Low-output-impedance BiCMOS voltage buffer

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Low-output-impedance BiCMOS voltage buffer"

Transcription

1 Low-output-impedance BiCMOS voltage buffer Johan Bauwelinck, a) Wei Chen, Dieter Verhulst, Yves Martens, Peter Ossieur, Xing-Zhi Qiu, and Jan Vandewege Ghent University, INTEC/IMEC, Gent, 9000, Belgium a) Abstract: A low power, 3.3 V BiCMOS voltage buffer is presented showing gigahertz operation, low output impedance and low input current. The buffer is designed to make the voltage at an unused negative output of a current switching DAC equal to the voltage of the positive current output, thus increasing the switching speed of the DAC. By consequence the buffer has to sink a fast switching current. A super emitter follower is used for achieving the low output impedance whereas base current compensation is used to reduce the input current. Simulation results in a 0.35 µm SiGe BiCMOS process are included demonstrating a low output impedance, a small input current, a high 3 db bandwidth and a good transient response at 330 µw static dissipation. Keywords: Voltage buffer, output impedance, BiCMOS. Classification: Integrated circuits References [1] A. Tabatabaei, A. Fotowat, M. Delurio, and S. Navid, A high slew-rate unity-gain low-voltage buffer with large Active/Quiescent current ratio, IEEE J. Solid-State Circuits, vol. 33, no. 1, pp , [2] H. W. Cha and K. Watanabe, Wideband CMOS current conveyor, Electron. Lett., vol. 32, no. 14, pp , [3] P.R.Gray,P.J.Hurst,S.H.Lewis,andR.G.Meyer,Analysis and Design of Analog Integrated Circuits, John Wiley and Sons, New-York, Introduction Voltage buffers play an essential role in most analogue electronic systems. An opamp connected as a unity gain buffer is often used. The overall feedback loop can provide gain accuracy, a low-offset, and a low dynamic output resistance when the loop gain is sufficiently large. But large loop gain requires more severe compensation, which degrades the response time, and accumulated phase shift and delay within the loop becomes problematic at higher frequencies [1]. For high-speed operation a more simple structure is desirable. Suitable topologies are based on open loop or local feedback approaches, and can be optimised for any specific application. The proposed voltage buffer is part of a current switching DAC in which 34

2 Fig. 1. Application (a) and proposed voltage buffer (b) it is used to make the voltage at the unused negative current output equal to the voltage at the positive current output, thus increasing the switching speed (see Fig. 1 (a)). The DAC output voltage at the positive current output is not fixed because this current is fed into a current mirror, the input voltage of which changes over the complete current range. Without the buffer the voltage difference between the positive and the negative output of the DAC would result in lower switching speeds, as parasitic capacitances have to be charged/discharged. By consequence, the proposed voltage buffer only has to sink current, but this current shows fast transitions between 0 and 900 µa when the digital code of the DAC changes. Since the buffer only has to sink current a pmos or pnp follower output stage is a good choice as its bias current does not limit the current drive capability. An nmos or npn follower placed in front of this output stage makes a very simple buffer. In CMOS technology, such a simple buffer has been used in [2]. The buffer we designed is part of a BiCMOS chip. We extended this simple structure to take advantage of the high-speed bipolar transistors and to reach a much faster response and a much lower output impedance. The base current of the input bipolar transistor was compensated in our design, resulting in a significantly reduced input current. 2 Circuit description A circuit diagram of the proposed voltage buffer is shown in Fig. 1 (b). The input voltage Vin is transmitted to Vout by the cascade of an npn and a pnp emitter follower. Simple nmos and pmos current mirrors have been used to build the 25 µa and the 50 µa current sources. The output resistance of an emitter follower is approximately 1/g m. This output resistance is too high when a low impedance load is to be driven. Increasing the collector current of the pnp follower would reduce the output impedance of the buffer but at the cost of a significantly higher power consumption. To minimize the output resistance, a super emitter follower is 35

3 used [3]. This circuit uses local negative feedback through the npn transistor to reduce the output resistance by a factor of about g m npn r o pnp. We added a capacitor (100 ff) to increase the phase margin of this small feedback loop. The current through the pnp transistor is constant (25 µa neglecting the npn base current) and by consequence also the current through the npn follower (25 µa neglecting the pnp base current) so that the offset voltage between input and output is constant (at a certain temperature). Neglecting the base currents, the output voltage Vout is: V out = V in V be npn + V be pnp = V in + V T ln (I S NPN /I S PNP ) (1) in which I S NPN (I S PNP ) is the saturation current of an npn (pnp) transistor and V T the thermal voltage. Since the current through the npn transistor is approximately constant, the base current of the npn can be easily compensated via the slow pmos cascode mirror. This pmos mirror mirrors the base current of an identical (matched) npn follower so that the input current equals the difference between both base currents which is very small. For large output currents, the base current of the npn transistor in the super emitter follower can not be neglected. This will result in an increased offset between input and output. The base current of this npn transistor however is not limited to 50 µa because the output current can provide a part of this base current via the pnp transistor. The buffer s ability to sink current is not limited by any current source. By consequence the power consumption (P) is relatively low: P =4 25 µa 3.3 V + V out I out = 330 µw + V out I out (2) 3 Simulation results The simulated voltage offset is typical equal to 1mV to 9mV for the output current range of 0 to 900 µa. Taking into account corner, temperature ( 40 C to 110 C) and supply variations (3.3 V±5%) gives an offset of 40.6mV to 26.6mV. The maximum input current over 300 monte carlo simulations taking into account temperature ( 40 C to 110 C) and supply variations (3.3 V±5%) is 82.5 na. Without this compensation the worst-case input current would be 673 na, which is about 8 times larger. The voltage gain of the buffer varies typically from to when the output current is swept from 0 to 900 µa (curve b in Fig. 2). A typical output resistance of 11.4 Ω at DC was calculated. Taking into account corner, temperature (( 40 C to 110 C) and supply variations (3.3 V±5%) a worstcase output resistance of 28 Ω is obtained. Curve a shows the voltage gain in case a simple pnp follower would have been used. Curve a varies from to and a typical output resistance of 161 Ω was calculated, which is about 15 times higher. Because of its simple architecture, and despite the low power consumption, this design is inherently fast. The typical 3 db bandwidth ranges from 36

