Small Signal Amplifiers - BJT. Definitions Small Signal Amplifiers Dimensioning of capacitors

Size: px
Start display at page:

Download "Small Signal Amplifiers - BJT. Definitions Small Signal Amplifiers Dimensioning of capacitors"

Transcription

1 Small Signal mplifiers BJT Defitions Small Signal mplifiers Dimensiong of capacitors 1

2 Defitions (1) Small signal condition When the put signal (v and, i ) is small so that output signal (v out and, i out ) is confed the active region of the output characteristics of the device, the device is operatg a condition of small signal. More specifically, the condition of small signal are verified when the variations output are so small that the parameter values of the device can be regarded as constant. n these conditions, the amplifiers can be analyzed usg the smallsignal models of the BJT. The small signal conditions occur, general, for the first stages constitutg an amplification system. earity n conditions of the small signal, the amplifier can be considered lear. The output signal is proportional to the put signal. This property derives from the fact that the components of the circuit are described by lear equations. f the system is lear applies the prciple of superposition. mplitude and phase distortion So that a waveform is not altered across the amplifier is necessary that each of its susoidal component is equally modified amplitude and phase. 2

3 Defitions (2) Transfer function or network function Complex function that describes the relationship between the output signal and the put signal. t is defed the aplace doma (s) or the frequency doma (s = jw) mplitude and phase response eal functions obtaed by specifyg amplitude and phase of the transfer function with s = jw. Describe the variation of modulus and phase when the frequency changes. Ga and phase shift of an amplifier n the case of an amplifier transfer function is also called amplification (or ga) and can be expressed magnitude and phase. elatively to the various electrical quantities considered for entry and exit there are various defitions of ga s S oltage amplification Current amplification Transconductance amplification v i G ; ; ; Transresistance amplification ; 3

4 Defitions (3) nput impedance t is the impedance viewed by the source of the put signal. Z ; Output mpedance t is the impedance viewed from the output port. This impedance can be terpreted as the Theven impedance at the output port. Z out out out ; S S out s out Z Z out 4

5 Defitions (4) Three configurations can be considered CC CC CC C1 1 2 C BJT E C2 C3 s s s s C1 1 2 C E BJT C2 s s C1 1 2 E BJT C2 Common Base Conf.. Common Emitter Conf. Common Collecttor Conf. P // v i out 1 2 CBC CEC CCC h hfe C // C // fe 1 h fe E // C // h hie 1h fe E E 1 ie h C fe v v v C 1 h fe hie // P // hie 1 hfe E P 1 E 1 hfe // C C hie h fe E // 1 P // hie h fe E // P E hie P // S 1 h fe Electronics: a systems approach by N. Storey 5

6 Defitions (5) i b h fe i b h ie Common Base C. v E C // v out i b h fe i b Common Emitter C. v 1 // 2 h ie E C // v out i b h fe i b Common Collecttor C. h ie v v out 1 // 2 E // C 6

7 Common Emitter C. The voltage supply ( CC ) for the signal is equivalent to a short circuit v 1 v be 2 equivalent i circuit b h fe i b h ie v ce C v out v 1 // 2 i b h ie E h fe i b C // v out E Capacitors the midband are equivalent to a short circuit 1 1 // // h h // 1 2 ie fe E 1 2 P v i h // v i h h v out b fe C b ie fe E v h // // out v h 1h fe C C ie fe E i vout 1 i v i // v // C C E 7

8 Common Collettor C. The voltage supply ( CC ) for the signal is equivalent to a short circuit v 1 v be 2 equivalent i circuit b h fe i b h ie v ce C i b h fe i b h ie v v out 1 // 2 E // C E v out Capacitors the midband are equivalent to a short circuit // // h h // // 1 2 ie fe E 1 2 P v i h // v i h h // out b fe C b ie fe C v 1 h out fe E // v 1 v hie 1 h fe E // i vout 1 i v i // v // // C C C 8

9 Defitions (6) Couplg capacitor The amplifier is used to provide voltage and current levels adequate to drive the load connected to the output. The use of a sgle BJT is sometimes not sufficient to achieve this result. This limitation can be overcome by connectg cascade several amplifiers, so that the signal emitted by the source is creased by each amplifier constitutg the cascade. Each dividual amplifier is called stage. Capacitors are used to connect one stage to another, they are referred couplg capacitors. The couplg capacitors have the function of providg sulation DC so that the bias of one stage does not affect that of the next stage. These capacitors have to pass the C signal from one stage to another with mimum distortion. S s Z Z out 9

10 Defitions (7) Bypass capacitors These capacitors are connected parallel to a resistor, so C signals on the resistor are short circuited. n this way the C and DC circuits are different. For example, the case of CEC, a bypass capacitor on E allows to obta a higher voltage ga. h fe C // h 1h ie fe E h // fe C h ie For the capacitor bypass the followg configurations can be used : BJ T C3 E BJT E C3 BJ T C3 e 3 3 Ga variation with frequency Because of the troduced reactive elements and the parasitic reactive elements the response of the amplifier is function of frequency. 10

11 Defitions (8) Midband To simplify the study, it is useful to assume that there is a range of frequencies (bandwidth) which all the reactive effects are negligible. Therefore this range, ga ( 0 ), put and output impedances are real quantities ( out ). Three different frequency ranges (low, medium and high frequencies) can be considered. Three different frequency ranges correspond to three different dynamic circuits. Cutoff frequencies The midband is delimited by two frequencies, the lower cutoff frequency f l (determed by couplg and bypass capacitors) and the upper cutoff frequency f u (determed by the junction capacitance and the parasitic effects). Freq. The cutoff frequencies are defed by: 0 u 2 f f l f f 3dB l db u db 0 db Electronics: a systems approach by N. Storey (13.7) Freq. 11

