Fast CMOS Transimpedance Amplifier and Comparator circuit for readout of silicon strip detectors at LHC experiments

Size: px
Start display at page:

Download "Fast CMOS Transimpedance Amplifier and Comparator circuit for readout of silicon strip detectors at LHC experiments"

Transcription

1 Fast CMOS Transimpedance Amplifier and Comparator circuit for readout of silicon strip detectors at LHC experiments Jan Kaplon - CERN Wladek Dabrowski - FPN/UMM Cracow Pepe Bernabeu IFIC Valencia Carlos Lacasta IFIC Valencia Robert Szczygiel - INP Cracow

2 Motivations Check the feasibility of the designing of the fast amplifier/comparator FE optimised for long strip SSD in CMOS.25µm technology Design follows the specifications for readout chip for ATLAS SCT Detector capacitance in the range of 2pF (3pF max) ENC in the range of 15e- for 2pF input capacitance 2ns peaking time time walk for 1.2 1fC signal <16ns (1fC threshold) matching of the comparator better than 5% of 1fC signal (sigma spread)

3 Architecture of the Front-End channel Inp Preamplifier Threshold Shaper Comparator One channel comprises three AC coupled blocks: fast, transimpedance preamplifier (12ns peaking time) shaper (peaking time 2ns) differential discriminator Out Why AC? limiting the matching problem to the differential discriminator improving robustness of the design against low frequency drifts (1/f noise, low frequency interferences) Improving the PSRR of the circuit in low frequency range relatively easy layout (42µm pitch)

4 Architecture of the Preamplifier Vcc Ib1 M3 M5 Ib2 M4 M6 VC1 M2 Cf1 C1 Inp Ifeed M1 Mf1 Mf2 GND1 ZVT1 Out Ib3 M7 R1 Gain [db] = 4 µa I input = 6µA I input frequency [Hz] Bandwidth ~6MHz Open Loop Gain ~83dB Cascode amplifier with active feedback Input transistor M1 3µm/.5µm Bias 4-7µA (equivalent to 9-16mS) Feedback current 7nA 1.6µA (Rfeed 15 75kOhm)

5 AC characteristic of the Preamplifier Z in [Ω] 1 2 I input = 4µA I input = 5µA I input = 6µA Phase [ ] C input = 2pF 95 input I = 6µA I input = 4µA I input = 5µA frequency [Hz] frequency [Hz] Input resistance 1 15 Ohm at 1MHz Phase [ ] 1 9 = 5µA = 2pF, I input C input = 75nA I feed 8 = 1.25µA I feed = 1µA I feed Phase margin better than 8 adjustable with Ifeed frequency [Hz]

6 Preamplifier responses to 1fC Preamplifier Output [mv] C input C input = 3pF = 2pF Preamplifier Output [mv] I feed = 1.25µA I feed = 1µA I feed = 75nA 721 C input = 1pF Time [ns] Responses for various Cdetector. Feedback current 1µA Input current 55µA Time [ns] Responses for various feedback currents. Input capacitance 2pF Input current 55µA Peaking time 12 14ns Gain ~4mV/fC

7 Architecture of the Shaper stage VT2 VT1 Vcc VB1 R2 ZVT3 ZVT4 R2 C2 Inp M8 C3 R3 M9 ZVT2 C4 R9 R11 M12 R12 M13 R1 ZVT6 ZVT5 Out1 Amplitude [V] fc signal R4 Ib4 M1 M11 Ib5 M14 M15 Out2 M fc threshold R5 R6 R7 R13 C5 R14 R Time [ns] GND2 VB2 Schematic diagram of the shaper stage. Pulse gain ~15 V/V (6mV/fC with preamp) Peaking time 2ns R8 Response to 3.5fC charge seen at the differential output. The signals are DC separated by the threshold voltage VT2-VT1).

8 Vcc Inp1 Inp2 R17 M17 M19 R16 Architecture of the Discriminator SL R18 M18 Ib6 Vdd M24 M25 M22 R19 M2 M21 M23 Ib7 M26 Out M27 Amplitude [V] Amplitude [V] Amplitude [V] Input fc threshold 3.5 fc signal Time [ns] Diff pair output Time [ns] Output GND2 GND3 DC gain ~9dB Min overdrive for 2ns pulse ~3mV (< 1σ noise) Calculated offset spread (RMS) 4.5mV Time [ns]

9 Time walk simulation Amplitude [mv] fC response 1.2fC response 1fC threshold Time [ns] Amplitude [V] Time Walk 12.2ns Time [ns] Comparator input Comparator output Time walk defined as the difference of comparator response delays for input charges of 1.2fC and 1fC with threshold set to 1fC.

10 Layout and testability full channels including preamplifier, shaper and comparator readout via serial output register 2. 8 analogue test channels including preamplifier, shaper and comparator input stage readout directly via output buffers 3. Biases and threshold voltage - external 4. Four calibration lines distributing input signals every fourth channel 5. Chip area 4 x 4mm 2, dimensions of the channel 42µm x 2mm

11 Response of the analogue chain Amplitude [mv] Input charge: -4 to 16fC Amplitude [mv] V Power Supply (nominal) 2V Power Supply Time [ns] Charge [fc] Peaking time 2ns, semigaussian Gain ~55mV/fC Dynamic range 12fC Linearity better than 5% inside the dynamic range and limited power supply and extreme corners of technology Amplitude [mv] Nominal Parameters Corner: -3σ Corner: +3σ Charge [fc]

12 Single analogue channel - ENC C = C = 25pF input input ] - ENC [e ] - ENC [e I feed I d I feed I d ENC of the analogue channel as a function of feedback and input bias current.

13 Single analogue channel Peaking Time C input = C input = 25pF Peaking Time [ns] I feed I d Peaking Time [ns] Ifeed I d Peaking time as a function of feedback and input bias current.

14 Single channel Peaking Time vs. input capacitance Peaking time [ns] Input Current = 55uA Peaking time [ns] Feed Back Current = 1uA Feed Back Current =.4uA. Slope =.7 ns/pf Feed Back Current = 1.uA. Slope =.7 ns/pf Feed Back Current = 1.6uA. Slope =.5 ns/pf 5 Input Current = 45uA. Slope =.9 ns/pf Input Current = 55uA. Slope =.7 ns/pf Input Current = 65uA. Slope =.5 ns/pf Input Capacitance [pf] Input Capacitance [pf] Peaking time as a function of input capacitance for different feedback and input bias currents.

