Design and Implementation of less quiescent current, less dropout LDO Regulator in 90nm Technology Madhukumar A S #1, M.

Size: px
Start display at page:

Download "Design and Implementation of less quiescent current, less dropout LDO Regulator in 90nm Technology Madhukumar A S #1, M."

Transcription

1 Design and Implementation of less quiescent current, less dropout LDO Regulator in 90nm Technology Madhukumar A S #1, M.Nagabhushan #2 #1 M.Tech student, Dept. of ECE. M.S.R.I.T, Bangalore, INDIA #2 Asst. Professor, Dept. of ECE., M.S.R.I.T, Bangalore, INDIA Abstract There is a great demand for battery-powered portable devices now-a-days. For reducing the standby power and maximizing the battery runtime in these devices, power management is compulsory. Here one such power management module called low-dropout (LDO) regulator is proposed and designed in 90nm technology. It converts an input of 1V to an output of V. A two stage operational amplifier is used as an error amplifier (EA) which is having high gain and high output swing in order to reduce the size of power MOS transistor. The reference voltage of 0.5V for the LDO is derived from a piecewise curvature compensated BGR in order to have LDO regulated output invariant to temperature. These advantages permit the proposed LDO regulator to operate over a wide range of operating conditions by achieving current efficiency about 99.99%, 68mV dropout voltage, 0.02µA quiescent current with a load regulation of 0.17mV/mA and line regulation of 5.41mV/V at 0.932V output. Keywords Low-dropout (LDO) regulator, less quiescent current, LDO tuning range, load regulation, Proportional to absolute temperature (PTAT),Complimentary to absolute temperature ( CTAT). I. INTRODUCTION Now-a-days battery powered devices such as mobile phones, laptops, PDA s etc are quite demanding in the current market trend and also these are likely to be the most important consumer products. The one critical parameter that needs to be considered in working of these devices is the battery power. Once the battery power starts draining and the efficiency of these devices reduces with respect to the time. Hence power management needs to be done for these battery equipped devices. The one such power management module we can think of is regulator. Regulator is of two types namely linear regulator [1] and switching regulator [10]. In this paper one example of linear regulator i.e. low-dropout (LDO) regulator is designed and implemented in 90nm technology. A low-dropout regulator is a DC linear voltage regulator which can operate with a very small input output differential voltage. For a good LDO it must have high tuning range, high current efficiency, low quiescent current I Q and very less dropout voltage especially for sub 1-V operation. A number of previous papers focused on reducing the dropout voltage and reducing the quiescent current [1] [6] of LDO regulator. The design in [1] consumes a quiescent current of about 60µA which is really a high value. If quiescent current increases means the current efficiency decreases which is a disadvantage. Hence in this paper the quiescent current reduces to a very small value. Also the dropout voltage in design [1] is 150mV which is a large value especially in sub 1- V operation. Hence in this paper the dropout voltage also reduced to a small value. II. IMPROVED PERFORMANCE PARAMETERS A LDO regulator basically consists of mainly four blocks namely an error amplifier (EA), a power MOS transistor (M P ), a feedback network and a bandgap reference circuit (BGR) as shown in Fig. 1. At the output side LDO regulator consists of load capacitor (C L ) and resistor (R SER ) in order to compensate for the stability of the circuit. Some of the improved performance parameters are discussed in the following sections. ISSN: Page 381

2 D. Small area of LDO circuit. The power MOS transistor used here in the LDO loop consumes more area of the total overall consumed area by the LDO circuit. Hence the aspect ratio of this power MOS transistor must be reduced. This can be done by increasing the swing and gain of the error amplifier (EA). III. LDO REGULATOR CIRCUIT DESIGNING LDO regulator consists of mainly four blocks and designing of all four blocks are explained in the following sections. Fig.1. Block diagram of proposed LDO A. ERROR AMPLIFIER The error amplifier is a two stage transconductance amplifier as shown in Fig.2. A. High Power Supply Rejection. In order for LDO to give a constant accurate output voltage especially in sub-1 V operation noise suppression must be done. In order to suppress the noise here in the proposed LDO architecture the error amplifier uses two stages. The first stage of EA is used to attenuate the power noise and the second stage of EA rejects the common mode noise at its inputs. And also power noise cancellation at gate of power MOS increases PSR. B. High Stability by LDO compensation. Here the power MOS M P contributes a non-dominant pole at a low frequency. In order to compensate for stability i.e. to cancel this non-dominant pole a large equivalent series resistance of C L (R SER ) is required to produce a low frequency zero. C. Very less dropout voltage and Quiescent current (I Q ). The dropout voltage of LDO is the difference between the input and the output voltage. Quiescent current is the difference between the input and the output current. For a good LDO both these should be very less. The dropout voltage is directly proportional to the maximum load current of the circuit. Hence by choosing the maximum load current as low as possible we can achieve very less dropout voltage. If dropout voltage decreases means the Quiescent current also decreases to very low value in the circuit. Fig.2. Two stage Error amplifier (EA) The first stage is the differential amplifier and second stage is the common source amplifier. Here in order to achieve the phase margin of amplifier greater than 60 0 the compensation capacitor is selected as 800 ff. The transistors M1 and M2 are matched transistors and are designed by first selecting the transconductance of M1 and M2 as 130µ in order to have high gain bandwidth product. The transistors M3 and M4 are matched transistors and are designed using the high input common mode range parameter. By knowing the bias current for the circuit I 5 transistors M5- M7 are designed. ISSN: Page 382

3 The gain and swing of the amplifier must be more in order to reduce the aspect ratio requirement of the power MOS transistor. The gain of the first stage and second stage is given by equation (1) and equation (2) respectively. The total gain is the sum of these gains in db i.e. in equation (3). (1) (2) B. POWER MOS TRANSISTOR. (3) Power MOSFET used here is the PMOS with high aspect ratio. The value or the aspect ratio of the power MOSFET is based on the dropout voltage and the maximum load current required. To have very less dropout voltage, we need to use very less load current. The relationship between dropout voltage and maximum load current is given in equation (4). From this relation the power MOS is designed. Fig.3. Piecewise curvature compensated BGR (4) C. PIECE WISE CURVATURE CORRECTED BGR. The proposed piecewise corrected BGR is shown in Fig.3. It consists of consists of a startup circuit, a conventional firstorder BGR and the proposed curvature-corrected current generator. We know that the first order BGR generate a reference with slightly negative temperature coefficient as is given in Fig.4. The curvature-corrected current generator provides a piecewise nonlinear current given in equation (5) to correct the nonlinear temperature dependence to achieve lower negative TC as shown in Fig.4. (5) (6) Fig.4. Reference curves for first order and curvature compensated BGR Proposed architecture uses two NMOS differential input opamps, of which one is used to generate PTAT and second opamp is used to generate a CTAT. Due to the positive TC of R 5 /R 2, a PTAT voltage is achieved at the gate-source voltage of transistor M 12. This voltage is used to overcome the negative TC and tries to move the reference curve upwards with respect to temperature. The reference voltage generated by this piecewise curvature compensated BGR is 0.5 V which is used by the LDO regulator circuit as a reference voltage. D. FEEDBACK NETWORK The feedback network consists of two resistors R1 and R2. These resistors are designed by taking the regulated output voltage required and the reference voltage from bandgap reference circuit as given in equation (7). (7) ISSN: Page 383