12 Defitions (9) s S Z Z out j( ) j v e e 0 ; v v ; ; Common Emitter C. Common Collector C. Midband 12

13 Defitions (10) Observation When the small signal conditions are verified the bias conditions are not fluenced by signals present, and the full analysis can be divided to two subanalysis: DC and C. The C analysis is often made by assumg the existence of the termediate band and analyzg the circuit this band, where the reactive effects can be neglected. Therefore, it is important to know the cutoff frequencies that defe the midband. Syntesis of a small signal stage n general, a synthesis process, without the computer aid is carried out takg to account the behavior of the circuit DC and C and estimatg the effect of the capacitors on the cutoff frequencies. t last, the synthesis, of a stage which works at small signal, can be realized the followg steps: 1. Synthesis of the bias network. 2. Change of the bias network to meet the design specifications. 3. Choice of the capacitors to obta the request lower cutoff frequency. 13

14 Small signal amplifiers 14

15 To design an amplifier, that by means of a suitable value, ensure a specific current ga and voltage amplification equal to one. The circuit solution is the: CC common collector stage 1 BJT C2 S s C1 2 E Synthesis steps 1. Synthesize the bias network ( 1, 2, E ). 2. Select the value which ensures the desired current ga. 3. Choose the appropriate values for C1 and C2 which ensure the lower cutoff frequency given the project specifications. 15

16 Synthesis steps: 1 Synthesis of bias network for the CCC Bias network for the CCC 3 resistors 3 relations 1) ( ) CC CE E CQ BQ 1 B 2 base BJT CC E 2) CQ 2 BQ 2 10 BQ 10 h h 2 FE 1 base BEQ E BQ BQ 1 BEQ 1 hfe E 10 BQ 2 1 hfe 10 E CQ FE 2 E 3) 2 CC 1// 2 BQ ( BEQ E ) ( BEQ E ) 1 2 CC BEQ E 1 2 BEQ E 16

17 Synthesis steps: 1 Synthesis steps of bias network: 1) Choose the supply voltage CC and the transistor workg pot: C, CE. 2) From the datasheet BEon and h FE values can be obtaed. BEon =0.66 h FE =210 3) E is obtaed by: E CC C CEQ m 1k 4) 2 is obtaed by: Or: k 2 hfe E 21k 2 15k BE E BE E 2 hfe 10 2 C 5) 1 is obtaed by: CC BEQ E 1 2 BEQ E k 13 k 1 12 k

18 Synthesis steps: 2 is obtaed by the circuit analysis. P // P // hie 1 hfe E // h // P fe E h fe 1 1 E P E f h fe E >> P or h fe E > 10 P h E h 1 fe fe P 1 E h fe 1 h P fe f h fe E > 10 P and h fe >10 P k 6. 8k

19 To perform the and measurements : Mount the circuit troducg a test resistor T //.k T CC Measure T (usg two probes) T 1 BJT C2 Calculate and T T ; S s T C1 2 E Calculate Calculate 20

20 To design a stage which ensures, the passband, the desired voltage amplification. f the load can be selected a possible solution is the: common emitter stage Synthesis steps 1. Synthesize the bias network ( 1, 2, C, E ). 2. Select the value which ensures the voltage ga desired. 3. Choose the appropriate values for C1, C2 and C3 (C3 >> C1 and C2) which ensure the lower cutoff frequency given the project specifications s s C1 1 2 C E BJT CC C2 C3 21

21 Synthesis steps: 1 Synthesis of bias network for the CEC (and CBC) CC 4 resistors 4 relations 1) ( ) CC C C CEQ E CQ BQ 1 CQ c 2) CC E B 2 base 2 BJT E E 3) CQ 2 BQ 2 10 BQ 10 h h 2 FE 1 base BEQ 1 hfe E BQ 2 1 hfe 10 E CQ FE 4) 2 CC 1// 2 BQ ( BEQ E ) ( BEQ E ) 1 2 CC BEQ E 1 2 BEQ E 22

22 Synthesis steps: 1 Synthesis steps of bias network: 1) Choose the supply voltage CC and the transistor workg pot: C, CE. 2) From the datasheet BEon and h FE values can be obtaed. BEon =0.66 h FE =210 3) E is obtaed by: E E CQ CC 20 CQ 1 10m 100 4) C is obtaed by: C CC CEQ E CQ C m 4) 2 is obtaed by: Or: 1 2 hfe E 2. 1k k BE E BE E 2 hfe 10 2 C 5) 1 is obtaed by: CC BEQ E 1 2 BEQ E k 20 k 1 22 k

23 Synthesis steps: 2 is obtaed by circuit analysis. s s C1 1 2 C BJT E CC C2 C3 S s i i i b h ie 1 // 2 i b h fe 1 1 hfe C // hfe h h ie ie C 25

24 To design a stage to ensure, the passband, a voltage amplification f the load is fixed a possible solution is the: common emitter stage with emitter degeneration s C1 1 C BJT CC C2 C3 The emitter resistor is replaced with E //Series (C 3 3 ) to obta different impedance values DC and C. s 2 E 3 Synthesis steps 1. Synthesize the bias network ( 1, 2, C, E ). Same approach of the CEC. 2. Select the 3 value. 3. Choose the appropriate values for C1, C2 and C3 (C3 >> C1 and C2) which ensure the lower cutoff frequency given the project specifications. 26

25 Synthesis steps: 2 CC s C1 1 C BJT C2 C3 S i i i b h ie i b h fe s 2 E 3 s 1 // 2 E // 3 3 hfe C // C // 1 E h 1h // // // // ie fe E 1 1 // 3 C E E 3 C E 3 E

Microelectronics Circuit Analysis and Design

Microelectronics Circuit Analysis and Design Neamen Microelectronics Chapter 6-1 Microelectronics Circuit Analysis and Design Donald A. Neamen Chapter 6 Basic BJT Amplifiers Neamen Microelectronics Chapter 6-2 In this chapter, we will: Understand

More information

5.25Chapter V Problem Set

5.25Chapter V Problem Set 5.25Chapter V Problem Set P5.1 Analyze the circuits in Fig. P5.1 and determine the base, collector, and emitter currents of the BJTs as well as the voltages at the base, collector, and emitter terminals.

