Exam Write down one phrase/sentence that describes the purpose of the diodes and constant current source in the amplifier below.

Size: px
Start display at page:

Download "Exam Write down one phrase/sentence that describes the purpose of the diodes and constant current source in the amplifier below."

Transcription

1 Exam 3 Name: Score /94 Question 1 Short Takes 1 point each unless noted otherwise. 1. Write down one phrase/sentence that describes the purpose of the diodes and constant current source in the amplifier below. Answer: Reduction of cross-over distortion 2. What is the maximum theoretical efficiency for a class-b amplifier? Answer: 78% 3. Many BJT datasheets do not list explicitly, but list an equivalent h-parameter instead. What is this parameter? Answer: 4. Consider a frequency. How many octaves higher is the frequency? Answer: Each octave means a doubling in frequency. Thus, we have to find. Substituting values gives ( ) ( ) octaves. in 5. Consider a frequency. How many decades higher is the frequency? Answer: Each decade means a frequency higher. Thus, we have to find in. Substituting values gives ( ) decades. 1

2 6. The small-signal output resistance of a BJT biased at = 1 ma is100k. What is when the transistor is biased at? Answer: is inversely-proportional to ( ) so that will be smaller at 5 ma, or. 7. A MOSFET has rated power of 25 W at an ambient temperature and a maximum specified junction temperature of 105 o C. What is the thermal resistance between the case and the junction? Answer: 8. What does SOA in the context of power transistors stand for? Answer: Safe Operating Area 9. True or false: if class-a amplifiers are not carefully biased, they will suffer from crossover distortion. Answer: False 10. Identify the false statement (a) FETs do not suffer from thermal runaway, but BJTs do (b) Everything else being equal, BJTs have an order of magnitude more gain than FETs (c) BJT technology has superior performance in power application when compared to the modern MOS technology, which explains why BJTs are still widely incorporated in power designs. Answer: (c) is false 11. An engineer designs a MOSFET-based class-ab amplifier to deliver 6.25 W (sinusoidal) signal power to a resistive load. What is the required peak-to-peak voltage swing across the load? (2 points) Answer:, so that, so that 2

3 12. In the circuit below, what is the maximum current that can flow through? Make reasonable assumptions. (2 points) Answer. Assume that for, ( ). Thus, will turn on and starve from additional base current when the current through (which is also the current through ) is 13. Consider the current mirror below, and neglect base currents. What is? (2 points) Answer: 14. In the current mirrors below, neglect the base currents. What is? (2 points) Answer: 3

4 15. In the circuit below. Estimate the midband gain. (2 points) (a) (b) (c) (d) Need additional information Answer: (b) 16. A BJT has rated power of 115 W at and maximum allowable junction temperature. It is mounted on a heat sink with. It is dissipating 5 W at an ambient temperature. What is the temperature of the heat sink? (2 points) (a) Need additional information (b) (c) (d) Answer: 5 W through the heat sink will elevate the sink s temperature by = above the ambient, so the answer is (c). 17. Estimate assuming and. (2 points) (a) (b) (c) (d) (e) Need additional information Answer: Using BJT scaling the resistance looking into the transistors base is about and assuming and this about 7.3K. This is in parallel with the 82K and 22K resistors, so (d) is the correct answer. 4

5 18. Consider a first-order RC low-pass filter with 3-dB frequency. What is the phase shift in degrees at 50 Hz? (2 points) Answer: The phase shift at 60 Hz is and increases at / decade. 50 Hz is ( ) decades higher than 60 Hz. (The negative sign implies 50 Hz is 0.08 decades before 60 Hz.) Thus, the phase shift is. An alternate and more accurate calculation is ( ). 19. The following circuit has a time-constant of. What is the attenuation (in db) at (3 points) Answer. This is a 1 st order low-pass network with a corner frequency of ( ). The attenuation is 20 db/decade above and 30 khz is 2 decades higher than 300 Hz. Thus, the network will attenuate at 40 db at 30 khz. An alternate calculation is ( ( ) ). 20. In the circuit below and all the capacitors are large enough to be considered shorts. Estimate the midband gain (3 points) (a) (b) (c) (d) ( ) ( ) Answer: (d) 5

6 21. In the circuit below and all the capacitors are large enough to be considered shorts. Estimate the midband gain (3 points) (a) (b) (c) (d) ( ) Answer: ( ), so (b) is the answer. 6

7 Question 2 For the BJT amplifier below, determine and. For the Si transistor,, and assume the transistor is operating in the forward active mode. (6 points) Replace the base bias network with its Thevenin equivalent network as shown below. For a Si transistor,. Now However, ( ) so that ( ) ( ) ( )( )( ) Solving yields. From this follows ( ) 7

