A Low-Power 12 Transistor Full Adder Design using 3 Transistor XOR Gates

Size: px
Start display at page:

Download "A Low-Power 12 Transistor Full Adder Design using 3 Transistor XOR Gates"

Transcription

1 A Low-Power 12 Transistor Full Adder Design using 3 Transistor XOR Gates Anil Kumar 1 Kuldeep Singh 2 Student Assistant Professor Department of Electronics and Communication Engineering Guru Jambheshwar University of Science and Technology, Hisar, India Abstract- This paper presents realization of full adder design using 3 transistor XOR gates and transmission gates. The proposed design has been compared with earlier designed adders in terms of power, delay and PDP. The proposed adder shows significant improvement in power and delay. The implementation of circuits is done in Mentor Graphics utilizing standard 180nm CMOS technology. I. INTRODUCTION Demand of low power VLSI systems and compact implementation has increased, due to evolution of portable device and advanced fabrication technologies. Also high computation performance has led to more power consumption which increases the cooling cost. So low power design has become compulsory to reduce cooling cost and increase reliability. Speed is also important for digital systems. But for high speed, power dissipation can be the restrictive factor. So there is a need of finding a circuit technique which can make balance between speed and power. Addition is the most basic arithmetic operation and adder is the most fundamental arithmetic component of the processor. Two important aspects of most applications of digital circuits are maximizing speed and minimizing power consumption. Speed of different modules used in the design will dominate the overall performance of the system. In this paper, we compare the performance of full-adder cells implemented with different CMOS logic styles with the proposed 12 transistor full adder which is more efficient in power consumption. In this paper Section II explains full-adder cell function. In Section III-VI, different designs of Full Adder are implemented and analyzed, Section VII presents the design of Proposed 12T adder. Simulation results of full adder cells are presented in Section VIII. The comparison of the adder cells is based on speed, power consumption, and power delay product. II. FULL ADDER BUILDING BLOCK The full-adder function can be described as follows: For three 1-bit inputs A, B and, the two 1-bit outputs sum and Cout are- (1) (2) From the equations (1) and (2), it is clear that XOR gates form the fundamental building block of full adders. Performance of the adder can be improved by enhancing the performance of the XOR gates. Different types of XOR gates have been proposed over the years. Initially designs were based on either eight transistors [9] or six transistors [9] that are conventionally used in most designs. Design of 4T XOR gate [4, 5, 6, 7, 8, 10, 11] has been emphasized over the last decade. Wang, Fang and Feng in [10] proposed XOR architectures that could operate without complementary inputs which is a drawback of CMOS transmission gate logic based XOR gates shown in [9]. Bui, Wang and Jiang further improved the XOR gate and designed adders with some improvements in the power-delay product and used these XOR gates in their design [5,6]. Shams, Darwish and Bayoumi in [4] further optimized the performance of XOR gates in terms of area and power delay product. III. CMOS BASED FULL ADDER One of the classical design of full adder is standard static CMOS Full Adder [2]. This full adder provides full swing output and good driving capabilities. This conventional adder is made of 28 transistor which causes larger area and high power consumption. 134

2 Figure 1-28T Adder Figure 2-Transient Response of 28T Adder 135

3 IV. TRANSMISSION GATE ADDER Transmission Gate Full Adder design is based on Transmission gate which is a switch comprised of a pmos transistor and a nmos transistor. The control gates are biased in a complementary manner so that one transistors is on or off at a time. This adder is more power consuming than 28T CMOS adder but provide less propagation delay. Figure 3-Transmission Gate Adder Figure 4-Transient Response of TGA 136

4 V. 14T ADDER 14T Adder [11] is based on six transistor XOR/XNOR logic and transmission gates. Sum is generated by input propagation through XOR-XNOR logic, then signal passing through another pass transistor logic as:- Sum = ( Carry is generated by input propagation through XOR- XNOR logic then propagation through any one of the transmission gates as:- Cout = ( It provides lowest propagation delay and consumes power comparable to 28T Adder. Figure 5-14T Adder Figure 6-Transient Response of 14T Adder 137

5 VI. 10T ADDER 10T adder design is based on 4T XNOR gate [6] and pass transistor logic. This XNOR gate has no ground connection. It shows improvement in both power and delay in comparison to the previous adders. The only disadvantage is the threshold loss problem due to Pass transistor logic. International Journal of Electronics, Electrical and Computational System Figure 7-4T XNOR Figure 8-10T Adder 138

6 Figure 9-Transient Response of 10T Adder VII. 3T XOR BASED 12T ADDER The new 12T design proposed here is based 3T XOR gate and transmission gates. Sum output is generated by input propagation through XOR-XOR logic. And the carry is generated by using 3T XOR gate, an inverter, and transmission gates. This adder have improved noise margin and less output signal degradation than 10T Adder. 3T XOR Gate design of XOR logic gate using three transistors is shown in Figure-10. This design is based on a CMOS inverter and PMOS pass transistor logic. When the input B is at logic one, the inverter on the left functions as a normal CMOS inverter. So the output Y is the complement of input A. When the input B is at logic zero, PMOS pass transistor M3 is turned ON and the output Y=A. Thus, the circuit acts as a 2 input XOR gate. For A=0 and B=0, voltage degradation occurs due to threshold drop across the PMOS pass transistor M3 while passing the output logic zero and consequently the output is degraded with respect to the input. This voltage degradation because of threshold drop can be considerably minimized by increasing the W/L ratio of transistor M3 [8]. Figure 10-3T XOR 139

7 Figure 11-12T Adder Figure 12-Transient Response of 12T Adder 140

8 Power Consumption (in pw) PDP(10-20 Ws) Delay for Carry (in ps) Delay for Carry (in ps) International Journal of Electronics, Electrical and Computational System VIII. SIMULATION RESULTS AND COMPARATIVE ANALYSIS Experiments are performed on these full adders at the schematic level. Simulation of the circuits is done using Mentor Graphics. Channel length of the transistors is 180nm and channel width of NMOS and PMOS are 2µm and 4µm respectively. Rise time and fall time of all the input signals is 0.1ns. Various results are shown in Table 1 and graph T TGA Table 1-Comparison for Power Supply 1.8V 0 1.8V 1.6V 1.4V 1.2V 1.0V Power (in pw) Delay for carry (in ps) Delay for Sum (in ps) PDP(10-20 Ws) (in case of carry) Graph 2 28T TGA T T T TGA 14T 10T 12T V 1.6V 1.4V 1.2V 1.0V 700 Graph V 1.6V 1.4V 1.2V 1.0V 28T TGA 14T 10T 12T V 1.6V 1.4V 1.2V 1.0V 28T TGA 14T 10T 12T Graph 1 Graph 4 141

