ECE 4430 Project 1: Design of BMR and BGR Student 1: Moez Karim Aziz Student 2: Hanbin (Victor) Ying 10/13/2016

Size: px
Start display at page:

Download "ECE 4430 Project 1: Design of BMR and BGR Student 1: Moez Karim Aziz Student 2: Hanbin (Victor) Ying 10/13/2016"

Transcription

1 ECE 4430 Project 1: Design of BMR and BGR Student 1: Moez Karim Aziz Student 2: Hanbin (Victor) Ying 10/13/2016 I have neither given nor received any unauthorized assistance on this project.

2 BMR Schematic Bias Resistors to tune TC Iref Start up Ckt BMR Core Diff Amp BMR Core Output Branch Reference: R. Jacob Baker CMOS Circuit Design, Layout, and Simulation (3rd ed.). Wiley-IEEE Press 2

3 BMR Design Process Assumed K = 4, so (W/L) 2 = 4 * (W/L) 11. To reduce power dissipation, we scaled W/L ratios on right branch of BMR core by half. Therefore, (W/L) 2 = 0.5 * 4 * (W/L) 11 and (W/L) 3 = 0.5 * (W/L) 14 Additional biasing resistors, R4 and R5, with different TCR1 coefficients, were added to the top of BMR core to tune the temperature sensitivity In output branch, M0 scaled current from BMR core to and generate Differential amplifier added to reduce V DD sensitivity Capacitor-based start-up circuit to reduce power. Since resistors push the current in a CTAT direction and transistors push the current in a PTAT direction ( V TH / T is negative) for the operating temperatures we are considering, these elements are placed in series in the BMR core and the output branch to reduce temperature sensitivity of. Challenges: 1) Trade-off between gain of diff amp and power dissipated 2) Low voltage headroom prevents the use of cascade topology 3

4 BMR Temperature Sweep 4

5 BMR V DD Sweep 5

6 BMR Start-up Step VDD response (0 1V) at time 0 rise time = 1 ns 6

7 BMR PSRR 7

8 BGR Schematic R PTAT R CTAT I PTAT I CTAT Start up Ckt BGR Core Diff Amp 1 Diff Amp 2 Diff Amp 3 Reference: 1) R. Jacob Baker CMOS Circuit Design, Layout, and Simulation (3rd ed.). Wiley-IEEE Press. 2) Adrian Ildefonso, Project 1 Sample 1 for ECE4430 Fall

9 BGR Design Process A different topology (separate PTAT and CTAT branch) for easy tuning I PTAT = n V T ln(k) / R PTAT = 1 * * ln(4) / 130k 300 na I CTAT = V D / R CTAT = 0.68 / 1M 680 na (limited by the max resistor size) obtained from weighted sum of I PTAT and I CTAT by M20 and M21, or = w 20 /w 3 * I PTAT + w 21 /w 9 * I CTAT Diff amps 1 & 2 maintain node v1, v2, v3 at the same voltage to generate I PTAT and I CTAT (similar to Baker s topology) Diff amp 3 is added to force V SG20 to change in sync with V SG of PTAT and CTAT branch (thus reduce VDD sensitivity) Optimized diff gain of 50 V/V and ultra lower power Capacitor-based start-up circuit to reduce static power Challenges: 1) Short channel device has large λ and inherently high V DD sensitivity 2) low VDD eliminates headroom for cascode topology 9

10 BGR Temperature Sweep 10

11 BGR V DD Sweep 11

12 BGR Start-up Step VDD response (0 1V) at time 0 rise time = 1 ns 12

13 BGR PSRR

14 Limitations and Improvements and can be extracted differently so that both meet the temperature sensitivity spec simultaneously (impossible for the current output branches of BMR and BGR because TC Vref TC Iref = TCR 20ppm/ S T Iref S T Iref = 20*323 >>1000ppm). To further reduce VDD sensitivity, could be fed back into the tail current of the diff amp; however, for BMR this requires a slight topology change to conserve voltage headroom. The BMR also contains a positive feedback loop, so stability issues could arise when adding the diff-amp tail current. These designs neglect the body effect, meaning that they cannot be manufactured in a standard CMOS process. In addition, for a realistic tapeout, the w/l ratio needs to be appropriate for manufacturing. For BGR, curvature compensation can be added to reduce max temperature sensitivity 14

15 Specification Summary Spec Target BMR BGR Iref Max Supply Sensitivity (ppm) within ±10% of VDD ,254 7,585 Vref Max Supply Sensitivity (ppm) within ±10% of VDD ,627 7,585 Iref Max Temp Sensitivity C) ,820 Vref Max Temp Sensitivity C) 50 8, Max Power consumption (µw) Iref (µa) Vref (V) ΔIref with ΔVTHn = 10% and ΔVTHp = 10% around nominal value N/A 22.0 na 27.5 na ΔIref with ΔR= 10% around nominal value N/A na na ΔIref with ΔVDD = 10% around nominal value N/A 10.8 na 2.72 na ΔVref with ΔVTHn = 10% and ΔVTHp = 10% around nominal value N/A 9.9 mv 13.7 mv ΔVref with ΔR= 10% around nominal value N/A 67.6 mv mv ΔVref with ΔVDD = 10% around nominal value N/A 5.08 mv mv Minumum/Maximum Supply Voltage that the circuit is still working N/A 0.69 ~ 1.3 V 0.95 ~ 1.3 V TCIref 50 N/A -1.55/ C / C TCVref 50 N/A 27.02/ C -1.12/ C TCR1 N/A See schematics TCR1 = 20 ppm/ C Startup delay N/A 100 ns 1.29 μs 15