8 Question 3 Consider the amplifier shown. Neglect the BJTs internal capacitances. Estimate the 3-dB frequency and the midband gain and then make a plot of the frequency response. You can assume and that. Further,. (15 points) Hint: using BJT scaling concepts will greatly simplify your work. Note that ( ) ( ). Turn off the input voltage and use BJT scaling to determine the resistance looking back into the emitter: ( ) sees ( ) and the circuit time constant is ( )( ) ( )( ) = 10 ms, so that ( ). Using BJT scaling, the resistance looking into the base at midband frequencies is ( )( ) ( )( ) The parallel combination of and is much larger than so the amplifier does not load the input. Since this is a CC amplifier,. The Bode plot is shown below. 8

9 Question 4 Consider a BJT with a rated power of 115 W at, and a maximum allowable junction temperature. The transistor is mounted on a heat sink with parameters, and. Determine how much power the BJT can safely dissipate at an ambient temperature of. (12 points) The thermal resistance from the device/junction to the case is not given explicitly, so we need to determine it before proceeding. The BJT is rated at 115 W at and a thermal model and the calculation of is then ( ) ( ) (3 points) Now we can determine the maximum allowable power dissipation when the BJT is mounted on a heat skink with the given parameters. A thermal model for the problem is shown below. ( ) ( ) (9 points) 9

10 Question 5 Consider the circuit below. The duty cycle and frequency of the 555 astable is 60% and 10 khz respectively. (a) Specify a value for to ensure that the average current through the IR diode does not exceed 30 ma (4 points) (b) Explain (2 sentences maximum) the purpose of the decoupling capacitor (1 point) (c) Give a reasonable value for the decoupling capacitor (1 point) Part (a) The peak current must be ( ). This value will give an average of 30 ma with a 60% on time. Assuming the ( ) for the BJT, then. Choose the closest standard value of. Part (b) When the FET switches, large current spikes may appear on the supply rail, which can propagate into the IC and disturb its operation. The decoupling capacitor provides a local reservoir of energy, and ensures a clean power supply rail. Part (c) A good first try would be. 10

11 Question 6 In the following circuit, the three transistors are matched and in the same thermal environment. Determine the values for and to produce an output current of 0.4 ma. You may ignore base currents and make reasonable assumptions about V BE. (6 points) The voltage across the diode-strapped transistors is and we ignore base currents, so the voltage drop across the base-emitter of the output transistor is, and the voltage drop across is. Assume V BE = 0.7 V, so that and ( ) 11

12 Question 7 For the amplifier below,. Determine, and estimate. (8 points) Hint, use BJT scaling. Since is large,. Then and. Using BJT scaling: and This is an Emitter Follower, so ( ) ( )( ) 12

13 Question 8 Consider the amplifier shown. The maximum power the transistor may dissipate is, and. (a) Determine a load resistance so maximum power is delivered it. (b) For, determine the signal power dissipated in the load For the power calculations, neglect the base currents (8 points) Part (a) The transistor will dissipate the maximum power (25 W) when. From this follows that and. Part (b) The gain of the amplifier is ( )( )( ), so that the amplitude of the signal output voltage is. The signal power dissipated in the resistor is ( ) ( ) 13

Homework Assignment 10

Homework Assignment 10 Homework Assignment 10 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3-dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =

More information

Midterm 2 Exam. Max: 90 Points

Midterm 2 Exam. Max: 90 Points Midterm 2 Exam Name: Max: 90 Points Question 1 Consider the circuit below. The duty cycle and frequency of the 555 astable is 55% and 5 khz respectively. (a) Determine a value for so that the average current

More information

Homework Assignment 06

Homework Assignment 06 Homework Assignment 06 Question 1 (Short Takes) One point each unless otherwise indicated. 1. Consider the current mirror below, and neglect base currents. What is? Answer: 2. In the current mirrors below,

More information

Final Exam. 1. An engineer measures the (step response) rise time of an amplifier as t r = 0.1 μs. Estimate the 3 db bandwidth of the amplifier.

Final Exam. 1. An engineer measures the (step response) rise time of an amplifier as t r = 0.1 μs. Estimate the 3 db bandwidth of the amplifier. Final Exam Name: Score /100 Question 1 Short Takes 1 point each unless noted otherwise. 1. An engineer measures the (step response) rise time of an amplifier as t r = 0.1 μs. Estimate the 3 db bandwidth

More information

Homework Assignment 12

Homework Assignment 12 Homework Assignment 12 Question 1 Shown the is Bode plot of the magnitude of the gain transfer function of a constant GBP amplifier. By how much will the amplifier delay a sine wave with the following

More information

Homework Assignment 11

Homework Assignment 11 Homework Assignment 11 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3-dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =

More information

55:041 Electronic Circuits The University of Iowa Fall Exam 1 Solution

55:041 Electronic Circuits The University of Iowa Fall Exam 1 Solution Exam 1 Name: Score /60 Question 1 Short takes. For True/False questions, write T, or F in the right-hand column as appropriate. For other questions, provide answers in the space provided. 1. Tue of false:

More information

55:041 Electronic Circuits The University of Iowa Fall Exam 3. Question 1 Unless stated otherwise, each question below is 1 point.