9 IX. CONCLUSION The main aim of this paper is to design a high performance and low power full adder cell. The circuits are designed with a TSMC 0.18µm technology in Mentor Graphics, simulated and compared against other conventional full adder cell. By using 5 steps of power supply from 1 to 1.8 volts, power, delay and PDP of Full Adder cells are compared. Simulation results show that 10T and 12T have less PDP than other conventional adders. But proposed 12T adder has improved noise margin and less output signal degradation than 10T Adder. So due to less power dissipation and less transistor count the 12T full adder cell can be useful in portable and low power devices. X. REFERENCES [1] D. Wang, M. Yang, W. Cheng, Novel low power full adder cells in 180nm CMOS technology, IEEE Conference on Industrial Electronics and Applications, pp , May [2] N. H. E. Weste, D. Harris, and A. Banerjee, CMOS VLSI Design: A Circuits and Systems Perspective, 3rd ed. Delhi, India: Pearson Education, [3] C. H. Chang, J. M. Gu, and M. Zhang, A review of 0.18-μm full adder performances for tree structured arithmetic circuits, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 13, no. 6, pp , Jun [4] A. M. Shams, T. K. Darwish, and M. A. Bayoumi, Performance analysis of low-power 1-bit CMOS full adder cells, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 10, no. 1, pp , Feb [5] H.T. Bui, Y. Wang, Y. Jiang, Design and analysis of 10-transistor full adders using novel XOR XNOR gates, in Proc. 5th Int. Conf. Signal Process., vol. 1, Aug , 2000, pp [6] H. T. Bui, Y. Wang, and Y. Jiang, Design and analysis of low-power 10-transistor full adders using XOR-XNOR gates, IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 49, no. 1, Jan. 2002, pp [7] A. M. Shams and M. Bayoumi, A novel highperformance CMOS 1-bit full adder cell, IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 47, no. 5, May 2000, pp [8] K.-H. Cheng and C.-S. Huang, The novel efficient design of XOR/XNOR function for adder applications, in Proc. IEEE Int. Conf. Elect., Circuits Syst., vol. 1, Sep. 5 8, 1999, pp [9] Y. Leblebici, S.M. Kang, CMOS Digital Digital Integrated Circuits: Mc Graw Hill, 2nd edition, 1999, Ch. 7 [10] J. Wang, S. Fang, and W. Feng, New efficient designs for XOR and XNOR functions on the transistor level, IEEE J. Solid-State Circuits, vol. 29, no. 7, Jul. 1994, pp [11] D. Radhakrishnan, Low-voltage low-power CMOS full adder, IEEE Proc. Circuits Devices Syst., vol. 148, no. 1, pp , Feb [12] Jin-Fa Lin, Yin-Tsung Hwang, and Ming-Hwa Sheu, Low power 10-transistor full adder design based on degenerate pass transistor logic, IEEE ISCAS, 2012, pp

DESIGN OF PARALLEL MULTIPLIERS USING HIGH SPEED ADDER

DESIGN OF PARALLEL MULTIPLIERS USING HIGH SPEED ADDER DESIGN OF PARALLEL MULTIPLIERS USING HIGH SPEED ADDER Mr. M. Prakash Mr. S. Karthick Ms. C Suba PG Scholar, Department of ECE, BannariAmman Institute of Technology, Sathyamangalam, T.N, India 1, 3 Assistant

More information

Design of High Speed Six Transistor Full Adder using a Novel Two Transistor XOR Gates

Design of High Speed Six Transistor Full Adder using a Novel Two Transistor XOR Gates Design of High Speed Six Transistor Full Adder using a Novel Two Transistor XOR Gates 1 Pakkiraiah Chakali, 2 Adilakshmi Siliveru, 3 Neelima Koppala Abstract In modern era, the number of transistors are

More information

& POWER REDUCTION IN FULL ADDER USING NEW HYBRID LOGIC V.

& POWER REDUCTION IN FULL ADDER USING NEW HYBRID LOGIC V. POWER REDUCTION IN FULL ADDER USING NEW HYBRID LOGIC V. Kayathri*, C. Kumar**, P. Mari Muthu*** & N. Naveen Kumar**** Department of Electronics and Communication Engineering, RVS College of Engineering

More information

II. Previous Work. III. New 8T Adder Design

II. Previous Work. III. New 8T Adder Design ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: High Performance Circuit Level Design For Multiplier Arun Kumar

More information

Full Adder Circuits using Static Cmos Logic Style: A Review

Full Adder Circuits using Static Cmos Logic Style: A Review Full Adder Circuits using Static Cmos Logic Style: A Review Sugandha Chauhan M.E. Scholar Department of Electronics and Communication Chandigarh University Gharuan,Punjab,India Tripti Sharma Professor

More information

Design of Low Power High Speed Hybrid Full Adder

Design of Low Power High Speed Hybrid Full Adder IJECT Vo l. 6, Is s u e 4, Oc t - De c 2015 ISSN : 2230-7109 (Online) ISSN : 2230-9543 (Print) Design of Low Power High Speed Hybrid Full Adder 1 P. Kiran Kumar, 2 P. Srikanth 1,2 Dept. of ECE, MVGR College

More information

Design and Analysis of CMOS based Low Power Carry Select Full Adder

Design and Analysis of CMOS based Low Power Carry Select Full Adder Design and Analysis of CMOS based Low Power Carry Select Full Adder Mayank Sharma 1, Himanshu Prakash Rajput 2 1 Department of Electronics & Communication Engineering Hindustan College of Science & Technology,

More information

ISSN:

