... Second Semester

Size: px
Start display at page:

Download "... Second Semester"

Transcription

1 كنا نظنك اي عيل تركتنا... لكن طيفك مل يزل يغشانا مثل الندى يسقي النبات بقطره... قد ابت ليال يف ادلىج عطشاان ما زلت أذكر حني أدخل معمال... متسك هجازا للقياس تحاكه... فأ راك جتلس هادئا حيرانا تكتب وترمس ما تراه عيانا قد كنت للطالب خري معمل... وغرست حبا يسكن الوجداان Second Semester

2 BJT Amplifiers Sec. Sem May

3 Amplifier Operation The biasing of a transistor is purely a dc operation to establish a Q-point about which variations in current and voltage can occur in response to an ac input signal. 2 May

4 AC Quantities ac and dc quantities are usually represented by capital letters with a change in the subscripts dc quantities: capital non-italic subscripts like I B, I C, I E, V C, V E, V CE V ac quantities: small rms avg V ce italic subscripts, for V CE V ce V ce V ce example, I c, I e, I b,v c, v ce and V ce 0 0 t 2 May

5 AC Quantities ac quantities may be represented in rms, average, peak, peak to peak. ac instantaneous quantities are represented by small letters with Lowercase small italic subscripts like i c, i e, i b, v c, and v ce Resistance is also identified with a small letter of small subscript when analyzed from an ac standpoint 2 May

6 Linear Amplifier A linear amplifier provides amplification of signal without any distortion exact amplified replica of the input signal. output signal is an ac source of internal resistance R s coupled to the base through C 1 load resistance R L the coupled to collector through C 2 The coupling capacitors block dc and thus prevent R S and R L from changing the dc bias voltage at the base and collector. For the amplifier shown, notice that the voltage waveform is inverted between the input V b and output V ce but has the same shape. 2 May

7 AC Load Line Operation of the linear amplifier can be illustrated using an ac load line as shown. The ac load line is different than the dc load line because a capacitor looks open to dc but effectively acts as a short to ac load resistor R L. the collector resistor R C appears to be in parallel with the 2 May

8 AC Load Line- Example - Determine the resulting peak-to-peak values of collector current and collector-to-emitter voltage from the graph. - What are the dc Q-point values Solution: collector current varying from 4 ma to 6 ma collector current has peak to-peak value of 2 ma I c = 2 ma V ce = 1 V I BQ = 50 µa I CQ = 5mA V CEQ = 1.5V 2 May

9 Transistor AC Model A transistor in an amplifier circuit can be represent by a model circuit. The transistor model circuit based on various internal transistor resistance parameters r that can represent its operation. Five resistance parameters (r-parameters) can be used for detailed analysis of a BJT circuit. For most analysis work, the simplified r-parameters give good results. 2 May

10 Transistor AC Model 2 May

11 The Common-Emitter Amplifier In the common-emitter (CE) amplifier, the input signal is applied to the base and the inverted output is taken from the collector. The emitter or ground is common to ac signals (V in and V out ) as shown. CE amplifiers has high voltage gain and high current gain. A common-emitter amplifier with voltage-divider bias and coupling capacitors C 1 and C 3 on the input and output and a bypass capacitor, C 2, from emitter to ground. Output voltage has a 180 phase difference from input voltage. 2 May

12 The Common-Emitter Amplifier DC analysis Considering CE amplifier circuit, dc analysis can be done by removing the coupling and bypass capacitors. Capacitors appear open with dc connected only we will have the voltage divider bias circuit shown. Using Thevenin equivalent for bias circuit 2 May

13 The Common-Emitter Amplifier AC analysis Ac equivalent circuit can be developed by considering: 1- The capacitors are replaced by effective shorts because their values are selected so that the capacitive resistance X C is negligible at the signal frequency and can be considered to be 0 Ω. * Note that C 2 must be large enough so that X C2 is very small compared to R E (10X C R E ) At given frequency. X C can be calculated using the relation 2- The dc source is replaced by ground. No ac voltage can be developed across it so it appears as an ac short. This is why a dc source is called an ac ground. The ac equivalent circuit for CE amplifier is 2 May