55:041 Electronic Circuits The University of Iowa Fall Exam 3. Question 1 Unless stated otherwise, each question below is 1 point. Exam 3 Name: Score /65 Question 1 Unless stated otherwise, each question below is 1 point. 1. An engineer designs a class-ab amplifier to deliver 2 W (sinusoidal) signal power to an resistive load. Ignoring

More information

(b) 25% (b) increases

(b) 25% (b) increases Homework Assignment 07 Question 1 (2 points each unless noted otherwise) 1. In the circuit 10 V, 10, and 5K. What current flows through? Answer: By op-amp action the voltage across is and the current through

More information

Homework Assignment 06

Homework Assignment 06 Question 1 (2 points each unless noted otherwise) Homework Assignment 06 1. True or false: when transforming a circuit s diagram to a diagram of its small-signal model, we replace dc constant current sources

More information

Phy 335, Unit 4 Transistors and transistor circuits (part one)

Phy 335, Unit 4 Transistors and transistor circuits (part one) Mini-lecture topics (multiple lectures): Phy 335, Unit 4 Transistors and transistor circuits (part one) p-n junctions re-visited How does a bipolar transistor works; analogy with a valve Basic circuit

More information

Fall and. Answer: Below. The. assumptions. base

Fall and. Answer: Below. The. assumptions. base Homework Assignment 08 Question 1 (2 points each unless noted otherwise) 1. Sketch a two-transistor configuration using npn and pnpp BJTs that iss equivalent to a single pnpp BJT, and label the effective

More information

Homework Assignment 04

Homework Assignment 04 Question 1 (Short Takes) Homework Assignment 04 1. Consider the single-supply op-amp amplifier shown. What is the purpose of R 3? (1 point) Answer: This compensates for the op-amp s input bias current.

More information

Mini Project 3 Multi-Transistor Amplifiers. ELEC 301 University of British Columbia

Mini Project 3 Multi-Transistor Amplifiers. ELEC 301 University of British Columbia Mini Project 3 Multi-Transistor Amplifiers ELEC 30 University of British Columbia 4463854 November 0, 207 Contents 0 Introduction Part : Cascode Amplifier. A - DC Operating Point.......................................

More information

Homework Assignment 07

Homework Assignment 07 Homework Assignment 07 Question 1 (Short Takes). 2 points each unless otherwise noted. 1. A single-pole op-amp has an open-loop low-frequency gain of A = 10 5 and an open loop, 3-dB frequency of 4 Hz.

More information

Lecture (04) BJT Amplifiers 1

Lecture (04) BJT Amplifiers 1 Lecture (04) BJT Amplifiers 1 By: Dr. Ahmed ElShafee ١ The Linear Amplifier A linear amplifier provides amplification of a signal without any distortion so that the output signal A voltage divider biased

More information

5.25Chapter V Problem Set

5.25Chapter V Problem Set 5.25Chapter V Problem Set P5.1 Analyze the circuits in Fig. P5.1 and determine the base, collector, and emitter currents of the BJTs as well as the voltages at the base, collector, and emitter terminals.

More information

ESE319 Introduction to Microelectronics High Frequency BJT Model & Cascode BJT Amplifier

ESE319 Introduction to Microelectronics High Frequency BJT Model & Cascode BJT Amplifier High Frequency BJT Model & Cascode BJT Amplifier 1 Gain of 10 Amplifier Non-ideal Transistor C in R 1 V CC R 2 v s Gain starts dropping at > 1MHz. Why! Because of internal transistor capacitances that

More information

In-Class Exercises for Lab 2: Input and Output Impedance

In-Class Exercises for Lab 2: Input and Output Impedance In-Class Exercises for Lab 2: Input and Output Impedance. What is the output resistance of the output device below? Suppose that you want to select an input device with which to measure the voltage produced

More information

Homework Assignment 05

Homework Assignment 05 Homework Assignment 05 Question (2 points each unless otherwise indicated)(20 points). Estimate the parallel parasitic capacitance of a mh inductor with an SRF of 220 khz. Answer: (2π)(220 0 3 ) = ( 0

More information

Chapter 11 Output Stages

Chapter 11 Output Stages 1 Chapter 11 Output Stages Learning Objectives 2 1) The classification of amplifier output stages 2) Analysis and design of a variety of output-stage types 3) Overview of power amplifiers Introduction

More information

By: Dr. Ahmed ElShafee

By: Dr. Ahmed ElShafee Lecture (04) Transistor Bias Circuit 3 BJT Amplifiers 1 By: Dr. Ahmed ElShafee ١ Emitter Feedback Bias If an emitter resistor is added to the base bias circuit in Figure, the result is emitter feedback

More information

E84 Lab 3: Transistor

E84 Lab 3: Transistor E84 Lab 3: Transistor Cherie Ho and Siyi Hu April 18, 2016 Transistor Testing 1. Take screenshots of both the input and output characteristic plots observed on the semiconductor curve tracer with the following

More information

Homework Assignment 07

Homework Assignment 07 Homework Assignment 07 Question 1 (Short Takes). 2 points each unless otherwise noted. 1. A single-pole op-amp has an open-loop low-frequency gain of A = 10 5 and an open loop, 3-dB frequency of 4 Hz.