Beta Multiplier and Bandgap Reference Design

Beta Multiplier and Bandgap Reference Design ECE 4430 Project -1 Beta Multiplier and Bandgap Reference Design Aneesh PravinKulkarni Fall 2014 I have neither given nor received any unauthorized assistance on this project Beta Multiplier - Design Procedure

More information

Short Channel Bandgap Voltage Reference

Short Channel Bandgap Voltage Reference Short Channel Bandgap Voltage Reference EE-584 Final Report Authors: Thymour Legba Yugu Yang Chris Magruder Steve Dominick Table of Contents Table of Figures... 3 Abstract... 4 Introduction... 5 Theory

More information

Topology Selection: Input

Topology Selection: Input Project #2: Design of an Operational Amplifier By: Adrian Ildefonso Nedeljko Karaulac I have neither given nor received any unauthorized assistance on this project. Process: Baker s 50nm CAD Tool: Cadence

More information

3 ppm Ultra Wide Range Curvature Compensated Bandgap Reference

3 ppm Ultra Wide Range Curvature Compensated Bandgap Reference 1 3 ppm Ultra Wide Range Curvature Compensated Bandgap Reference Xiangyong Zhou 421002457 Abstract In this report a current mode bandgap with a temperature coefficient of 3 ppm for the range from -117

More information

Design and Simulation of Low Voltage Operational Amplifier

Design and Simulation of Low Voltage Operational Amplifier Design and Simulation of Low Voltage Operational Amplifier Zach Nelson Department of Electrical Engineering, University of Nevada, Las Vegas 4505 S Maryland Pkwy, Las Vegas, NV 89154 United States of America

More information

Design of High-Speed Op-Amps for Signal Processing

Design of High-Speed Op-Amps for Signal Processing Design of High-Speed Op-Amps for Signal Processing R. Jacob (Jake) Baker, PhD, PE Professor and Chair Boise State University 1910 University Dr. Boise, ID 83725-2075 jbaker@ieee.org Abstract - As CMOS

More information

An Improved Bandgap Reference (BGR) Circuit with Constant Voltage and Current Outputs

An Improved Bandgap Reference (BGR) Circuit with Constant Voltage and Current Outputs International Journal of Research in Engineering and Innovation Vol-1, Issue-6 (2017), 60-64 International Journal of Research in Engineering and Innovation (IJREI) journal home page: http://www.ijrei.com

More information

Revision History. Contents

Revision History. Contents Revision History Ver. # Rev. Date Rev. By Comment 0.0 9/15/2012 Initial draft 1.0 9/16/2012 Remove class A part 2.0 9/17/2012 Comments and problem 2 added 3.0 10/3/2012 cmdmprobe re-simulation, add supplement

More information

EE 501 Lab9 Widlar Biasing Circuit and Bandgap Reference Circuit

EE 501 Lab9 Widlar Biasing Circuit and Bandgap Reference Circuit EE 501 Lab9 Widlar Biasing Circuit and Bandgap Reference Circuit Due Nov. 19, 2015 Objective: 1. Understand the Widlar current source circuit. 2. Built a Self-biasing current source circuit. 3. Understand

More information

Design and Implementation of less quiescent current, less dropout LDO Regulator in 90nm Technology Madhukumar A S #1, M.

Design and Implementation of less quiescent current, less dropout LDO Regulator in 90nm Technology Madhukumar A S #1, M. Design and Implementation of less quiescent current, less dropout LDO Regulator in 90nm Technology Madhukumar A S #1, M.Nagabhushan #2 #1 M.Tech student, Dept. of ECE. M.S.R.I.T, Bangalore, INDIA #2 Asst.

More information

Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1

Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1 Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1 LECTURE 300 LOW VOLTAGE OP AMPS LECTURE ORGANIZATION Outline Introduction Low voltage input stages Low voltage gain stages Low voltage bias circuits

More information

A Nano-Watt MOS-Only Voltage Reference with High-Slope PTAT Voltage Generators

A Nano-Watt MOS-Only Voltage Reference with High-Slope PTAT Voltage Generators > REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1 A Nano-Watt MOS-Only Voltage Reference with High-Slope PTAT Voltage Generators Hong Zhang, Member, IEEE, Xipeng

More information

Chapter 12 Opertational Amplifier Circuits

Chapter 12 Opertational Amplifier Circuits 1 Chapter 12 Opertational Amplifier Circuits Learning Objectives 1) The design and analysis of the two basic CMOS op-amp architectures: the two-stage circuit and the single-stage, folded cascode circuit.

More information

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN OPAMP DESIGN AND SIMULATION Vishal Saxena OPAMP DESIGN PROJECT R 2 v out v in /2 R 1 C L v in v out V CM R L V CM C L V CM -v in /2 R 1 C L (a) (b) R 2 ECE415/EO

More information

Design for MOSIS Education Program

Design for MOSIS Education Program Design for MOSIS Education Program (Research) T46C-AE Project Title Low Voltage Analog Building Block Prepared by: C. Durisety, S. Chen, B. Blalock, S. Islam Institution: Department of Electrical and Computer

More information

A sub-1 V nanopower temperature-compensated sub-threshold CMOS voltage reference with 0.065%/V line sensitivity

A sub-1 V nanopower temperature-compensated sub-threshold CMOS voltage reference with 0.065%/V line sensitivity INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS Int. J. Circ. Theor. Appl. (2013) Published online in Wiley Online Library (wileyonlinelibrary.com)..1950 A sub-1 V nanopower temperature-compensated

More information

Low-voltage, High-precision Bandgap Current Reference Circuit

Low-voltage, High-precision Bandgap Current Reference Circuit Low-voltage, High-precision Bandgap Current Reference Circuit Chong Wei Keat, Harikrishnan Ramiah and Jeevan Kanesan Department of Electrical Engineering, Faculty of Engineering, University of Malaya,