4 IV. IMPLEMENTATION, RESULTS & ANALYSIS The complete schematic circuit of the two stage error amplifier is created in virtuoso schematic editor and is as shown in Fig.5. The functionality is shown Fig.6.when the input is given to inverting terminal of EA. Fig.8. Piecewise curvature compensated BGR Fig.5. Two stage error amplifier (EA) Fig.9. BGR output curves V REF, CTAT and PTAT Fig.6. Inverting output The complete LDO regulator circuit is created in cadence virtuoso schematic editor and is shown in Fig.10. The gain of the EA obtained is ~50dB i.e dB and the same gain plot is shown in Fig.7. Fig.7. EA gain plot The piecewise curvature compensated BGR is shown in Fig.8. and the outputs obtained with respect to the temperature is shown in Fig.9. and the reference voltage is 500mV. Fig.10. Complete LDO regulator circuit The LDO regulator test circuit with load resistance R L for plotting the load regulation is shown in Fig.11. ISSN: Page 384

5 Fig.11. LDO regulator test circuit with R L This LDO can be tuned in the range from 0.5 V to 0.932V in increments of 10mV, 50mV and 100mV. This can be done by changing the values of R1 and R2 resistors. Case (1): When LDO is tuned to give a regulated output voltage of 500mV. The LDO can be tuned to 500mV by using resistors R1 and R2 at the output side to 1Ω and 500Ω respectively. And by varying load resistor R L we can see the load regulation of LDO. Fig.12. shows the outputs from internal blocks when LDO tuned at 500mV. Fig.13. Variation of V out vs. V in at 500mV regulated voltage Table 1.1. Line regulation at 500mV regulated voltage Vin(mV) Vout(mV) Fig.12. LDO outputs when it is tuned to 500mV We can infer from the above figure that the output from Error amplifier is mV in order to keep power MOSFET in saturation region so that the output will be a regulated constant voltage i.e. 500mV. The variation of output regulated voltage with respect to input voltage is called line regulation and is plotted in Fig.13.for regulated voltage of 500mV. The corresponding values of output versus input are tabulated as shown in the table 1.1. Case (2): When LDO is tuned to give a regulated output voltage of 932mV. The LDO can be tuned to 932mV by using resistors R1 and R2 at the output side to 430Ω and 500Ω respectively. Fig.14. shows the outputs from each and every block when LDO tuned at 932mV. The line regulation and is plotted in Fig.15. for regulated voltage of 932mV. The corresponding values of output versus input are tabulated as shown in the below table.1.2. ISSN: Page 385

6 Fig.14.. LDO outputs when it is tuned to 932mV Fig.16. Load Regulation at 932mV output voltage We can infer from the above graph that the variation of output voltage is very less with respect to the load current i.e. load resistor R L which is a good characteristic of LDO. Fig.15. Variation of V out vs. V in at 932mV regulated voltage Table 1.2. Line regulation at 932mV regulated voltage Finally all the parameters of LDO regulator are calculated and tabulated in the table 1.3 and in the same table all the parameters of this work are compared with the recent previous work of [1]. In this work the quiescent current and dropout voltage are decreased to a very less value. The current efficiency also increased and load regulation is decreased as well which is a good characteristic. Table 1.3. Comparison of LDO Parameters Vin(mV) Vout(mV) Parameters Ref1 [2014] This work V V V V V After this 932mV regulated output voltage if we want to tune further means it s not possible because the power MOS transistor enters into linear region and hence we cannot expect a regulated voltage at the output side and hence the dropout voltage is 68mV. Load regulation is a measure of the circuit s ability to maintain the specified output voltage under varying load conditions. The plot of load regulation i.e. variation of output voltage with respect to load resistor is shown in Fig.16. Technology 90nm 90nm Vin 1V 1V LDO Tuning Range In Increments of - 10mV,50mV,100mV Dropout Voltage 150mV 68mV Max Load current, Imax 100mA 1mA Quiescent Current, I Q 60µA 0.02µA Current Efficiency 99.94% 99.99% Efficiency of LDO 84.94% 93.19% Line Regulation mV/V Load Regulation Vout =0.85V Vout = 0.932V ISSN: Page 386

7 V. CONCLUSION The paper describes a LDO which is working with very less [7] P. Pournima, Piecewise Curvature-Corrected Bandgap Reference in 90 nm CMOS, IJSTE - International Journal of Science Technology & Engineering,Volume 1,Issue 2,August dropout voltage of about 68mV and very less quiescent current of 0.02 µa which are the characteristics of good LDO. The LDO output is invariable to temperature since reference voltage for regulator is derived from BGR circuit which also again good characteristic. The designed LDO can be used to provide stable voltages in the range from 0.5V to 0.932V and this range [8] J. Hu, B. Hu, Y. Fan, and M. Ismail, A 500 na quiescent, 100 ma maximum load CMOS low-dropout regulator, in Proc. IEEE Int. Conf. Electron. Circuits Syst., Dec. 2011, pp [9] Phillip. E. Allen, Douglas. R. Holeberg, CMOS Analog Circuit Design, Second Edition, Qxford University Press [10] -switching regulators. of voltages can be used as stabilized source voltages for devices working in sub 1 V operation. REFERENCES [1] Chung-Hsun Huang, Member, IEEE, Ying-Ting Ma, and Wei-Chen Liao Design of a Low-Voltage Low-Dropout Regulator, IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 6, JUNE [2] M. El-Nozahi, A. Amer, J. Torres, K. Entesari, and E. Sanchez- Sinencio, High PSR low drop-out regulator with feed-forward ripple cancellation technique, IEEE J. Solid-State Circuits, vol. 45, no. 3, pp ,Mar [3] H.-C. Lin, H.-H. Wu, and T.-Y. Chang, An active-frequency compensation scheme for CMOS low-dropout regulators with transient-response improvement, IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no. 9,pp , Sep [4] P. Hazucha, T. Karnik, B. A. Bloechel, C. Parsons, D. Finan, and S. Borkar, Area-efficient linear regulator with ultra-fast load regulation, IEEE J. Solid-State Circuits, vol. 40, no. 4, pp , Apr [5] Y.-H. Lam and W.-H. Ki, A 0.9 V 0.35 μm adaptively biased CMOS LDO regulator with fast transient response, in Proc. IEEE Int. Solid-State Circuits Conf., Feb. 2008, pp , 626. [6] C. Chen, J. H. Wu, and Z. X. Wang, 150 ma LDO with selfadjusting frequency compensation scheme, Electron. Lett., vol. 47, no. 13, pp , Jun ISSN: Page 387

Design of Low-Dropout Regulator

Design of Low-Dropout Regulator 2015; 1(7): 323-330 ISSN Print: 2394-7500 ISSN Online: 2394-5869 Impact Factor: 5.2 IJAR 2015; 1(7): 323-330 www.allresearchjournal.com Received: 20-04-2015 Accepted: 26-05-2015 Nikitha V Student, Dept.