More information

GATE SOLVED PAPER - IN

GATE SOLVED PAPER - IN YEAR 202 ONE MARK Q. The i-v characteristics of the diode in the circuit given below are : v -. A v 0.7 V i 500 07 $ = * 0 A, v < 0.7 V The current in the circuit is (A) 0 ma (C) 6.67 ma (B) 9.3 ma (D)

More information

ECE 3455: Electronics Section Spring Final Exam

ECE 3455: Electronics Section Spring Final Exam : Electronics Section 12071 Spring 2011 Version B May 7, 2011 Do not open the exam until instructed to do so. Answer the questions in the spaces provided on the question sheets. If you run out of room

More information

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 12, 2017

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 12, 2017 Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 12, 2017 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

More information

UNIVERSITY OF PENNSYLVANIA EE 206

UNIVERSITY OF PENNSYLVANIA EE 206 UNIVERSITY OF PENNSYLVANIA EE 206 TRANSISTOR BIASING CIRCUITS Introduction: One of the most critical considerations in the design of transistor amplifier stages is the ability of the circuit to maintain

More information

LF442 Dual Low Power JFET Input Operational Amplifier

LF442 Dual Low Power JFET Input Operational Amplifier LF442 Dual Low Power JFET Input Operational Amplifier General Description The LF442 dual low power operational amplifiers provide many of the same AC characteristics as the industry standard LM1458 while

More information

Electronic Circuits. Laboratory 1 - Solution

Electronic Circuits. Laboratory 1 - Solution Institut für Integrierte Systeme Integrated Systems Laboratory Autumn Semester 2016 Electronic Circuits Prof. Dr. Qiuting Huang Laboratory 1 - Solution 13.10.2016 and 14.10.2016 Last Update: 07. 10. 2016

More information

ECE 255, MOSFET Amplifiers

ECE 255, MOSFET Amplifiers ECE 255, MOSFET Amplifiers 26 October 2017 In this lecture, the basic configurations of MOSFET amplifiers will be studied similar to that of BJT. Previously, it has been shown that with the transistor

More information

EXP8: AMPLIFIERS II.

EXP8: AMPLIFIERS II. EXP8: AMPLIFIES II. Objectives. The objectives of this lab are:. To analyze the behavior of a class A amplifier. 2. To understand the role the components play in the gain of the circuit. 3. To find the

More information

Lecture #7 BJT and JFET Frequency Response

Lecture #7 BJT and JFET Frequency Response November 2014 Integrated Technical Education Cluster At AlAmeeria J-601-1448 Electronic Principals Lecture #7 BJT and JFET Frequency Response Instructor: Dr. Ahmad El-Banna Agenda Introduction General

More information

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier TL082 Wide Bandwidth Dual JFET Input Operational Amplifier General Description These devices are low cost high speed dual JFET input operational amplifiers with an internally trimmed input offset voltage

More information

LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers

LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers General Description The LM13600 series consists of two current controlled transconductance amplifiers each with

More information

EE 482 Electronics II

EE 482 Electronics II EE 482 Electronics II Lab #4: BJT Differential Pair with Resistive Load Overview The objectives of this lab are (1) to design and analyze the performance of a differential amplifier, and (2) to measure

More information

Experiment 8 Frequency Response

Experiment 8 Frequency Response Experiment 8 Frequency Response W.T. Yeung, R.A. Cortina, and R.T. Howe UC Berkeley EE 105 Spring 2005 1.0 Objective This lab will introduce the student to frequency response of circuits. The student will

More information

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier TL082 Wide Bandwidth Dual JFET Input Operational Amplifier General Description These devices are low cost, high speed, dual JFET input operational amplifiers with an internally trimmed input offset voltage

More information

10. Output Stages and Power Supplies. 10. Output Stages and Power Supplies TLT-8016 Basic Analog Circuits 2005/2006 1

10. Output Stages and Power Supplies. 10. Output Stages and Power Supplies TLT-8016 Basic Analog Circuits 2005/2006 1 10. Output Stages and Power Supplies 10. Output Stages and Power Supplies TLT-8016 Basic Analog Circuits 2005/2006 1 10.1 Thermal Considerations Considerable power is dissipated as heat in power devices.