15 Single analogue channel FWHM C input = C input = 25pF FWHM [ns] 4 35 FWHM [ns] I feed I d I feed I d FWHM as a function of feedback and input bias current. FWHM for ideal CR-RC µ Peaking Time

16 Single channel - Noise slope ENC [e-] Input Current = 55uA ENC [e-] Feed Back Current = 1uA Feed Back Current =.4uA. Slope = e/pf Feed Back Current = 1.uA. Slope = 44.1 e/pf Feed Back Current = 1.6uA. Slope = e/pf 4 2 Input Current = 45uA. Slope = 47. e/pf Input Current = 55uA. Slope = 44.1 e/pf Input Current = 65uA. Slope = e/pf Input Capacitance [pf] Input Capacitance [pf] ENC as a function of input capacitance for different feedback and input bias currents.

17 Estimation of the noise performance Components: Channel thermal noise GIC noise Correlation term GIC thermal noise Flicker noise Assumptions: Γ excess noise factor 1.3 n slope factor 1.45 Type of the filter CR-RC3 EKV modelling of gm, γ and intrinsic capacitances of the transistors vs. the inversion order ENC [e-] GIC Correlation Channel Thermal Noise Feedback Noise [pf] C detector Comparison for Iinput 55µA and Ifeed1µA: Markers measurement Lines calculation Good agreement except for the parallel noise contribution: predicted value 4e- vs. 5e- measured 1/f

18 Noise performance of the active feedback Components: Channel thermal noise Flicker noise (not filtered in ideal CR-RC filter - but thanks to AC coupling between stages) Observation: ENC related to the active feedback almost twice higher comparing to classical passive feedback built with resistor of equivalent value still not a problem for capacitance detector above 1pF Advantage of the active feedback: Small feedback devices higher bandwidth and preamplifier gain Possibility of adjusting a phase margin and the Peaking Time ENC [e-] ENC [e-] R F total ENC of active feedback ENC thermal noise: NMOS PMOS ENC flicker noise: NMOS PMOS Ifeedback = 1/g m ENC active feedback ENC passive resistor feedback Ifeedback R F =1/g m [kω]

19 Full chain measurements Efficiency Charges from 1 to 16fC Threshold [mv] Threshold [mv] Charge [fc] Threshold scans and response curve in one channel of the chip measured for Ipreamp=55µA and Ifeedback=1µA.

20 Full chain measurements Gain and ENC Gain [mv/fc] Mean: 6.8mV/fC RMS:.48mV/fC ] - ENC [e Mean: 68e - RMS: 21e Channel Number Channel Number Distribution of channel gains and ENC in one chip (56 channels) measured for Ipreamp=55µA and Ifeedback=1µA. Good agreement with analogue measuerements.

21 Full chain measurements Offset and Time Walk Offset [mv] Mean: 2.2mV RMS: 2.9mV Timewalk (ns) Mean: 12.4ns RMS:.7ns Channel Number Channel Number Distribution of comparator offsets (~3mV) and time walks (~12.5ns) in one chip (56 channels) measured for Ipreamp=55µA and Ifeedback=1µA.

22 Summary of results 1. Functionality in wide range of biases (currents and power supply) and technology corner parameters (±3σ) 2. Gain ~55mV/fC ±5mV/fC (function of bias), good linearity up to 12fC signal (for all possible corner parameters and limited power supply) 3. Peaking time 2ns ±2ns (adjustable with feedback current) 4. ENC for Cinput 25pF 14 16e- (function of bias) 5. Input resistance in the range of 1 Ohm at 1MHz 6. Very high uniformity of gain (.8% RMS) 7. Small variation of offsets 3mV RMS (5% of 1fC) no channels outside distribution 8. Small variation of ENC 3% RMS 9. Time walk of premp/shaper/comparator ~12.5ns (measured at 1fC threshold between 1.2 and 1fC signals) 1. Analogue power consumption at nominal biases (55µA input) 2.4mW/channel (.95µA) 11. 1Mrad of X-Ray no visible effects

23 Addendum: Transconductance of BJT and NMOS transistors - remainder ] 2 gm/i [1/v BJT 1µm x 1.2µm (DMILL) 35 3 NMOS 2mm/.5µm (CMOS.25) NMOS 2.5mm/1.5µm (DMILL) I Gm/I for MOS in weak inversion n-times lower than for BJT n slope factor ~1.45 for IBM

24 Addendum: Single analogue channel - Gain C input = C input = 25pF Gain [mv/fc] Gain [mv/fc] I feed I d I feed I d Gain of the analogue channel as a function of feedback and input bias current.

25 Addendum: Response to overdrive 1fC and 1fC signal separated by 8ns distance seen at the input of the comparator.

26 Addendum: Components contributing to final spread of the comparator offset Offset spread of the NMOS input pair amplified by the gain of stage (~2.5V/V) Offset spread of the transistors used in the threshold circuit, buffers and comparator stage Voltage mismatch due to resistor matching (RMS from foundry data.5%) For 1 mv sigma offset of Vt for all transistor pairs and for nominal bias of 2 3 µa in the input stage: σ Vt = (1 2.5) + (1.4.5e 14.7e 3e 1e ) = mV

27 Addendum: Time Walk measurement Efficiency Delay scans for 1.2 & 1fC charge at 1fC threshold 1fC charge 1.2fC charge Timewalk (ns) Walk Mean: 12.4ns RMS:.7ns Delay [ns] Time walk defined as the difference of comparator response delays for input charges of 1.2fC and 1fC at 1fC threshold Channel Number Distribution of time walks (~12.5ns) in one chip (56 channels) measured for Ipreamp=55µA and Ifeedback=1µA.