14 The Common-Emitter Amplifier AC analysis: input and output resistances The total input resistance or voltage divider bias circuit for input ac voltage is 2 May

15 The Common-Emitter Amplifier AC analysis: Voltage gain ac equivalent circuit for the bias circuit capacitively coupled with R L is With no load, the voltage gain for ac voltage is 2 May

16 The Common-Emitter Amplifier attenuation = V b V s = R in(tot) R in(tot) + R s The overall voltage gain of the amplifier V b / V s 2 May

17 The Common-Emitter Amplifier AC analysis: Example: for the amplifier shown below, calculate: (a) the signal voltage at the base (V b ). (b) the minimum value for the emitter bypass capacitor, C 2, if the amplifier must operate over a frequency range from 200 Hz to 10 khz. (c) Calculate the base-to-collector voltage gain of the amplifier (without and with C 2 ) if there is no load resistor. (d) If a load resistor of 5kΩ is added at V out, calculate the voltage gain (include C 2 ). (e) the overall voltage gain if C 2 and R L are included. (f) the signal voltage at the collector (V c ). 2 May

18 The Common-Emitter Amplifier 2 May

19 The Common-Emitter Amplifier 2 May

20 The Common-Emitter Amplifier AC analysis: Addition of Swamping Resistor. voltage gain is essentially depends on specially when R E is bypassed by C 2. Since changes with temperature the voltage gain becomes unstable. On the other hand, removing C 2 cause the gain to go to its lowest value. Hence we can add a swamping resistor (R E1 ) to reduce the effect of Greater gain stability can be achieved and the gain will be lower as a result. The voltage gain for the circuit shown becomes: 2 May

21 The Common-Emitter Amplifier 2 May

22 The Common-Emitter Amplifier Multisim is a good way to check your calculation. For an input of 10 mv pp, the output is 378 mv pp as shown on the oscilloscope display for the swamped CE amplifier. input output 2 May

23 The Common-collector Amplifier The common-collector amplifier (emitter-follower) has a voltage gain of approximately 1, but can have high input resistance and current gain. The input is applied to the base and taken from the emitter. +V CC C 1 R 1 V in I in C 2 V out R 2 R E R L 2 May

24 The Common-collector Amplifier The power gain is the ratio of the power delivered to the input resistance divided by the power dissipated in the load. This is approximately equal to the current gain. That is, A p A i You can also write power gain as a ratio of resistances: A p P V 2 L L L = = = 2 Pin Vin R R R 1 = RL in( tot) R in( tot) in( tot) R L A 2 v R in( tot) R L V in C 1 R 1 V CC C 2 R 2 R E V out R L 2 May

25 The Common-collector Amplifier 2 May

26 The Common-collector Amplifier By thevenizing from the base back to the source, the circuit is simplified to the form shown in Figure (b). V out = V e, I out = I e, and I in = I b 2 May

27 The Common-collector Amplifier 2 May

28 The Common-collector Amplifier: Example 2 May

29 The Common-collector Amplifier: Example Determine the total input resistance of the emitter-follower in Figure below. Also find the voltage gain, current gain, and power gain in terms of power delivered to the load, R L. Assume and that the capacitive reactances are negligible at the frequency of operation. β ac = May

30 The Common-collector Amplifier: Example 2 May

31 The Common-collector Amplifier: Example Calculate the power gain to the load for the CC amplifier using a ratio of resistances. Assume A v = 1 and β ac = 200. Use r e ' = 2Ω. V CC +15 V R in(tot) = R 1 R 2 b ac (r e ' + R E R L ) = 39 kω 220 kω 200(2 Ω+ 500Ω) = 24.9 kω R L = 1.0 kω A p Rin( tot ) 24.9 kw = = = R 1.0 kw L V in 24.9 R 1 C 1 39 kw 0.22 mf R kw C 2 V out R 3.3 mf E R L 1.0 kw 1.0 kw 2 May