More information

Design of a Capacitor-less Low Dropout Voltage Regulator

Design of a Capacitor-less Low Dropout Voltage Regulator Design of a Capacitor-less Low Dropout Voltage Regulator Sheenam Ahmed 1, Isha Baokar 2, R Sakthivel 3 1 Student, M.Tech VLSI, School of Electronics Engineering, VIT University, Vellore, Tamil Nadu, India

More information

DESIGN OF A LOW DROP-OUT VOLTAGE REGULATOR USING VLSI

DESIGN OF A LOW DROP-OUT VOLTAGE REGULATOR USING VLSI DESIGN OF A LOW DROP-OUT VOLTAGE REGULATOR USING VLSI 1 NIDA AHMED, 2 YAMINI CHHABDA 1 (Electronics & Telecommunication Department,P. R. Patil College of Engg and Technology Amravati/ Sant Gadge Baba Amravati

More information

DESIGN OF A LOW-VOLTAGE LOW-DROPOUT REGULATOR

DESIGN OF A LOW-VOLTAGE LOW-DROPOUT REGULATOR Int. J. Elec&Electr.Eng&Telecoms. 2014 2015 S R Patil and Naseeruddin, 2014 Research Paper ISSN 2319 2518 www.ijeetc.com Vol. 4, No. 1, January 2015 2015 IJEETC. All Rights Reserved DESIGN OF A LOW-VOLTAGE

More information

REVIEW ON DIFFERENT LOW DROP-OUT VOLTAGE REGULATOR TOPOLOGY

REVIEW ON DIFFERENT LOW DROP-OUT VOLTAGE REGULATOR TOPOLOGY REVIEW ON DIFFERENT LOW DROP-OUT VOLTAGE REGULATOR TOPOLOGY Samim Jesmin 1, Mr.Sandeep Singh 2 1 Student, Department of Electronic and Communication Engineering Sharda University U.P, India 2 Assistant

More information

Design and Simulation of Low Dropout Regulator

Design and Simulation of Low Dropout Regulator Design and Simulation of Low Dropout Regulator Chaitra S Kumar 1, K Sujatha 2 1 MTech Student, Department of Electronics, BMSCE, Bangalore, India 2 Assistant Professor, Department of Electronics, BMSCE,

More information

Comparative study on a low drop-out voltage regulator

Comparative study on a low drop-out voltage regulator Comparative study on a low drop-out voltage regulator Shirish V. Pattalwar 1, Anjali V. Nimkar 2 Associate Professor, Department of Electronics and Telecommunication, Prof. Ram Meghe Institute of Technology

More information

DESIGN OF A LOW-VOLTAGE AND LOW DROPOUT REGULATOR WITH ASSISTANT PUSH-PULL OUTPUT STAGE CIRCUIT

DESIGN OF A LOW-VOLTAGE AND LOW DROPOUT REGULATOR WITH ASSISTANT PUSH-PULL OUTPUT STAGE CIRCUIT DESIGN OF A LOW-VOLTAGE AND LOW DROPOUT REGULATOR WITH ASSISTANT PUSH-PULL OUTPUT STAGE CIRCUIT 1 P.Sindhu, 2 S.Hanumantha Rao 1 M.tech student, Department of ECE, Shri Vishnu Engineering College for Women,

More information

Design of Low Drop-out Voltage Regulator with Improved PSRR and Low Quiescent Current. Master of Technology in VLSI Design

Design of Low Drop-out Voltage Regulator with Improved PSRR and Low Quiescent Current. Master of Technology in VLSI Design Design of Low Drop-out Voltage Regulator with Improved PSRR and Low Quiescent Current A dissertation submitted in partial fulfillment of the requirement for the award of degree of Master of Technology

More information

Implementation of a Low drop out regulator using a Sub 1 V Band Gap Voltage Reference circuit in Standard 180nm CMOS process

Implementation of a Low drop out regulator using a Sub 1 V Band Gap Voltage Reference circuit in Standard 180nm CMOS process Implementation of a Low drop out regulator using a Sub 1 V Band Gap Voltage Reference circuit in Standard 180nm CMOS 1 S.Aparna, 2 Dr. G.V. Mahalakshmi 1 PG Scholar, 2 Professor 1,2 Department of Electronics

More information

An Improved Bandgap Reference (BGR) Circuit with Constant Voltage and Current Outputs

An Improved Bandgap Reference (BGR) Circuit with Constant Voltage and Current Outputs International Journal of Research in Engineering and Innovation Vol-1, Issue-6 (2017), 60-64 International Journal of Research in Engineering and Innovation (IJREI) journal home page: http://www.ijrei.com

More information

Design of a low voltage,low drop-out (LDO) voltage cmos regulator

Design of a low voltage,low drop-out (LDO) voltage cmos regulator Design of a low,low drop-out (LDO) cmos regulator Chaithra T S Ashwini Abstract- In this paper a low, low drop-out (LDO) regulator design procedure is proposed and implemented using 0.25 micron CMOS process.

More information

Design of Rail-to-Rail Op-Amp in 90nm Technology

Design of Rail-to-Rail Op-Amp in 90nm Technology IJSTE - International Journal of Science Technology & Engineering Volume 1 Issue 2 August 2014 ISSN(online) : 2349-784X Design of Rail-to-Rail Op-Amp in 90nm Technology P R Pournima M.Tech Electronics

More information

A Resistorless CMOS Non-Bandgap Voltage Reference

A Resistorless CMOS Non-Bandgap Voltage Reference A Resistorless CMOS Non-Bandgap Voltage Reference Mary Ashritha 1, Ebin M Manuel 2 PG Scholar [VLSI & ES], Dept. of ECE, Government Engineering College, Idukki, Kerala, India 1 Assistant Professor, Dept.