28 Addendum:Current and power consumption Current at nominal bias condition: (Iinput + 4uA) x 128 For Iinput = 55uA (1mS transconductance):.95ma/channel (2.4mW/channel) For one 128 channel chip: 31mW (121mA) For 12 chip module: 3.7W (1.45A)

A Prototype Amplifier-Discriminator Chip for the GLAST Silicon-Strip Tracker

A Prototype Amplifier-Discriminator Chip for the GLAST Silicon-Strip Tracker A Prototype Amplifier-Discriminator Chip for the GLAST Silicon-Strip Tracker Robert P. Johnson Pavel Poplevin Hartmut Sadrozinski Ned Spencer Santa Cruz Institute for Particle Physics The GLAST Project

More information

NOVEMBER 29, 2017 COURSE PROJECT: CMOS TRANSIMPEDANCE AMPLIFIER ECG 720 ADVANCED ANALOG IC DESIGN ERIC MONAHAN

NOVEMBER 29, 2017 COURSE PROJECT: CMOS TRANSIMPEDANCE AMPLIFIER ECG 720 ADVANCED ANALOG IC DESIGN ERIC MONAHAN NOVEMBER 29, 2017 COURSE PROJECT: CMOS TRANSIMPEDANCE AMPLIFIER ECG 720 ADVANCED ANALOG IC DESIGN ERIC MONAHAN 1.Introduction: CMOS Transimpedance Amplifier Avalanche photodiodes (APDs) are highly sensitive,

More information

Status of Front End Development

Status of Front End Development Status of Front End Development Progress of CSA and ADC studies Tim Armbruster tim.armbruster@ziti.uni-heidelberg.de CBM-XYTER Family Planning Workshop Schaltungstechnik und 05.12.2008 Introduction Previous

More information

Readout Electronics. P. Fischer, Heidelberg University. Silicon Detectors - Readout Electronics P. Fischer, ziti, Uni Heidelberg, page 1

Readout Electronics. P. Fischer, Heidelberg University. Silicon Detectors - Readout Electronics P. Fischer, ziti, Uni Heidelberg, page 1 Readout Electronics P. Fischer, Heidelberg University Silicon Detectors - Readout Electronics P. Fischer, ziti, Uni Heidelberg, page 1 We will treat the following questions: 1. How is the sensor modeled?

More information

Front-End and Readout Electronics for Silicon Trackers at the ILC

Front-End and Readout Electronics for Silicon Trackers at the ILC 2005 International Linear Collider Workshop - Stanford, U.S.A. Front-End and Readout Electronics for Silicon Trackers at the ILC M. Dhellot, J-F. Genat, H. Lebbolo, T-H. Pham, and A. Savoy Navarro LPNHE

More information

INFN Laboratori Nazionali di Legnaro, Marzo 2007 FRONT-END ELECTRONICS PART 2

INFN Laboratori Nazionali di Legnaro, Marzo 2007 FRONT-END ELECTRONICS PART 2 INFN Laboratori Nazionali di Legnaro, 6-30 Marzo 007 FRONT-END ELECTRONICS PART Francis ANGHINOLFI Wednesday 8 March 007 Francis.Anghinolfi@cern.ch v1 1 FRONT-END Electronics Part A little bit about signal

More information

Low Noise Amplifier for Capacitive Detectors.

Low Noise Amplifier for Capacitive Detectors. Low Noise Amplifier for Capacitive Detectors. J. D. Schipper R Kluit NIKHEF, Kruislaan 49 198SJ Amsterdam, Netherlands jds@nikhef.nl Abstract As a design study for the LHC eperiments a 'Low Noise Amplifier

More information

Analysis of 1=f Noise in CMOS Preamplifier With CDS Circuit

Analysis of 1=f Noise in CMOS Preamplifier With CDS Circuit IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 49, NO. 4, AUGUST 2002 1819 Analysis of 1=f Noise in CMOS Preamplifier With CDS Circuit Tae-Hoon Lee, Gyuseong Cho, Hee Joon Kim, Seung Wook Lee, Wanno Lee, and

More information

Noise Performance Analysis for the Silicon Tracking System Detector and Front-End Electronics

Noise Performance Analysis for the Silicon Tracking System Detector and Front-End Electronics Noise Performance Analysis for the Silicon Tracking System Detector and Front-End Electronics Weronika Zubrzycka, Krzysztof Kasiński zubrzycka@agh.edu.pl, kasinski@agh.edu.pl Department of Measurement

More information

CAFE: User s Guide, Release 0 26 May 1995 page 18. Figure 13. Calibration network schematic. p-strip readout IC

CAFE: User s Guide, Release 0 26 May 1995 page 18. Figure 13. Calibration network schematic. p-strip readout IC CAFE: User s Guide, Release 0 26 May 1995 page 18 Figure 13. Calibration network schematic. p-strip readout IC CAFE: User s Guide, Release 0 26 May 1995 page 17 Figure 12. Calibration network schematic.

More information

Preamplifier shaper: The preamplifier. The shaper. The Output.

Preamplifier shaper: The preamplifier. The shaper. The Output. Preamplifier shaper: In previous simulations I just tried to reach the speed limits. The only way to realise this was by using a lot of current, about 1 ma through the input transistor. This gives in the

More information

Design of Analog and Mixed Integrated Circuits and Systems Theory Exercises

Design of Analog and Mixed Integrated Circuits and Systems Theory Exercises 102726 Design of nalog and Mixed Theory Exercises Francesc Serra Graells http://www.cnm.es/~pserra/uab/damics paco.serra@imb-cnm.csic.es 1 Introduction to the Design of nalog Integrated Circuits 1.1 The

More information

Final Results from the APV25 Production Wafer Testing

Final Results from the APV25 Production Wafer Testing Final Results from the APV Production Wafer Testing M.Raymond a, R.Bainbridge a, M.French b, G.Hall a, P. Barrillon a a Blackett Laboratory, Imperial College, London, UK b Rutherford Appleton Laboratory,

More information

CHIP DESCRIPTION & TEST SPECIFICATIONS

CHIP DESCRIPTION & TEST SPECIFICATIONS CHIP DESCRIPTION & TEST SPECIFICATIONS Chip description The integrated circuit has been designed using BYE technology (BiCMOS 0.8 µm) as from HIT-KIT v3.10. Die area is 2.5x2.5mm 2 and it has to be housed

More information

THE DEVELOPEMENT OF THE CAFE-P/CAFE-M BIPOLAR CHIPS FOR THE ATLAS SEMICONDUCTOR TRACKER

THE DEVELOPEMENT OF THE CAFE-P/CAFE-M BIPOLAR CHIPS FOR THE ATLAS SEMICONDUCTOR TRACKER THE DEVELOPEMENT OF THE CAFE-P/CAFE-M BIPOLAR CHIPS FOR THE ATLAS SEMICONDUCTOR TRACKER T. Dubbs, (email: Dubbs@SCIPP.ucsc.edu), D. Dorfan, A. Grillo, E. Spencer, A. Seiden, M. Ullan Institute For Particle

More information

Analog CMOS Interface Circuits for UMSI Chip of Environmental Monitoring Microsystem

Analog CMOS Interface Circuits for UMSI Chip of Environmental Monitoring Microsystem Analog CMOS Interface Circuits for UMSI Chip of Environmental Monitoring Microsystem A report Submitted to Canopus Systems Inc. Zuhail Sainudeen and Navid Yazdi Arizona State University July 2001 1. Overview