32 The Common-collector Amplifier: Example The input voltage-divider in the previous example is not rock-solid but the overall power gain is good. A rock solid stiff voltage-divider is not always the best design. Can you spot the problem illustrated here? R in(tot) = R 1 R 2 β ac (r e ' + R E R L ) = 10 kω 10 kω 200(25 Ω+ 3.0 kω) = 4.96 kω R L = 10 kω V in R 1 C 1 10 kw V CC +10 V b = 200 C 2 V out A p Rin( tot ) 4.96 kw = = = R 10 kw L 0.496! The problem is the power gain is less than 1! R 2 10 kw R E 4.3 kw R L 10 kw 2 May

33 Darlington pair The Darlington Pair: A Darlington pair is two transistors connected as shown (with common collector). The Darlington pair highly increase the input resistance better circuit (better Buffer) specially when using low-load resistance. The two transistors act as one super β transistor. Darlington transistors are available in a single package. With Darlington pair we have better buffering (barrier between input and output) in addition to high current gain 2 May

34 The Common-collector Amplifier: Example 2 May

35 The Sziklai Pair Another high β pair is the Sziklai pair (sometimes called a complementary Darlington), in which a pnp and npn transistor are connected as shown. This configuration has the advantage of only one diode drop between base and emitter. +V CC What is the relation between I E2 and I B1? V in β DC1 The DC currents are: I C1 is b DC1 x I B1 and is equal to I B2 I B1 I C1 βdc2 I E2 I E2 is approximately equal to b DC2 x I C1 R E Therefore, I E2 b DC1 b DC2 I B1 2 May

36 The Common-Base Amplifier The common-base (CB) amplifier provides high voltage gain with a maximum current gain of 1. Since it has a low input resistance. A typical common-base amplifier is shown in figure below. The base is the common terminal and is at ac ground because of capacitor C 2. The input signal is capacitively coupled to the emitter. The output is capacitively coupled from the collector to a load. 2 May

37 The Common-Base Amplifier 2 May

38 Multistage amplifiers Two or more amplifiers can be connected in a cascaded arrangement with the output of one amplifier driving the input of the next. The basic purpose of a multistage arrangement is to increase the overall voltage gain. The overall voltage gain, A ν,of cascaded amplifiers, as shown in the Figure, is the product of the individual voltage gains. 2 May

39 Multistage amplifiers: Example A certain cascaded amplifier arrangement has the following voltage gains: A v1 = 10, A v2 = 15, and A v3 = 20 What is the overall voltage gain? Also express each gain in decibels (db) and determine the total voltage gain in db. 2 May

40 Multistage amplifiers: Capacitively coupled Two-stage capacitively coupled amplifier in Figure below. Notice that both stages are identical common-emitter amplifiers with the output of the first stage capacitively coupled to the input of the second stage. Capacitive coupling prevents the dc bias of one stage from affecting that of the other but allows the ac signal to pass without attenuation because at the frequency of operation. 2 May

41 Multistage amplifiers: Capacitively coupled 2 May

42 Differential Amplifiers A differential amplifier (diff-amp) has two inputs. It amplifies the difference in the two input voltages. This circuit is widely used as the input stage to operational amplifiers. Differential-mode inputs are illustrated. +V CC V out1 V out2 R C1 R C Q 1 Q 2 2 V in1 V in2 R E V EE 2 May

43 Differential Amplifiers The same amplifier as in the last slide now is shown with common-mode inputs. Diff-amps tend to reject common-mode signals, which are usually due to noise. Ideally, the outputs are zero with common-mode inputs. +V CC V out1 V out2 R C1 R C2 1 2 V in1 1 Q 1 Q 2 2 V in2 R E V EE 2 May

44 Selected Key Terms r-parameter Commonemitter ac ground One of a set of BJT characteristic parameters that include α ac, β ac, r e ', r b ', and r c '. A BJT configuration in which the emitter is the common terminal to an ac signal. A point in a circuit that appears as a ground to ac signals only. Input resistance The resistance seen by an ac source connected to the amplifier input. 2 May