More information

ISSN:

ISSN: 468 Modeling and Design of a CMOS Low Drop-out (LDO) Voltage Regulator PRIYADARSHINI JAINAPUR 1, CHIRAG SHARMA 2 1 Department of E&CE, Nitte Meenakshi Institute of Technology, Yelahanka, Bangalore-560064,

More information

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Active Low Pass Filter based Efficient DC-DC Converter K.Raashmil *1, V.Sangeetha 2 *1 PG Student, Department of VLSI Design,

More information

DESIGN AND ANALYSIS OF LOW POWER CHARGE PUMP CIRCUIT FOR PHASE-LOCKED LOOP

DESIGN AND ANALYSIS OF LOW POWER CHARGE PUMP CIRCUIT FOR PHASE-LOCKED LOOP DESIGN AND ANALYSIS OF LOW POWER CHARGE PUMP CIRCUIT FOR PHASE-LOCKED LOOP 1 B. Praveen Kumar, 2 G.Rajarajeshwari, 3 J.Anu Infancia 1, 2, 3 PG students / ECE, SNS College of Technology, Coimbatore, (India)

More information

3 ppm Ultra Wide Range Curvature Compensated Bandgap Reference

3 ppm Ultra Wide Range Curvature Compensated Bandgap Reference 1 3 ppm Ultra Wide Range Curvature Compensated Bandgap Reference Xiangyong Zhou 421002457 Abstract In this report a current mode bandgap with a temperature coefficient of 3 ppm for the range from -117

More information

POWER-MANAGEMENT circuits are becoming more important

POWER-MANAGEMENT circuits are becoming more important 174 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 58, NO. 3, MARCH 2011 Dynamic Bias-Current Boosting Technique for Ultralow-Power Low-Dropout Regulator in Biomedical Applications

More information

Sensors & Transducers Published by IFSA Publishing, S. L.,

Sensors & Transducers Published by IFSA Publishing, S. L., Sensors & Transducers Published by IFSA Publishing, S. L., 208 http://www.sensorsportal.com Fully Differential Operation Amplifier Using Self Cascode MOSFET Structure for High Slew Rate Applications Kalpraj

More information

A 300 ma 0.18 μm CMOS Low-Dropout Regulator with High Power-Supply Rejection

A 300 ma 0.18 μm CMOS Low-Dropout Regulator with High Power-Supply Rejection A 300 ma 0.18 μm CMOS Low-Dropout Regulator with High Power-Supply Rejection Yali Shao*, Lenian He Abstract A CMOS high power supply rejection (PSR) lowdropout regulator (LDO) with a maximum output current

More information

Implementation of a Capacitor Less Low Dropout Voltage Regulator on Chip (SOC)

Implementation of a Capacitor Less Low Dropout Voltage Regulator on Chip (SOC) Implementation of a Capacitor Less Low Dropout Voltage Regulator on Chip (SOC) Shailika Sharma M.TECH-Advance Electronics and Communication JSS Academy of Technical Education New Delhi, India Abstract

More information

Design of High Gain Two stage Op-Amp using 90nm Technology

Design of High Gain Two stage Op-Amp using 90nm Technology Design of High Gain Two stage Op-Amp using 90nm Technology Shaik Aqeel 1, P. Krishna Deva 2, C. Mahesh Babu 3 and R.Ganesh 4 1 CVR College of Engineering/UG Student, Hyderabad, India 2 CVR College of Engineering/UG

More information

Design and Performance Analysis of Low Power RF Operational Amplifier using CMOS and BiCMOS Technology

Design and Performance Analysis of Low Power RF Operational Amplifier using CMOS and BiCMOS Technology Proc. of Int. Conf. on Recent Trends in Information, Telecommunication and Computing, ITC Design and Performance Analysis of Low Power RF Operational Amplifier using CMOS and BiCMOS Technology A. Baishya

More information

Design and Analysis of Low Power Two Stage CMOS Op- Amp with 50nm Technology

Design and Analysis of Low Power Two Stage CMOS Op- Amp with 50nm Technology Design and Analysis of Low Power Two Stage CMOS Op- Amp with 50nm Technology Swetha Velicheti, Y. Sandhyarani, P.Praveen kumar, B.Umamaheshrao Assistant Professor, Dept. of ECE, SSCE, Srikakulam, A.P.,

More information

CMOS 0.35 µm Low-Dropout Voltage Regulator using Differentiator Technique

CMOS 0.35 µm Low-Dropout Voltage Regulator using Differentiator Technique CMOS 0.35 µm Low-Dropout Voltage Regulator using Differentiator Technique 1 Shailika Sharma, 2 Himani Mittal, 1.2 Electronics & Communication Department, 1,2 JSS Academy of Technical Education,Gr. Noida,

More information

CAPACITORLESS LDO FOR HIGH FREQUENCY APPLICATIONS

CAPACITORLESS LDO FOR HIGH FREQUENCY APPLICATIONS CAPACITORLESS LDO FOR HIGH FREQUENCY APPLICATIONS Jeyashri.M 1, SeemaSerin.A.S 2, Vennila.P 3, Lakshmi Priya.R 4 1PG Scholar, Department of ECE, Theni Kammavar Sangam College of Technology, Tamilnadu,

More information

A Review Paper on Frequency Compensation of Transconductance Operational Amplifier (OTA)

A Review Paper on Frequency Compensation of Transconductance Operational Amplifier (OTA) A Review Paper on Frequency Compensation of Transconductance Operational Amplifier (OTA) Raghavendra Gupta 1, Prof. Sunny Jain 2 Scholar in M.Tech in LNCT, RGPV University, Bhopal M.P. India 1 Asst. Professor

More information

Atypical op amp consists of a differential input stage,

Atypical op amp consists of a differential input stage, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 33, NO. 6, JUNE 1998 915 Low-Voltage Class Buffers with Quiescent Current Control Fan You, S. H. K. Embabi, and Edgar Sánchez-Sinencio Abstract This paper presents

More information

Low Power Op-Amp Based on Weak Inversion with Miller-Cascoded Frequency Compensation

Low Power Op-Amp Based on Weak Inversion with Miller-Cascoded Frequency Compensation Low Power Op-Amp Based on Weak Inversion with Miller-Cascoded Frequency Compensation Maryam Borhani, Farhad Razaghian Abstract A design for a rail-to-rail input and output operational amplifier is introduced.

More information

A 3-A CMOS low-dropout regulator with adaptive Miller compensation

A 3-A CMOS low-dropout regulator with adaptive Miller compensation Analog Integr Circ Sig Process (2006) 49:5 0 DOI 0.007/s0470-006-8697- A 3-A CMOS low-dropout regulator with adaptive Miller compensation Xinquan Lai Jianping Guo Zuozhi Sun Jianzhang Xie Received: 8 August

More information

Design Analysis of Low Drop-Out Voltage Regulator with Current Buffer Compensation

Design Analysis of Low Drop-Out Voltage Regulator with Current Buffer Compensation Design Analysis of Low Drop-Out Voltage with Current Buffer Compensation Rashmi Bawankar ME Scholar, ECE NITTTR, Chandigarh. Rajesh Mehra, PhD Associate Professor, ECE, NITTTR, Chandigarh. ABSTRACT A Voltage

More information

Design Analysis and Performance Comparison of Low Power High Gain 2nd Stage Differential Amplifier Along with 1st Stage

Design Analysis and Performance Comparison of Low Power High Gain 2nd Stage Differential Amplifier Along with 1st Stage Design Analysis and Performance Comparison of Low Power High Gain 2nd Stage Differential Amplifier Along with 1st Stage Sadeque Reza Khan Department of Electronic and Communication Engineering, National