More information

Chapter 6. BJT Amplifiers

Chapter 6. BJT Amplifiers Basic Electronic Devices and Circuits EE 111 Electrical Engineering Majmaah University 2 nd Semester 1432/1433 H Chapter 6 BJT Amplifiers 1 Introduction The things you learned about biasing a transistor

More information

Experiment EB1: FET Amplifier Frequency Response

Experiment EB1: FET Amplifier Frequency Response 1: FET Amplifier Frequency Response earng Outcome O1: Expla the prciples and operation of amplifiers and switchg circuits. O2: Analyse low and high frequency response of amplifiers. O4: Analyze the operation

More information

Frequency Response of Common Emitter Amplifier

Frequency Response of Common Emitter Amplifier Başkent University Department of Electrical and Electronics Engineering EEM 311 Electronics II Experiment 6 Frequency Response of Common Emitter Amplifier Aim: The aim of this experiment is to study the

More information

Midterm 2 Exam. Max: 90 Points

Midterm 2 Exam. Max: 90 Points Midterm 2 Exam Name: Max: 90 Points Question 1 Consider the circuit below. The duty cycle and frequency of the 555 astable is 55% and 5 khz respectively. (a) Determine a value for so that the average current

More information

2. SINGLE STAGE BIPOLAR JUNCTION TRANSISTOR (BJT) AMPLIFIERS

2. SINGLE STAGE BIPOLAR JUNCTION TRANSISTOR (BJT) AMPLIFIERS 2. SINGLE STAGE BIPOLAR JUNCTION TRANSISTOR (BJT) AMPLIFIERS I. Objectives and Contents The goal of this experiment is to become familiar with BJT as an amplifier and to evaluate the basic configurations

More information

EXP8: AMPLIFIERS II.

EXP8: AMPLIFIERS II. EXP8: AMPLIFIES II. Objectives. The objectives of this lab are:. To analyze the behavior of a class A amplifier. 2. To understand the role the components play in the gain of the circuit. 3. To find the

More information

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 12, 2017

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 12, 2017 Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 12, 2017 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

More information

Homework Assignment 12

Homework Assignment 12 Homework Assignment 12 Question 1 Shown the is Bode plot of the magnitude of the gain transfer function of a constant GBP amplifier. By how much will the amplifier delay a sine wave with the following

More information

Lecture 6: Transistors Amplifiers. K.K. Gan Lecture 6: Transistors Amplifiers

Lecture 6: Transistors Amplifiers. K.K. Gan Lecture 6: Transistors Amplifiers Lecture 6: Transistors Amplifiers ommon mitter Amplifier ( Simplified ): What's common (ground) a common emitter amp? The emitter! The emitter is connected (tied) to ground usually by a capacitor To an

More information

Lecture #7 BJT and JFET Frequency Response

Lecture #7 BJT and JFET Frequency Response November 2014 Integrated Technical Education Cluster At AlAmeeria J-601-1448 Electronic Principals Lecture #7 BJT and JFET Frequency Response Instructor: Dr. Ahmad El-Banna Agenda Introduction General

More information

Engineering Spring Homework Assignment 4: BJT Biasing and Small Signal Properties

Engineering Spring Homework Assignment 4: BJT Biasing and Small Signal Properties Engineering 1620 -- Spring 2011 Homework Assignment 4: BJT Biasing and Small Signal Properties 1.) The circuit below is a common collector amplifier using constant current biasing. (Constant current biasing

More information

Electronic Devices. Floyd. Chapter 6. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd

Electronic Devices. Floyd. Chapter 6. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd Electronic Devices Ninth Edition Floyd Chapter 6 Agenda BJT AC Analysis Linear Amplifier AC Load Line Transistor AC Model Common Emitter Amplifier Common Collector Amplifier Common Base Amplifier Special

More information

EXPERIMENT #3 TRANSISTOR BIASING

EXPERIMENT #3 TRANSISTOR BIASING EXPERIMENT #3 TRANSISTOR BIASING Bias (operating point) for a transistor is established by specifying the quiescent (D.C., no signal) values of collector-emitter voltage V CEQ and collector current I CQ.

More information

BJT Circuits (MCQs of Moderate Complexity)

BJT Circuits (MCQs of Moderate Complexity) BJT Circuits (MCQs of Moderate Complexity) 1. The current ib through base of a silicon npn transistor is 1+0.1 cos (1000πt) ma. At 300K, the rπ in the small signal model of the transistor is i b B C r

More information

Homework Assignment 11

Homework Assignment 11 Homework Assignment 11 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3-dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =

More information

Operational Amplifier Circuits

Operational Amplifier Circuits Operational Amplifier Circuits eview: deal Op-amp an open loop configuration p p + i _ + i + Ai o o n n _ An ideal op-amp is characterized with fite open loop ga A The other relevant conditions for an

More information

Transistor Biasing and Operational amplifier fundamentals. OP-amp Fundamentals and its DC characteristics. BJT biasing schemes

Transistor Biasing and Operational amplifier fundamentals. OP-amp Fundamentals and its DC characteristics. BJT biasing schemes Lab 1 Transistor Biasing and Operational amplifier fundamentals Experiment 1.1 Experiment 1.2 BJT biasing OP-amp Fundamentals and its DC characteristics BJT biasing schemes 1.1 Objective 1. To sketch potential