45 Output resistance Differential amplifier Selected Key Terms The ac resistance looking in at the amplifier output. A BJT configuration in which the emitter is the common terminal to an ac signal. An amplifier in which the output is a function of the difference between two input voltages. Commoncollector Commonmode A condition where two signals applied to differential inputs are of the same phase, frequency and amplitude. 2 May

46 Electric Machines Electric Machines

Electronic Devices. Floyd. Chapter 6. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd

Electronic Devices. Floyd. Chapter 6. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd Electronic Devices Ninth Edition Floyd Chapter 6 Agenda BJT AC Analysis Linear Amplifier AC Load Line Transistor AC Model Common Emitter Amplifier Common Collector Amplifier Common Base Amplifier Special

More information

Chapter 6. BJT Amplifiers

Chapter 6. BJT Amplifiers Basic Electronic Devices and Circuits EE 111 Electrical Engineering Majmaah University 2 nd Semester 1432/1433 H Chapter 6 BJT Amplifiers 1 Introduction The things you learned about biasing a transistor

More information

Lecture (06) BJT Amplifiers 3

Lecture (06) BJT Amplifiers 3 Lecture (06) BJT Amplifiers 3 By: Dr. Ahmed ElShafee 1 Current Gain 2 Power Gain The overall power gain is the product of the overall voltage gain (Av ) and the overall current gain (Ai). 3 THE COMMON

More information

Lecture (05) BJT Amplifiers 2

Lecture (05) BJT Amplifiers 2 Lecture (05) BJT Amplifiers 2 By: Dr. Ahmed ElShafee 1 Effect of the Emitter Bypass Capacitor on Voltage Gain The emitter bypass capacitor, provides an effective short to the ac signal around the emitter

More information

Electronic Devices. Floyd. Chapter 7. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd

Electronic Devices. Floyd. Chapter 7. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd Electronic Devices Ninth Edition Floyd Chapter 7 Power Amplifiers A power amplifier is a large signal amplifier that produces a replica of the input signal on its output. In the case shown here, the output

More information

DC Bias. Graphical Analysis. Script

DC Bias. Graphical Analysis. Script Course: B.Sc. Applied Physical Science (Computer Science) Year & Sem.: Ist Year, Sem - IInd Subject: Electronics Paper No.: V Paper Title: Analog Circuits Lecture No.: 3 Lecture Title: Analog Circuits

More information

Transistor Configuration

Transistor Configuration Transistor Configuration 1 Objectives To review BJT biasing circuit. To study BJT amplifier circuit To understand the BJT configuration. To analyse single-stage BJT amplifier circuits. To study the differential

More information

Lecture (06) BJT Amplifiers 3

Lecture (06) BJT Amplifiers 3 Lecture (06) BJT Amplifiers 3 By: Dr. Ahmed ElShafee ١ THE COMMON COLLECTOR AMPLIFIER An emitter follower circuit with voltage divider bias is shown in Figure, the input signal is capacitively coupled

More information

BJT Circuits (MCQs of Moderate Complexity)

BJT Circuits (MCQs of Moderate Complexity) BJT Circuits (MCQs of Moderate Complexity) 1. The current ib through base of a silicon npn transistor is 1+0.1 cos (1000πt) ma. At 300K, the rπ in the small signal model of the transistor is i b B C r

More information

Chapter 15 Goals. ac-coupled Amplifiers Example of a Three-Stage Amplifier

Chapter 15 Goals. ac-coupled Amplifiers Example of a Three-Stage Amplifier Chapter 15 Goals ac-coupled multistage amplifiers including voltage gain, input and output resistances, and small-signal limitations. dc-coupled multistage amplifiers. Darlington configuration and cascode

More information

Homework Assignment 12

Homework Assignment 12 Homework Assignment 12 Question 1 Shown the is Bode plot of the magnitude of the gain transfer function of a constant GBP amplifier. By how much will the amplifier delay a sine wave with the following