4 Fig. 2. Output voltage variation as a function of the output current Fig. 3. Transient response MHz for Iout = 0 to GHz for Iout = 900 µa. Taking into account corner, temperature ( 40 C to 110 C) and supply variations (3.3 V±5%) gives a 3 db bandwidth of 577 MHz to GHz for Iout = 0 and GHz to GHz for Iout = 900 µa. The minimum speed can be increased by increasing the bias current sources of the super emitter follower. When the bias current sources of the super emitter follower are doubled the 3 db bandwidth (for Iout = 0) rises from MHz to GHz. Fig. 3 shows the transient response of the voltage gain (Vout/Vin) as a result of a step (rise/fall time 100 ps) of the input voltage (1.3 V to 1.7 V) 37

5 and a step (rise/fall time 100 ps) of the output current (0 to 900 µa). 4 Conclusion It is shown that the proposed circuit performs very well as a voltage buffer. The transient response is very good which makes it a useful building block in our application. It typically achieves a 11.4 Ω output impedance, an MHz to GHz 3 db bandwidth and an input current smaller than 100 na while having a small static power consumption (330 µw). The proposed design is robust with respect to corner, temperature and supply variations. Acknowledgments The work described in this publication is partly supported by the Flemish Government under the research contract IWT Sympathi and partly by the European Commission under the research contract IST GIANT. The authors would like to thank also Alcatel and STMicroelectronics for their financial and technical support and the other partners of the GIANT project for their cooperation. 38

Design of High-Speed Op-Amps for Signal Processing

Design of High-Speed Op-Amps for Signal Processing Design of High-Speed Op-Amps for Signal Processing R. Jacob (Jake) Baker, PhD, PE Professor and Chair Boise State University 1910 University Dr. Boise, ID 83725-2075 jbaker@ieee.org Abstract - As CMOS

More information

An Improved Bandgap Reference (BGR) Circuit with Constant Voltage and Current Outputs

An Improved Bandgap Reference (BGR) Circuit with Constant Voltage and Current Outputs International Journal of Research in Engineering and Innovation Vol-1, Issue-6 (2017), 60-64 International Journal of Research in Engineering and Innovation (IJREI) journal home page: http://www.ijrei.com

More information

Voltage Feedback Op Amp (VF-OpAmp)

Voltage Feedback Op Amp (VF-OpAmp) Data Sheet Voltage Feedback Op Amp (VF-OpAmp) Features 55 db dc gain 30 ma current drive Less than 1 V head/floor room 300 V/µs slew rate Capacitive load stable 40 kω input impedance 300 MHz unity gain

More information

BICMOS Technology and Fabrication

BICMOS Technology and Fabrication 12-1 BICMOS Technology and Fabrication 12-2 Combines Bipolar and CMOS transistors in a single integrated circuit By retaining benefits of bipolar and CMOS, BiCMOS is able to achieve VLSI circuits with

More information

Topology Selection: Input

Topology Selection: Input Project #2: Design of an Operational Amplifier By: Adrian Ildefonso Nedeljko Karaulac I have neither given nor received any unauthorized assistance on this project. Process: Baker s 50nm CAD Tool: Cadence

More information

Rail-To-Rail Output Op-Amp Design with Negative Miller Capacitance Compensation

Rail-To-Rail Output Op-Amp Design with Negative Miller Capacitance Compensation Rail-To-Rail Op-Amp Design with Negative Miller Capacitance Compensation Muhaned Zaidi, Ian Grout, Abu Khari bin A ain Abstract In this paper, a two-stage op-amp design is considered using both Miller

More information

Advanced Operational Amplifiers

Advanced Operational Amplifiers IsLab Analog Integrated Circuit Design OPA2-47 Advanced Operational Amplifiers כ Kyungpook National University IsLab Analog Integrated Circuit Design OPA2-1 Advanced Current Mirrors and Opamps Two-stage

More information

A Compact Folded-cascode Operational Amplifier with Class-AB Output Stage

A Compact Folded-cascode Operational Amplifier with Class-AB Output Stage A Compact Folded-cascode Operational Amplifier with Class-AB Output Stage EEE 523 Advanced Analog Integrated Circuits Project Report Fuding Ge You are an engineer who is assigned the project to design

More information

A Linear CMOS Low Drop-Out Voltage Regulator in a 0.6µm CMOS Technology

A Linear CMOS Low Drop-Out Voltage Regulator in a 0.6µm CMOS Technology International Journal of Electronics and Electrical Engineering Vol. 3, No. 3, June 2015 A Linear CMOS Low DropOut Voltage Regulator in a 0.6µm CMOS Technology Mohammad Maadi Middle East Technical University,