More information

Low Quiescent Power CMOS Op-Amp in 0.5µm Technology

Low Quiescent Power CMOS Op-Amp in 0.5µm Technology Kevin Fronczak - Low Power CMOS Op-Amp - Rochester Institute of Technology EE610 1 Low Quiescent Power CMOS Op-Amp in 0.5µm Technology Kevin C. Fronczak Abstract This paper analyzes a low quiescent power

More information

Accurate Sub-1 V CMOS Bandgap Voltage Reference with PSRR of -118 db

Accurate Sub-1 V CMOS Bandgap Voltage Reference with PSRR of -118 db JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.4, AUGUST, 2016 ISSN(Print) 1598-1657 http://dx.doi.org/10.5573/jsts.2016.16.4.528 ISSN(Online) 2233-4866 Accurate Sub-1 V CMOS Bandgap Voltage

More information

A CMOS Low-Voltage, High-Gain Op-Amp

A CMOS Low-Voltage, High-Gain Op-Amp A CMOS Low-Voltage, High-Gain Op-Amp G N Lu and G Sou LEAM, Université Pierre et Marie Curie Case 203, 4 place Jussieu, 75252 Paris Cedex 05, France Telephone: (33 1) 44 27 75 11 Fax: (33 1) 44 27 48 37

More information

Design of Low-Dropout Regulator

Design of Low-Dropout Regulator 2015; 1(7): 323-330 ISSN Print: 2394-7500 ISSN Online: 2394-5869 Impact Factor: 5.2 IJAR 2015; 1(7): 323-330 www.allresearchjournal.com Received: 20-04-2015 Accepted: 26-05-2015 Nikitha V Student, Dept.

More information

EEC 210 Fall 2008 Design Project. Rajeevan Amirtharajah Dept. of Electrical and Computer Engineering University of California, Davis

EEC 210 Fall 2008 Design Project. Rajeevan Amirtharajah Dept. of Electrical and Computer Engineering University of California, Davis EEC 210 Fall 2008 Design Project Rajeevan Amirtharajah Dept. of Electrical and Computer Engineering University of California, Davis Issued: November 18, 2008 Due: December 5, 2008, 5:00 PM in my office.

More information

Ultra Low Static Power OTA with Slew Rate Enhancement

Ultra Low Static Power OTA with Slew Rate Enhancement ECE 595B Analog IC Design Design Project Fall 2009 Project Proposal Ultra Low Static Power OTA with Slew Rate Enhancement Patrick Wesskamp PUID: 00230-83995 1) Introduction In this design project I plan

More information

Versatile Sub-BandGap Reference IP Core

Versatile Sub-BandGap Reference IP Core Versatile Sub-BandGap Reference IP Core Tomáš Urban, Ondřej Šubrt, Pravoslav Martinek Department of Circuit Theory Faculty of Electrical Engineering CTU Prague Technická 2, 166 27 Prague, Czech Republic

More information

Solid State Devices & Circuits. 18. Advanced Techniques

Solid State Devices & Circuits. 18. Advanced Techniques ECE 442 Solid State Devices & Circuits 18. Advanced Techniques Jose E. Schutt-Aine Electrical l&c Computer Engineering i University of Illinois jschutt@emlab.uiuc.edu 1 Darlington Configuration - Popular

More information

Radivoje Đurić, 2015, Analogna Integrisana Kola 1

Radivoje Đurić, 2015, Analogna Integrisana Kola 1 Low power OTA 1 Two-Stage, Miller Op Amp Operating in Weak Inversion Low frequency response: gm1 gm6 Av 0 g g g g A v 0 ds2 ds4 ds6 ds7 I D m, ds D nvt g g I n GB and SR: GB 1 1 n 1 2 4 6 6 7 g 2 2 m1

More information

Design of a low voltage,low drop-out (LDO) voltage cmos regulator

Design of a low voltage,low drop-out (LDO) voltage cmos regulator Design of a low,low drop-out (LDO) cmos regulator Chaithra T S Ashwini Abstract- In this paper a low, low drop-out (LDO) regulator design procedure is proposed and implemented using 0.25 micron CMOS process.

More information

A Low Voltage Bandgap Reference Circuit With Current Feedback

A Low Voltage Bandgap Reference Circuit With Current Feedback A Low Voltage Bandgap Reference Circuit With Current Feedback Keywords: Bandgap reference, current feedback, FinFET, startup circuit, VDD variation as a low voltage source or uses the differences between

More information

Radivoje Đurić, 2015, Analogna Integrisana Kola 1

Radivoje Đurić, 2015, Analogna Integrisana Kola 1 OTA-output buffer 1 According to the types of loads, the driving capability of the output stages differs. For switched capacitor circuits which have high impedance capacitive loads, class A output stage

More information

Low Output Impedance 0.6µm-CMOS Sub-Bandgap Reference. V. Gupta and G.A. Rincón-Mora

Low Output Impedance 0.6µm-CMOS Sub-Bandgap Reference. V. Gupta and G.A. Rincón-Mora Low Output Impedance 0.6µm-CMOS Sub-Bandgap Reference V. Gupta and G.A. Rincón-Mora Abstract: A 0.6µm-CMOS sub-bandgap reference circuit whose output voltage is, unlike reported literature, concurrently

More information

DESIGN OF LOW POWER VOLTAGE REGULATOR FOR RFID APPLICATIONS

DESIGN OF LOW POWER VOLTAGE REGULATOR FOR RFID APPLICATIONS UNIVERSITY OF ZAGREB FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING DESIGN OF LOW POWER VOLTAGE REGULATOR FOR RFID APPLICATIONS Josip Mikulic Niko Bako Adrijan Baric MIDEM 2015, Bled Overview Introduction