More information

Gechstudentszone.wordpress.com

Gechstudentszone.wordpress.com UNIT 4: Small Signal Analysis of Amplifiers 4.1 Basic FET Amplifiers In the last chapter, we described the operation of the FET, in particular the MOSFET, and analyzed and designed the dc response of circuits

More information

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier TL082 Wide Bandwidth Dual JFET Input Operational Amplifier General Description These devices are low cost, high speed, dual JFET input operational amplifiers with an internally trimmed input offset voltage

More information

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers EE 330 Laboratory 8 Discrete Semiconductor Amplifiers Fall 2018 Contents Objective:...2 Discussion:...2 Components Needed:...2 Part 1 Voltage Controlled Amplifier...2 Part 2 A Nonlinear Application...3

More information

University of Michigan EECS 311: Electronic Circuits Fall 2008 LAB 4 SINGLE STAGE AMPLIFIER

University of Michigan EECS 311: Electronic Circuits Fall 2008 LAB 4 SINGLE STAGE AMPLIFIER University of Michigan EECS 311: Electronic Circuits Fall 2008 LAB 4 SINGLE STAGE AMPLIFIER Issued 10/27/2008 Report due in Lecture 11/10/2008 Introduction In this lab you will characterize a 2N3904 NPN

More information

Prof. Anyes Taffard. Physics 120/220. Diode Transistor

Prof. Anyes Taffard. Physics 120/220. Diode Transistor Prof. Anyes Taffard Physics 120/220 Diode Transistor Diode One can think of a diode as a device which allows current to flow in only one direction. Anode I F Cathode stripe Diode conducts current in this

More information

Testing Power Sources for Stability

Testing Power Sources for Stability Keywords Venable, frequency response analyzer, oscillator, power source, stability testing, feedback loop, error amplifier compensation, impedance, output voltage, transfer function, gain crossover, bode

More information

1. An engineer measures the (step response) rise time of an amplifier as. Estimate the 3-dB bandwidth of the amplifier. (2 points)

1. An engineer measures the (step response) rise time of an amplifier as. Estimate the 3-dB bandwidth of the amplifier. (2 points) Exam 1 Name: Score /60 Question 1 Short Takes 1 point each unless noted otherwise. 1. An engineer measures the (step response) rise time of an amplifier as. Estimate the 3-dB bandwidth of the amplifier.

More information

LF411 Low Offset, Low Drift JFET Input Operational Amplifier

LF411 Low Offset, Low Drift JFET Input Operational Amplifier Low Offset, Low Drift JFET Input Operational Amplifier General Description These devices are low cost, high speed, JFET input operational amplifiers with very low input offset voltage and guaranteed input

More information

ECE:3410 Electronic Circuits

ECE:3410 Electronic Circuits ECE:3410 Electronic Circuits IR Link Labs Textbook Blackboard A. Kruger IR Link Labs, Version 2.3 1 Specifications Design a simple IR remote control Press a button on a transmitter Turn on a 5 V, 50 ma,

More information

UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A

UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A 1. Why do we choose Q point at the center of the load line? 2. Name the two techniques used in the stability of the q point.explain. 3. Give the expression

More information

A 40 MHz Programmable Video Op Amp

A 40 MHz Programmable Video Op Amp A 40 MHz Programmable Video Op Amp Conventional high speed operational amplifiers with bandwidths in excess of 40 MHz introduce problems that are not usually encountered in slower amplifiers such as LF356

More information

Experiment No. 9 DESIGN AND CHARACTERISTICS OF COMMON BASE AND COMMON COLLECTOR AMPLIFIERS

Experiment No. 9 DESIGN AND CHARACTERISTICS OF COMMON BASE AND COMMON COLLECTOR AMPLIFIERS Experiment No. 9 DESIGN AND CHARACTERISTICS OF COMMON BASE AND COMMON COLLECTOR AMPLIFIERS 1. Objective: The objective of this experiment is to explore the basic applications of the bipolar junction transistor

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits Output Stages and Power Amplifiers Sections of Chapter 8 A. Kruger Power + Output Stages1 Power Amplifiers, Power FETS & BJTs Audio (stereo) MP3 Players Motor controllers Servo

More information

Exam Below are two schematics of current sources implemented with MOSFETs. Which current source has the best compliance voltage?

Exam Below are two schematics of current sources implemented with MOSFETs. Which current source has the best compliance voltage? Exam 2 Name: Score /90 Question 1 Short Takes 1 point each unless noted otherwise. 1. Below are two schematics of current sources implemented with MOSFETs. Which current source has the best compliance

More information

ECE 255, MOSFET Basic Configurations

ECE 255, MOSFET Basic Configurations ECE 255, MOSFET Basic Configurations 8 March 2018 In this lecture, we will go back to Section 7.3, and the basic configurations of MOSFET amplifiers will be studied similar to that of BJT. Previously,

More information

Power Amplifiers. Class B Class AB

Power Amplifiers. Class B Class AB ower Amplifiers Class B Class AB Class B he circuit each transistor conducts for a half of every signal period complementary pair push-pull arrangement peration vi ( 0.6; 0.6) (off), (off) v 0 vi v 0.6

More information

LF353 Wide Bandwidth Dual JFET Input Operational Amplifier

LF353 Wide Bandwidth Dual JFET Input Operational Amplifier LF353 Wide Bandwidth Dual JFET Input Operational Amplifier General Description These devices are low cost, high speed, dual JFET input operational amplifiers with an internally trimmed input offset voltage