More information

A 24 V Chopper Offset-Stabilized Operational Amplifier with Symmetrical RC Notch Filters having sub-10 µv offset and over-120db CMRR

A 24 V Chopper Offset-Stabilized Operational Amplifier with Symmetrical RC Notch Filters having sub-10 µv offset and over-120db CMRR ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY Volume 20, Number 4, 2017, 301 312 A 24 V Chopper Offset-Stabilized Operational Amplifier with Symmetrical RC Notch Filters having sub-10 µv offset

More information

Analog Chip for High Counting Rate Transition Radiation Detector. Vasile Catanescu NIPNE - Bucharest

Analog Chip for High Counting Rate Transition Radiation Detector. Vasile Catanescu NIPNE - Bucharest Analog Chip for High Counting Rate Transition Radiation Detector Vasile Catanescu NIPNE - Bucharest 14 th CBM Collaboration Meeting, Split, Oct. 6-9,t2009 Summary 1. Introduction: The first chip for high

More information

E4332: VLSI Design Laboratory. Columbia University Spring 2005: Lectures

E4332: VLSI Design Laboratory. Columbia University Spring 2005: Lectures E4332: VLSI Design Laboratory Nagendra Krishnapura Columbia University Spring 2005: Lectures nkrishna@vitesse.com 1 AM radio receiver AM radio signals: Audio signals on a carrier Intercept the signal Amplify

More information

What is the typical voltage gain of the basic two stage CMOS opamp we studied? (i) 20dB (ii) 40dB (iii) 80dB (iv) 100dB

What is the typical voltage gain of the basic two stage CMOS opamp we studied? (i) 20dB (ii) 40dB (iii) 80dB (iv) 100dB Department of Electronic ELEC 5808 (ELG 6388) Signal Processing Electronics Final Examination Dec 14th, 2010 5:30PM - 7:30PM R. Mason answer all questions one 8.5 x 11 crib sheets allowed 1. (5 points)

More information

Solid State Devices & Circuits. 18. Advanced Techniques

Solid State Devices & Circuits. 18. Advanced Techniques ECE 442 Solid State Devices & Circuits 18. Advanced Techniques Jose E. Schutt-Aine Electrical l&c Computer Engineering i University of Illinois jschutt@emlab.uiuc.edu 1 Darlington Configuration - Popular

More information

Design and Simulation of Low Voltage Operational Amplifier

Design and Simulation of Low Voltage Operational Amplifier Design and Simulation of Low Voltage Operational Amplifier Zach Nelson Department of Electrical Engineering, University of Nevada, Las Vegas 4505 S Maryland Pkwy, Las Vegas, NV 89154 United States of America

More information

Dual operational amplifier

Dual operational amplifier DESCRIPTION The 77 is a pair of high-performance monolithic operational amplifiers constructed on a single silicon chip. High common-mode voltage range and absence of latch-up make the 77 ideal for use

More information

TRINAT Amplifier-Shaper for Silicon Detector (TASS)

TRINAT Amplifier-Shaper for Silicon Detector (TASS) Sept. 8, 20 L. Kurchaninov TRINAT Amplifier-Shaper for Silicon Detector (TASS). General description Preamplifier-shaper for TRINAT Si detector (Micron model BB) is charge-sensitive amplifier followed by

More information

Development of an analog read-out channel for time projection chambers

Development of an analog read-out channel for time projection chambers Journal of Physics: Conference Series PAPER OPEN ACCESS Development of an analog read-out channel for time projection chambers To cite this article: E Atkin and I Sagdiev 2017 J. Phys.: Conf. Ser. 798

More information

EXAM Amplifiers and Instrumentation (EE1C31)

EXAM Amplifiers and Instrumentation (EE1C31) DELFT UNIVERSITY OF TECHNOLOGY Faculty of Electrical Engineering, Mathematics and Computer Science EXAM Amplifiers and Instrumentation (EE1C31) April 18, 2017, 9.00-12.00 hr This exam consists of four

More information

Lab 4: Supply Independent Current Source Design

Lab 4: Supply Independent Current Source Design Lab 4: Supply Independent Current Source Design Curtis Mayberry EE435 In this lab a current mirror is designed that is robust against variations in the supply voltage. The current mirror is required to

More information

A 16Ω Audio Amplifier with 93.8 mw Peak loadpower and 1.43 quiscent power consumption

A 16Ω Audio Amplifier with 93.8 mw Peak loadpower and 1.43 quiscent power consumption A 16Ω Audio Amplifier with 93.8 mw Peak loadpower and 1.43 quiscent power consumption IEEE Transactions on circuits and systems- Vol 59 No:3 March 2012 Abstract A class AB audio amplifier is used to drive

More information

Design and characterisation of a capacitively coupled HV-CMOS sensor for the CLIC vertex detector

Design and characterisation of a capacitively coupled HV-CMOS sensor for the CLIC vertex detector CLICdp-Pub-217-1 12 June 217 Design and characterisation of a capacitively coupled HV-CMOS sensor for the CLIC vertex detector I. Kremastiotis 1), R. Ballabriga, M. Campbell, D. Dannheim, A. Fiergolski,

More information

Ultra fast single photon counting chip

Ultra fast single photon counting chip Ultra fast single photon counting chip P. Grybos, P. Kmon, P. Maj, R. Szczygiel Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering AGH University of Science and

More information

Nonlinear Macromodeling of Amplifiers and Applications to Filter Design.

Nonlinear Macromodeling of Amplifiers and Applications to Filter Design. ECEN 622(ESS) Nonlinear Macromodeling of Amplifiers and Applications to Filter Design. By Edgar Sanchez-Sinencio Thanks to Heng Zhang for part of the material OP AMP MACROMODELS Systems containing a significant

More information

BJT Circuits (MCQs of Moderate Complexity)

BJT Circuits (MCQs of Moderate Complexity) BJT Circuits (MCQs of Moderate Complexity) 1. The current ib through base of a silicon npn transistor is 1+0.1 cos (1000πt) ma. At 300K, the rπ in the small signal model of the transistor is i b B C r

More information

CDTE and CdZnTe detector arrays have been recently

CDTE and CdZnTe detector arrays have been recently 20 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 44, NO. 1, FEBRUARY 1997 CMOS Low-Noise Switched Charge Sensitive Preamplifier for CdTe and CdZnTe X-Ray Detectors Claudio G. Jakobson and Yael Nemirovsky

More information

444 Index. F Fermi potential, 146 FGMOS transistor, 20 23, 57, 83, 84, 98, 205, 208, 213, 215, 216, 241, 242, 251, 280, 311, 318, 332, 354, 407