More information

IN RECENT years, low-dropout linear regulators (LDOs) are

IN RECENT years, low-dropout linear regulators (LDOs) are IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 52, NO. 9, SEPTEMBER 2005 563 Design of Low-Power Analog Drivers Based on Slew-Rate Enhancement Circuits for CMOS Low-Dropout Regulators

More information

A Linear CMOS Low Drop-Out Voltage Regulator in a 0.6µm CMOS Technology

A Linear CMOS Low Drop-Out Voltage Regulator in a 0.6µm CMOS Technology International Journal of Electronics and Electrical Engineering Vol. 3, No. 3, June 2015 A Linear CMOS Low DropOut Voltage Regulator in a 0.6µm CMOS Technology Mohammad Maadi Middle East Technical University,

More information

Due to the absence of internal nodes, inverter-based Gm-C filters [1,2] allow achieving bandwidths beyond what is possible

Due to the absence of internal nodes, inverter-based Gm-C filters [1,2] allow achieving bandwidths beyond what is possible A Forward-Body-Bias Tuned 450MHz Gm-C 3 rd -Order Low-Pass Filter in 28nm UTBB FD-SOI with >1dBVp IIP3 over a 0.7-to-1V Supply Joeri Lechevallier 1,2, Remko Struiksma 1, Hani Sherry 2, Andreia Cathelin

More information

Comparative Analysis of Compensation Techniques for improving PSRR of an OPAMP

Comparative Analysis of Compensation Techniques for improving PSRR of an OPAMP Comparative Analysis of Compensation Techniques for improving PSRR of an OPAMP 1 Pathak Jay, 2 Sanjay Kumar M.Tech VLSI and Embedded System Design, Department of School of Electronics, KIIT University,

More information

Design and Analysis of High Gain Differential Amplifier Using Various Topologies

Design and Analysis of High Gain Differential Amplifier Using Various Topologies Design and Analysis of High Gain Amplifier Using Various Topologies SAMARLA.SHILPA 1, J SRILATHA 2 1Assistant Professor, Dept of Electronics and Communication Engineering, NNRG, Ghatkesar, Hyderabad, India.

More information

A new class AB folded-cascode operational amplifier

A new class AB folded-cascode operational amplifier A new class AB folded-cascode operational amplifier Mohammad Yavari a) Integrated Circuits Design Laboratory, Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran a) myavari@aut.ac.ir

More information

Design for MOSIS Education Program

Design for MOSIS Education Program Design for MOSIS Education Program (Research) T46C-AE Project Title Low Voltage Analog Building Block Prepared by: C. Durisety, S. Chen, B. Blalock, S. Islam Institution: Department of Electrical and Computer

More information

DESIGN OF A PROGRAMMABLE LOW POWER LOW DROP-OUT REGULATOR

DESIGN OF A PROGRAMMABLE LOW POWER LOW DROP-OUT REGULATOR DESIGN OF A PROGRAMMABLE LOW POWER LOW DROP-OUT REGULATOR Jayanthi Vanama and G.L.Sampoorna Trainee Engineer, Powerwave Technologies Pvt. Ltd., R&D India jayanthi.vanama@pwav.com Intern, CONEXANT Systems

More information

DESIGN AND ANALYSIS OF SUB 1-V BANDGAP REFERENCE (BGR) VOLTAGE GENERATORS FOR PICOWATT LSI s.

DESIGN AND ANALYSIS OF SUB 1-V BANDGAP REFERENCE (BGR) VOLTAGE GENERATORS FOR PICOWATT LSI s. http:// DESIGN AND ANALYSIS OF SUB 1-V BANDGAP REFERENCE (BGR) VOLTAGE GENERATORS FOR PICOWATT LSI s. Shivam Mishra 1, K. Suganthi 2 1 Research Scholar in Mech. Deptt, SRM University,Tamilnadu 2 Asst.

More information

ISSN: X Impact factor: 4.295

ISSN: X Impact factor: 4.295 ISSN: 2454-132X Impact factor: 4.295 (Volume2, Issue6) Available online at: www.ijariit.com An Approach for Reduction in Power Consumption in Low Voltage Dropout Regulator Shivani.S. Tantarpale 1 Ms. Archana

More information

Design of Miller Compensated Two-Stage Operational Amplifier for Data Converter Applications

Design of Miller Compensated Two-Stage Operational Amplifier for Data Converter Applications Design of Miller Compensated Two-Stage Operational Amplifier for Data Converter Applications Prema Kumar. G Shravan Kudikala Casest, School Of Physics Casest, School Of Physics University Of Hyderabad

More information

Performance Analysis of Low Power, High Gain Operational Amplifier Using CMOS VLSI Design

Performance Analysis of Low Power, High Gain Operational Amplifier Using CMOS VLSI Design RESEARCH ARTICLE OPEN ACCESS Performance Analysis of Low Power, High Gain Operational Amplifier Using CMOS VLSI Design Ankush S. Patharkar*, Dr. Shirish M. Deshmukh** *(Department of Electronics and Telecommunication,

More information

REFERENCE circuits are the basic building blocks in many

REFERENCE circuits are the basic building blocks in many IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 53, NO. 8, AUGUST 2006 667 New Curvature-Compensation Technique for CMOS Bandgap Reference With Sub-1-V Operation Ming-Dou Ker, Senior

More information

Design and Implementation of Current-Mode Multiplier/Divider Circuits in Analog Processing

Design and Implementation of Current-Mode Multiplier/Divider Circuits in Analog Processing Design and Implementation of Current-Mode Multiplier/Divider Circuits in Analog Processing N.Rajini MTech Student A.Akhila Assistant Professor Nihar HoD Abstract This project presents two original implementations

More information

A 0.844ps Fast Transient Response Low Drop-Out Voltage Regulator In 0.18-µm CMOS Technology

A 0.844ps Fast Transient Response Low Drop-Out Voltage Regulator In 0.18-µm CMOS Technology A 0.844ps Fast Transient Response Low Drop-Out Voltage Regulator In 0.8-µm CMOS Technology Hicham Akhamal, Mostafa Chakir, Hassan Qjidaa 3 Université Sidi Mohamed Ben Abdellah Faculté des sciences Dhar

More information

CMOS fast-settling time low pass filter associated with voltage reference and current limiter for low dropout regulator

CMOS fast-settling time low pass filter associated with voltage reference and current limiter for low dropout regulator CMOS fast-settling time low pass filter associated with voltage reference and current limiter for low dropout regulator Wonseok Oh a), Praveen Nadimpalli, and Dharma Kadam RF Micro Devices Inc., 6825 W.