More information

Transistor Biasing. DC Biasing of BJT. Transistor Biasing. Transistor Biasing 11/23/2018

Transistor Biasing. DC Biasing of BJT. Transistor Biasing. Transistor Biasing 11/23/2018 Transistor Biasing DC Biasing of BJT Satish Chandra Assistant Professor Department of Physics P P N College, Kanpur www.satish0402.weebly.com A transistors steady state of operation depends a great deal

More information

LF412 Low Offset, Low Drift Dual JFET Input Operational Amplifier

LF412 Low Offset, Low Drift Dual JFET Input Operational Amplifier LF412 Low Offset, Low Drift Dual JFET Input Operational Amplifier General Description These devices are low cost, high speed, JFET input operational amplifiers with very low input offset voltage and guaranteed

More information

LM148/LM248/LM348 Quad 741 Op Amps

LM148/LM248/LM348 Quad 741 Op Amps Quad 741 Op Amps General Description The LM148 series is a true quad 741. It consists of four independent, high gain, internally compensated, low power operational amplifiers which have been designed to

More information

SAMPLE FINAL EXAMINATION FALL TERM

SAMPLE FINAL EXAMINATION FALL TERM ENGINEERING SCIENCES 154 ELECTRONIC DEVICES AND CIRCUITS SAMPLE FINAL EXAMINATION FALL TERM 2001-2002 NAME Some Possible Solutions a. Please answer all of the questions in the spaces provided. If you need

More information

LM13700 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers

LM13700 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers LM13700 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers General Description The LM13700 series consists of two current controlled transconductance amplifiers, each with

More information

BJT Circuits (MCQs of Moderate Complexity)

BJT Circuits (MCQs of Moderate Complexity) BJT Circuits (MCQs of Moderate Complexity) 1. The current ib through base of a silicon npn transistor is 1+0.1 cos (1000πt) ma. At 300K, the rπ in the small signal model of the transistor is i b B C r

More information

Field Effect Transistors

Field Effect Transistors Field Effect Transistors Purpose In this experiment we introduce field effect transistors (FETs). We will measure the output characteristics of a FET, and then construct a common-source amplifier stage,

More information

Boosting output in high-voltage op-amps with a current buffer

Boosting output in high-voltage op-amps with a current buffer Boosting output in high-voltage op-amps with a current buffer Author: Joe Kyriakakis, Apex Microtechnology Date: 02/18/2014 Categories: Current, Design Tools, High Voltage, MOSFETs & Power MOSFETs, Op

More information

ECE 310L : LAB 9. Fall 2012 (Hay)

ECE 310L : LAB 9. Fall 2012 (Hay) ECE 310L : LAB 9 PRELAB ASSIGNMENT: Read the lab assignment in its entirety. 1. For the circuit shown in Figure 3, compute a value for R1 that will result in a 1N5230B zener diode current of approximately

More information

LF444 Quad Low Power JFET Input Operational Amplifier

LF444 Quad Low Power JFET Input Operational Amplifier LF444 Quad Low Power JFET Input Operational Amplifier General Description The LF444 quad low power operational amplifier provides many of the same AC characteristics as the industry standard LM148 while

More information

ECE:3410 Electronic Circuits

ECE:3410 Electronic Circuits ECE:3410 Electronic Circuits Output Stages and Power Amplifiers Sections of Chapter 8 A. Kruger Power + Output Stages1 Power Amplifiers, Power FETS & BJTs Audio (stereo) MP3 Players Motor controllers Servo

More information

LF444 Quad Low Power JFET Input Operational Amplifier

LF444 Quad Low Power JFET Input Operational Amplifier LF444 Quad Low Power JFET Input Operational Amplifier General Description The LF444 quad low power operational amplifier provides many of the same AC characteristics as the industry standard LM148 while

More information

Prelab 6: Biasing Circuitry

Prelab 6: Biasing Circuitry Prelab 6: Biasing Circuitry Name: Lab Section: R 1 R 2 V OUT Figure 1: Resistive divider voltage source 1. Consider the resistor network shown in Figure 1. Let = 10 V, R 1 = 9.35 kω, and R 2 = 650 Ω. We

More information

Lab 2: Common Base Common Collector Design Exercise

Lab 2: Common Base Common Collector Design Exercise CSUS EEE 109 Lab - Section 01 Lab 2: Common Base Common Collector Design Exercise Author: Bogdan Pishtoy / Lab Partner: Roman Vermenchuk Lab Report due March 26 th Lab Instructor: Dr. Kevin Geoghegan 2016-03-25

More information

ECE 255, Discrete-Circuit Amplifiers

ECE 255, Discrete-Circuit Amplifiers ECE 255, Discrete-Circuit Amplifiers 20 March 2018 In this lecture, we will continue with the study of transistor amplifiers with the presence of biasing circuits and coupling capacitors in place. We will

More information

The steeper the phase shift as a function of frequency φ(ω) the more stable the frequency of oscillation