More information

Electron Devices and Circuits

Electron Devices and Circuits Electron Devices and Circuits (EC 8353) Prepared by Mr.R.Suresh, AP/EEE Ms.S.KARKUZHALI,A.P/EEE BJT small signal model Analysis of CE, CB, CC amplifiers- Gain and frequency response MOSFET small signal

More information

The George Washington University School of Engineering and Applied Science Department of Electrical and Computer Engineering ECE 20 - LAB

The George Washington University School of Engineering and Applied Science Department of Electrical and Computer Engineering ECE 20 - LAB The George Washington University School of Engineering and Applied Science Department of Electrical and Computer Engineering ECE 20 - LAB Experiment # 6 (Part I) Bipolar Junction Transistors Common Emitter

More information

I C I E =I B = I C 1 V BE 0.7 V

I C I E =I B = I C 1 V BE 0.7 V Guide to NPN Amplifier Analysis Jason Woytowich 1. Transistor characteristics A BJT has three operating modes cutoff, active, and saturation. For applications, like amplifiers, where linear characteristics

More information

ECE 255, Discrete-Circuit Amplifiers

ECE 255, Discrete-Circuit Amplifiers ECE 255, Discrete-Circuit Amplifiers 20 March 2018 In this lecture, we will continue with the study of transistor amplifiers with the presence of biasing circuits and coupling capacitors in place. We will

More information

Bipolar Junction Transistors

Bipolar Junction Transistors Bipolar Junction Transistors Invented in 1948 at Bell Telephone laboratories Bipolar junction transistor (BJT) - one of the major three terminal devices Three terminal devices more useful than two terminal

More information

Transistor Configuration

Transistor Configuration Transistor Configuration 1 Objectives To review BJT biasing circuit. To study BJT amplifier circuit To understand the BJT configuration. To analyse single-stage BJT amplifier circuits. To study the differential

More information

ESE319 Introduction to Microelectronics High Frequency BJT Model & Cascode BJT Amplifier

ESE319 Introduction to Microelectronics High Frequency BJT Model & Cascode BJT Amplifier High Frequency BJT Model & Cascode BJT Amplifier 1 Gain of 10 Amplifier Non-ideal Transistor C in R 1 V CC R 2 v s Gain starts dropping at > 1MHz. Why! Because of internal transistor capacitances that

More information

ESE 372 / Spring 2011 / Lecture 19 Common Base Biased by current source

ESE 372 / Spring 2011 / Lecture 19 Common Base Biased by current source ESE 372 / Spring 2011 / Lecture 19 Common Base Biased by current source Output from Collector Start with bias DC analysis make sure BJT is in FA, then calculate small signal parameters for AC analysis.

More information

UNIVERSITY PART-B ANSWERS UNIT-1

UNIVERSITY PART-B ANSWERS UNIT-1 UNERSTY PART-B ANSWERS UNT-. Discuss about the DC load line and Q point. (OR) What is D.C. load line, how will you select the operating point, explain it using common emitter amplifier characteristics

More information

Last time: BJT CE and CB amplifiers biased by current source

Last time: BJT CE and CB amplifiers biased by current source Last time: BJT CE and CB amplifiers biased by current source Assume FA regime, then VB VC V E I B I E, β 1 I Q C α I, V 0. 7V Calculate V CE and confirm it is > 0.2-0.3V, then BJT can be replaced with

More information

Electronic Troubleshooting. Chapter 5 Multistage Amplifiers

Electronic Troubleshooting. Chapter 5 Multistage Amplifiers Electronic Troubleshooting Chapter 5 Multistage Amplifiers Overview When more amplification is required than can be supplied by a single stage amp A second stage is added Or more stages are added Aspects

More information

Physics 116A Fall 2000: Final Exam

Physics 116A Fall 2000: Final Exam Physics 6A Fall 2000: Final Exam 2//2000 (rev. 2/0) Closed book and notes except for three 8.5 in 2 sheets of paper. Show reasoning for full credit. There are 6 problems and 200 points. Note: complex quantities

More information

Noise and Error Analysis and Optimization of a CMOS Latched Comparator

Noise and Error Analysis and Optimization of a CMOS Latched Comparator Available onle at www.sciencedirect.com Procedia Engeerg 30 (2012) 210 217 International Conference on Communication Technology and System Design 2011 Noise and Error Analysis and Optimization of a CMOS

More information

UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A

UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A 1. Why do we choose Q point at the center of the load line? 2. Name the two techniques used in the stability of the q point.explain. 3. Give the expression

More information

The Miller Approximation. CE Frequency Response. The exact analysis is worked out on pp of H&S.

The Miller Approximation. CE Frequency Response. The exact analysis is worked out on pp of H&S. CE Frequency Response The exact analysis is worked out on pp. 639-64 of H&S. The Miller Approximation Therefore, we consider the effect of C µ on the input node only V ---------- out V s = r g π m ------------------

More information

Exam Write down one phrase/sentence that describes the purpose of the diodes and constant current source in the amplifier below.