More information

Simran Singh Student, School Of ICT Gautam Buddha University Greater Noida

Simran Singh Student, School Of ICT Gautam Buddha University Greater Noida An Ultra Low-Voltage CMOS Self-Biased OTA Simran Singh Student, School Of ICT Gautam Buddha University Greater Noida simransinghh386@gmail.com Priyanka Goyal Faculty Associate, School Of ICT Gautam Buddha

More information

AN OFF-CHIP CAPACITOR FREE LOW DROPOUT REGULATOR WITH PSR ENHANCEMENT AT HIGHER FREQUENCIES. A Thesis SEENU GOPALRAJU

AN OFF-CHIP CAPACITOR FREE LOW DROPOUT REGULATOR WITH PSR ENHANCEMENT AT HIGHER FREQUENCIES. A Thesis SEENU GOPALRAJU AN OFF-CHIP CAPACITOR FREE LOW DROPOUT REGULATOR WITH PSR ENHANCEMENT AT HIGHER FREQUENCIES A Thesis by SEENU GOPALRAJU Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment

More information

A Low-Quiescent Current Low-Dropout Regulator with Wide Input Range

A Low-Quiescent Current Low-Dropout Regulator with Wide Input Range International Journal of Electronics and Electrical Engineering Vol. 3, No. 3, June 2015 A Low-Quiescent Current Low-Dropout Regulator with Wide Input Range Xueshuo Yang Beijing Microelectronics Tech.

More information

Analog CMOS Interface Circuits for UMSI Chip of Environmental Monitoring Microsystem

Analog CMOS Interface Circuits for UMSI Chip of Environmental Monitoring Microsystem Analog CMOS Interface Circuits for UMSI Chip of Environmental Monitoring Microsystem A report Submitted to Canopus Systems Inc. Zuhail Sainudeen and Navid Yazdi Arizona State University July 2001 1. Overview

More information

Design of DC-DC Boost Converter in CMOS 0.18µm Technology

Design of DC-DC Boost Converter in CMOS 0.18µm Technology Volume 3, Issue 10, October-2016, pp. 554-560 ISSN (O): 2349-7084 International Journal of Computer Engineering In Research Trends Available online at: www.ijcert.org Design of DC-DC Boost Converter in

More information

A Low Dropout Voltage Regulator with Enhanced Transconductance Error Amplifier and Small Output Voltage Variations

A Low Dropout Voltage Regulator with Enhanced Transconductance Error Amplifier and Small Output Voltage Variations A Low Dropout Voltage Regulator with Enhanced Transconductance Error Amplifier and Small Output Voltage Variations Ebrahim Abiri*, Mohammad Reza Salehi**, and Sara Mohammadalinejadi*** Department of Electrical

More information

A LOW DROPOUT VOLTAGE REGULATOR WITH ENHANCED TRANSCONDUCTANCE ERROR AMPLIFIER AND SMALL OUTPUT VOLTAGE VARIATIONS

A LOW DROPOUT VOLTAGE REGULATOR WITH ENHANCED TRANSCONDUCTANCE ERROR AMPLIFIER AND SMALL OUTPUT VOLTAGE VARIATIONS ISSN 1313-7069 (print) ISSN 1313-3551 (online) Trakia Journal of Sciences, No 4, pp 441-448, 2014 Copyright 2014 Trakia University Available online at: http://www.uni-sz.bg doi:10.15547/tjs.2014.04.015

More information

Enhanced active feedback technique with dynamic compensation for low-dropout voltage regulator

Enhanced active feedback technique with dynamic compensation for low-dropout voltage regulator Analog Integr Circ Sig Process (2013) 75:97 108 DOI 10.1007/s10470-013-0034-x Enhanced active feedback technique with dynamic compensation for low-dropout voltage regulator Chia-Min Chen Chung-Chih Hung

More information

Ultra-Low-Voltage Floating-Gate Transconductance Amplifiers

Ultra-Low-Voltage Floating-Gate Transconductance Amplifiers IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 48, NO. 1, JANUARY 2001 37 Ultra-Low-Voltage Floating-Gate Transconductance Amplifiers Yngvar Berg, Tor S. Lande,

More information

High efficiency DC-DC Buck converter architecture suitable for embedded applications using switched capacitor

High efficiency DC-DC Buck converter architecture suitable for embedded applications using switched capacitor International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 2 Issue 4 ǁ April. 2013 ǁ PP.15-19 High efficiency DC-DC Buck converter architecture suitable

More information

Keywords - Analog Multiplier, Four-Quadrant, FVF Differential Structure, Source Follower.

Keywords - Analog Multiplier, Four-Quadrant, FVF Differential Structure, Source Follower. Characterization of CMOS Four Quadrant Analog Multiplier Nipa B. Modi*, Priyesh P. Gandhi ** *(PG Student, Department of Electronics & Communication, L. C. Institute of Technology, Gujarat Technological

More information

A Low-Power 12 Transistor Full Adder Design using 3 Transistor XOR Gates

A Low-Power 12 Transistor Full Adder Design using 3 Transistor XOR Gates A Low-Power 12 Transistor Full Adder Design using 3 Transistor XOR Gates Anil Kumar 1 Kuldeep Singh 2 Student Assistant Professor Department of Electronics and Communication Engineering Guru Jambheshwar

More information

International Journal of Pure and Applied Mathematics

International Journal of Pure and Applied Mathematics Volume 118 No. 0 018, 4187-4194 ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu A 5- GHz CMOS Low Noise Amplifier with High gain and Low power using Pre-distortion technique A.Vidhya

More information

NOWADAYS, multistage amplifiers are growing in demand

NOWADAYS, multistage amplifiers are growing in demand 1690 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 51, NO. 9, SEPTEMBER 2004 Advances in Active-Feedback Frequency Compensation With Power Optimization and Transient Improvement Hoi

More information

Cascode Bulk Driven Operational Amplifier with Improved Gain

Cascode Bulk Driven Operational Amplifier with Improved Gain Cascode Bulk Driven Operational Amplifier with Improved Gain A.V.D. Sai Priyanka 1, S. Subba Rao 2 P.G. Student, Department of Electronics and Communication Engineering, VR Siddhartha Engineering College,

More information

FULL ON-CHIP CMOS LOW DROPOUT VOLTAGE REGULATOR WITH -41 db AT 1 MHZ FOR WIRELESS APPLICATIONS

FULL ON-CHIP CMOS LOW DROPOUT VOLTAGE REGULATOR WITH -41 db AT 1 MHZ FOR WIRELESS APPLICATIONS FULL ON-CHIP CMOS LOW DROPOUT VOLTAGE REGULATOR WITH -41 db AT 1 MHZ FOR WIRELESS APPLICATIONS 1 ZARED KAMAL, 2 QJIDAA HASSAN, 3 ZOUAK MOHCINE 1, 3 Faculty of Sciences and Technology, Electrical Engineering

More information

1-13GHz Wideband LNA utilizing a Transformer as a Compact Inter-stage Network in 65nm CMOS

1-13GHz Wideband LNA utilizing a Transformer as a Compact Inter-stage Network in 65nm CMOS -3GHz Wideband LNA utilizing a Transformer as a Compact Inter-stage Network in 65nm CMOS Hyohyun Nam and Jung-Dong Park a Division of Electronics and Electrical Engineering, Dongguk University, Seoul E-mail