ISSN: 343 Comparison of different design techniques of XOR & AND gate using EDA simulation tool RAZIA SULTANA 1, * JAGANNATH SAMANTA 1 M.TECH-STUDENT, ECE, Haldia Institute of Technology, Haldia, INDIA ECE,

More information

Implementation of Carry Select Adder using CMOS Full Adder

Implementation of Carry Select Adder using CMOS Full Adder Implementation of Carry Select Adder using CMOS Full Adder Smitashree.Mohapatra Assistant professor,ece department MVSR Engineering College Nadergul,Hyderabad-510501 R. VaibhavKumar PG Scholar, ECE department(es&vlsid)

More information

Design a Low Power CNTFET-Based Full Adder Using Majority Not Function

Design a Low Power CNTFET-Based Full Adder Using Majority Not Function Design a Low Power CNTFET-Based Full Adder Using Majority Not Function Seyedehsomayeh Hatefinasab * Department of Electrical and Computer Engineering, Payame Noor University, Sari, Iran. *Corresponding

More information

DESIGN OF EXTENDED 4-BIT FULL ADDER CIRCUIT USING HYBRID-CMOS LOGIC

DESIGN OF EXTENDED 4-BIT FULL ADDER CIRCUIT USING HYBRID-CMOS LOGIC DESIGN OF EXTENDED 4-BIT FULL ADDER CIRCUIT USING HYBRID-CMOS LOGIC 1 S.Varalakshmi, 2 M. Rajmohan, M.Tech, 3 P. Pandiaraj, M.Tech 1 M.Tech Department of ECE, 2, 3 Asst.Professor, Department of ECE, 1,

More information

ISSN: [Narang* et al., 6(8): August, 2017] Impact Factor: 4.116

ISSN: [Narang* et al., 6(8): August, 2017] Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY PERFORMANCE ANALYSIS OF A LOW-POWER HIGH-SPEED HYBRID 1-BIT FULL ADDER CIRCUIT AND ITS IMPLEMENTATION Swati Narang Electronics

More information

Comparative Study on CMOS Full Adder Circuits

Comparative Study on CMOS Full Adder Circuits Comparative Study on CMOS Full Adder Circuits Priyanka Rathore and Bhavna Jharia Abstract The Presented paper focuses on the comparison of seven full adders. The comparison is based on the power consumption

More information

Design and Implementation of Complex Multiplier Using Compressors

Design and Implementation of Complex Multiplier Using Compressors Design and Implementation of Complex Multiplier Using Compressors Abstract: In this paper, a low-power high speed Complex Multiplier using compressor circuit is proposed for fast digital arithmetic integrated

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August ISSN

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August ISSN International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 1156 Novel Low Power Shrikant and M Pattar, High H V Ravish Speed Aradhya 8T Full Adder Abstract - Full adder

More information

Design of 2-bit Full Adder Circuit using Double Gate MOSFET

Design of 2-bit Full Adder Circuit using Double Gate MOSFET Design of 2-bit Full Adder Circuit using Double Gate S.Anitha 1, A.Logeaswari 2, G.Esakkirani 2, A.Mahalakshmi 2. Assistant Professor, Department of ECE, Renganayagi Varatharaj College of Engineering,

More information

A Novel Multi-Threshold CMOS Based 64-Bit Adder Design in 45nm CMOS Technology for Low Power Application

A Novel Multi-Threshold CMOS Based 64-Bit Adder Design in 45nm CMOS Technology for Low Power Application A Novel Multi-Threshold CMOS Based 64-Bit Adder Design in 45nm CMOS Technology for Low Power Application Rumi Rastogi and Sujata Pandey Amity University Uttar Pradesh, Noida, India Email: rumi.ravi@gmail.com,

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 5.71 International Journal of Advance Engineering and Research Development Volume 5, Issue 05, May -2018 e-issn (O): 2348-4470 p-issn (P): 2348-6406 COMPARATIVE

More information

POWER DELAY PRODUCT AND AREA REDUCTION OF FULL ADDERS USING SYSTEMATIC CELL DESIGN METHODOLOGY

POWER DELAY PRODUCT AND AREA REDUCTION OF FULL ADDERS USING SYSTEMATIC CELL DESIGN METHODOLOGY This work by IJARBEST is licensed under Creative Commons Attribution 4.0 International License. Available at https://www.ijarbest.com ISSN (ONLINE): 2395-695X POWER DELAY PRODUCT AND AREA REDUCTION OF

More information

High Speed NP-CMOS and Multi-Output Dynamic Full Adder Cells

High Speed NP-CMOS and Multi-Output Dynamic Full Adder Cells High Speed NP-CMOS and Multi-Output Dynamic Full Adder Cells Reza Faghih Mirzaee, Mohammad Hossein Moaiyeri, Keivan Navi Abstract In this paper we present two novel 1-bit full adder cells in dynamic logic

More information

Two New Low Power High Performance Full Adders with Minimum Gates

Two New Low Power High Performance Full Adders with Minimum Gates Two New Low Power High Performance Full Adders with Minimum Gates M.Hosseinghadiry, H. Mohammadi, M.Nadisenejani Abstract with increasing circuits complexity and demand to use portable devices, power consumption

More information

Two New Low Power High Performance Full Adders with Minimum Gates

Two New Low Power High Performance Full Adders with Minimum Gates Two New Low Power High Performance Full Adders with Minimum Gates M.Hosseinghadiry, H. Mohammadi, M.Nadisenejani Abstract with increasing circuits complexity and demand to use portable devices, power consumption

More information

PERFORMANANCE ANALYSIS OF A 1-BIT FULL ADDER USING 45nm TECHNOLOGY

PERFORMANANCE ANALYSIS OF A 1-BIT FULL ADDER USING 45nm TECHNOLOGY Research Manuscript Title PERFORMANANCE ANALYSIS OF A 1-BIT FULL ADDER USING 45nm TECHNOLOGY A.NIVETHA, M.Hemalatha, P.G.Scholar, Assistant Professor, M.E VLSI Design, Department of ECE Vivekanandha College

More information

A Literature Survey on Low PDP Adder Circuits

A Literature Survey on Low PDP Adder Circuits Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 4, Issue. 12, December 2015,