More information

University of Michigan, EECS413 Final project. A High Speed Operational Amplifier. 1. A High Speed Operational Amplifier

University of Michigan, EECS413 Final project. A High Speed Operational Amplifier. 1. A High Speed Operational Amplifier University of Michigan, EECS413 Final project. A High Speed Operational Amplifier. 1 A High Speed Operational Amplifier A. Halim El-Saadi, Mohammed El-Tanani, University of Michigan Abstract This paper

More information

Design of Rail-to-Rail Op-Amp in 90nm Technology

Design of Rail-to-Rail Op-Amp in 90nm Technology IJSTE - International Journal of Science Technology & Engineering Volume 1 Issue 2 August 2014 ISSN(online) : 2349-784X Design of Rail-to-Rail Op-Amp in 90nm Technology P R Pournima M.Tech Electronics

More information

DESIGN OF A FULLY DIFFERENTIAL HIGH-SPEED HIGH-PRECISION AMPLIFIER

DESIGN OF A FULLY DIFFERENTIAL HIGH-SPEED HIGH-PRECISION AMPLIFIER DESIGN OF A FULLY DIFFERENTIAL HIGH-SPEED HIGH-PRECISION AMPLIFIER Mayank Gupta mayank@ee.ucla.edu N. V. Girish envy@ee.ucla.edu Design I. Design II. University of California, Los Angeles EE215A Term Project

More information

Design and Simulation of Low Dropout Regulator

Design and Simulation of Low Dropout Regulator Design and Simulation of Low Dropout Regulator Chaitra S Kumar 1, K Sujatha 2 1 MTech Student, Department of Electronics, BMSCE, Bangalore, India 2 Assistant Professor, Department of Electronics, BMSCE,

More information

Chapter 12 Opertational Amplifier Circuits

Chapter 12 Opertational Amplifier Circuits 1 Chapter 12 Opertational Amplifier Circuits Learning Objectives 1) The design and analysis of the two basic CMOS op-amp architectures: the two-stage circuit and the single-stage, folded cascode circuit.

More information

Chapter 13 Output Stages and Power Amplifiers

Chapter 13 Output Stages and Power Amplifiers Chapter 13 Output Stages and Power Amplifiers 13.1 General Considerations 13.2 Emitter Follower as Power Amplifier 13.3 Push-Pull Stage 13.4 Improved Push-Pull Stage 13.5 Large-Signal Considerations 13.6

More information

Operational Amplifier with Two-Stage Gain-Boost

Operational Amplifier with Two-Stage Gain-Boost Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 482 Operational Amplifier with Two-Stage Gain-Boost FRANZ SCHLÖGL

More information

Design of Low Voltage Low Power CMOS OP-AMP

Design of Low Voltage Low Power CMOS OP-AMP RESEARCH ARTICLE OPEN ACCESS Design of Low Voltage Low Power CMOS OP-AMP Shahid Khan, Prof. Sampath kumar V. Electronics & Communication department, JSSATE ABSTRACT Operational amplifiers are an integral

More information

Design of Pipeline Analog to Digital Converter

Design of Pipeline Analog to Digital Converter Design of Pipeline Analog to Digital Converter Vivek Tripathi, Chandrajit Debnath, Rakesh Malik STMicroelectronics The pipeline analog-to-digital converter (ADC) architecture is the most popular topology

More information

Op Amp Booster Designs

Op Amp Booster Designs Op Amp Booster Designs Although modern integrated circuit operational amplifiers ease linear circuit design, IC processing limits amplifier output power. Many applications, however, require substantially

More information

ECEN 474/704 Lab 8: Two-Stage Miller Operational Amplifier

ECEN 474/704 Lab 8: Two-Stage Miller Operational Amplifier ECEN 474/704 Lab 8: Two-Stage Miller Operational Amplifier Objective Design, simulate and test a two-stage operational amplifier Introduction Operational amplifiers (opamp) are essential components of

More information

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier Chapter 5 Operational Amplifiers and Source Followers 5.1 Operational Amplifier In single ended operation the output is measured with respect to a fixed potential, usually ground, whereas in double-ended

More information

A Novel Design of Low Voltage,Wilson Current Mirror based Wideband Operational Transconductance Amplifier

A Novel Design of Low Voltage,Wilson Current Mirror based Wideband Operational Transconductance Amplifier A Novel Design of Low Voltage,Wilson Current Mirror based Wideband Operational Transconductance Amplifier Kehul A. Shah 1, N.M.Devashrayee 2 1(Associative Prof., Department of Electronics and Communication,

More information

Phase Noise and Tuning Speed Optimization of a MHz Hybrid DDS-PLL Synthesizer with milli Hertz Resolution

Phase Noise and Tuning Speed Optimization of a MHz Hybrid DDS-PLL Synthesizer with milli Hertz Resolution Phase Noise and Tuning Speed Optimization of a 5-500 MHz Hybrid DDS-PLL Synthesizer with milli Hertz Resolution BRECHT CLAERHOUT, JAN VANDEWEGE Department of Information Technology (INTEC) University of

More information

THE TREND toward implementing systems with low

THE TREND toward implementing systems with low 724 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 30, NO. 7, JULY 1995 Design of a 100-MHz 10-mW 3-V Sample-and-Hold Amplifier in Digital Bipolar Technology Behzad Razavi, Member, IEEE Abstract This paper

More information

Low Power Op-Amp Based on Weak Inversion with Miller-Cascoded Frequency Compensation

Low Power Op-Amp Based on Weak Inversion with Miller-Cascoded Frequency Compensation Low Power Op-Amp Based on Weak Inversion with Miller-Cascoded Frequency Compensation Maryam Borhani, Farhad Razaghian Abstract A design for a rail-to-rail input and output operational amplifier is introduced.