More information

Design of Miller Compensated Two-Stage Operational Amplifier for Data Converter Applications

Design of Miller Compensated Two-Stage Operational Amplifier for Data Converter Applications Design of Miller Compensated Two-Stage Operational Amplifier for Data Converter Applications Prema Kumar. G Shravan Kudikala Casest, School Of Physics Casest, School Of Physics University Of Hyderabad

More information

Tuesday, February 1st, 9:15 12:00. Snorre Aunet Nanoelectronics group Department of Informatics University of Oslo

Tuesday, February 1st, 9:15 12:00. Snorre Aunet Nanoelectronics group Department of Informatics University of Oslo Bandgap references, sampling switches Tuesday, February 1st, 9:15 12:00 Snorre Aunet (sa@ifi.uio.no) Nanoelectronics group Department of Informatics University of Oslo Outline Tuesday, February 1st 11.11

More information

CMOS Operational Amplifier

CMOS Operational Amplifier The George Washington University Department of Electrical and Computer Engineering Course: ECE218 Instructor: Mona E. Zaghloul Students: Shunping Wang Yiping (Neil) Tsai Data: 05/14/07 Introduction In

More information

Analog CMOS Interface Circuits for UMSI Chip of Environmental Monitoring Microsystem

Analog CMOS Interface Circuits for UMSI Chip of Environmental Monitoring Microsystem Analog CMOS Interface Circuits for UMSI Chip of Environmental Monitoring Microsystem A report Submitted to Canopus Systems Inc. Zuhail Sainudeen and Navid Yazdi Arizona State University July 2001 1. Overview

More information

High Voltage Operational Amplifiers in SOI Technology

High Voltage Operational Amplifiers in SOI Technology High Voltage Operational Amplifiers in SOI Technology Kishore Penmetsa, Kenneth V. Noren, Herbert L. Hess and Kevin M. Buck Department of Electrical Engineering, University of Idaho Abstract This paper

More information

Lecture #3: Voltage Regulator

Lecture #3: Voltage Regulator Lecture #3: Voltage Regulator UNVERSTY OF CALFORNA, SAN DEGO Voltage regulator is a constant voltage source with a high current capacity to drive a low impedance load. A full-wave rectifier followed by

More information

G m /I D based Three stage Operational Amplifier Design

G m /I D based Three stage Operational Amplifier Design G m /I D based Three stage Operational Amplifier Design Rishabh Shukla SVNIT, Surat shuklarishabh31081988@gmail.com Abstract A nested Gm-C compensated three stage Operational Amplifier is reviewed using

More information

Design Analysis and Performance Comparison of Low Power High Gain 2nd Stage Differential Amplifier Along with 1st Stage

Design Analysis and Performance Comparison of Low Power High Gain 2nd Stage Differential Amplifier Along with 1st Stage Design Analysis and Performance Comparison of Low Power High Gain 2nd Stage Differential Amplifier Along with 1st Stage Sadeque Reza Khan Department of Electronic and Communication Engineering, National

More information

A Resistorless CMOS Non-Bandgap Voltage Reference

A Resistorless CMOS Non-Bandgap Voltage Reference A Resistorless CMOS Non-Bandgap Voltage Reference Mary Ashritha 1, Ebin M Manuel 2 PG Scholar [VLSI & ES], Dept. of ECE, Government Engineering College, Idukki, Kerala, India 1 Assistant Professor, Dept.

More information

You will be asked to make the following statement and provide your signature on the top of your solutions.

You will be asked to make the following statement and provide your signature on the top of your solutions. 1 EE 435 Name Exam 1 Spring 2018 Instructions: The points allocated to each problem are as indicated. Note that the first and last problem are weighted more heavily than the rest of the problems. On those

More information

Design of Rail-to-Rail Op-Amp in 90nm Technology

Design of Rail-to-Rail Op-Amp in 90nm Technology IJSTE - International Journal of Science Technology & Engineering Volume 1 Issue 2 August 2014 ISSN(online) : 2349-784X Design of Rail-to-Rail Op-Amp in 90nm Technology P R Pournima M.Tech Electronics

More information

An Ultra Low Power Voltage Regulator for RFID Application

An Ultra Low Power Voltage Regulator for RFID Application University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations 2012 An Ultra Low Power Voltage Regulator for RFID Application Chia-Chin Liu Follow this and additional works at: https://scholar.uwindsor.ca/etd

More information

You will be asked to make the following statement and provide your signature on the top of your solutions.

You will be asked to make the following statement and provide your signature on the top of your solutions. 1 EE 435 Name Exam 1 Spring 216 Instructions: The points allocated to each problem are as indicated. Note that the first and last problem are weighted more heavily than the rest of the problems. On those

More information

An 8-Channel General-Purpose Analog Front- End for Biopotential Signal Measurement

An 8-Channel General-Purpose Analog Front- End for Biopotential Signal Measurement An 8-Channel General-Purpose Analog Front- End for Biopotential Signal Measurement Group 4: Jinming Hu, Xue Yang, Zengweijie Chen, Hang Yang (auditing) 1. System Specifications & Structure 2. Chopper Low-Noise

More information

Lecture 4: Voltage References

Lecture 4: Voltage References EE6378 Power Management Circuits Lecture 4: oltage References Instructor: t Prof. Hoi Lee Mixed-Signal & Power IC Laboratory Department of Electrical Engineering The University of Texas at Dallas Introduction

More information

INTEGRATED CIRCUITS. AN109 Microprocessor-compatible DACs Dec

INTEGRATED CIRCUITS. AN109 Microprocessor-compatible DACs Dec INTEGRATED CIRCUITS 1988 Dec DAC products are designed to convert a digital code to an analog signal. Since a common source of digital signals is the data bus of a microprocessor, DAC circuits that are