More information

Low power high speed hybrid CMOS Full Adder By using sub-micron technology

Low power high speed hybrid CMOS Full Adder By using sub-micron technology Low power high speed hybrid CMOS Full Adder By using sub-micron technology Ch.Naveen Kumar 1 Assistant professor,ece department GURUNANAK institutions technical campus Hyderabad-501506 A.V. Rameshwar Rao

More information

An Efficient and High Speed 10 Transistor Full Adders with Lector Technique

An Efficient and High Speed 10 Transistor Full Adders with Lector Technique IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 12, Issue 5, Ver. II (Sep.- Oct. 2017), PP 68-73 www.iosrjournals.org An Efficient and

More information

Design of High speed Low-Power 1-Bit CMOS ALU using threshold voltage Techniques

Design of High speed Low-Power 1-Bit CMOS ALU using threshold voltage Techniques ISSN: 0975-5662, June, 2018 www.ijrct.org Design of High speed Low-Power 1-Bit CMOS ALU using threshold voltage Techniques Kadari Shivaram yadav 1, M.Praveen kumar 2 Dr. Dayadi Lakshmaiah 3 G.Naveen 4,Ch.Rajendra

More information

Pardeep Kumar, Susmita Mishra, Amrita Singh

Pardeep Kumar, Susmita Mishra, Amrita Singh Study of Existing Full Adders and To Design a LPFA (Low Power Full Adder) Pardeep Kumar, Susmita Mishra, Amrita Singh 1 Department of ECE, B.M.S.E.C, Muktsar, 2,3 Asstt. Professor, B.M.S.E.C, Muktsar Abstract

More information

Low Power 32-bit Improved Carry Select Adder based on MTCMOS Technique

Low Power 32-bit Improved Carry Select Adder based on MTCMOS Technique Low Power 32-bit Improved Carry Select Adder based on MTCMOS Technique Ch. Mohammad Arif 1, J. Syamuel John 2 M. Tech student, Department of Electronics Engineering, VR Siddhartha Engineering College,

More information

Implementation of 1-bit Full Adder using Gate Difuision Input (GDI) cell

Implementation of 1-bit Full Adder using Gate Difuision Input (GDI) cell International Journal of Electronics and Computer Science Engineering 333 Available Online at www.ijecse.org ISSN: 2277-1956 Implementation of 1-bit Full Adder using Gate Difuision Input (GDI) cell Arun

More information

Design and Analysis of Low-Power 11- Transistor Full Adder

Design and Analysis of Low-Power 11- Transistor Full Adder Design and Analysis of Low-Power 11- Transistor Full Adder Ravi Tiwari, Khemraj Deshmukh PG Student [VLSI, Dept. of ECE, Shri Shankaracharya Technical Campus(FET), Bhilai, Chattisgarh, India 1 Assistant

More information

DESIGN AND ANALYSIS OF LOW POWER 10- TRANSISTOR FULL ADDERS USING NOVEL X-NOR GATES

DESIGN AND ANALYSIS OF LOW POWER 10- TRANSISTOR FULL ADDERS USING NOVEL X-NOR GATES DESIGN AND ANALYSIS OF LOW POWER 10- TRANSISTOR FULL ADDERS USING NOVEL X-NOR GATES Basil George 200831005 Nikhil Soni 200830014 Abstract Full adders are important components in applications such as digital

More information

PERFORMANCE ANALYSIS OF A LOW-POWER HIGH-SPEED HYBRID 1- BIT FULL ADDER CIRCUIT USING CMOS TECHNOLOGIES USING CADANCE

PERFORMANCE ANALYSIS OF A LOW-POWER HIGH-SPEED HYBRID 1- BIT FULL ADDER CIRCUIT USING CMOS TECHNOLOGIES USING CADANCE PERFORMANCE ANALYSIS OF A LOW-POWER HIGH-SPEED HYBRID 1- BIT FULL ADDER CIRCUIT USING CMOS TECHNOLOGIES USING CADANCE Megha R 1, Vishwanath B R 2 1 Mtech, Department of ECE, Rajeev Institute of Technology,

More information

Enhancement of Design Quality for an 8-bit ALU

Enhancement of Design Quality for an 8-bit ALU ABHIYANTRIKI An International Journal of Engineering & Technology (A Peer Reviewed & Indexed Journal) Vol. 3, No. 5 (May, 2016) http://www.aijet.in/ eissn: 2394-627X Enhancement of Design Quality for an

More information

Design of Delay-Power Efficient Carry Select Adder using 3-T XOR Gate

Design of Delay-Power Efficient Carry Select Adder using 3-T XOR Gate Adv. Eng. Tec. Appl. 5, No. 1, 1-6 (2016) 1 Advanced Engineering Technology and Application An International Journal http://dx.doi.org/10.18576/aeta/050101 Design of Delay-Power Efficient Carry Select

More information

Design of New Full Swing Low-Power and High- Performance Full Adder for Low-Voltage Designs

Design of New Full Swing Low-Power and High- Performance Full Adder for Low-Voltage Designs International Academic Institute for Science and Technology International Academic Journal of Science and Engineering Vol. 2, No., 201, pp. 29-. ISSN 2-9 International Academic Journal of Science and Engineering

More information

Investigation on Performance of high speed CMOS Full adder Circuits

Investigation on Performance of high speed CMOS Full adder Circuits ISSN (O): 2349-7084 International Journal of Computer Engineering In Research Trends Available online at: www.ijcert.org Investigation on Performance of high speed CMOS Full adder Circuits 1 KATTUPALLI

More information

Design of Full Adder Circuit using Double Gate MOSFET

Design of Full Adder Circuit using Double Gate MOSFET Design of Full Adder Circuit using Double Gate MOSFET Dr.K.Srinivasulu Professor, Dept of ECE, Malla Reddy Collage of Engineering. Abstract: This paper presents a design of a one bit cell based on degenerate

More information

Implementation of Efficient 5:3 & 7:3 Compressors for High Speed and Low-Power Operations

Implementation of Efficient 5:3 & 7:3 Compressors for High Speed and Low-Power Operations Volume-7, Issue-3, May-June 2017 International Journal of Engineering and Management Research Page Number: 42-47 Implementation of Efficient 5:3 & 7:3 Compressors for High Speed and Low-Power Operations