More information

Design and Analysis of Sram Cell for Reducing Leakage in Submicron Technologies Using Cadence Tool

Design and Analysis of Sram Cell for Reducing Leakage in Submicron Technologies Using Cadence Tool IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 10, Issue 2 Ver. II (Mar Apr. 2015), PP 52-57 www.iosrjournals.org Design and Analysis of

More information

IN THE modern technology, power management is greatly

IN THE modern technology, power management is greatly 1386 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 25, NO. 6, JUNE 2010 A Low-Dropout Regulator With Smooth Peak Current Control Topology for Overcurrent Protection Chun-Yu Hsieh, Chih-Yu Yang, and Ke-Horng

More information

Orister Corporation. LDO Thesis

Orister Corporation. LDO Thesis Orister Corporation LDO Thesis AGENDA What is a Linear egulator LDO ntroductions LDO S Terms and Definitions LDO S LAYOUT What s a Linear egulator A linear regulator operates by using a voltage-controlled

More information

Low-voltage, High-precision Bandgap Current Reference Circuit

Low-voltage, High-precision Bandgap Current Reference Circuit Low-voltage, High-precision Bandgap Current Reference Circuit Chong Wei Keat, Harikrishnan Ramiah and Jeevan Kanesan Department of Electrical Engineering, Faculty of Engineering, University of Malaya,

More information

An Ultralow-Power Low-Voltage Fully Differential Opamp for Long-Life Autonomous Portable Equipment

An Ultralow-Power Low-Voltage Fully Differential Opamp for Long-Life Autonomous Portable Equipment International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 7, Issue 1 (May 2013), PP. 81-85 An Ultralow-Power Low-Voltage Fully Differential

More information

RT9167/A. Low-Noise, Fixed Output Voltage, 300mA/500mA LDO Regulator Features. General Description. Applications. Ordering Information RT9167/A-

RT9167/A. Low-Noise, Fixed Output Voltage, 300mA/500mA LDO Regulator Features. General Description. Applications. Ordering Information RT9167/A- General Description The RT9167/A is a 3mA/mA low dropout and low noise micropower regulator suitable for portable applications. The output voltages range from 1.V to.v in 1mV increments and 2% accuracy.

More information

Revision History. Contents

Revision History. Contents Revision History Ver. # Rev. Date Rev. By Comment 0.0 9/15/2012 Initial draft 1.0 9/16/2012 Remove class A part 2.0 9/17/2012 Comments and problem 2 added 3.0 10/3/2012 cmdmprobe re-simulation, add supplement

More information

Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1

Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1 Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1 LECTURE 300 LOW VOLTAGE OP AMPS LECTURE ORGANIZATION Outline Introduction Low voltage input stages Low voltage gain stages Low voltage bias circuits

More information

A Capacitor-less Low Dropout Regulator for Enhanced Power Supply Rejection

A Capacitor-less Low Dropout Regulator for Enhanced Power Supply Rejection IEIE Transactions on Smart Processing and Computing, vol. 4, no. 3, June 2015 http://dx.doi.org/10.5573/ieiespc.2015.4.3.152 152 IEIE Transactions on Smart Processing and Computing A Capacitor-less Low

More information

DESIGN HIGH SPEED, LOW NOISE, LOW POWER TWO STAGE CMOS OPERATIONAL AMPLIFIER. Himanshu Shekhar* 1, Amit Rajput 1

DESIGN HIGH SPEED, LOW NOISE, LOW POWER TWO STAGE CMOS OPERATIONAL AMPLIFIER. Himanshu Shekhar* 1, Amit Rajput 1 ISSN 2277-2685 IJESR/June 2014/ Vol-4/Issue-6/319-323 Himanshu Shekhar et al./ International Journal of Engineering & Science Research DESIGN HIGH SPEED, LOW NOISE, LOW POWER TWO STAGE CMOS OPERATIONAL

More information

LOW VOLTAGE ANALOG IC DESIGN PROJECT 1. CONSTANT Gm RAIL TO RAIL INPUT STAGE DESIGN. Prof. Dr. Ali ZEKĐ. Umut YILMAZER

LOW VOLTAGE ANALOG IC DESIGN PROJECT 1. CONSTANT Gm RAIL TO RAIL INPUT STAGE DESIGN. Prof. Dr. Ali ZEKĐ. Umut YILMAZER LOW VOLTAGE ANALOG IC DESIGN PROJECT 1 CONSTANT Gm RAIL TO RAIL INPUT STAGE DESIGN Prof. Dr. Ali ZEKĐ Umut YILMAZER 1 1. Introduction In this project, two constant Gm input stages are designed. First circuit

More information

EE 501 Lab9 Widlar Biasing Circuit and Bandgap Reference Circuit

EE 501 Lab9 Widlar Biasing Circuit and Bandgap Reference Circuit EE 501 Lab9 Widlar Biasing Circuit and Bandgap Reference Circuit Due Nov. 19, 2015 Objective: 1. Understand the Widlar current source circuit. 2. Built a Self-biasing current source circuit. 3. Understand

More information

Design of Operational Amplifier in 45nm Technology

Design of Operational Amplifier in 45nm Technology Design of Operational Amplifier in 45nm Technology Aman Kaushik ME Scholar Dept. of E&CE, NITTTR Chandigarh Abstract-This paper presents the designing and performance analysis of Operational Transconductance

More information

A 16Ω Audio Amplifier with 93.8 mw Peak loadpower and 1.43 quiscent power consumption

A 16Ω Audio Amplifier with 93.8 mw Peak loadpower and 1.43 quiscent power consumption A 16Ω Audio Amplifier with 93.8 mw Peak loadpower and 1.43 quiscent power consumption IEEE Transactions on circuits and systems- Vol 59 No:3 March 2012 Abstract A class AB audio amplifier is used to drive

More information

Research Article Volume 6 Issue No. 12

Research Article Volume 6 Issue No. 12 ISSN XXXX XXXX 2016 IJESC Research Article Volume 6 Issue No. 12 A Fully-Integrated Low-Dropout Regulator with Full Spectrum Power Supply Rejection Muthya la. Manas a 1, G.Laxmi 2, G. Ah med Zees han 3

More information

LOW POWER FOLDED CASCODE OTA

LOW POWER FOLDED CASCODE OTA LOW POWER FOLDED CASCODE OTA Swati Kundra 1, Priyanka Soni 2 and Anshul Kundra 3 1,2 FET, Mody Institute of Technology & Science, Lakshmangarh, Sikar-322331, INDIA swati.kundra87@gmail.com, priyankamec@gmail.com

More information

Low power high-gain class-ab OTA with dynamic output current scaling

Low power high-gain class-ab OTA with dynamic output current scaling LETTER IEICE Electronics Express, Vol.0, No.3, 6 Low power high-gain class-ab OTA with dynamic output current scaling Youngil Kim a) and Sangsun Lee b) Department Nanoscale Semiconductor Engineering, Hanyang

