technical Marketing Fundamentals of Data Converters DAVID KRESS Director of Technical Marketing 9/14/2016 Analog to Electronic Signal Processing Sensor (INPUT) Amp Converter Digital Processor Actuator (OUTPUT) Amp Converter

More information

Self-Biased PLL/DLL. ECG minute Final Project Presentation. Wenlan Wu Electrical and Computer Engineering University of Nevada Las Vegas

Self-Biased PLL/DLL. ECG minute Final Project Presentation. Wenlan Wu Electrical and Computer Engineering University of Nevada Las Vegas Self-Biased PLL/DLL ECG721 60-minute Final Project Presentation Wenlan Wu Electrical and Computer Engineering University of Nevada Las Vegas Outline Motivation Self-Biasing Technique Differential Buffer

More information

Flexible CMOS Frequency Translation Circuits

Flexible CMOS Frequency Translation Circuits Flexible CMOS Frequency Translation Circuits Eric Klumperink Zhiyu Ru, Michiel Soer, Bram Nauta 1 Outline Intro Analog Front Ends for SDR Interferer robust SDR Receiver analog part Interferer robust SDR

More information

Ultralow Distortion Current Feedback ADC Driver ADA4927-1/ADA4927-2

Ultralow Distortion Current Feedback ADC Driver ADA4927-1/ADA4927-2 FEATURES Extremely low harmonic distortion 117 HD2 @ 10 MHz 85 HD2 @ 70 MHz 75 HD2 @ 100 MHz 122 HD3 @ 10 MHz 95 HD3 @ 70 MHz 85 HD3 @ 100 MHz Better distortion at higher gains than F amplifiers Low input-referred

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECEN620: Network Theory Broadband Circuit Design Fall 2014 Lecture 16: CDRs Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements Project descriptions are posted on the website Preliminary

More information

Fully integrated UHF RFID mobile reader with power amplifiers using System-in-Package (SiP)

Fully integrated UHF RFID mobile reader with power amplifiers using System-in-Package (SiP) Fully integrated UHF RFID mobile reader with power amplifiers using System-in-Package (SiP) Hyemin Yang 1, Jongmoon Kim 2, Franklin Bien 3, and Jongsoo Lee 1a) 1 School of Information and Communications,

More information

Insights Into Circuits for Frequency Synthesis at mm-waves Andrea Mazzanti Università di Pavia, Italy

Insights Into Circuits for Frequency Synthesis at mm-waves Andrea Mazzanti Università di Pavia, Italy RFIC2014, Tampa Bay June 1-3, 2014 Insights Into Circuits for Frequency Synthesis at mm-waves Andrea Mazzanti Università di Pavia, Italy High data rate wireless networks MAN / LAN PAN ~7GHz of unlicensed

More information

ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2012

ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2012 ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2012 Lecture 5: Termination, TX Driver, & Multiplexer Circuits Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements

More information

Telecommunication Electronics

Telecommunication Electronics Politecnico di Torino ICT School Telecommunication Electronics C5 - Special A/D converters» Logarithmic conversion» Approximation, A and µ laws» Differential converters» Oversampling, noise shaping Logarithmic

More information

Synchronous Mirror Delays. ECG 721 Memory Circuit Design Kevin Buck

Synchronous Mirror Delays. ECG 721 Memory Circuit Design Kevin Buck Synchronous Mirror Delays ECG 721 Memory Circuit Design Kevin Buck 11/25/2015 Introduction A synchronous mirror delay (SMD) is a type of clock generation circuit Unlike DLLs and PLLs an SMD is an open

More information

Dual-Frequency GNSS Front-End ASIC Design

Dual-Frequency GNSS Front-End ASIC Design Dual-Frequency GNSS Front-End ASIC Design Ed. 01 15/06/11 In the last years Acorde has been involved in the design of ASIC prototypes for several EU-funded projects in the fields of FM-UWB communications

More information

DUAL ULTRA MICROPOWER RAIL-TO-RAIL CMOS OPERATIONAL AMPLIFIER

DUAL ULTRA MICROPOWER RAIL-TO-RAIL CMOS OPERATIONAL AMPLIFIER ADVANCED LINEAR DEVICES, INC. ALD276A/ALD276B ALD276 DUAL ULTRA MICROPOWER RAILTORAIL CMOS OPERATIONAL AMPLIFIER GENERAL DESCRIPTION The ALD276 is a dual monolithic CMOS micropower high slewrate operational

More information

Cavity Field Control - RF Field Controller. LLRF Lecture Part3.3 S. Simrock, Z. Geng DESY, Hamburg, Germany

Cavity Field Control - RF Field Controller. LLRF Lecture Part3.3 S. Simrock, Z. Geng DESY, Hamburg, Germany Cavity Field Control - RF Field Controller LLRF Lecture Part3.3 S. Simrock, Z. Geng DESY, Hamburg, Germany Content Introduction to the controller Control scheme selection In-phase and Quadrature (I/Q)

More information

6.976 High Speed Communication Circuits and Systems Lecture 17 Advanced Frequency Synthesizers

6.976 High Speed Communication Circuits and Systems Lecture 17 Advanced Frequency Synthesizers 6.976 High Speed Communication Circuits and Systems Lecture 17 Advanced Frequency Synthesizers Michael Perrott Massachusetts Institute of Technology Copyright 2003 by Michael H. Perrott Bandwidth Constraints

More information

A CMOS Multi-Gb/s 4-PAM Serial Link Transceiver*

A CMOS Multi-Gb/s 4-PAM Serial Link Transceiver* A CMOS Multi-Gb/s 4-PAM Serial Link Transceiver* March 11, 1999 Ramin Farjad-Rad Center for Integrated Systems Stanford University Stanford, CA 94305 *Funding from LSI Logic, SUN Microsystems, and Powell

More information

Fully integrated CMOS transmitter design considerations

Fully integrated CMOS transmitter design considerations Semiconductor Technology Fully integrated CMOS transmitter design considerations Traditionally, multiple IC chips are needed to build transmitters (Tx) used in wireless communications. The difficulty with

More information

Integrated Circuit Design for High-Speed Frequency Synthesis

Integrated Circuit Design for High-Speed Frequency Synthesis Integrated Circuit Design for High-Speed Frequency Synthesis John Rogers Calvin Plett Foster Dai ARTECH H O US E BOSTON LONDON artechhouse.com Preface XI CHAPTER 1 Introduction 1 1.1 Introduction to Frequency

More information

Lecture 3 Switched-Capacitor Circuits Trevor Caldwell

Lecture 3 Switched-Capacitor Circuits Trevor Caldwell Advanced Analog Circuits Lecture 3 Switched-Capacitor Circuits Trevor Caldwell trevor.caldwell@analog.com Lecture Plan Date Lecture (Wednesday 2-4pm) Reference Homework 2017-01-11 1 MOD1 & MOD2 ST 2, 3,

More information