More information

Design of XOR gates in VLSI implementation

Design of XOR gates in VLSI implementation Design of XOR gates in VLSI implementation Nabihah hmad, Rezaul Hasan School of Engineering and dvanced Technology Massey University, uckland N.hmad@massey.ac.nz, hasanmic@massey.ac.nz bstract: Exclusive

More information

Design & Analysis of Low Power Full Adder

Design & Analysis of Low Power Full Adder 1174 Design & Analysis of Low Power Full Adder Sana Fazal 1, Mohd Ahmer 2 1 Electronics & communication Engineering Integral University, Lucknow 2 Electronics & communication Engineering Integral University,

More information

LOW POWER NOVEL HYBRID ADDERS FOR DATAPATH CIRCUITS IN DSP PROCESSOR

LOW POWER NOVEL HYBRID ADDERS FOR DATAPATH CIRCUITS IN DSP PROCESSOR LOW POWER NOVEL HYBRID ADDERS FOR DATAPATH CIRCUITS IN DSP PROCESSOR B. Sathiyabama 1, Research Scholar, Sathyabama University, Chennai, India, mathumithasurya@gmail.com Abstract Dr. S. Malarkkan 2, Principal,

More information

CHAPTER 6 GDI BASED LOW POWER FULL ADDER CELL FOR DSP DATA PATH BLOCKS

CHAPTER 6 GDI BASED LOW POWER FULL ADDER CELL FOR DSP DATA PATH BLOCKS 87 CHAPTER 6 GDI BASED LOW POWER FULL ADDER CELL FOR DSP DATA PATH BLOCKS 6.1 INTRODUCTION In this approach, the four types of full adders conventional, 16T, 14T and 10T have been analyzed in terms of

More information

Energy Efficient high Performance Three INPUT EXCLUSIVE- OR/NOR Gate Design

Energy Efficient high Performance Three INPUT EXCLUSIVE- OR/NOR Gate Design 2017 IJSRST Volume 3 Issue 6 Print ISSN: 2395-6011 Online ISSN: 2395-602X Themed Section: Science and Technology Energy Efficient high Performance Three INPUT EXCLUSIVE- OR/NOR Gate Design Aditya Mishra,

More information

Low Power Three-Input XOR/XNOR with Systematic Cell Design Methodology

Low Power Three-Input XOR/XNOR with Systematic Cell Design Methodology Low Power Three-Input XOR/XNOR with Systematic Cell Design Methodology 1 G. Nagasundari, 2 S.R. Prabakar 1 PG student, Department of ECE, Vivekanandha College of engineering for women, Tiruchengode 2 AP/ECE,

More information

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET)

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET) INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET) International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 ISSN 0976-6480 (Print) ISSN

More information

[Deepika* et al., 5(7): July, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116

[Deepika* et al., 5(7): July, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY A COMPARATIVE STUDY AND ANALYSIS OF FULL ADDER Deepika*, Ankur Gupta, Ashwani Panjeta * (Department of Electronics & Communication,

More information

Comparison of High Speed & Low Power Techniques GDI & McCMOS in Full Adder Design

Comparison of High Speed & Low Power Techniques GDI & McCMOS in Full Adder Design International Conference on Multidisciplinary Research & Practice P a g e 625 Comparison of High Speed & Low Power Techniques & in Full Adder Design Shikha Sharma 1, ECE, Geetanjali Institute of Technical

More information

Australian Journal of Basic and Applied Sciences. Optimized Embedded Adders for Digital Signal Processing Applications

Australian Journal of Basic and Applied Sciences. Optimized Embedded Adders for Digital Signal Processing Applications ISSN:1991-8178 Australian Journal of Basic and Applied Sciences Journal home page: www.ajbasweb.com Optimized Embedded Adders for Digital Signal Processing Applications 1 Kala Bharathan and 2 Seshasayanan

More information

Low Power and High Performance ALU using Dual Mode Transmission Gate Diffusion Input (DMTGDI)

Low Power and High Performance ALU using Dual Mode Transmission Gate Diffusion Input (DMTGDI) International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 8958, Volume-6 Issue-6, August 2017 Low Power and High Performance ALU using Dual Mode Transmission Gate Diffusion Input

More information

CHAPTER - IV. Design and analysis of hybrid CMOS Full adder and PPM adder

CHAPTER - IV. Design and analysis of hybrid CMOS Full adder and PPM adder CHAPTER - IV Design and analysis of hybrid CMOS Full adder and PPM adder Design and analysis of hybrid CMOS Full adder and PPM adder 63 CHAPTER IV DESIGN AND ANALYSIS OF HYBRID CMOS FULL ADDER AND PPM

More information

Low power 18T pass transistor logic ripple carry adder

Low power 18T pass transistor logic ripple carry adder LETTER IEICE Electronics Express, Vol.12, No.6, 1 12 Low power 18T pass transistor logic ripple carry adder Veeraiyah Thangasamy 1, Noor Ain Kamsani 1a), Mohd Nizar Hamidon 1, Shaiful Jahari Hashim 1,

More information

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST)

International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST) Abstract NEW HIGH PERFORMANCE 4 BIT PARALLEL ADDER USING DOMINO LOGIC Department Of Electronics and Communication Engineering UG Scholar, SNS College of Engineering Bhuvaneswari.N [1], Hemalatha.V [2],

More information

A NOVEL 4-Bit ARITHMETIC LOGIC UNIT DESIGN FOR POWER AND AREA OPTIMIZATION

A NOVEL 4-Bit ARITHMETIC LOGIC UNIT DESIGN FOR POWER AND AREA OPTIMIZATION A NOVEL 4-Bit ARITHMETIC LOGIC UNIT DESIGN FOR POWER AND AREA OPTIMIZATION Mr. Snehal Kumbhalkar 1, Mr. Sanjay Tembhurne 2 Department of Electronics and Communication Engineering GHRAET, Nagpur, Maharashtra,

More information

ADIABATIC LOGIC FOR LOW POWER DIGITAL DESIGN

ADIABATIC LOGIC FOR LOW POWER DIGITAL DESIGN ADIABATIC LOGIC FOR LOW POWER DIGITAL DESIGN Mr. Sunil Jadhav 1, Prof. Sachin Borse 2 1 Student (M.E. Digital Signal Processing), Late G. N. Sapkal College of Engineering, Nashik,jsunile@gmail.com 2 Professor