More information

Low Noise, Matched Dual PNP Transistor MAT03

Low Noise, Matched Dual PNP Transistor MAT03 a FEATURES Dual Matched PNP Transistor Low Offset Voltage: 100 V Max Low Noise: 1 nv/ Hz @ 1 khz Max High Gain: 100 Min High Gain Bandwidth: 190 MHz Typ Tight Gain Matching: 3% Max Excellent Logarithmic

More information

A Low Dropout Voltage Regulator with Enhanced Transconductance Error Amplifier and Small Output Voltage Variations

A Low Dropout Voltage Regulator with Enhanced Transconductance Error Amplifier and Small Output Voltage Variations A Low Dropout Voltage Regulator with Enhanced Transconductance Error Amplifier and Small Output Voltage Variations Ebrahim Abiri*, Mohammad Reza Salehi**, and Sara Mohammadalinejadi*** Department of Electrical

More information

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS Fourth Edition PAUL R. GRAY University of California, Berkeley PAUL J. HURST University of California, Davis STEPHEN H. LEWIS University of California,

More information

Analog Integrated Circuits Fundamental Building Blocks

Analog Integrated Circuits Fundamental Building Blocks Analog Integrated Circuits Fundamental Building Blocks Basic OTA/Opamp architectures Faculty of Electronics Telecommunications and Information Technology Gabor Csipkes Bases of Electronics Department Outline

More information

PURPOSE: NOTE: Be sure to record ALL results in your laboratory notebook.

PURPOSE: NOTE: Be sure to record ALL results in your laboratory notebook. EE4902 Lab 9 CMOS OP-AMP PURPOSE: The purpose of this lab is to measure the closed-loop performance of an op-amp designed from individual MOSFETs. This op-amp, shown in Fig. 9-1, combines all of the major

More information

IN RECENT years, low-dropout linear regulators (LDOs) are

IN RECENT years, low-dropout linear regulators (LDOs) are IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 52, NO. 9, SEPTEMBER 2005 563 Design of Low-Power Analog Drivers Based on Slew-Rate Enhancement Circuits for CMOS Low-Dropout Regulators

More information

ELM824xA 3.0μA Very low power CMOS dual operational amplifier

ELM824xA 3.0μA Very low power CMOS dual operational amplifier ELM824xA 3.μA Very low power CMOS dual operational amplifier General description ELM824xA is a very low current consumption-typ.3.μa CMOS dual OP-AMP provided with a wide common mode input voltage range.

More information

UMAINE ECE Morse Code ROM and Transmitter at ISM Band Frequency

UMAINE ECE Morse Code ROM and Transmitter at ISM Band Frequency UMAINE ECE Morse Code ROM and Transmitter at ISM Band Frequency Jamie E. Reinhold December 15, 2011 Abstract The design, simulation and layout of a UMAINE ECE Morse code Read Only Memory and transmitter

More information

ECEN 5008: Analog IC Design. Final Exam

ECEN 5008: Analog IC Design. Final Exam ECEN 5008 Initials: 1/10 ECEN 5008: Analog IC Design Final Exam Spring 2004 Instructions: 1. Exam Policy: Time-limited, 150-minute exam. When the time is called, all work must stop. Put your initials on

More information

Low Cost, General Purpose High Speed JFET Amplifier AD825

Low Cost, General Purpose High Speed JFET Amplifier AD825 a FEATURES High Speed 41 MHz, 3 db Bandwidth 125 V/ s Slew Rate 8 ns Settling Time Input Bias Current of 2 pa and Noise Current of 1 fa/ Hz Input Voltage Noise of 12 nv/ Hz Fully Specified Power Supplies:

More information

Radivoje Đurić, 2015, Analogna Integrisana Kola 1

Radivoje Đurić, 2015, Analogna Integrisana Kola 1 OTA-output buffer 1 According to the types of loads, the driving capability of the output stages differs. For switched capacitor circuits which have high impedance capacitive loads, class A output stage

More information

A Unity Gain Fully-Differential 10bit and 40MSps Sample-And-Hold Amplifier in 0.18μm CMOS

A Unity Gain Fully-Differential 10bit and 40MSps Sample-And-Hold Amplifier in 0.18μm CMOS A Unity Gain Fully-Differential 0bit and 40MSps Sample-And-Hold Amplifier in 0.8μm CMOS Sanaz Haddadian, and Rahele Hedayati Abstract A 0bit, 40 MSps, sample and hold, implemented in 0.8-μm CMOS technology

More information

Linear Regulators: Theory of Operation and Compensation

Linear Regulators: Theory of Operation and Compensation Linear Regulators: Theory of Operation and Compensation Introduction The explosive proliferation of battery powered equipment in the past decade has created unique requirements for a voltage regulator

More information

Atypical op amp consists of a differential input stage,

Atypical op amp consists of a differential input stage, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 33, NO. 6, JUNE 1998 915 Low-Voltage Class Buffers with Quiescent Current Control Fan You, S. H. K. Embabi, and Edgar Sánchez-Sinencio Abstract This paper presents

More information

Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1

Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1 Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1 LECTURE 300 LOW VOLTAGE OP AMPS LECTURE ORGANIZATION Outline Introduction Low voltage input stages Low voltage gain stages Low voltage bias circuits