444 Index. F Fermi potential, 146 FGMOS transistor, 20 23, 57, 83, 84, 98, 205, 208, 213, 215, 216, 241, 242, 251, 280, 311, 318, 332, 354, 407 Index A Accuracy active resistor structures, 46, 323, 328, 329, 341, 344, 360 computational circuits, 171 differential amplifiers, 30, 31 exponential circuits, 285, 291, 292 multifunctional structures,

More information

SUMMARY/DIALOGUE 2 PRESHAPE PIXEL OVERVIEW 3 BRIEF OPERATING INSTRUCTIONS 3 PRESHAPE PIXEL SIMULATION: EXAMPLE OPERATION 4 PRESHAPE PIXEL SIMULATION:

SUMMARY/DIALOGUE 2 PRESHAPE PIXEL OVERVIEW 3 BRIEF OPERATING INSTRUCTIONS 3 PRESHAPE PIXEL SIMULATION: EXAMPLE OPERATION 4 PRESHAPE PIXEL SIMULATION: SUMMARY/DIALOGUE 2 PRESHAPE PIXEL OVERVIEW 3 BRIEF OPERATING INSTRUCTIONS 3 PRESHAPE PIXEL SIMULATION: EXAMPLE OPERATION 4 PRESHAPE PIXEL SIMULATION: SMALL SIGNALS AROUND THRESHOLD 5 PRESHAPE PIXEL SIMULATION:

More information

Noise. P. Fischer, Heidelberg University. Advanced Analogue Building Blocks: Noise P. Fischer, ziti, Uni Heidelberg, page 1

Noise. P. Fischer, Heidelberg University. Advanced Analogue Building Blocks: Noise P. Fischer, ziti, Uni Heidelberg, page 1 Noise P. Fischer, Heidelberg University Advanced Analogue Building Blocks: Noise P. Fischer, ziti, Uni Heidelberg, page 1 Content Noise Description Noise of Components Noise treatment Analytically In Simulation

More information

Circuit Architecture for Photon Counting Pixel Detector with Threshold Correction

Circuit Architecture for Photon Counting Pixel Detector with Threshold Correction Circuit Architecture for Photon Counting Pixel Detector with Threshold Correction Dr. Amit Kr. Jain Vidya college of Engineering, Vidya Knowledge Park, Baghpat Road, Meerut 250005 UP India dean.academics@vidya.edu.in

More information

d. Can you find intrinsic gain more easily by examining the equation for current? Explain.

d. Can you find intrinsic gain more easily by examining the equation for current? Explain. EECS140 Final Spring 2017 Name SID 1. [8] In a vacuum tube, the plate (or anode) current is a function of the plate voltage (output) and the grid voltage (input). I P = k(v P + µv G ) 3/2 where µ is a

More information

RX64DTH - A Fully Integrated 64-channel ASIC for Digital X-ray Imaging System with Energy Window Selection

RX64DTH - A Fully Integrated 64-channel ASIC for Digital X-ray Imaging System with Energy Window Selection RX64DTH - A Fully Integrated 64-channel ASIC for Digital X-ray Imaging System with Energy Window Selection P. Grybos, A. E. Cabal Rodriguez, W. Dabrowski, M. Idzik, J. Lopez Gaitan, F. Prino, L. Ramello,

More information

An Analog Phase-Locked Loop

An Analog Phase-Locked Loop 1 An Analog Phase-Locked Loop Greg Flewelling ABSTRACT This report discusses the design, simulation, and layout of an Analog Phase-Locked Loop (APLL). The circuit consists of five major parts: A differential

More information

1.25Gb/s Burst Mode Transimpedance Amplifier with Wide Dynamic

1.25Gb/s Burst Mode Transimpedance Amplifier with Wide Dynamic 1.25Gb/s Burst Mode Transimpedance Amplifier with Wide Dynamic Range and Precision Current Monitor for GPON/EPON OLT Receiver MG3122 is a burst mode TIA with high optical sensitivity ( 36dBm with APD),

More information

Project #3 for Electronic Circuit II

Project #3 for Electronic Circuit II Project #3 for Electronic Circuit II Prof. Woo-Young Choi TA: Tongsung Kim, Minkyu Kim June 1, 2015 - Deadline : 6:00 pm on June 22, 2015. Penalties for late hand-in. - Team Students are expected to form

More information

Topology Selection: Input

Topology Selection: Input Project #2: Design of an Operational Amplifier By: Adrian Ildefonso Nedeljko Karaulac I have neither given nor received any unauthorized assistance on this project. Process: Baker s 50nm CAD Tool: Cadence

More information

ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2012

ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2012 ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2012 Lecture 5: Termination, TX Driver, & Multiplexer Circuits Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements

More information

LP2902/LP324 Micropower Quad Operational Amplifier

LP2902/LP324 Micropower Quad Operational Amplifier LP2902/LP324 Micropower Quad Operational Amplifier General Description The LP324 series consists of four independent, high gain internally compensated micropower operational amplifiers. These amplifiers

More information

LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers

LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers General Description The LM13600 series consists of two current controlled transconductance amplifiers each with

More information

Super Low Noise Preamplifier

Super Low Noise Preamplifier PR-E 3 Super Low Noise Preamplifier - Datasheet - Features: Outstanding Low Noise (< 1nV/ Hz, 15fA/ Hz, 245 e - rms) Small Size Dual and Single Channel Use Room temperature and cooled operation down to

More information

Nonlinear Macromodeling of Amplifiers and Applications to Filter Design.

Nonlinear Macromodeling of Amplifiers and Applications to Filter Design. ECEN 622 Nonlinear Macromodeling of Amplifiers and Applications to Filter Design. By Edgar Sanchez-Sinencio Thanks to Heng Zhang for part of the material OP AMP MACROMODELS Systems containing a significant

More information

350MHz, Ultra-Low-Noise Op Amps

350MHz, Ultra-Low-Noise Op Amps 9-442; Rev ; /95 EVALUATION KIT AVAILABLE 35MHz, Ultra-Low-Noise Op Amps General Description The / op amps combine high-speed performance with ultra-low-noise performance. The is compensated for closed-loop

More information

ALABUF2 analog buffer chip TECHNICAL DOCUMENT

ALABUF2 analog buffer chip TECHNICAL DOCUMENT NATIONAL INSTITUTE FOR NUCLEAR AND HIGH ENERGY PHYSICS ETR XX ALABUF2 analog buffer chip TECHNICAL DOCUMENT LHC / ALICE / Inner Tracker System / Silicon Strip Detector / EndCap modules Friday, 28 February

More information

Design and Test of a 65nm CMOS Front-End with Zero Dead Time for Next Generation Pixel Detectors

Design and Test of a 65nm CMOS Front-End with Zero Dead Time for Next Generation Pixel Detectors Design and Test of a 65nm CMOS Front-End with Zero Dead Time for Next Generation Pixel Detectors L. Gaioni a,c, D. Braga d, D. Christian d, G. Deptuch d, F. Fahim d,b. Nodari e, L. Ratti b,c, V. Re a,c,

More information

Chapter 12 Opertational Amplifier Circuits

Chapter 12 Opertational Amplifier Circuits 1 Chapter 12 Opertational Amplifier Circuits Learning Objectives 1) The design and analysis of the two basic CMOS op-amp architectures: the two-stage circuit and the single-stage, folded cascode circuit.