More information

Study of Threshold Gate and CMOS Logic Style Based Full Adders Circuits

Study of Threshold Gate and CMOS Logic Style Based Full Adders Circuits IEEE SPONSORED 3rd INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION SYSTEMS (ICECS 2016) Study of Threshold Gate and CMOS Logic Style Based Full Adders Circuits Raushan Kumar Department of ECE

More information

Impact of Logic and Circuit Implementation on Full Adder Performance in 50-NM Technologies

Impact of Logic and Circuit Implementation on Full Adder Performance in 50-NM Technologies Impact of Logic and Circuit Implementation on Full Adder Performance in 50-NM Technologies Mahesh Yerragudi 1, Immanuel Phopakura 2 1 PG STUDENT, AVR & SVR Engineering College & Technology, Nandyal, AP,

More information

INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET)

INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET) INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET) International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 6367(Print), ISSN 0976 6367(Print) ISSN 0976 6375(Online)

More information

A Efficient Low-Power High Speed Digital Circuit Design by using 1-bit GDI Full Adder Circuit

A Efficient Low-Power High Speed Digital Circuit Design by using 1-bit GDI Full Adder Circuit Efficient Low-Power High Speed Digital Circuit Design by using 1-bit GDI Full dder Circuit Rohit Tripati #1, Paresh Rawat # PG Student [VLSI], Dept. of ECE, Truba College of Science and Technology hopal

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-0772 Published BYAENSI Publication EISSN: 1998-1090 http://www.aensiweb.com/anas 2017 Special 11(6): pages 599-604 Open Access Journal Design A Full

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, MAY-2013 ISSN

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, MAY-2013 ISSN High-Speed 64-Bit Binary using Three Different Logic Styles Anjuli (Student Member IEEE), Satyajit Anand Abstract--High-speed 64-bit binary comparator using three different logic styles is proposed in

More information

Low-Power High-Speed Double Gate 1-bit Full Adder Cell

Low-Power High-Speed Double Gate 1-bit Full Adder Cell INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2016, VOL. 62, NO. 4, PP. 329-334 Manuscript received October 15, 2016; revised November, 2016. DOI: 10.1515/eletel-2016-0045 Low-Power High-Speed Double

More information

DESIGN OF LOW POWER CMOS THREE INPUT XOR/XNOR

DESIGN OF LOW POWER CMOS THREE INPUT XOR/XNOR DESIGN OF LOW POWER CMOS THREE INPUT XOR/XNOR D.lakshmaiah 1 (Ph.D),T.sai baba 2 M.Tech,B.sravani #, M. kalyani #, G.priya darshini #, D.shashi kumar # 1 Asso. Professor, 2 Assit.Professor # B.Tech students

More information

Design and Analysis of Row Bypass Multiplier using various logic Full Adders

Design and Analysis of Row Bypass Multiplier using various logic Full Adders Design and Analysis of Row Bypass Multiplier using various logic Full Adders Dr.R.Naveen 1, S.A.Sivakumar 2, K.U.Abhinaya 3, N.Akilandeeswari 4, S.Anushya 5, M.A.Asuvanti 6 1 Associate Professor, 2 Assistant

More information

An energy efficient full adder cell for low voltage

An energy efficient full adder cell for low voltage An energy efficient full adder cell for low voltage Keivan Navi 1a), Mehrdad Maeen 2, and Omid Hashemipour 1 1 Faculty of Electrical and Computer Engineering of Shahid Beheshti University, GC, Tehran,

More information

AREA OPTIMIZED ARITHMETIC AND LOGIC UNIT USING LOW POWER 1-BIT FULL ADDER

AREA OPTIMIZED ARITHMETIC AND LOGIC UNIT USING LOW POWER 1-BIT FULL ADDER International Journal of Electronics, Communication & Instrumentation Engineering Research and Development (IJECIERD) ISSN 2249-684X Vol. 3, Issue 3, Aug 2013, 115-120 TJPRC Pvt. Ltd. AREA OPTIMIZED ARITHMETIC

More information

INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET) HIGH-SPEED 64-BIT BINARY COMPARATOR USING NEW APPROACH

INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET) HIGH-SPEED 64-BIT BINARY COMPARATOR USING NEW APPROACH INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET) ISSN 0976 6367(Print) ISSN 0976 6375(Online) Volume 4, Issue 1, January- February (2013), pp. 325-336 IAEME:www.iaeme.com/ijcet.asp Journal

More information

Design and Performance Analysis of High Speed Low Power 1 bit Full Adder

Design and Performance Analysis of High Speed Low Power 1 bit Full Adder Design and Performance Analysis of High Speed Low Power 1 bit Full Adder Gauri Chopra 1, Sweta Snehi 2 PG student [RNA], Dept. of MAE, IGDTUW, New Delhi, India 1 PG Student [VLSI], Dept. of ECE, IGDTUW,

More information

Performance Analysis of High Speed CMOS Full Adder Circuits For Embedded System

Performance Analysis of High Speed CMOS Full Adder Circuits For Embedded System ISSN (O): 2349-7084 International Journal of Computer Engineering In Research Trends Available online at: www.ijcert.org Performance Analysis of High Speed CMOS Full Adder Circuits For Embedded System

More information

A HIGH SPEED DYNAMIC RIPPLE CARRY ADDER

A HIGH SPEED DYNAMIC RIPPLE CARRY ADDER A HIGH SPEED DYNAMIC RIPPLE CARRY ADDER Y. Anil Kumar 1, M. Satyanarayana 2 1 Student, Department of ECE, MVGR College of Engineering, India. 2 Associate Professor, Department of ECE, MVGR College of Engineering,

More information

Analysis of Different Full Adder Designs with Power using CMOS 130nm Technology

Analysis of Different Full Adder Designs with Power using CMOS 130nm Technology Analysis of Different Full Adder Designs with Power using CMOS 130nm Technology J. Kavitha 1, J. Satya Sai 2, G. Gowthami 3, K.Gopi 4, G.Shainy 5, K.Manvitha 6 1, 2, 3, 4, 5, St. Ann s College of Engineering

More information

A SURVEY OF LOW POWER HIGH SPEED ONE BIT FULL ADDER

A SURVEY OF LOW POWER HIGH SPEED ONE BIT FULL ADDER A SURVEY OF LOW POWER HIGH SPEED ONE BIT FULL ADDER N. M. CHORE 1, R. N. MANDAVGANE 2 Department of Electronic Engineering B. D. College of Engineering Rashtra Sant Tukdoji Maharaj Nagpur University Wardha,

More information

Design of an Energy Efficient 4-2 Compressor

Design of an Energy Efficient 4-2 Compressor IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Design of an Energy Efficient 4-2 Compressor To cite this article: Manish Kumar and Jonali Nath 2017 IOP Conf. Ser.: Mater. Sci.