More information

NOVEMBER 29, 2017 COURSE PROJECT: CMOS TRANSIMPEDANCE AMPLIFIER ECG 720 ADVANCED ANALOG IC DESIGN ERIC MONAHAN

NOVEMBER 29, 2017 COURSE PROJECT: CMOS TRANSIMPEDANCE AMPLIFIER ECG 720 ADVANCED ANALOG IC DESIGN ERIC MONAHAN NOVEMBER 29, 2017 COURSE PROJECT: CMOS TRANSIMPEDANCE AMPLIFIER ECG 720 ADVANCED ANALOG IC DESIGN ERIC MONAHAN 1.Introduction: CMOS Transimpedance Amplifier Avalanche photodiodes (APDs) are highly sensitive,

More information

Sub-1V Curvature Compensated Bandgap Reference. Kevin Tom

Sub-1V Curvature Compensated Bandgap Reference. Kevin Tom Sub-1V Curvature Compensated Bandgap Reference Master Thesis Performed in Electronic Devices By Kevin Tom Reg. Nr.: LiTH-ISY-EX-3592-2004 Linköping University, 2004. Sub-1V Curvature Compensated Bandgap

More information

Implementation of a Low drop out regulator using a Sub 1 V Band Gap Voltage Reference circuit in Standard 180nm CMOS process

Implementation of a Low drop out regulator using a Sub 1 V Band Gap Voltage Reference circuit in Standard 180nm CMOS process Implementation of a Low drop out regulator using a Sub 1 V Band Gap Voltage Reference circuit in Standard 180nm CMOS 1 S.Aparna, 2 Dr. G.V. Mahalakshmi 1 PG Scholar, 2 Professor 1,2 Department of Electronics

More information

A Compact Folded-cascode Operational Amplifier with Class-AB Output Stage

A Compact Folded-cascode Operational Amplifier with Class-AB Output Stage A Compact Folded-cascode Operational Amplifier with Class-AB Output Stage EEE 523 Advanced Analog Integrated Circuits Project Report Fuding Ge You are an engineer who is assigned the project to design

More information

High Voltage and Temperature Auto Zero Op-Amp Cell Features Applications Process Technology Introduction Parameter Unit Rating

High Voltage and Temperature Auto Zero Op-Amp Cell Features Applications Process Technology Introduction Parameter Unit Rating Analogue Integration AISC11 High Voltage and Temperature Auto Zero Op-Amp Cell Rev.1 12-1-5 Features High Voltage Operation: 4.5-3 V Precision, Auto-Zeroed Input Vos High Temperature Operation Low Quiescent

More information

ISSN:

ISSN: 468 Modeling and Design of a CMOS Low Drop-out (LDO) Voltage Regulator PRIYADARSHINI JAINAPUR 1, CHIRAG SHARMA 2 1 Department of E&CE, Nitte Meenakshi Institute of Technology, Yelahanka, Bangalore-560064,

More information

LM613 Dual Operational Amplifiers, Dual Comparators, and Adjustable Reference

LM613 Dual Operational Amplifiers, Dual Comparators, and Adjustable Reference LM613 Dual Operational Amplifiers, Dual Comparators, and Adjustable Reference General Description The LM613 consists of dual op-amps, dual comparators, and a programmable voltage reference in a 16-pin

More information

A Low Power Analog Front End Capable of Monitoring Knee Movements to Detect Injury

A Low Power Analog Front End Capable of Monitoring Knee Movements to Detect Injury A Low Power Analog Front End Capable of Monitoring Knee Movements to Detect Injury Garren Boggs, Hua Chen, Sridhar Sivapurapu ECE 6414 Final Presentation Outline Motivation System Overview Analog Front

More information

Georgia Institute of Technology School of Electrical and Computer Engineering. Midterm Exam

Georgia Institute of Technology School of Electrical and Computer Engineering. Midterm Exam Georgia Institute of Technology School of Electrical and Computer Engineering Midterm Exam ECE-3400 Fall 2013 Tue, September 24, 2013 Duration: 80min First name Solutions Last name Solutions ID number

More information

C H A P T E R 02. Operational Amplifiers

C H A P T E R 02. Operational Amplifiers C H A P T E R 02 Operational Amplifiers The Op-amp Figure 2.1 Circuit symbol for the op amp. Figure 2.2 The op amp shown connected to dc power supplies. The Ideal Op-amp 1. Infinite input impedance 2.

More information

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier Chapter 5 Operational Amplifiers and Source Followers 5.1 Operational Amplifier In single ended operation the output is measured with respect to a fixed potential, usually ground, whereas in double-ended

More information

A 16Ω Audio Amplifier with 93.8 mw Peak loadpower and 1.43 quiscent power consumption

A 16Ω Audio Amplifier with 93.8 mw Peak loadpower and 1.43 quiscent power consumption A 16Ω Audio Amplifier with 93.8 mw Peak loadpower and 1.43 quiscent power consumption IEEE Transactions on circuits and systems- Vol 59 No:3 March 2012 Abstract A class AB audio amplifier is used to drive

More information

A Linear CMOS Low Drop-Out Voltage Regulator in a 0.6µm CMOS Technology

A Linear CMOS Low Drop-Out Voltage Regulator in a 0.6µm CMOS Technology International Journal of Electronics and Electrical Engineering Vol. 3, No. 3, June 2015 A Linear CMOS Low DropOut Voltage Regulator in a 0.6µm CMOS Technology Mohammad Maadi Middle East Technical University,

More information

A Standard CMOS Compatible Bandgap Voltage Reference with Post-Process Digitally Tunable Temperature Coefficient