Exam Write down one phrase/sentence that describes the purpose of the diodes and constant current source in the amplifier below. Exam 3 Name: Score /94 Question 1 Short Takes 1 point each unless noted otherwise. 1. Write down one phrase/sentence that describes the purpose of the diodes and constant current source in the amplifier

More information

Lecture (06) BJT Amplifiers 3

Lecture (06) BJT Amplifiers 3 Lecture (06) BJT Amplifiers 3 By: Dr. Ahmed ElShafee 1 Current Gain 2 Power Gain The overall power gain is the product of the overall voltage gain (Av ) and the overall current gain (Ai). 3 THE COMMON

More information

By: Dr. Ahmed ElShafee

By: Dr. Ahmed ElShafee Lecture (04) Transistor Bias Circuit 3 BJT Amplifiers 1 By: Dr. Ahmed ElShafee ١ Emitter Feedback Bias If an emitter resistor is added to the base bias circuit in Figure, the result is emitter feedback

More information

BJT Amplifier. Superposition principle (linear amplifier)

BJT Amplifier. Superposition principle (linear amplifier) BJT Amplifier Two types analysis DC analysis Applied DC voltage source AC analysis Time varying signal source Superposition principle (linear amplifier) The response of a linear amplifier circuit excited

More information

Page 1 of 7. Power_AmpFal17 11/7/ :14

Page 1 of 7. Power_AmpFal17 11/7/ :14 ECE 3274 Power Amplifier Project (Push Pull) Richard Cooper 1. Objective This project will introduce two common power amplifier topologies, and also illustrate the difference between a Class-B and a Class-AB

More information

Improving Amplifier Voltage Gain

Improving Amplifier Voltage Gain 15.1 Multistage ac-coupled Amplifiers 1077 TABLE 15.3 Three-Stage Amplifier Summary HAND ANALYSIS SPICE RESULTS Voltage gain 998 1010 Input signal range 92.7 V Input resistance 1 M 1M Output resistance

More information

ECE 2201 PRELAB 6 BJT COMMON EMITTER (CE) AMPLIFIER

ECE 2201 PRELAB 6 BJT COMMON EMITTER (CE) AMPLIFIER ECE 2201 PRELAB 6 BJT COMMON EMITTER (CE) AMPLIFIER Hand Analysis P1. Determine the DC bias for the BJT Common Emitter Amplifier circuit of Figure 61 (in this lab) including the voltages V B, V C and V

More information

1 GSW Noise and IP3 in Receivers

1 GSW Noise and IP3 in Receivers Gettg Started with Communications Engeerg GSW Noise and 3 Receivers GSW Noise and 3 Receivers In many cases, the designers of dividual receiver components (mostly amplifiers, mixers and filters) don t

More information

ANALYSIS OF AN NPN COMMON-EMITTER AMPLIFIER

ANALYSIS OF AN NPN COMMON-EMITTER AMPLIFIER ANALYSIS OF AN NPN COMMON-EMITTER AMPLIFIER Experiment Performed by: Michael Gonzalez Filip Rege Alexis Rodriguez-Carlson Report Written by: Filip Rege Alexis Rodriguez-Carlson November 28, 2007 Objectives:

More information

Linear electronic. Lecture No. 1

Linear electronic. Lecture No. 1 1 Lecture No. 1 2 3 4 5 Lecture No. 2 6 7 8 9 10 11 Lecture No. 3 12 13 14 Lecture No. 4 Example: find Frequency response analysis for the circuit shown in figure below. Where R S =4kR B1 =8kR B2 =4k R

More information

Mini Project 2 Single Transistor Amplifiers. ELEC 301 University of British Columbia

Mini Project 2 Single Transistor Amplifiers. ELEC 301 University of British Columbia Mini Project 2 Single Transistor Amplifiers ELEC 301 University of British Columbia 44638154 October 27, 2017 Contents 1 Introduction 1 2 Investigation 1 2.1 Part 1.................................................

More information

... Second Semester

... Second Semester كنا نظنك اي عيل تركتنا... لكن طيفك مل يزل يغشانا مثل الندى يسقي النبات بقطره... قد ابت ليال يف ادلىج عطشاان ما زلت أذكر حني أدخل معمال... متسك هجازا للقياس تحاكه... فأ راك جتلس هادئا حيرانا تكتب وترمس

More information

Document Name: Electronic Circuits Lab. Facebook: Twitter:

Document Name: Electronic Circuits Lab.  Facebook:  Twitter: Document Name: Electronic Circuits Lab www.vidyathiplus.in Facebook: www.facebook.com/vidyarthiplus Twitter: www.twitter.com/vidyarthiplus Copyright 2011-2015 Vidyarthiplus.in (VP Group) Page 1 CIRCUIT

More information

THE UNIVERSITY OF HONG KONG. Department of Electrical and Electrical Engineering

THE UNIVERSITY OF HONG KONG. Department of Electrical and Electrical Engineering THE UNIVERSITY OF HONG KONG Department of Electrical and Electrical Engineering Experiment EC1 The Common-Emitter Amplifier Location: Part I Laboratory CYC 102 Objective: To study the basic operation and

More information

DC Bias. Graphical Analysis. Script

DC Bias. Graphical Analysis. Script Course: B.Sc. Applied Physical Science (Computer Science) Year & Sem.: Ist Year, Sem - IInd Subject: Electronics Paper No.: V Paper Title: Analog Circuits Lecture No.: 3 Lecture Title: Analog Circuits

More information

Module-1 BJT AC Analysis: The re Transistor Model. Common-Base Configuration

Module-1 BJT AC Analysis: The re Transistor Model. Common-Base Configuration Module-1 BJT AC Analysis: BJT AC Analysis: BJT AC Analysis: BJT Transistor Modeling, The re transistor model, Common emitter fixed bias, Voltage divider bias, Emitter follower configuration. Darlington

More information

Lecture #3 ( 2 weeks) Transistors

Lecture #3 ( 2 weeks) Transistors Spring 2015 Benha University Faculty of Engineering at Shoubra ECE-291 Electronic Engineering Lecture #3 ( 2 weeks) Transistors Instructor: Dr. Ahmad El-Banna 1 Agenda BJT Structure Basic Operation Transistor