More information

Low-Noise Analog Front-End Signal Processing Channel Integration for Pixelated Semiconductor Radiation Detector

Low-Noise Analog Front-End Signal Processing Channel Integration for Pixelated Semiconductor Radiation Detector Low-Noise Analog Front-End Signal Processing Channel Integration for Pixelated Semiconductor Radiation Detector by Ming-Cheng Lin B. A. Sc, Simon Fraser University, 2009 Thesis Submitted in Partial Fulfillment

More information

ECEN 474/704 Lab 6: Differential Pairs

ECEN 474/704 Lab 6: Differential Pairs ECEN 474/704 Lab 6: Differential Pairs Objective Design, simulate and layout various differential pairs used in different types of differential amplifiers such as operational transconductance amplifiers

More information

A PSEUDO-CLASS-AB TELESCOPIC-CASCODE OPERATIONAL AMPLIFIER

A PSEUDO-CLASS-AB TELESCOPIC-CASCODE OPERATIONAL AMPLIFIER A PSEUDO-CLASS-AB TELESCOPIC-CASCODE OPERATIONAL AMPLIFIER M. Taherzadeh-Sani, R. Lotfi, and O. Shoaei ABSTRACT A novel class-ab architecture for single-stage operational amplifiers is presented. The structure

More information

PROJECT ON MIXED SIGNAL VLSI

PROJECT ON MIXED SIGNAL VLSI PROJECT ON MXED SGNAL VLS Submitted by Vipul Patel TOPC: A GLBERT CELL MXER N CMOS AND BJT TECHNOLOGY 1 A Gilbert Cell Mixer in CMOS and BJT technology Vipul Patel Abstract This paper describes a doubly

More information

155Mbps Fiber-Optic PIN Pre-Amplifier with AG

155Mbps Fiber-Optic PIN Pre-Amplifier with AG 155Mbps Fiber-Optic PIN Pre-Amplifier with AG GENERAL DESCRIPTION The is a trans-impedance amplifier with A GC for 155Mbps fiber channel applications. The A GC function allows -39dB to +3dB input dynamic

More information

The GBTIA, a 5 Gbit/s Radiation-Hard Optical Receiver for the SLHC Upgrades

The GBTIA, a 5 Gbit/s Radiation-Hard Optical Receiver for the SLHC Upgrades The GBTIA, a 5 Gbit/s Radiation-Hard Optical Receiver for the SLHC Upgrades M. Menouni a, P. Gui b, P. Moreira c a CPPM, Université de la méditerranée, CNRS/IN2P3, Marseille, France b SMU, Southern Methodist

More information

Advanced Operational Amplifiers

Advanced Operational Amplifiers IsLab Analog Integrated Circuit Design OPA2-47 Advanced Operational Amplifiers כ Kyungpook National University IsLab Analog Integrated Circuit Design OPA2-1 Advanced Current Mirrors and Opamps Two-stage

More information

DAT175: Topics in Electronic System Design

DAT175: Topics in Electronic System Design DAT175: Topics in Electronic System Design Analog Readout Circuitry for Hearing Aid in STM90nm 21 February 2010 Remzi Yagiz Mungan v1.10 1. Introduction In this project, the aim is to design an adjustable

More information

OBSOLETE. Parameter AD9621 AD9622 AD9623 AD9624 Units

OBSOLETE. Parameter AD9621 AD9622 AD9623 AD9624 Units a FEATURES MHz Small Signal Bandwidth MHz Large Signal BW ( V p-p) High Slew Rate: V/ s Low Distortion: db @ MHz Fast Settling: ns to.%. nv/ Hz Spectral Noise Density V Supply Operation Wideband Voltage

More information

You will be asked to make the following statement and provide your signature on the top of your solutions.

You will be asked to make the following statement and provide your signature on the top of your solutions. 1 EE 435 Name Exam 1 Spring 2018 Instructions: The points allocated to each problem are as indicated. Note that the first and last problem are weighted more heavily than the rest of the problems. On those

More information

NJM324C. Low power quad operational amplifiers

NJM324C. Low power quad operational amplifiers Low power quad operational amplifiers Features Wide gain bandwidth:.mhz typ. Input common-mode voltage range includes ground Large voltage gain:db typ. Very low supply current per amplifier:ua typ. Low

More information

VITESSE SEMICONDUCTOR CORPORATION. Bandwidth (MHz) VSC

VITESSE SEMICONDUCTOR CORPORATION. Bandwidth (MHz) VSC Features optimized for high speed optical communications applications Integrated AGC Fibre Channel and Gigabit Ethernet Low Input Noise Current Differential Output Single 5V Supply with On-chip biasing

More information

Comparison between Analog and Digital Current To PWM Converter for Optical Readout Systems

Comparison between Analog and Digital Current To PWM Converter for Optical Readout Systems Comparison between Analog and Digital Current To PWM Converter for Optical Readout Systems 1 Eun-Jung Yoon, 2 Kangyeob Park, 3* Won-Seok Oh 1, 2, 3 SoC Platform Research Center, Korea Electronics Technology

More information

AGATA preamplifiers: issues and status

AGATA preamplifiers: issues and status AGATA preamplifiers: issues and status Preamplifier group AGATA week Legnaro (Padova), Italy 15-19 September 2003 Speaker: Alberto Pullia, 16 September 2003 Work forces main developments Discrete hybrid

More information

A Radiation Tolerant Laser Driver Array for Optical Transmission in the LHC Experiments

A Radiation Tolerant Laser Driver Array for Optical Transmission in the LHC Experiments A Radiation Tolerant Laser Driver Array for Optical Transmission in the LHC Experiments Giovanni Cervelli, Alessandro Marchioro, Paulo Moreira, and Francois Vasey CERN, EP Division, 111 Geneva 3, Switzerland