More information

2. Single Stage OpAmps

2. Single Stage OpAmps /74 2. Single Stage OpAmps Francesc Serra Graells francesc.serra.graells@uab.cat Departament de Microelectrònica i Sistemes Electrònics Universitat Autònoma de Barcelona paco.serra@imb-cnm.csic.es Integrated

More information

Design and Simulation of an Operational Amplifier with High Gain and Bandwidth for Switched Capacitor Filters

Design and Simulation of an Operational Amplifier with High Gain and Bandwidth for Switched Capacitor Filters IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 11, Issue 1 Ver. II (Jan. Feb. 2016), PP 47-53 www.iosrjournals.org Design and Simulation

More information

CMOS Operational Amplifier

CMOS Operational Amplifier The George Washington University Department of Electrical and Computer Engineering Course: ECE218 Instructor: Mona E. Zaghloul Students: Shunping Wang Yiping (Neil) Tsai Data: 05/14/07 Introduction In

More information

Design of a Folded Cascode Operational Amplifier in a 1.2 Micron Silicon-Carbide CMOS Process

Design of a Folded Cascode Operational Amplifier in a 1.2 Micron Silicon-Carbide CMOS Process University of Arkansas, Fayetteville ScholarWorks@UARK Electrical Engineering Undergraduate Honors Theses Electrical Engineering 5-2017 Design of a Folded Cascode Operational Amplifier in a 1.2 Micron

More information

A high image rejection SiGe low noise amplifier using passive notch filter

A high image rejection SiGe low noise amplifier using passive notch filter LETTER IEICE Electronics Express, Vol., No.3, 5 A high image rejection SiGe low noise amplifier using passive notch filter Kai Jing a), Yiqi Zhuang, and Huaxi Gu 2 Department of Telecommunication Engineering,

More information

KH103 Fast Settling, High Current Wideband Op Amp

KH103 Fast Settling, High Current Wideband Op Amp KH103 Fast Settling, High Current Wideband Op Amp Features 80MHz full-power bandwidth (20V pp, 100Ω) 200mA output current 0.4% settling in 10ns 6000V/µs slew rate 4ns rise and fall times (20V) Direct replacement

More information

PHYS225 Lecture 6. Electronic Circuits

PHYS225 Lecture 6. Electronic Circuits PHYS225 Lecture 6 Electronic Circuits Transistors History Basic physics of operation Ebers-Moll model Small signal equivalent Last lecture Introduction to Transistors A transistor is a device with three

More information

High Speed, G = +2, Low Cost, Triple Op Amp ADA4862-3

High Speed, G = +2, Low Cost, Triple Op Amp ADA4862-3 High Speed,, Low Cost, Triple Op Amp ADA4862-3 FEATURES Ideal for RGB/HD/SD video Supports 8i/72p resolution High speed 3 db bandwidth: 3 MHz Slew rate: 75 V/μs Settling time: 9 ns (.5%). db flatness:

More information

ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers

ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers Objective Design, simulate and layout various inverting amplifiers. Introduction Inverting amplifiers are fundamental building blocks of electronic

More information

Design and Layout of Two Stage High Bandwidth Operational Amplifier

Design and Layout of Two Stage High Bandwidth Operational Amplifier Design and Layout of Two Stage High Bandwidth Operational Amplifier Yasir Mahmood Qureshi Abstract This paper presents the design and layout of a two stage, high speed operational amplifiers using standard

More information

UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A

UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A 1. Why do we choose Q point at the center of the load line? 2. Name the two techniques used in the stability of the q point.explain. 3. Give the expression

More information

A PSEUDO-CLASS-AB TELESCOPIC-CASCODE OPERATIONAL AMPLIFIER

A PSEUDO-CLASS-AB TELESCOPIC-CASCODE OPERATIONAL AMPLIFIER A PSEUDO-CLASS-AB TELESCOPIC-CASCODE OPERATIONAL AMPLIFIER M. Taherzadeh-Sani, R. Lotfi, and O. Shoaei ABSTRACT A novel class-ab architecture for single-stage operational amplifiers is presented. The structure

More information

Unit WorkBook 4 Level 4 ENG U19 Electrical and Electronic Principles LO4 Digital & Analogue Electronics 2018 Unicourse Ltd. All Rights Reserved.

Unit WorkBook 4 Level 4 ENG U19 Electrical and Electronic Principles LO4 Digital & Analogue Electronics 2018 Unicourse Ltd. All Rights Reserved. Pearson BTEC Levels 4 Higher Nationals in Engineering (RQF) Unit 19: Electrical and Electronic Principles Unit Workbook 4 in a series of 4 for this unit Learning Outcome 4 Digital & Analogue Electronics

More information

BJT Circuits (MCQs of Moderate Complexity)

BJT Circuits (MCQs of Moderate Complexity) BJT Circuits (MCQs of Moderate Complexity) 1. The current ib through base of a silicon npn transistor is 1+0.1 cos (1000πt) ma. At 300K, the rπ in the small signal model of the transistor is i b B C r

More information

LM2904AH. Low-power, dual operational amplifier. Related products. Description. Features. See LM2904WH for enhanced ESD performances

LM2904AH. Low-power, dual operational amplifier. Related products. Description. Features. See LM2904WH for enhanced ESD performances LM2904AH Low-power, dual operational amplifier Datasheet - production data Related products See LM2904WH for enhanced ESD performances Features Frequency compensation implemented internally Large DC voltage