The steeper the phase shift as a function of frequency φ(ω) the more stable the frequency of oscillation It should be noted that the frequency of oscillation ω o is determined by the phase characteristics of the feedback loop. the loop oscillates at the frequency for which the phase is zero The steeper the

More information

ECE 2201 PRELAB 6 BJT COMMON EMITTER (CE) AMPLIFIER

ECE 2201 PRELAB 6 BJT COMMON EMITTER (CE) AMPLIFIER ECE 2201 PRELAB 6 BJT COMMON EMITTER (CE) AMPLIFIER Hand Analysis P1. Determine the DC bias for the BJT Common Emitter Amplifier circuit of Figure 61 (in this lab) including the voltages V B, V C and V

More information

Current Mirrors. Basic BJT Current Mirror. Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror.

Current Mirrors. Basic BJT Current Mirror. Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror. Current Mirrors Basic BJT Current Mirror Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror. For its analysis, we assume identical transistors and neglect

More information

Designing an Audio Amplifier Using a Class B Push-Pull Output Stage

Designing an Audio Amplifier Using a Class B Push-Pull Output Stage Designing an Audio Amplifier Using a Class B Push-Pull Output Stage Angel Zhang Electrical Engineering The Cooper Union for the Advancement of Science and Art Manhattan, NY Jeffrey Shih Electrical Engineering

More information

Differential Amplifier Design

Differential Amplifier Design Differential Amplifier Design Design with ideal current source bias. Differential and common mode gain results Add finite output resistance to current source. Replace ideal current source with current

More information

ECE 363 FINAL (F16) 6 problems for 100 pts Problem #1: Fuel Pump Controller (18 pts)

ECE 363 FINAL (F16) 6 problems for 100 pts Problem #1: Fuel Pump Controller (18 pts) ECE 363 FINAL (F16) NAME: 6 problems for 100 pts Problem #1: Fuel Pump Controller (18 pts) You are asked to design a high-side switch for a remotely operated fuel pump. You decide to use the IRF9520 power

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers Table of contents 1. Design 1.1. The Differential Amplifier 1.2. Level Shifter 1.3. Power Amplifier 2. Characteristics 3. The Opamp without NFB 4. Linear Amplifiers 4.1. The Non-Inverting

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits MOSFETs Sections of Chapter 3 &4 A. Kruger MOSFETs, Page-1 Basic Structure of MOS Capacitor Sect. 3.1 Width = 1 10-6 m or less Thickness = 50 10-9 m or less ` MOS Metal-Oxide-Semiconductor

More information

Transistor Digital Circuits

Transistor Digital Circuits Recapitulation Transistor Digital Circuits The transistor Operating principle and regions Utilization of the transistor Transfer characteristics, symbols Controlled switch model BJT digital circuits MOSFET

More information

ENEE 306: Electronics Analysis and Design Laboratory

ENEE 306: Electronics Analysis and Design Laboratory ENEE 306: Electronics Analysis and Design Laboratory Neil Goldsman Department of Electrical and Computer Engineering University of Maryland College Park, MD 20742 Spring 2005 Instructor: Professor Neil

More information

Oscillators. An oscillator may be described as a source of alternating voltage. It is different than amplifier.

Oscillators. An oscillator may be described as a source of alternating voltage. It is different than amplifier. Oscillators An oscillator may be described as a source of alternating voltage. It is different than amplifier. An amplifier delivers an output signal whose waveform corresponds to the input signal but

More information

LF442 Dual Low Power JFET Input Operational Amplifier

LF442 Dual Low Power JFET Input Operational Amplifier LF442 Dual Low Power JFET Input Operational Amplifier General Description The LF442 dual low power operational amplifiers provide many of the same AC characteristics as the industry standard LM1458 while

More information

Input Stage Concerns. APPLICATION NOTE 656 Design Trade-Offs for Single-Supply Op Amps

Input Stage Concerns. APPLICATION NOTE 656 Design Trade-Offs for Single-Supply Op Amps Maxim/Dallas > App Notes > AMPLIFIER AND COMPARATOR CIRCUITS Keywords: single-supply, op amps, amplifiers, design, trade-offs, operational amplifiers Apr 03, 2000 APPLICATION NOTE 656 Design Trade-Offs

More information

LF453 Wide-Bandwidth Dual JFET-Input Operational Amplifiers

LF453 Wide-Bandwidth Dual JFET-Input Operational Amplifiers LF453 Wide-Bandwidth Dual JFET-Input Operational Amplifiers General Description The LF453 is a low-cost high-speed dual JFET-input operational amplifier with an internally trimmed input offset voltage

More information

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers EE 330 Laboratory 8 Discrete Semiconductor Amplifiers Fall 2017 Contents Objective:... 2 Discussion:... 2 Components Needed:... 2 Part 1 Voltage Controlled Amplifier... 2 Part 2 Common Source Amplifier...