More information

Design and Analysis of Improved Sparse Channel Adder with Optimization of Energy Delay

Design and Analysis of Improved Sparse Channel Adder with Optimization of Energy Delay ISSN:1991-8178 Australian Journal of Basic and Applied Sciences Journal home page: www.ajbasweb.com Design and Analysis of Improved Sparse Channel Adder with Optimization of Energy Delay 1 Prajoona Valsalan

More information

/$ IEEE

/$ IEEE IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 12, DECEMBER 2006 1309 Design of Robust, Energy-Efficient Full Adders for Deep-Submicrometer Design Using Hybrid-CMOS Logic

More information

Design of Two High Performance 1-Bit CMOS Full Adder Cells

Design of Two High Performance 1-Bit CMOS Full Adder Cells Int. J. Com. Dig. Sys. 2, No., 47-52 (23) 47 International Journal of Computing and Digital Systems -- An International Journal @ 23 UOB CSP, University of Bahrain Design of Two High Performance -Bit CMOS

More information

Implementation of Full Adder Circuit using Stack Technique

Implementation of Full Adder Circuit using Stack Technique Implementation of Full Adder Circuit using Stack Technique J.K.Sahani Department of VLSI, School of Electrical and Electronics, Lovely Professional University, Phagwara, Punjab, India Kavita Department

More information

Design of Robust and power Efficient 8-Bit Ripple Carry Adder using Different Logic Styles

Design of Robust and power Efficient 8-Bit Ripple Carry Adder using Different Logic Styles Design of Robust and power Efficient 8-Bit Ripple Carry Adder using Different Logic Styles Mangayarkkarasi M 1, Joseph Gladwin S 2 1 Assistant Professor, 2 Associate Professor 12 Department of ECE 1 Sri

More information

ONE BIT 8T FULL ADDER CIRCUIT USING 3T XOR GATE AND ONE MULTIPLEXER

ONE BIT 8T FULL ADDER CIRCUIT USING 3T XOR GATE AND ONE MULTIPLEXER ONE BIT 8T FULL ADDER CIRCUIT USING 3T XOR GATE AND ONE MULTIPLEXER Priyanka Rathoreˡ and Bhavana Jharia² ˡPG Student, Ujjain engg. College, Ujjain ²Professor, ECE dept., UEC, Ujjain ABSTRACT This paper

More information

A New High Speed - Low Power 12 Transistor Full Adder Design with GDI Technique

A New High Speed - Low Power 12 Transistor Full Adder Design with GDI Technique International Journal of Scientific & Engineering Research Volume 3, Issue 7, July-2012 1 A New High Speed - Low Power 12 Transistor Full Design with GDI Technique Shahid Jaman, Nahian Chowdhury, Aasim

More information

A Review on Low Power Compressors for High Speed Arithmetic Circuits

A Review on Low Power Compressors for High Speed Arithmetic Circuits A Review on Low Power Compressors for High Speed Arithmetic Circuits Siva Subramanian R 1, Suganya Thevi T 2, Revathy M 3 P.G. Student, Department of ECE, PSNA College of, Dindigul, Tamil Nadu, India 1

More information

CELL DESIGN METHODOLOGY FOR LOW-POWER HIGH-SPEED BALANCED THREE-INPUT XOR- XNOR IN HYBRID-CMOS LOGIC STYLE

CELL DESIGN METHODOLOGY FOR LOW-POWER HIGH-SPEED BALANCED THREE-INPUT XOR- XNOR IN HYBRID-CMOS LOGIC STYLE CELL DESIGN METHODOLOGY FOR LOWPOWER HIGHSPEED BALANCED THREEINPUT XOR XNOR IN HYBRIDCMOS LOGIC STYLE. Abstract In this paper, a systematic design methodology based on pass transistor and transmission

More information

Performance Comparison of High-Speed Adders Using 180nm Technology

Performance Comparison of High-Speed Adders Using 180nm Technology Steena Maria Thomas et al. 2016, Volume 4 Issue 2 ISSN (Online): 2348-4098 ISSN (Print): 2395-4752 International Journal of Science, Engineering and Technology An Open Access Journal Performance Comparison

More information

A High Speed Wallace Tree Multiplier Using Modified Booth Algorithm for Fast Arithmetic Circuits

A High Speed Wallace Tree Multiplier Using Modified Booth Algorithm for Fast Arithmetic Circuits IOSR Journal of Electronics and Communication Engineering (IOSRJECE) ISSN: 2278-2834, ISBN No: 2278-8735 Volume 3, Issue 1 (Sep-Oct 2012), PP 07-11 A High Speed Wallace Tree Multiplier Using Modified Booth

More information

3. COMPARING STRUCTURE OF SINGLE GATE AND DOUBLE GATE MOSFET WITH DESIGN AND CURVE

3. COMPARING STRUCTURE OF SINGLE GATE AND DOUBLE GATE MOSFET WITH DESIGN AND CURVE P a g e 80 Available online at http://arjournal.org APPLIED RESEARCH JOURNAL RESEARCH ARTICLE ISSN: 2423-4796 Applied Research Journal Vol. 3, Issue, 2, pp.80-86, February, 2017 COMPARATIVE STUDY ON SINGLE