More information

PartIIILectures. Multistage Amplifiers

PartIIILectures. Multistage Amplifiers University of missan Electronic II, Second year 2015-2016 PartIIILectures Assistant Lecture: 1 Multistage and Compound Amplifiers Basic Definitions: 1- Gain of Multistage Amplifier: Fig.(1-1) A general

More information

Lab 4. Transistor as an amplifier, part 2

Lab 4. Transistor as an amplifier, part 2 Lab 4 Transistor as an amplifier, part 2 INTRODUCTION We continue the bi-polar transistor experiments begun in the preceding experiment. In the common emitter amplifier experiment, you will learn techniques

More information

Electronics Lab. (EE21338)

Electronics Lab. (EE21338) Princess Sumaya University for Technology The King Abdullah II School for Engineering Electrical Engineering Department Electronics Lab. (EE21338) Prepared By: Eng. Eyad Al-Kouz October, 2012 Table of

More information

2. SINGLE STAGE BIPOLAR JUNCTION TRANSISTOR (BJT) AMPLIFIERS

2. SINGLE STAGE BIPOLAR JUNCTION TRANSISTOR (BJT) AMPLIFIERS 2. SINGLE STAGE BIPOLAR JUNCTION TRANSISTOR (BJT) AMPLIFIERS I. Objectives and Contents The goal of this experiment is to become familiar with BJT as an amplifier and to evaluate the basic configurations

More information

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road QUESTION BANK

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road QUESTION BANK SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK Subject with Code : Electronic Circuit Analysis (16EC407) Year & Sem: II-B.Tech & II-Sem

More information

Document Name: Electronic Circuits Lab. Facebook: Twitter:

Document Name: Electronic Circuits Lab.  Facebook:  Twitter: Document Name: Electronic Circuits Lab www.vidyathiplus.in Facebook: www.facebook.com/vidyarthiplus Twitter: www.twitter.com/vidyarthiplus Copyright 2011-2015 Vidyarthiplus.in (VP Group) Page 1 CIRCUIT

More information

Electronic Troubleshooting. Chapter 5 Multistage Amplifiers

Electronic Troubleshooting. Chapter 5 Multistage Amplifiers Electronic Troubleshooting Chapter 5 Multistage Amplifiers Overview When more amplification is required than can be supplied by a single stage amp A second stage is added Or more stages are added Aspects

More information

UNIVERSITY OF PENNSYLVANIA EE 206

UNIVERSITY OF PENNSYLVANIA EE 206 UNIVERSITY OF PENNSYLVANIA EE 206 TRANSISTOR BIASING CIRCUITS Introduction: One of the most critical considerations in the design of transistor amplifier stages is the ability of the circuit to maintain

More information

Tutorial 2 BJTs, Transistor Bias Circuits, BJT Amplifiers FETs and FETs Amplifiers. Part 1: BJTs, Transistor Bias Circuits and BJT Amplifiers

Tutorial 2 BJTs, Transistor Bias Circuits, BJT Amplifiers FETs and FETs Amplifiers. Part 1: BJTs, Transistor Bias Circuits and BJT Amplifiers Tutorial 2 BJTs, Transistor Bias Circuits, BJT Amplifiers FETs and FETs Amplifiers Part 1: BJTs, Transistor Bias Circuits and BJT Amplifiers 1. Explain the purpose of a thin, lightly doped base region.

More information

Last time: BJT CE and CB amplifiers biased by current source

Last time: BJT CE and CB amplifiers biased by current source Last time: BJT CE and CB amplifiers biased by current source Assume FA regime, then VB VC V E I B I E, β 1 I Q C α I, V 0. 7V Calculate V CE and confirm it is > 0.2-0.3V, then BJT can be replaced with

More information

5.25Chapter V Problem Set

5.25Chapter V Problem Set 5.25Chapter V Problem Set P5.1 Analyze the circuits in Fig. P5.1 and determine the base, collector, and emitter currents of the BJTs as well as the voltages at the base, collector, and emitter terminals.