More information

Lecture (04) BJT Amplifiers 1

Lecture (04) BJT Amplifiers 1 Lecture (04) BJT Amplifiers 1 By: Dr. Ahmed ElShafee ١ The Linear Amplifier A linear amplifier provides amplification of a signal without any distortion so that the output signal A voltage divider biased

More information

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road QUESTION BANK

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road QUESTION BANK SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK Subject with Code : Electronic Circuit Analysis (16EC407) Year & Sem: II-B.Tech & II-Sem

More information

Page 1. Telecommunication Electronics ETLCE - A2 06/09/ DDC 1. Politecnico di Torino ICT School. Amplifiers

Page 1. Telecommunication Electronics ETLCE - A2 06/09/ DDC 1. Politecnico di Torino ICT School. Amplifiers Politecnico di Torino ICT School Amplifiers Telecommunication Electronics A2 Transistor amplifiers» Bias point and circuits,» Small signal models» Gain and bandwidth» Limits of linear analysis Op Amp amplifiers

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMUS) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMUS) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMUS) Dundigal, Hyderabad - 00 0 ELECTRONICS AND COMMUNICATION ENGINEERING ASSIGNMENT Name : ELECTRONIC CIRCUIT ANALYSIS Code : A0 Class : II - B. Tech nd semester

More information

ECE 3400 Project. By: Josh Skow and Bryan Cheung

ECE 3400 Project. By: Josh Skow and Bryan Cheung ECE 3400 Project By: Josh Skow and Bryan Cheung Design Approach Goal: Design a 3 stage amplifier to amplify an acoustic input signal from a piezoelectric microphone Amplifier should only amplify frequencies

More information

EC2205 Electronic Circuits-1 UNIT III FREQUENCY RESPONSE OF AMPLIFIERS

EC2205 Electronic Circuits-1 UNIT III FREQUENCY RESPONSE OF AMPLIFIERS EC2205 Electronic Circuits-1 UNIT III FREQUENCY RESPONSE OF AMPLIFIERS PART A (2 MARK QUESTIONS) 1. Two amplifiers having gain 20 db and 40 db are cascaded. Find the overall gain in db. (NOV/DEC 2009)

More information

EXPERIMENT 10: SINGLE-TRANSISTOR AMPLIFIERS 10/27/17

EXPERIMENT 10: SINGLE-TRANSISTOR AMPLIFIERS 10/27/17 EXPERIMENT 10: SINGLE-TRANSISTOR AMPLIFIERS 10/27/17 In this experiment we will measure the characteristics of the standard common emitter amplifier. We will use the 2N3904 npn transistor. If you have

More information

Bipolar junction transistors.

Bipolar junction transistors. Bipolar junction transistors. Third Semester Course code : 15EECC202 Analog electronic circuits (AEC) Team: Dr. Nalini C Iyer, R.V. Hangal, Sujata N, Prashant A, Sneha Meti AEC Team, Faculty, School of

More information

Tutorial 2 BJTs, Transistor Bias Circuits, BJT Amplifiers FETs and FETs Amplifiers. Part 1: BJTs, Transistor Bias Circuits and BJT Amplifiers

Tutorial 2 BJTs, Transistor Bias Circuits, BJT Amplifiers FETs and FETs Amplifiers. Part 1: BJTs, Transistor Bias Circuits and BJT Amplifiers Tutorial 2 BJTs, Transistor Bias Circuits, BJT Amplifiers FETs and FETs Amplifiers Part 1: BJTs, Transistor Bias Circuits and BJT Amplifiers 1. Explain the purpose of a thin, lightly doped base region.

More information

ECE 255, MOSFET Amplifiers

ECE 255, MOSFET Amplifiers ECE 255, MOSFET Amplifiers 26 October 2017 In this lecture, the basic configurations of MOSFET amplifiers will be studied similar to that of BJT. Previously, it has been shown that with the transistor

More information

Electronic Circuits for Mechatronics ELCT 609 Lecture 5: BJT Voltage Amplifiers

Electronic Circuits for Mechatronics ELCT 609 Lecture 5: BJT Voltage Amplifiers Electronic Circuits for Mechatronics ELCT 609 Lecture 5: BJT Voltage Amplifiers Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 BJT Modes of Operation Electrical Equations of BJT 2 BJT

More information

Lecture #4 BJT AC Analysis

Lecture #4 BJT AC Analysis November 2014 Ahmad El-Banna Integrated Technical Education Cluster At AlAmeeria J-601-1448 Electronic Principals Lecture #4 BJT AC Analysis Instructor: Dr. Ahmad El-Banna Agenda BJT transistor Modeling

More information

Electronic Circuits II - Revision

Electronic Circuits II - Revision Electronic Circuits II - Revision -1 / 16 - T & F # 1 A bypass capacitor in a CE amplifier decreases the voltage gain. 2 If RC in a CE amplifier is increased, the voltage gain is reduced. 3 4 5 The load

More information

Experiment No. 9 DESIGN AND CHARACTERISTICS OF COMMON BASE AND COMMON COLLECTOR AMPLIFIERS

Experiment No. 9 DESIGN AND CHARACTERISTICS OF COMMON BASE AND COMMON COLLECTOR AMPLIFIERS Experiment No. 9 DESIGN AND CHARACTERISTICS OF COMMON BASE AND COMMON COLLECTOR AMPLIFIERS 1. Objective: The objective of this experiment is to explore the basic applications of the bipolar junction transistor

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R059210404 Set No. 1 II B.Tech I Semester Supplimentary Examinations, February 2008 ELECTRONIC CIRCUIT ANALYSIS ( Common to Electronics & Communication Engineering and Electronics & Telematics)

More information

Chapter 12 Power Amplifier

Chapter 12 Power Amplifier Chapter 12 Power Amplifier Definitions In small-signal amplifiers the main factors are: Amplification Linearity Gain Since large-signal, or power, amplifiers handle relatively large voltage signals and