More information

An Efficient Advanced High Speed Full-Adder Using Modified GDI Technique

An Efficient Advanced High Speed Full-Adder Using Modified GDI Technique An Efficient Advanced High Speed Full-Adder Using Modified GDI Technique Menakadevi¹, 1 Assistant professor, Sri Eshwar College of Engineering Ciombatore,Tamil Nadu, INDIA Abstract In this paper, high

More information

NOVEL 11-T FULL ADDER IN 65NM CMOS TECHNOLOGY

NOVEL 11-T FULL ADDER IN 65NM CMOS TECHNOLOGY NOVEL 11-T FULL ADDER IN 65NM CMOS TECHNOLOGY C. M. R. Prabhu, Tan Wee Xin Wilson and Thangavel Bhuvaneswari Faculty of Engineering and Technology Multimedia University Melaka, Malaysia E-Mail: c.m.prabu@mmu.edu.my

More information

A Structured Approach for Designing Low Power Adders

A Structured Approach for Designing Low Power Adders A Structured Approach for Designing Low Power Adders Ahmed M. Shams, Magdy A. Bayoumi (axs8245,mab 8 cacs.usl.edu) Abstract- A performance analysis of a general 1-bit full adder cell is presented. The

More information

the cascading of two stages in CMOS domino logic[7,8]. The operating period of a cell when its input clock and output are low is called the precharge

the cascading of two stages in CMOS domino logic[7,8]. The operating period of a cell when its input clock and output are low is called the precharge 1.5v,.18u Area Efficient 32 Bit Adder using 4T XOR and Modified Manchester Carry Chain Ajith Ravindran FACTS ELCi Electronics and Communication Engineering Saintgits College of Engineering, Kottayam Kerala,

More information

A REVIEW PAPER ON HIGH PERFORMANCE 1- BIT FULL ADDERS DESIGN AT 90NM TECHNOLOGY

A REVIEW PAPER ON HIGH PERFORMANCE 1- BIT FULL ADDERS DESIGN AT 90NM TECHNOLOGY I J C T A, 9(11) 2016, pp. 4947-4956 International Science Press A REVIEW PAPER ON HIGH PERFORMANCE 1- BIT FULL ADDERS DESIGN AT 90NM TECHNOLOGY N. Lokabharath Reddy *, Mohinder Bassi **2 and Shekhar Verma

More information

Design and Simulation of Novel Full Adder Cells using Modified GDI Cell

Design and Simulation of Novel Full Adder Cells using Modified GDI Cell Design and Simulation of Novel Full Adder Cells using Modified GDI Cell 1 John George Victor, 2 Dr M Sunil Prakash 1,2 Dept of ECE, MVGR College of Engineering, Vizianagaram, India IJECT Vo l 6, Is s u

More information

A REVIEW OF THE 0.09 µm STANDARD FULL ADDERS

A REVIEW OF THE 0.09 µm STANDARD FULL ADDERS A REVIEW OF THE 0.09 µm STANDARD FULL ADDERS V. Vijay 1, J. Prathiba 2, S. Niranjan Reddy 3 and P. Praveen kumar 4 1 School of Electronics, Vignan University, Vadlamudi, Guntur vijayqiscet@gmail.com 2

More information

A Low-Power High-speed Pipelined Accumulator Design Using CMOS Logic for DSP Applications

A Low-Power High-speed Pipelined Accumulator Design Using CMOS Logic for DSP Applications International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Volume. 1, Issue 5, September 2014, PP 30-42 ISSN 2349-4840 (Print) & ISSN 2349-4859 (Online) www.arcjournals.org

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July ISSN

International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July ISSN International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July-2015 636 Low Power Consumption exemplified using XOR Gate via different logic styles Harshita Mittal, Shubham Budhiraja

More information

Power Efficient adder Cell For Low Power Bio MedicalDevices

Power Efficient adder Cell For Low Power Bio MedicalDevices IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 4, Issue 2, Ver. III (Mar-Apr. 2014), PP 39-45 e-issn: 2319 4200, p-issn No. : 2319 4197 Power Efficient adder Cell For Low Power Bio MedicalDevices

More information

Energy Efficient Full-adder using GDI Technique

Energy Efficient Full-adder using GDI Technique Energy Efficient Full-adder using GDI Technique Balakrishna.Batta¹, Manohar.Choragudi², Mahesh Varma.D³ ¹P.G Student, Kakinada Institute of Engineering and technology, korangi, JNTUK, A.P, INDIA ²Assistant

More information

DESIGN OF ENERGY-EFFICIENT FULL ADDER USING HYBRID-CMOS LOGIC STYLE

DESIGN OF ENERGY-EFFICIENT FULL ADDER USING HYBRID-CMOS LOGIC STYLE DESIGN OF ENERGY-EFFICIENT FULL ADDER USING HYBRID-CMOS LOGIC STYLE 1 Mohammad Shamim Imtiaz, 2 Md Abdul Aziz Suzon, 3 Mahmudur Rahman 1 Part-Time Lecturer, Department of EEE, A.U.S.T, Dhaka, Bangladesh

More information

Pass Transistor and CMOS Logic Configuration based De- Multiplexers

Pass Transistor and CMOS Logic Configuration based De- Multiplexers Abstract: Pass Transistor and CMOS Logic Configuration based De- Multiplexers 1 K Rama Krishna, 2 Madanna, 1 PG Scholar VLSI System Design, Geethanajali College of Engineering and Technology, 2 HOD Dept

More information

NOVEL DESIGN OF 10T FULL ADDER WITH 180NM CMOS TECHNOLOGY

NOVEL DESIGN OF 10T FULL ADDER WITH 180NM CMOS TECHNOLOGY International Journal of Electronics Engineering Research. ISSN 0975-6450 Volume 9, Number 9 (2017) pp. 1407-1414 Research India Publications http://www.ripublication.com NOVEL DESIGN OF 10T FULL ADDER

More information

Power Optimization for Ripple Carry Adder with Reduced Transistor Count

Power Optimization for Ripple Carry Adder with Reduced Transistor Count e-issn 2455 1392 Volume 2 Issue 5, May 2016 pp. 146-154 Scientific Journal Impact Factor : 3.468 http://www.ijcter.com Power Optimization for Ripple Carry Adder with Reduced Transistor Count Swarnalika

More information