More information

Available online Journal of Scientific and Engineering Research, 2017, 4(6): Research Article

Available online   Journal of Scientific and Engineering Research, 2017, 4(6): Research Article Available online www.jsaer.com, 2017, 4(6):65-70 Research Article ISSN: 2394-2630 CODEN(USA): JSERBR Design & Analysis of on Chip Voltage Regulator Circuits for Low Power VLSI Applications Vijendra K Maurya

More information

Design of Continuous Time Multibit Sigma Delta ADC for Next Generation Wireless Applications

Design of Continuous Time Multibit Sigma Delta ADC for Next Generation Wireless Applications RESEARCH ARTICLE OPEN ACCESS Design of Continuous Time Multibit Sigma Delta ADC for Next Generation Wireless Applications Sharon Theresa George*, J. Mangaiyarkarasi** *(Department of Information and Communication

More information

ISSN: [Tahseen* et al., 6(7): July, 2017] Impact Factor: 4.116

ISSN: [Tahseen* et al., 6(7): July, 2017] Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY REVIEW PAPER ON PSEUDO-DIFFERENTIAL AND BULK-DRIVEN MOS TRANSISTOR TECHNIQUE FOR OTA Shainda J. Tahseen *1, Sandeep Singh 2 *

More information

Design and Analysis of Double Gate MOSFET Operational Amplifier in 45nm CMOS Technology

Design and Analysis of Double Gate MOSFET Operational Amplifier in 45nm CMOS Technology IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 12 June 2016 ISSN (online): 2349-784X Design and Analysis of Double Gate MOSFET Operational Amplifier in 45nm CMOS Technology

More information

Power Efficient Digital LDO Regulator with Transient Response Boost Technique K.K.Sree Janani 1, M.Balasubramani 2

Power Efficient Digital LDO Regulator with Transient Response Boost Technique K.K.Sree Janani 1, M.Balasubramani 2 Power Efficient Digital LDO Regulator with Transient Response Boost Technique K.K.Sree Janani 1, M.Balasubramani 2 1 PG student, Department of ECE, Vivekanandha College of Engineering for Women. 2 Assistant

More information

Low Output Impedance 0.6µm-CMOS Sub-Bandgap Reference. V. Gupta and G.A. Rincón-Mora

Low Output Impedance 0.6µm-CMOS Sub-Bandgap Reference. V. Gupta and G.A. Rincón-Mora Low Output Impedance 0.6µm-CMOS Sub-Bandgap Reference V. Gupta and G.A. Rincón-Mora Abstract: A 0.6µm-CMOS sub-bandgap reference circuit whose output voltage is, unlike reported literature, concurrently

More information

DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY

DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY Neha Bakawale Departmentof Electronics & Instrumentation Engineering, Shri G. S. Institute of

More information

A NOVEL DESIGN OF CURRENT MODE MULTIPLIER/DIVIDER CIRCUITS FOR ANALOG SIGNAL PROCESSING

A NOVEL DESIGN OF CURRENT MODE MULTIPLIER/DIVIDER CIRCUITS FOR ANALOG SIGNAL PROCESSING Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 10, October 2014,

More information

Lecture #3: Voltage Regulator

Lecture #3: Voltage Regulator Lecture #3: Voltage Regulator UNVERSTY OF CALFORNA, SAN DEGO Voltage regulator is a constant voltage source with a high current capacity to drive a low impedance load. A full-wave rectifier followed by

More information

EE 501 Lab7 Bandgap Reference Circuit

EE 501 Lab7 Bandgap Reference Circuit Objective: EE 501 Lab7 Bandgap Reference Circuit 1. Understand the bandgap reference circuit principle. 2. Investigate how to build bandgap reference circuit. Tasks and Procedures: The bandgap reference

More information

DESIGN OF A NOVEL CURRENT MIRROR BASED DIFFERENTIAL AMPLIFIER DESIGN WITH LATCH NETWORK. Thota Keerthi* 1, Ch. Anil Kumar 2

DESIGN OF A NOVEL CURRENT MIRROR BASED DIFFERENTIAL AMPLIFIER DESIGN WITH LATCH NETWORK. Thota Keerthi* 1, Ch. Anil Kumar 2 ISSN 2277-2685 IJESR/October 2014/ Vol-4/Issue-10/682-687 Thota Keerthi et al./ International Journal of Engineering & Science Research DESIGN OF A NOVEL CURRENT MIRROR BASED DIFFERENTIAL AMPLIFIER DESIGN

More information

Common-Source Amplifiers

Common-Source Amplifiers Lab 2: Common-Source Amplifiers Introduction The common-source stage is the most basic amplifier stage encountered in CMOS analog circuits. Because of its very high input impedance, moderate-to-high gain,

More information

A New Approach for Op-amp based VCO Design Using 0.18um CMOS Technology

A New Approach for Op-amp based VCO Design Using 0.18um CMOS Technology International Journal of Industrial Electronics and Control. ISSN 0974-2220 Volume 6, Number 1 (2014), pp. 1-5 International Research Publication House http://www.irphouse.com A New Approach for Op-amp

More information

CURRENT references play an important role in analog

CURRENT references play an important role in analog 1424 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 54, NO. 7, JULY 2007 A 1-V CMOS Current Reference With Temperature and Process Compensation Abdelhalim Bendali, Member, IEEE, and

More information

DESIGN OF A CMOS BANDGAP REFERENCE WITH LOWTEMPERATURE COEFFICIENT AND HIGH POWER SUPPLY REJECTION PERFORMANCE

DESIGN OF A CMOS BANDGAP REFERENCE WITH LOWTEMPERATURE COEFFICIENT AND HIGH POWER SUPPLY REJECTION PERFORMANCE DESIGN OF A CMOS BANDGAP REFERENCE WITH LOWTEMPERATURE COEFFICIENT AND HIGH POWER SUPPLY REJECTION PERFORMANCE Abhisek Dey 1 and Tarun Kanti Bhattacharyya 2 Department of Electronics & Electrical Communication

More information

[Kumar, 2(9): September, 2013] ISSN: Impact Factor: 1.852

[Kumar, 2(9): September, 2013] ISSN: Impact Factor: 1.852 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Design and Performance analysis of Low power CMOS Op-Amp Anand Kumar Singh *1, Anuradha 2, Dr. Vijay Nath 3 *1,2 Department of

More information

SALLEN-KEY FILTERS USING OPERATIONAL TRANSCONDUCTANCE AMPLIFIER

SALLEN-KEY FILTERS USING OPERATIONAL TRANSCONDUCTANCE AMPLIFIER International Journal of Electronics and Communication Engineering and Technology (IJECET) Volume 8, Issue 3, May-June 2017, pp. 52 58, Article ID: IJECET_08_03_006 Available online at http://www.iaeme.com/ijecet/issues.asp?jtypeijecet&vtype8&itype3

More information