More information

Matched Monolithic Quad Transistor MAT04

Matched Monolithic Quad Transistor MAT04 a FEATURES Low Offset Voltage: 200 V max High Current Gain: 400 min Excellent Current Gain Match: 2% max Low Noise Voltage at 100 Hz, 1 ma: 2.5 nv/ Hz max Excellent Log Conformance: rbe = 0.6 max Matching

More information

A Low Power Low Voltage High Performance CMOS Current Mirror

A Low Power Low Voltage High Performance CMOS Current Mirror RESEARCH ARTICLE OPEN ACCESS A Low Power Low Voltage High Performance CMOS Current Mirror Sirish Rao, Sampath Kumar V Department of Electronics & Communication JSS Academy of Technical Education Noida,

More information

Operational Amplifiers

Operational Amplifiers Monolithic Amplifier Circuits: Operational Amplifiers Chapter Jón Tómas Guðmundsson tumi@hi.is. Week Fall 200 Operational amplifiers (op amps) are an integral part of many analog and mixedsignal systems

More information

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820 a FEATURES True Single Supply Operation Output Swings Rail-to-Rail Input Voltage Range Extends Below Ground Single Supply Capability from + V to + V Dual Supply Capability from. V to 8 V Excellent Load

More information

Low Distortion Design 3

Low Distortion Design 3 Low Distortion Design 3 TIPL 1323 TI Precision Labs Op Amps Presented by Collin Wells Prepared by John Caldwell Prerequisites: Noise 1 3 (TIPL1311 TIPL1313) Output Stage Topologies Most op amps use a Class-AB

More information

Due to the absence of internal nodes, inverter-based Gm-C filters [1,2] allow achieving bandwidths beyond what is possible

Due to the absence of internal nodes, inverter-based Gm-C filters [1,2] allow achieving bandwidths beyond what is possible A Forward-Body-Bias Tuned 450MHz Gm-C 3 rd -Order Low-Pass Filter in 28nm UTBB FD-SOI with >1dBVp IIP3 over a 0.7-to-1V Supply Joeri Lechevallier 1,2, Remko Struiksma 1, Hani Sherry 2, Andreia Cathelin

More information

ISSN:

ISSN: 468 Modeling and Design of a CMOS Low Drop-out (LDO) Voltage Regulator PRIYADARSHINI JAINAPUR 1, CHIRAG SHARMA 2 1 Department of E&CE, Nitte Meenakshi Institute of Technology, Yelahanka, Bangalore-560064,

More information

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 02, 2016 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 02, 2016 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 02, 2016 ISSN (online): 2321-0613 Design & Analysis of CMOS Telescopic Operational Transconductance Amplifier (OTA) with

More information

Design of a Sample and Hold Circuit using Rail to Rail Low Voltage Compact Operational Amplifier and bootstrap Switching

Design of a Sample and Hold Circuit using Rail to Rail Low Voltage Compact Operational Amplifier and bootstrap Switching RESEARCH ARTICLE OPEN ACCESS Design of a Sample and Hold Circuit using Rail to Rail Low Voltage Compact Operational Amplifier and bootstrap Switching Annu Saini, Prity Yadav (M.Tech. Student, Department

More information

I1 19u 5V R11 1MEG IDC Q7 Q2N3904 Q2N3904. Figure 3.1 A scaled down 741 op amp used in this lab

I1 19u 5V R11 1MEG IDC Q7 Q2N3904 Q2N3904. Figure 3.1 A scaled down 741 op amp used in this lab Lab 3: 74 Op amp Purpose: The purpose of this laboratory is to become familiar with a two stage operational amplifier (op amp). Students will analyze the circuit manually and compare the results with SPICE.

More information

Lesson number one. Operational Amplifier Basics

Lesson number one. Operational Amplifier Basics What About Lesson number one Operational Amplifier Basics As well as resistors and capacitors, Operational Amplifiers, or Op-amps as they are more commonly called, are one of the basic building blocks

More information

A Compact 2.4V Power-efficient Rail-to-rail Operational Amplifier. Strong inversion operation stops a proposed compact 3V power-efficient

A Compact 2.4V Power-efficient Rail-to-rail Operational Amplifier. Strong inversion operation stops a proposed compact 3V power-efficient A Compact 2.4V Power-efficient Rail-to-rail Operational Amplifier Abstract Strong inversion operation stops a proposed compact 3V power-efficient rail-to-rail Op-Amp from a lower total supply voltage.

More information

Lecture 240 Cascode Op Amps (3/28/10) Page 240-1

Lecture 240 Cascode Op Amps (3/28/10) Page 240-1 Lecture 240 Cascode Op Amps (3/28/10) Page 2401 LECTURE 240 CASCODE OP AMPS LECTURE ORGANIZATION Outline Lecture Organization Single Stage Cascode Op Amps Two Stage Cascode Op Amps Summary CMOS Analog

More information

A High Speed CMOS Current Comparator in 90 nm CMOS Process Technology

A High Speed CMOS Current Comparator in 90 nm CMOS Process Technology A High Speed CMOS Current Comparator in 90 nm CMOS Process Technology Adyasha Rath 1, Sushanta K. Mandal 2, Subhrajyoti Das 3, Sweta Padma Dash 4 1,3,4 M.Tech Student, School of Electronics Engineering,

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers Table of contents 1. Design 1.1. The Differential Amplifier 1.2. Level Shifter 1.3. Power Amplifier 2. Characteristics 3. The Opamp without NFB 4. Linear Amplifiers 4.1. The Non-Inverting