More information

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier Chapter 5 Operational Amplifiers and Source Followers 5.1 Operational Amplifier In single ended operation the output is measured with respect to a fixed potential, usually ground, whereas in double-ended

More information

Lecture 2. Part 2 (Semiconductor detectors =sensors + electronics) Segmented detectors with pn-junction. Strip/pixel detectors

Lecture 2. Part 2 (Semiconductor detectors =sensors + electronics) Segmented detectors with pn-junction. Strip/pixel detectors Lecture 2 Part 1 (Electronics) Signal formation Readout electronics Noise Part 2 (Semiconductor detectors =sensors + electronics) Segmented detectors with pn-junction Strip/pixel detectors Drift detectors

More information

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET)

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET) Difference between BJTs and FETs Transistors can be categorized according to their structure, and two of the more commonly known transistor structures, are the BJT and FET. The comparison between BJTs

More information

A Compact Folded-cascode Operational Amplifier with Class-AB Output Stage

A Compact Folded-cascode Operational Amplifier with Class-AB Output Stage A Compact Folded-cascode Operational Amplifier with Class-AB Output Stage EEE 523 Advanced Analog Integrated Circuits Project Report Fuding Ge You are an engineer who is assigned the project to design

More information

CLARO A fast Front-End ASIC for Photomultipliers

CLARO A fast Front-End ASIC for Photomultipliers An introduction to CLARO A fast Front-End ASIC for Photomultipliers INFN Milano-Bicocca Paolo Carniti Andrea Giachero Claudio Gotti Matteo Maino Gianluigi Pessina 2 nd SuperB Collaboration Meeting Dec

More information

A Feasibility Study of PreAmplifier Design for Hearing Aid

A Feasibility Study of PreAmplifier Design for Hearing Aid Master s Thesis A Feasibility Study of PreAmplifier Design for Hearing Aid By Usman Farooq (aso10ufa) Department of Electrical and Information Technology Faculty of Engineering, LTH, Lund University SE-221

More information

CHARACTERIZATION OF OP-AMP

CHARACTERIZATION OF OP-AMP EXPERIMENT 4 CHARACTERIZATION OF OP-AMP OBJECTIVES 1. To sketch and briefly explain an operational amplifier circuit symbol and identify all terminals. 2. To list the amplifier stages in a typical op-amp

More information

A rad-hard 8-channel 12-bit resolution ADC for slow control applications in the LHC environment

A rad-hard 8-channel 12-bit resolution ADC for slow control applications in the LHC environment A rad-hard 8-channel 12-bit resolution ADC for slow control applications in the LHC environment G. Magazzù 1,A.Marchioro 2,P.Moreira 2 1 INFN-PISA, Via Livornese 1291 56018 S.Piero a Grado (Pisa), Italy

More information

Low-output-impedance BiCMOS voltage buffer

Low-output-impedance BiCMOS voltage buffer Low-output-impedance BiCMOS voltage buffer Johan Bauwelinck, a) Wei Chen, Dieter Verhulst, Yves Martens, Peter Ossieur, Xing-Zhi Qiu, and Jan Vandewege Ghent University, INTEC/IMEC, Gent, 9000, Belgium

More information

Ultralow Distortion Current Feedback ADC Driver ADA4927-1/ADA4927-2

Ultralow Distortion Current Feedback ADC Driver ADA4927-1/ADA4927-2 FEATURES Extremely low harmonic distortion 117 HD2 @ 10 MHz 85 HD2 @ 70 MHz 75 HD2 @ 100 MHz 122 HD3 @ 10 MHz 95 HD3 @ 70 MHz 85 HD3 @ 100 MHz Better distortion at higher gains than F amplifiers Low input-referred

More information

2.5Gb/s Burst Mode Trans-impedance Amplifier with Precision Current Monitor

2.5Gb/s Burst Mode Trans-impedance Amplifier with Precision Current Monitor 2.5Gb/s Burst Mode Trans-impedance Amplifier with Precision Current Monitor for XG-PON1 OLT MG3250 is a burst mode TIA with high optical sensitivity (typical 24dBm with PIN and 30dBm with APD), wide input

More information

CMOS Instrumentation Amplifier with Offset Cancellation Circuitry for Biomedical Application

CMOS Instrumentation Amplifier with Offset Cancellation Circuitry for Biomedical Application CMOS Instrumentation Amplifier with Offset Cancellation Circuitry for Biomedical Application Author Mohd-Yasin, Faisal, Yap, M., I Reaz, M. Published 2006 Conference Title 5th WSEAS Int. Conference on

More information

High Voltage and Temperature Auto Zero Op-Amp Cell Features Applications Process Technology Introduction Parameter Unit Rating

High Voltage and Temperature Auto Zero Op-Amp Cell Features Applications Process Technology Introduction Parameter Unit Rating Analogue Integration AISC11 High Voltage and Temperature Auto Zero Op-Amp Cell Rev.1 12-1-5 Features High Voltage Operation: 4.5-3 V Precision, Auto-Zeroed Input Vos High Temperature Operation Low Quiescent

More information

Page 1. Testing specification for the wafer screening Project Name: ABCD3T ASIC Version: V1.3, 1 December, 2000

Page 1. Testing specification for the wafer screening Project Name: ABCD3T ASIC Version: V1.3, 1 December, 2000 Page 1 Testing specification for the wafer screening Project Name: ABCD3T ASIC Version: V1.3, 1 December, 2 Page 2 1. SCOPE...3 2. REFERENCE DOCUMENTS...4 3. WAFER SCREENING SYSTEM...5 3.1. Reliability

More information

HA Quad, 3.5MHz, Operational Amplifier. Description. Features. Applications. Ordering Information. Pinouts. November 1996

HA Quad, 3.5MHz, Operational Amplifier. Description. Features. Applications. Ordering Information. Pinouts. November 1996 SEMICONDUCTOR HA4741 November 1996 Features Slew Rate...............................1.6V/µs Bandwidth................................MHz Input Voltage Noise...................... 9nV/ Hz Input Offset Voltage.........................mV

More information

IC Preamplifier Challenges Choppers on Drift

IC Preamplifier Challenges Choppers on Drift IC Preamplifier Challenges Choppers on Drift Since the introduction of monolithic IC amplifiers there has been a continual improvement in DC accuracy. Bias currents have been decreased by 5 orders of magnitude