More information

D.C Biasing using a Single Power Supply

D.C Biasing using a Single Power Supply 4/6/0 D Biasing using a Single Power Supply /6 D. Biasing using a Single Power Supply The general form of a single-supply BJT amplifier biasing circuit is: - - Generally, we have three goals in designing

More information

In a cascade configuration, the overall voltage and current gains are given by:

In a cascade configuration, the overall voltage and current gains are given by: ECE 3274 Two-Stage Amplifier Project 1. Objective The objective of this lab is to design and build a direct coupled two-stage amplifier, including a common-source gain stage and a common-collector buffer

More information

EXPERIMENT 10: SINGLE-TRANSISTOR AMPLIFIERS 11/11/10

EXPERIMENT 10: SINGLE-TRANSISTOR AMPLIFIERS 11/11/10 EXPERIMENT 10: SINGLE-TRANSISTOR AMPLIFIERS 11/11/10 In this experiment we will measure the characteristics of the standard common emitter amplifier. We will use the 2N3904 npn transistor. If you have

More information

EE 330 Lecture 20. Operating Points for Amplifier Applications Amplification with Transistor Circuits Small Signal Modelling

EE 330 Lecture 20. Operating Points for Amplifier Applications Amplification with Transistor Circuits Small Signal Modelling EE 330 Lecture 20 Operating Points for Amplifier Applications Amplification with Transistor Circuits Small Signal Modelling Review from Last Lecture Simplified Multi-Region Model Alternate equivalent model

More information

Lecture 33 Active Microwave Circuits: Two-Port Power Gains.

Lecture 33 Active Microwave Circuits: Two-Port Power Gains. Whites, EE 481/581 ecture 33 age 1 of 11 ecture 33 Active Microwave Circuits: Two-ort ower Gas. We are gog to focus on active microwave circuits for the remader of the semester. There are many types of

More information

Transistors and Applications

Transistors and Applications Chapter 17 Transistors and Applications DC Operation of Bipolar Junction Transistors (BJTs) The bipolar junction transistor (BJT) is constructed with three doped semiconductor regions separated by two

More information

EEE225: Analogue and Digital Electronics

EEE225: Analogue and Digital Electronics EEE225: Analogue and Digital Electronics Lecture I James E. Green Department of Electronic Engineering University of Sheffield j.e.green@sheffield.ac.uk Introduction This Lecture 1 Introduction Aims &

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 7 BJT AMPLIFIER CONFIGURATIONS AND INPUT/OUTPUT IMPEDANCE OBJECTIVES The purpose of this experiment

More information

(b) 25% (b) increases

(b) 25% (b) increases Homework Assignment 07 Question 1 (2 points each unless noted otherwise) 1. In the circuit 10 V, 10, and 5K. What current flows through? Answer: By op-amp action the voltage across is and the current through

More information

BJT. Bipolar Junction Transistor BJT BJT 11/6/2018. Dr. Satish Chandra, Assistant Professor, P P N College, Kanpur 1

BJT. Bipolar Junction Transistor BJT BJT 11/6/2018. Dr. Satish Chandra, Assistant Professor, P P N College, Kanpur 1 BJT Bipolar Junction Transistor Satish Chandra Assistant Professor Department of Physics P P N College, Kanpur www.satish0402.weebly.com The Bipolar Junction Transistor is a semiconductor device which

More information

Homework Assignment 05

Homework Assignment 05 Homework Assignment 05 Question (2 points each unless otherwise indicated)(20 points). Estimate the parallel parasitic capacitance of a mh inductor with an SRF of 220 khz. Answer: (2π)(220 0 3 ) = ( 0

More information

output passes full first (positive) hump and 1/2-scale second hump

output passes full first (positive) hump and 1/2-scale second hump 3. For V i > 0, V o 0. For V i < 0, V o V i. The resulting waveform consists only of the negative "humps" of the original cosine wave. Each hump has a duration of 0.5s there is a 0.5s gap between each

More information

ATLCE - A3 01/03/2016. Analog and Telecommunication Electronics 2016 DDC 1. Politecnico di Torino - ICT School. Lesson A3: BJT Amplifiers

ATLCE - A3 01/03/2016. Analog and Telecommunication Electronics 2016 DDC 1. Politecnico di Torino - ICT School. Lesson A3: BJT Amplifiers Politecnico di Torino - ICT School Analog and Telecommunication Electronics A3 BJT Amplifiers»Biasing» Output dynamic range» Small signal analysis» ltage gain» Frequency response AY 2015-16 Biasing Output

More information

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 3 Field Effect Transistors Lecture-8 Junction Field

More information

STATIC CHARACTERISTICS OF TRANSISTOR

STATIC CHARACTERISTICS OF TRANSISTOR STAT CHARACTERISTS OF TRANSISTOR OBJECTIVE The purpose of the experiment is to study the characteristics of bipolar transistor in common emitter (CE) configuration. From the characteristic curve it is

More information

Lab 4. Transistor as an amplifier, part 2

Lab 4. Transistor as an amplifier, part 2 Lab 4 Transistor as an amplifier, part 2 INTRODUCTION We continue the bi-polar transistor experiments begun in the preceding experiment. In the common emitter amplifier experiment, you will learn techniques

More information

Unit WorkBook 4 Level 4 ENG U19 Electrical and Electronic Principles LO4 Digital & Analogue Electronics 2018 Unicourse Ltd. All Rights Reserved.