More information

EECE488: Analog CMOS Integrated Circuit Design Set 7 Opamp Design

EECE488: Analog CMOS Integrated Circuit Design Set 7 Opamp Design EECE488: Analog CMOS Integrated Circuit Design Set 7 Opamp Design References: Analog Integrated Circuit Design by D. Johns and K. Martin and Design of Analog CMOS Integrated Circuits by B. Razavi All figures

More information

Practical Current Feedback Amplifier Design Considerations

Practical Current Feedback Amplifier Design Considerations Practical Current Feedback Amplifier Design Considerations Application Note March 24, 1998 AN1106 Author: Barry Harvey The current-feedback (CMF) amplifier is a fundamentally different approach to high-frequency

More information

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820 a FEATURES True Single Supply Operation Output Swings Rail-to-Rail Input Voltage Range Extends Below Ground Single Supply Capability from V to V Dual Supply Capability from. V to 8 V Excellent Load Drive

More information

Linear electronic. Lecture No. 1

Linear electronic. Lecture No. 1 1 Lecture No. 1 2 3 4 5 Lecture No. 2 6 7 8 9 10 11 Lecture No. 3 12 13 14 Lecture No. 4 Example: find Frequency response analysis for the circuit shown in figure below. Where R S =4kR B1 =8kR B2 =4k R

More information

A LOW DROPOUT VOLTAGE REGULATOR WITH ENHANCED TRANSCONDUCTANCE ERROR AMPLIFIER AND SMALL OUTPUT VOLTAGE VARIATIONS

A LOW DROPOUT VOLTAGE REGULATOR WITH ENHANCED TRANSCONDUCTANCE ERROR AMPLIFIER AND SMALL OUTPUT VOLTAGE VARIATIONS ISSN 1313-7069 (print) ISSN 1313-3551 (online) Trakia Journal of Sciences, No 4, pp 441-448, 2014 Copyright 2014 Trakia University Available online at: http://www.uni-sz.bg doi:10.15547/tjs.2014.04.015

More information

Low Cost 10-Bit Monolithic D/A Converter AD561

Low Cost 10-Bit Monolithic D/A Converter AD561 a FEATURES Complete Current Output Converter High Stability Buried Zener Reference Laser Trimmed to High Accuracy (1/4 LSB Max Error, AD561K, T) Trimmed Output Application Resistors for 0 V to +10 V, 5

More information

High PSRR Low Drop-out Voltage Regulator (LDO)

High PSRR Low Drop-out Voltage Regulator (LDO) High PSRR Low Drop-out Voltage Regulator (LDO) Pedro Fernandes Instituto Superior Técnico Electrical Engineering Department Technical University of Lisbon Lisbon, Portugal Email: pf@b52.ist.utl.pt Julio

More information

Analysis of Two Stage CMOS Opamp using 90nm Technology

Analysis of Two Stage CMOS Opamp using 90nm Technology Analysis of Two Stage CMOS Opamp using 90nm Technology Neha Shukla #1, Jasbir Kaur *2 # Electronics and Communication, P.E.C University of Technology, Sec-12, Chandigarh, India 1 nehashukla0009@gmail.com

More information

A Millimeter-Wave Power Amplifier Concept in SiGe BiCMOS Technology for Investigating HBT Physical Limitations

A Millimeter-Wave Power Amplifier Concept in SiGe BiCMOS Technology for Investigating HBT Physical Limitations A Millimeter-Wave Power Amplifier Concept in SiGe BiCMOS Technology for Investigating HBT Physical Limitations Jonas Wursthorn, Herbert Knapp, Bernhard Wicht Abstract A millimeter-wave power amplifier

More information

Low Dropout Voltage Regulator Operation and Performance Review

Low Dropout Voltage Regulator Operation and Performance Review Low Drop Voltage Regulator peration and Performance Review Eric Chen & Alex Leng ntroduction n today s power management systems, high power efficiency becomes necessary to maximize the lifetime of the

More information

Accurate CMOS Reference- Regulator Circuits

Accurate CMOS Reference- Regulator Circuits Accurate CMOS eference- egulator Circuits Vishal Gupta Prof. Gabriel incón-mora Georgia Tech Analog and Power IC Design Lab Abstract The schematics of two novel reference-regulator circuits have been presented.

More information

LM3046 Transistor Array

LM3046 Transistor Array Transistor Array General Description The LM3046 consists of five general purpose silicon NPN transistors on a common monolithic substrate. Two of the transistors are internally connected to form a differentiallyconnected

More information

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) 4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) The Metal Oxide Semitonductor Field Effect Transistor (MOSFET) has two modes of operation, the depletion mode, and the enhancement mode.

More information

Simran Singh Student, School Of ICT Gautam Buddha University Greater Noida

Simran Singh Student, School Of ICT Gautam Buddha University Greater Noida An Ultra Low-Voltage CMOS Self-Biased OTA Simran Singh Student, School Of ICT Gautam Buddha University Greater Noida simransinghh386@gmail.com Priyanka Goyal Faculty Associate, School Of ICT Gautam Buddha

More information

ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016

ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016 ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016 Lecture 10: Electroabsorption Modulator Transmitters Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements

More information

LH0024 and LH0032 High Speed Op Amp Applications

LH0024 and LH0032 High Speed Op Amp Applications LH0024 and LH0032 High Speed Op Amp Applications INTRODUCTION The LH0024 and LH0032 are very high speed general purpose operational amplifiers exhibiting 70 MHz bandwidths, 500 V/µs slew rates and 100