A Standard CMOS Compatible Bandgap Voltage Reference with Post-Process Digitally Tunable Temperature Coefficient University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Masters Theses Graduate School 12-2007 A Standard CMOS Compatible Bandgap Voltage Reference with Post-Process Digitally

More information

LOW VOLTAGE ANALOG IC DESIGN PROJECT 1. CONSTANT Gm RAIL TO RAIL INPUT STAGE DESIGN. Prof. Dr. Ali ZEKĐ. Umut YILMAZER

LOW VOLTAGE ANALOG IC DESIGN PROJECT 1. CONSTANT Gm RAIL TO RAIL INPUT STAGE DESIGN. Prof. Dr. Ali ZEKĐ. Umut YILMAZER LOW VOLTAGE ANALOG IC DESIGN PROJECT 1 CONSTANT Gm RAIL TO RAIL INPUT STAGE DESIGN Prof. Dr. Ali ZEKĐ Umut YILMAZER 1 1. Introduction In this project, two constant Gm input stages are designed. First circuit

More information

A PSEUDO-CLASS-AB TELESCOPIC-CASCODE OPERATIONAL AMPLIFIER

A PSEUDO-CLASS-AB TELESCOPIC-CASCODE OPERATIONAL AMPLIFIER A PSEUDO-CLASS-AB TELESCOPIC-CASCODE OPERATIONAL AMPLIFIER M. Taherzadeh-Sani, R. Lotfi, and O. Shoaei ABSTRACT A novel class-ab architecture for single-stage operational amplifiers is presented. The structure

More information

Lecture 350 Low Voltage Op Amps (3/26/02) Page 350-1

Lecture 350 Low Voltage Op Amps (3/26/02) Page 350-1 Lecture 350 Low Voltage Op Amps (3/26/02) Page 3501 LECTURE 350 LOW VOLTAGE OP AMPS (READING: AH 415432) Objective The objective of this presentation is: 1.) How to design standard circuit blocks with

More information

200mA Low Power Consumption CMOS LDO Regulator CLZ6821/22

200mA Low Power Consumption CMOS LDO Regulator CLZ6821/22 General Description The CLZ6821 is a positive LDO regulator designed on patent pending CMOS circuit technologies. The device attains high ripple rejection ratio and superior line and load transient response

More information

ES 330 Electronics II Homework # 6 Soltuions (Fall 2016 Due Wednesday, October 26, 2016)

ES 330 Electronics II Homework # 6 Soltuions (Fall 2016 Due Wednesday, October 26, 2016) Page1 Name Solutions ES 330 Electronics Homework # 6 Soltuions (Fall 016 ue Wednesday, October 6, 016) Problem 1 (18 points) You are given a common-emitter BJT and a common-source MOSFET (n-channel). Fill

More information

Low-output-impedance BiCMOS voltage buffer

Low-output-impedance BiCMOS voltage buffer Low-output-impedance BiCMOS voltage buffer Johan Bauwelinck, a) Wei Chen, Dieter Verhulst, Yves Martens, Peter Ossieur, Xing-Zhi Qiu, and Jan Vandewege Ghent University, INTEC/IMEC, Gent, 9000, Belgium

More information

Sensor Interfacing and Operational Amplifiers Lab 3

Sensor Interfacing and Operational Amplifiers Lab 3 Name Lab Day Lab Time Sensor Interfacing and Operational Amplifiers Lab 3 Introduction: In this lab you will design and build a circuit that will convert the temperature indicated by a thermistor s resistance

More information

Dual operational amplifier

Dual operational amplifier DESCRIPTION The 77 is a pair of high-performance monolithic operational amplifiers constructed on a single silicon chip. High common-mode voltage range and absence of latch-up make the 77 ideal for use

More information

A Novel Design of Low Voltage,Wilson Current Mirror based Wideband Operational Transconductance Amplifier

A Novel Design of Low Voltage,Wilson Current Mirror based Wideband Operational Transconductance Amplifier A Novel Design of Low Voltage,Wilson Current Mirror based Wideband Operational Transconductance Amplifier Kehul A. Shah 1, N.M.Devashrayee 2 1(Associative Prof., Department of Electronics and Communication,

More information

EE Analog and Non-linear Integrated Circuit Design

EE Analog and Non-linear Integrated Circuit Design University of Southern California Viterbi School of Engineering Ming Hsieh Department of Electrical Engineering EE 479 - Analog and Non-linear Integrated Circuit Design Instructor: Ali Zadeh Email: prof.zadeh@yahoo.com

More information

A 2.4 GHZ RECEIVER IN SILICON-ON-SAPPHIRE MICHAEL PETERS. B.S., Kansas State University, 2009 A REPORT

A 2.4 GHZ RECEIVER IN SILICON-ON-SAPPHIRE MICHAEL PETERS. B.S., Kansas State University, 2009 A REPORT A 2.4 GHZ RECEIVER IN SILICON-ON-SAPPHIRE by MICHAEL PETERS B.S., Kansas State University, 2009 A REPORT submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department

More information

An Analog Phase-Locked Loop

An Analog Phase-Locked Loop 1 An Analog Phase-Locked Loop Greg Flewelling ABSTRACT This report discusses the design, simulation, and layout of an Analog Phase-Locked Loop (APLL). The circuit consists of five major parts: A differential

More information

CMOS. High-resistance device consisting of subthreshold-operated CMOS differential pair

CMOS. High-resistance device consisting of subthreshold-operated CMOS differential pair ECT991 CMOS High-resistance device consisting of subthreshold-operated CMOS differential pair Shin ichi Asai, Ken Ueno, Tetsuya Asai, and Yoshihito Amemiya, (Hokkaido University) Abstract We propose a