More information

UNIT 4 BIASING AND STABILIZATION

UNIT 4 BIASING AND STABILIZATION UNIT 4 BIASING AND STABILIZATION TRANSISTOR BIASING: To operate the transistor in the desired region, we have to apply external dec voltages of correct polarity and magnitude to the two junctions of the

More information

Electronic Troubleshooting. Chapter 5 Multistage Amplifiers

Electronic Troubleshooting. Chapter 5 Multistage Amplifiers Electronic Troubleshooting Chapter 5 Multistage Amplifiers Overview When more amplification is required than can be supplied by a single stage amp A second stage is added Or more stages are added Aspects

More information

LF451 Wide-Bandwidth JFET-Input Operational Amplifier

LF451 Wide-Bandwidth JFET-Input Operational Amplifier LF451 Wide-Bandwidth JFET-Input Operational Amplifier General Description The LF451 is a low-cost high-speed JFET-input operational amplifier with an internally trimmed input offset voltage (BI- FET IITM

More information

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road QUESTION BANK

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road QUESTION BANK SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK Subject with Code : Electronic Circuit Analysis (16EC407) Year & Sem: II-B.Tech & II-Sem

More information

ECE 145A/218A, Lab Project #1b: Transistor Measurement.

ECE 145A/218A, Lab Project #1b: Transistor Measurement. ECE 145A/218A, Lab Project #1b: Transistor Measurement. September 28, 2017 OVERVIEW... 2 GOALS:... 2 SAFETY PRECAUTIONS:... 2 READING:... 2 TRANSISTOR RF CHARACTERIZATION.... 3 DC BIAS CIRCUITS... 3 TEST

More information

High Voltage Power Operational Amplifiers EQUIVALENT SCHEMATIC R1 R2 C1 R3 Q6 4 CC1 5 CC2 Q8 Q12 3 I Q Q16. +V s

High Voltage Power Operational Amplifiers EQUIVALENT SCHEMATIC R1 R2 C1 R3 Q6 4 CC1 5 CC2 Q8 Q12 3 I Q Q16. +V s PA9 PA9 High Voltage Power Operational Amplifiers FEATURES HIGH VOLTAGE 4V (±5V) LOW QUIESCENT CURRENT ma HIGH OUTPUT CURRENT 0mA PROGRAMMABLE CURRENT LIMIT HIGH SLEW RATE 300V/µs APPLICATIONS PIEZOELECTRIC

More information

Reading. Lecture 17: MOS transistors digital. Context. Digital techniques:

Reading. Lecture 17: MOS transistors digital. Context. Digital techniques: Reading Lecture 17: MOS transistors digital Today we are going to look at the analog characteristics of simple digital devices, 5. 5.4 And following the midterm, we will cover PN diodes again in forward

More information

Homework Assignment 02

Homework Assignment 02 Question 1 (2 points each unless noted otherwise) 1. Is the following circuit an STC circuit? Homework Assignment 02 (a) Yes (b) No (c) Need additional information Answer: There is one reactive element

More information

Code No: Y0221/R07 Set No. 1 I B.Tech Supplementary Examinations, Apr/May 2013 BASIC ELECTRONIC DEVICES AND CIRCUITS (Electrical & Electronics Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE Questions

More information

EXPERIMENT 1: LOW AND HIGH FREQUENCY REGION ANALYSIS OF BJT AMPLIFIERS

EXPERIMENT 1: LOW AND HIGH FREQUENCY REGION ANALYSIS OF BJT AMPLIFIERS EXPERIMENT 1: LOW AND HIGH FREQUENCY REGION ANALYSIS OF BJT AMPLIFIERS Objective: In single layer common emitter amplifiers, observation of frequency dependence. Materials Transistor: 1x BC237 transistor

More information

LM13700 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers

LM13700 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers LM13700 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers General Description The LM13700 series consists of two current controlled transconductance amplifiers, each with

More information

Amplifier Frequency Response, Feedback, Oscillations; Op-Amp Block Diagram and Gain-Bandwidth Product

Amplifier Frequency Response, Feedback, Oscillations; Op-Amp Block Diagram and Gain-Bandwidth Product Amplifier Frequency Response, Feedback, Oscillations; Op-Amp Block Diagram and Gain-Bandwidth Product Physics116A,12/4/06 Draft Rev. 1, 12/12/06 D. Pellett 2 Negative Feedback and Voltage Amplifier AB

More information

CMOS Operational-Amplifier

CMOS Operational-Amplifier CMOS Operational-Amplifier 1 What will we learn in this course How to design a good OP Amp. Basic building blocks Biasing and Loading Swings and Bandwidth CH2(8) Operational Amplifier as A Black Box Copyright

More information

LF353 Wide Bandwidth Dual JFET Input Operational Amplifier

LF353 Wide Bandwidth Dual JFET Input Operational Amplifier LF353 Wide Bandwidth Dual JFET Input Operational Amplifier General Description These devices are low cost high speed dual JFET input operational amplifiers with an internally trimmed input offset voltage

More information