Unit WorkBook 4 Level 4 ENG U19 Electrical and Electronic Principles LO4 Digital & Analogue Electronics 2018 Unicourse Ltd. All Rights Reserved. Pearson BTEC Levels 4 Higher Nationals in Engineering (RQF) Unit 19: Electrical and Electronic Principles Unit Workbook 4 in a series of 4 for this unit Learning Outcome 4 Digital & Analogue Electronics

More information

TUNED AMPLIFIERS 5.1 Introduction: Coil Losses:

TUNED AMPLIFIERS 5.1 Introduction: Coil Losses: TUNED AMPLIFIERS 5.1 Introduction: To amplify the selective range of frequencies, the resistive load R C is replaced by a tuned circuit. The tuned circuit is capable of amplifying a signal over a narrow

More information

Common-Emitter Amplifier

Common-Emitter Amplifier Dr. Charles Kim Common-Emitter Amplifier A. Before We Start As the title of this lab says, this lab is about designing a Common-Emitter Amplifier, and this in this stage of the lab course is premature,

More information

Small signal Amplifier stages. Figure 5.2 Classification of power amplifiers

Small signal Amplifier stages. Figure 5.2 Classification of power amplifiers 5.1 Introduction When the power requirement to drive the load is in terms of several Watts rather than mili-watts the power amplifiers are used. Power amplifiers form the last stage of multistage amplifiers.

More information

Lecture 030 ECE4430 Review III (1/9/04) Page 030-1

Lecture 030 ECE4430 Review III (1/9/04) Page 030-1 Lecture 030 ECE4430 Review III (1/9/04) Page 0301 LECTURE 030 ECE 4430 REVIEW III (READING: GHLM Chaps. 3 and 4) Objective The objective of this presentation is: 1.) Identify the prerequisite material

More information

Code No: Y0221/R07 Set No. 1 I B.Tech Supplementary Examinations, Apr/May 2013 BASIC ELECTRONIC DEVICES AND CIRCUITS (Electrical & Electronics Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE Questions

More information

PartIIILectures. Multistage Amplifiers

PartIIILectures. Multistage Amplifiers University of missan Electronic II, Second year 2015-2016 PartIIILectures Assistant Lecture: 1 Multistage and Compound Amplifiers Basic Definitions: 1- Gain of Multistage Amplifier: Fig.(1-1) A general

More information

VOUT. A: n subthreshold region V SS V TN V IN V DD +V TP

VOUT. A: n subthreshold region V SS V TN V IN V DD +V TP Chapter 3: The CMOS verter This chapter is devoted to analyzg the static (DC) and dynamic (transient) behavior of the CMOS verter. The ma purpose of this analysis is to lay a theoretical ground for a dynamic

More information

BIPOLAR JUNCTION TRANSISTORS (BJTs) Dr Derek Molloy, DCU

BIPOLAR JUNCTION TRANSISTORS (BJTs) Dr Derek Molloy, DCU IPOLAR JUNCTION TRANSISTORS (JTs) Dr Derek Molloy, DCU What are JTs? Two PN junctions joined together is a JT Simply known as a transistor! ipolar? Current carried by electrons and holes Will see FETs

More information

Module 4 Unit 4 Feedback in Amplifiers

Module 4 Unit 4 Feedback in Amplifiers Module 4 Unit 4 Feedback in mplifiers eview Questions:. What are the drawbacks in a electronic circuit not using proper feedback? 2. What is positive feedback? Positive feedback is avoided in amplifier

More information

E84 Lab 3: Transistor

E84 Lab 3: Transistor E84 Lab 3: Transistor Cherie Ho and Siyi Hu April 18, 2016 Transistor Testing 1. Take screenshots of both the input and output characteristic plots observed on the semiconductor curve tracer with the following

More information

University of Southern California School Of Engineering Department Of Electrical Engineering

University of Southern California School Of Engineering Department Of Electrical Engineering University of Southern California School Of Engineering Department Of Electrical Engineering EE 448: Homework Assignment #02 Fall, 2001 ( Assigned 09/10/01; Due 09/19/01) Choma Problem #05: n an attempt

More information

15EEE282 Electronic Circuits and Simulation Lab - I Lab # 6

15EEE282 Electronic Circuits and Simulation Lab - I Lab # 6 Exp. No #6 FREQUENCY RESPONSE OF COMMON EMITTER AMPLIFIER OBJECTIVE The purpose of the experiment is to design a common emitter amplifier. To analyze and plot the frequency response of the amplifier with

More information

ECE 3274 Common-Emitter Amplifier Project

ECE 3274 Common-Emitter Amplifier Project ECE 3274 Common-Emitter Amplifier Project 1. Objective The objective of this lab is to design and build three variations of the common- emitter amplifier. 2. Components Qty Device 1 2N2222 BJT Transistor

More information

Electronics Prof. D. C. Dube Department of Physics Indian Institute of Technology, Delhi

Electronics Prof. D. C. Dube Department of Physics Indian Institute of Technology, Delhi Electronics Prof. D. C. Dube Department of Physics Indian Institute of Technology, Delhi Module No # 05 FETS and MOSFETS Lecture No # 06 FET/MOSFET Amplifiers and their Analysis In the previous lecture

More information

So far we have dealt with only small-signal ampliers. In small-signal ampliers the main factors were amplication linearity gain

So far we have dealt with only small-signal ampliers. In small-signal ampliers the main factors were amplication linearity gain Contents Power Amplier Types Class A Operation Class B Operation Class AB Operation Class C Operation Class D Operation Amplier Eciency Series-Fed Class A Amplier AC-DC Load Lines Maximum Eciency Figure

More information

Gechstudentszone.wordpress.com

Gechstudentszone.wordpress.com UNIT 4: Small Signal Analysis of Amplifiers 4.1 Basic FET Amplifiers In the last chapter, we described the operation of the FET, in particular the MOSFET, and analyzed and designed the dc response of circuits

More information