More information

ECE 3400 Project. By: Josh Skow and Bryan Cheung

ECE 3400 Project. By: Josh Skow and Bryan Cheung ECE 3400 Project By: Josh Skow and Bryan Cheung Design Approach Goal: Design a 3 stage amplifier to amplify an acoustic input signal from a piezoelectric microphone Amplifier should only amplify frequencies

More information

A Switched-Capacitor Band-Pass Biquad Filter Using a Simple Quasi-unity Gain Amplifier

A Switched-Capacitor Band-Pass Biquad Filter Using a Simple Quasi-unity Gain Amplifier A Switched-Capacitor Band-Pass Biquad Filter Using a Simple Quasi-unity Gain Amplifier Hugo Serra, Nuno Paulino, and João Goes Centre for Technologies and Systems (CTS) UNINOVA Dept. of Electrical Engineering

More information

INF3410 Fall Book Chapter 6: Basic Opamp Design and Compensation

INF3410 Fall Book Chapter 6: Basic Opamp Design and Compensation INF3410 Fall 2015 Book Chapter 6: Basic Opamp Design and Compensation content Introduction Two Stage Opamps Compensation Slew Rate Systematic Offset Advanced Current Mirrors Operational Transconductance

More information

A High-Temperature Folded-Cascode Operational Transconductance Amplifier in 0.8-µm BCD-on-SOI

A High-Temperature Folded-Cascode Operational Transconductance Amplifier in 0.8-µm BCD-on-SOI A High-Temperature Folded-Cascode Operational Transconductance Amplifier in 0.8-µm BCD-on-SOI C. Su 1, B. J. Blalock 1, S. K. Islam 1, L. Zuo 1, L. M. Tolbert 1,2 1 The Min H. Kao Department of Electrical

More information

International Journal of Electronics and Communication Engineering & Technology (IJECET), INTERNATIONAL JOURNAL OF ELECTRONICS AND

International Journal of Electronics and Communication Engineering & Technology (IJECET), INTERNATIONAL JOURNAL OF ELECTRONICS AND INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET) ISSN 0976 6464(Print) ISSN 0976 6472(Online) Volume 4, Issue 3, May June, 2013, pp. 24-32 IAEME: www.iaeme.com/ijecet.asp

More information

DESIGN OF A CMOS BANDGAP REFERENCE WITH LOWTEMPERATURE COEFFICIENT AND HIGH POWER SUPPLY REJECTION PERFORMANCE

DESIGN OF A CMOS BANDGAP REFERENCE WITH LOWTEMPERATURE COEFFICIENT AND HIGH POWER SUPPLY REJECTION PERFORMANCE DESIGN OF A CMOS BANDGAP REFERENCE WITH LOWTEMPERATURE COEFFICIENT AND HIGH POWER SUPPLY REJECTION PERFORMANCE Abhisek Dey 1 and Tarun Kanti Bhattacharyya 2 Department of Electronics & Electrical Communication

More information

A RESISTORLESS SWITCHED BANDGAP REFERENCE TOPOLOGY

A RESISTORLESS SWITCHED BANDGAP REFERENCE TOPOLOGY A RESISTORLESS SWITCHED BANDGAP REFERENCE TOPOLOGY Hamilton Klimach, Moacir F. C. Monteiro Arthur L. T. Costa, Sergio Bampi Graduate Program on Microelectronics Electrical Engineering Department & Informatics

More information

Lecture 330 Low Power Op Amps (3/27/02) Page 330-1

Lecture 330 Low Power Op Amps (3/27/02) Page 330-1 Lecture 33 Low Power Op Amps (3/27/2) Page 33 LECTURE 33 LOW POWER OP AMPS (READING: AH 39342) Objective The objective of this presentation is:.) Examine op amps that have minimum static power Minimize

More information

Micropower, Single-Supply, Rail-to-Rail, Precision Instrumentation Amplifiers MAX4194 MAX4197

Micropower, Single-Supply, Rail-to-Rail, Precision Instrumentation Amplifiers MAX4194 MAX4197 General Description The is a variable-gain precision instrumentation amplifier that combines Rail-to-Rail single-supply operation, outstanding precision specifications, and a high gain bandwidth. This

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION 1.1 Historical Background Recent advances in Very Large Scale Integration (VLSI) technologies have made possible the realization of complete systems on a single chip. Since complete

More information

Electronic Circuits EE359A

Electronic Circuits EE359A Electronic Circuits EE359A Bruce McNair B206 bmcnair@stevens.edu 201-216-5549 1 Memory and Advanced Digital Circuits - 2 Chapter 11 2 Figure 11.1 (a) Basic latch. (b) The latch with the feedback loop opened.

More information

TOP VIEW REFERENCE VOLTAGE ADJ V OUT

TOP VIEW REFERENCE VOLTAGE ADJ V OUT Rev 1; 8/6 EVALUATION KIT AVAILABLE Electronically Programmable General Description The is a nonvolatile (NV) electronically programmable voltage reference. The reference voltage is programmed in-circuit

More information

HT9274 Quad Micropower Op Amp

HT9274 Quad Micropower Op Amp Quad Micropower Op Amp Features Quad micro power op amp Wide range of supply voltage: 1.6V~5.5V High input impedance Single supply operation Low current consumption: < 5A per amp Rail to rail output Provides

More information

NOVEMBER 28, 2016 COURSE PROJECT: CMOS SWITCHING POWER SUPPLY EE 421 DIGITAL ELECTRONICS ERIC MONAHAN

NOVEMBER 28, 2016 COURSE PROJECT: CMOS SWITCHING POWER SUPPLY EE 421 DIGITAL ELECTRONICS ERIC MONAHAN NOVEMBER 28, 2016 COURSE PROJECT: CMOS SWITCHING POWER SUPPLY EE 421 DIGITAL ELECTRONICS ERIC MONAHAN 1.Introduction: CMOS Switching Power Supply The course design project for EE 421 Digital Engineering