More information

Experiment #7 MOSFET Dynamic Circuits II

Experiment #7 MOSFET Dynamic Circuits II Experiment #7 MOSFET Dynamic Circuits II Jonathan Roderick Introduction The previous experiment introduced the canonic cells for MOSFETs. The small signal model was presented and was used to discuss the

More information

Noise Reduction in Transistor Oscillators: Part 3 Noise Shifting Techniques. cross-coupled. over other topolo-

Noise Reduction in Transistor Oscillators: Part 3 Noise Shifting Techniques. cross-coupled. over other topolo- From July 2005 High Frequency Electronics Copyright 2005 Summit Technical Media Noise Reduction in Transistor Oscillators: Part 3 Noise Shifting Techniques By Andrei Grebennikov M/A-COM Eurotec Figure

More information

Design of Low Power High Speed Fully Dynamic CMOS Latched Comparator

Design of Low Power High Speed Fully Dynamic CMOS Latched Comparator International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 10, Issue 4 (April 2014), PP.01-06 Design of Low Power High Speed Fully Dynamic

More information

(a) BJT-OPERATING MODES & CONFIGURATIONS

(a) BJT-OPERATING MODES & CONFIGURATIONS (a) BJT-OPERATING MODES & CONFIGURATIONS 1. The leakage current I CBO flows in (a) The emitter, base and collector leads (b) The emitter and base leads. (c) The emitter and collector leads. (d) The base

More information

The Miller Approximation. CE Frequency Response. The exact analysis is worked out on pp of H&S.

The Miller Approximation. CE Frequency Response. The exact analysis is worked out on pp of H&S. CE Frequency Response The exact analysis is worked out on pp. 639-64 of H&S. The Miller Approximation Therefore, we consider the effect of C µ on the input node only V ---------- out V s = r g π m ------------------

More information

CA3140, CA3140A. 4.5MHz, BiMOS Operational Amplifier with MOSFET Input/Bipolar Output. Description. Features. Applications. Ordering Information

CA3140, CA3140A. 4.5MHz, BiMOS Operational Amplifier with MOSFET Input/Bipolar Output. Description. Features. Applications. Ordering Information November 99 SEMICONDUCTOR CA, CAA.MHz, BiMOS Operational Amplifier with MOSFET Input/Bipolar Output Features MOSFET Input Stage - Very High Input Impedance (Z IN ) -.TΩ (Typ) - Very Low Input Current (I

More information

Designing Microphone Preamplifiers. Steve Green 24th AES UK Conference June 2011

Designing Microphone Preamplifiers. Steve Green 24th AES UK Conference June 2011 Designing Microphone Preamplifiers Steve Green 24th AES UK Conference June 2011 This presentation is an abbreviated version of a tutorial given at the 2010 AES Conference in San Francisco. The complete

More information

Op Amp Technology Overview. Developed by Art Kay, Thomas Kuehl, and Tim Green Presented by Ian Williams Precision Analog Op Amps

Op Amp Technology Overview. Developed by Art Kay, Thomas Kuehl, and Tim Green Presented by Ian Williams Precision Analog Op Amps Op Amp Technology Overview Developed by Art Kay, Thomas Kuehl, and Tim Green Presented by Ian Williams Precision Analog Op Amps 1 Bipolar vs. CMOS / JFET Transistor technologies Bipolar, CMOS and JFET

More information

LM6118/LM6218 Fast Settling Dual Operational Amplifiers

LM6118/LM6218 Fast Settling Dual Operational Amplifiers Fast Settling Dual Operational Amplifiers General Description The LM6118/LM6218 are monolithic fast-settling unity-gain-compensated dual operational amplifiers with ±20 ma output drive capability. The

More information

ULTRA HIGH SPEED SINGLE OPERATIONAL AMPLIFIER

ULTRA HIGH SPEED SINGLE OPERATIONAL AMPLIFIER ULTRA HIGH SPEED SINGLE OPERATIONAL AMPLIFIER GENERAL DESCRIPTION The NJM711 is an ultra high speed single operational amplifier. It can swings 6V/µs high slew rate and 1GHz gain band width product(1mhz

More information

A Low Voltage, Low Quiescent Current, Low Drop-out Regulator

A Low Voltage, Low Quiescent Current, Low Drop-out Regulator Rincon-Mora and Allen 1 A Low Voltage, Low Quiescent Current, Low Drop-out Regulator Gabriel Alfonso Rincon-Mora and Phillip E. Allen School of Electrical and Computer Engineering Georgia Institute of

More information

10.1: A 4 GSample/s 8b ADC in 0.35-um CMOS

10.1: A 4 GSample/s 8b ADC in 0.35-um CMOS 10.1: A 4 GSample/s 8b ADC in 0.35-um CMOS Ken Poulton, Robert Neff, Art Muto, Wei Liu*, Andy Burstein**, Mehrdad Heshami*** Agilent Technologies, Palo Alto, CA *Agilent Technologies, Colorado Springs,

More information

Technology Overview. MM-Wave SiGe IC Design

Technology Overview. MM-Wave SiGe IC Design Sheet Code RFi0606 Technology Overview MM-Wave SiGe IC Design Increasing consumer demand for high data-rate wireless applications has resulted in development activity to exploit the mm-wave frequency range

More information

Electronics - PHYS 2371/2 TODAY

Electronics - PHYS 2371/2 TODAY TODAY 4-terminal linear amplifier Op-Amp Basics, Ch-28, 31 Op-Amp Golden Rules for operation Op-amp gain, impedance, frequency response Videos Lab-6 Overview 1 Review Semiconductors Semiconductors Resistivity

More information