More information

Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1

Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1 Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1 LECTURE 300 LOW VOLTAGE OP AMPS LECTURE ORGANIZATION Outline Introduction Low voltage input stages Low voltage gain stages Low voltage bias circuits

More information

Revision History. Contents

Revision History. Contents Revision History Ver. # Rev. Date Rev. By Comment 0.0 9/15/2012 Initial draft 1.0 9/16/2012 Remove class A part 2.0 9/17/2012 Comments and problem 2 added 3.0 10/3/2012 cmdmprobe re-simulation, add supplement

More information

PIN CONFIGURATIONS FEATURES APPLICATION ORDERING INFORMATION. FE, N Packages

PIN CONFIGURATIONS FEATURES APPLICATION ORDERING INFORMATION. FE, N Packages DESCRIPTION The are monolithic sample-and-hold circuits which utilize high-voltage ion-implant JFET technology to obtain ultra-high DC accuracy with fast acquisition of signal and low droop rate. Operating

More information

Semiconductor Detector Systems

Semiconductor Detector Systems Semiconductor Detector Systems Helmuth Spieler Physics Division, Lawrence Berkeley National Laboratory OXFORD UNIVERSITY PRESS ix CONTENTS 1 Detector systems overview 1 1.1 Sensor 2 1.2 Preamplifier 3

More information

HA MHz, High Slew Rate, High Output Current Buffer. Description. Features. Applications. Ordering Information. Pinouts.

HA MHz, High Slew Rate, High Output Current Buffer. Description. Features. Applications. Ordering Information. Pinouts. SEMICONDUCTOR HA-2 November 99 Features Voltage Gain...............................99 High Input Impedance.................... kω Low Output Impedance....................... Ω Very High Slew Rate....................

More information

J. E. Brau, N. B. Sinev, D. M. Strom University of Oregon, Eugene. C. Baltay, H. Neal, D. Rabinowitz Yale University, New Haven

J. E. Brau, N. B. Sinev, D. M. Strom University of Oregon, Eugene. C. Baltay, H. Neal, D. Rabinowitz Yale University, New Haven Chronopixe status J. E. Brau, N. B. Sinev, D. M. Strom University of Oregon, Eugene C. Baltay, H. Neal, D. Rabinowitz Yale University, New Haven EE work is contracted to Sarnoff Corporation 1 Outline of

More information

ECE 442 Solid State Devices & Circuits. 15. Differential Amplifiers

ECE 442 Solid State Devices & Circuits. 15. Differential Amplifiers ECE 442 Solid State Devices & Circuits 15. Differential Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 442 Jose Schutt Aine 1 Background

More information

LINEAR PRODUCTS. NE592 Video amplifier. Product specification April 15, Philips Semiconductors

LINEAR PRODUCTS. NE592 Video amplifier. Product specification April 15, Philips Semiconductors LINEAR PRODUCTS April 5, 992 Philips Semiconductors DESCRIPTION The is a monolithic, two-stage, differential output, wideband video amplifier. It offers fixed gains of and 4 without external components

More information

Dynamically Reconfigurable Sensor Electronics Concept, Architecture, First Measurement Results, and Perspective

Dynamically Reconfigurable Sensor Electronics Concept, Architecture, First Measurement Results, and Perspective Institute of Integrated Sensor Systems Dept. of Electrical Engineering and Information Technology Dynamically Reconfigurable Sensor Electronics Concept, Architecture, First Measurement Results, and Perspective

More information

An Improved Bandgap Reference (BGR) Circuit with Constant Voltage and Current Outputs

An Improved Bandgap Reference (BGR) Circuit with Constant Voltage and Current Outputs International Journal of Research in Engineering and Innovation Vol-1, Issue-6 (2017), 60-64 International Journal of Research in Engineering and Innovation (IJREI) journal home page: http://www.ijrei.com

More information

A CMOS Low-Voltage, High-Gain Op-Amp

A CMOS Low-Voltage, High-Gain Op-Amp A CMOS Low-Voltage, High-Gain Op-Amp G N Lu and G Sou LEAM, Université Pierre et Marie Curie Case 203, 4 place Jussieu, 75252 Paris Cedex 05, France Telephone: (33 1) 44 27 75 11 Fax: (33 1) 44 27 48 37

More information

1.8 V Low Power CMOS Rail-to-Rail Input/Output Operational Amplifier AD8515

1.8 V Low Power CMOS Rail-to-Rail Input/Output Operational Amplifier AD8515 Data Sheet FEATURES Single-supply operation: 1.8 V to 5 V Offset voltage: 6 mv maximum Space-saving SOT-23 and SC7 packages Slew rate: 2.7 V/μs Bandwidth: 5 MHz Rail-to-rail input and output swing Low

More information

Low-Noise Amplifiers

Low-Noise Amplifiers 007/Oct 4, 31 1 General Considerations Noise Figure Low-Noise Amplifiers Table 6.1 Typical LNA characteristics in heterodyne systems. NF IIP 3 db 10 dbm Gain 15 db Input and Output Impedance 50 Ω Input

More information

Low Cost, General Purpose High Speed JFET Amplifier AD825

Low Cost, General Purpose High Speed JFET Amplifier AD825 a FEATURES High Speed 41 MHz, 3 db Bandwidth 125 V/ s Slew Rate 8 ns Settling Time Input Bias Current of 2 pa and Noise Current of 1 fa/ Hz Input Voltage Noise of 12 nv/ Hz Fully Specified Power Supplies:

More information

Front-End electronics developments for CALICE W-Si calorimeter

Front-End electronics developments for CALICE W-Si calorimeter Front-End electronics developments for CALICE W-Si calorimeter J. Fleury, C. de La Taille, G. Martin-Chassard G. Bohner, J. Lecoq, S. Manen IN2P3/LAL Orsay & LPC Clermont http::/www.lal.in2p3.fr/technique/se/flc

More information

A radiation tolerant, low-power cryogenic capable CCD readout system:

A radiation tolerant, low-power cryogenic capable CCD readout system: A radiation tolerant, low-power cryogenic capable CCD readout system: Enabling focal-plane mounted CCD read-out for ground or space applications with a pair of ASICs. Overview What do we want to read out

More information

Low Distortion, Precision, Wide Bandwidth Op Amp AD9617

Low Distortion, Precision, Wide Bandwidth Op Amp AD9617 a FEATURES Usable Closed-Loop Gain Range: to 4 Low Distortion: 67 dbc (2nd) at 2 MHz Small Signal Bandwidth: 9 MHz (A V = +3) Large Signal Bandwidth: 5 MHz at 4 V p-p Settling Time: ns to.%; 4 ns to.2%

More information