More information

EE 501 Lab 11 Common mode feedback (CMFB) circuit

EE 501 Lab 11 Common mode feedback (CMFB) circuit EE 501 Lab 11 Common mode feedback (CMFB) circuit Objectives: Report due: November 17, 2016 1. Understand why CMFB circuits are needed and how they work to ensure robust operation. 2. Understand the advantages

More information

Current Mirrors. Current Source and Sink, Small Signal and Large Signal Analysis of MOS. Knowledge of Various kinds of Current Mirrors

Current Mirrors. Current Source and Sink, Small Signal and Large Signal Analysis of MOS. Knowledge of Various kinds of Current Mirrors Motivation Current Mirrors Current sources have many important applications in analog design. For example, some digital-to-analog converters employ an array of current sources to produce an analog output

More information

ECEN 474/704 Lab 8: Two-Stage Miller Operational Amplifier

ECEN 474/704 Lab 8: Two-Stage Miller Operational Amplifier ECEN 474/704 Lab 8: Two-Stage Miller Operational Amplifier Objective Design, simulate and test a two-stage operational amplifier Introduction Operational amplifiers (opamp) are essential components of

More information

A 0.844ps Fast Transient Response Low Drop-Out Voltage Regulator In 0.18-µm CMOS Technology

A 0.844ps Fast Transient Response Low Drop-Out Voltage Regulator In 0.18-µm CMOS Technology A 0.844ps Fast Transient Response Low Drop-Out Voltage Regulator In 0.8-µm CMOS Technology Hicham Akhamal, Mostafa Chakir, Hassan Qjidaa 3 Université Sidi Mohamed Ben Abdellah Faculté des sciences Dhar

More information

DESIGN HIGH SPEED, LOW NOISE, LOW POWER TWO STAGE CMOS OPERATIONAL AMPLIFIER. Himanshu Shekhar* 1, Amit Rajput 1

DESIGN HIGH SPEED, LOW NOISE, LOW POWER TWO STAGE CMOS OPERATIONAL AMPLIFIER. Himanshu Shekhar* 1, Amit Rajput 1 ISSN 2277-2685 IJESR/June 2014/ Vol-4/Issue-6/319-323 Himanshu Shekhar et al./ International Journal of Engineering & Science Research DESIGN HIGH SPEED, LOW NOISE, LOW POWER TWO STAGE CMOS OPERATIONAL

More information

AN ENHANCED LOW POWER HIGH PSRR BAND GAP VOLTAGE REFERENCE USING MOSFETS IN STRONG INVERSION REGION

AN ENHANCED LOW POWER HIGH PSRR BAND GAP VOLTAGE REFERENCE USING MOSFETS IN STRONG INVERSION REGION AN ENHANCED LOW POWER HIGH PSRR BAND GAP VOLTAGE REFERENCE USING MOSFETS IN STRONG INVERSION REGION S. SOLEIMANI 1, S. ASADI 2 University of Ottawa, 800 King Edward, Ottawa, ON, K1N 6N5, Canada Department

More information

Features. 5V Reference UVLO. Oscillator S R GND*(AGND) 5 (9) ISNS 3 (5)

Features. 5V Reference UVLO. Oscillator S R GND*(AGND) 5 (9) ISNS 3 (5) MIC38HC42/3/4/5 BiCMOS 1A Current-Mode PWM Controllers General Description The MIC38HC4x family are fixed frequency current-mode PWM controllers with 1A drive current capability. Micrel s BiCMOS devices

More information

3-Stage Transimpedance Amplifier

3-Stage Transimpedance Amplifier 3-Stage Transimpedance Amplifier ECE 3400 - Dr. Maysam Ghovanloo Garren Boggs TEAM 11 Vasundhara Rawat December 11, 2015 Project Specifications and Design Approach Goal: Design a 3-stage transimpedance

More information

DESIGN OF A FULLY DIFFERENTIAL HIGH-SPEED HIGH-PRECISION AMPLIFIER

DESIGN OF A FULLY DIFFERENTIAL HIGH-SPEED HIGH-PRECISION AMPLIFIER DESIGN OF A FULLY DIFFERENTIAL HIGH-SPEED HIGH-PRECISION AMPLIFIER Mayank Gupta mayank@ee.ucla.edu N. V. Girish envy@ee.ucla.edu Design I. Design II. University of California, Los Angeles EE215A Term Project

More information

Abstract :In this paper a low voltage two stage Cc. 1. Introduction. 2.Block diagram of proposed two stage operational amplifier and operation

Abstract :In this paper a low voltage two stage Cc. 1. Introduction. 2.Block diagram of proposed two stage operational amplifier and operation Small signal analysis of two stage operational amplifier on TSMC 180nm CMOS technology with low power dissipation Jahid khan 1 Ravi pandit 1, 1 Department of Electronics & Communication Engineering, 1

More information

INF3410 Fall Book Chapter 6: Basic Opamp Design and Compensation

INF3410 Fall Book Chapter 6: Basic Opamp Design and Compensation INF3410 Fall 2013 Compensation content Introduction Two Stage Opamps Compensation Slew Rate Systematic Offset Advanced Current Mirrors Operational Transconductance Amplifiers Current Mirror Opamps Folded

More information

Sensors & Transducers Published by IFSA Publishing, S. L.,

Sensors & Transducers Published by IFSA Publishing, S. L., Sensors & Transducers Published by IFSA Publishing, S. L., 208 http://www.sensorsportal.com Fully Differential Operation Amplifier Using Self Cascode MOSFET Structure for High Slew Rate Applications Kalpraj

More information