More information

Experiment #6: Biasing an NPN BJT Introduction to CE, CC, and CB Amplifiers

Experiment #6: Biasing an NPN BJT Introduction to CE, CC, and CB Amplifiers SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2115: ENGINEERING ELECTRONICS LABORATORY Experiment #6: Biasing an NPN BJT Introduction to CE, CC, and CB

More information

ELC224 Final Review (12/10/2009) Name:

ELC224 Final Review (12/10/2009) Name: ELC224 Final Review (12/10/2009) Name: Select the correct answer to the problems 1 through 20. 1. A common-emitter amplifier that uses direct coupling is an example of a dc amplifier. 2. The frequency

More information

By: Dr. Ahmed ElShafee

By: Dr. Ahmed ElShafee Lecture (04) Transistor Bias Circuit 3 BJT Amplifiers 1 By: Dr. Ahmed ElShafee ١ Emitter Feedback Bias If an emitter resistor is added to the base bias circuit in Figure, the result is emitter feedback

More information

Electronic Circuits. Power Amplifiers. Manar Mohaisen Office: F208 Department of EECE

Electronic Circuits. Power Amplifiers. Manar Mohaisen Office: F208   Department of EECE Electronic Circuits Power Amplifiers Manar Mohaisen Office: F208 Email: manar.subhi@kut.ac.kr Department of EECE Review of the Precedent Lecture Explain the Amplifier Operation Explain the BJT AC Models

More information

EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT

EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT 1. OBJECTIVES 1.1 To practice how to test NPN and PNP transistors using multimeter. 1.2 To demonstrate the relationship between collector current

More information

Experiment 6: Biasing Circuitry

Experiment 6: Biasing Circuitry 1 Objective UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE105 Lab Experiments Experiment 6: Biasing Circuitry Setting up a biasing

More information

Experiment 6: Biasing Circuitry

Experiment 6: Biasing Circuitry 1 Objective UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE105 Lab Experiments Experiment 6: Biasing Circuitry Setting up a biasing

More information

ECE 334: Electronic Circuits Lecture 2: BJT Large Signal Model

ECE 334: Electronic Circuits Lecture 2: BJT Large Signal Model Faculty of Engineering ECE 334: Electronic Circuits Lecture 2: BJT Large Signal Model Agenda I & V Notations BJT Devices & Symbols BJT Large Signal Model 2 I, V Notations (1) It is critical to understand

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMUS) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMUS) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMUS) Dundigal, Hyderabad - 00 0 ELECTRONICS AND COMMUNICATION ENGINEERING ASSIGNMENT Name : ELECTRONIC CIRCUIT ANALYSIS Code : A0 Class : II - B. Tech nd semester

More information

Improving Amplifier Voltage Gain

Improving Amplifier Voltage Gain 15.1 Multistage ac-coupled Amplifiers 1077 TABLE 15.3 Three-Stage Amplifier Summary HAND ANALYSIS SPICE RESULTS Voltage gain 998 1010 Input signal range 92.7 V Input resistance 1 M 1M Output resistance

More information

Microelectronics Circuit Analysis and Design

Microelectronics Circuit Analysis and Design Neamen Microelectronics Chapter 6-1 Microelectronics Circuit Analysis and Design Donald A. Neamen Chapter 6 Basic BJT Amplifiers Neamen Microelectronics Chapter 6-2 In this chapter, we will: Understand

More information

Experiment #8: Designing and Measuring a Common-Collector Amplifier

Experiment #8: Designing and Measuring a Common-Collector Amplifier SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2115: ENGINEERING ELECTRONICS LABORATORY Experiment #8: Designing and Measuring a Common-Collector Amplifier

More information

(a) BJT-OPERATING MODES & CONFIGURATIONS

(a) BJT-OPERATING MODES & CONFIGURATIONS (a) BJT-OPERATING MODES & CONFIGURATIONS 1. The leakage current I CBO flows in (a) The emitter, base and collector leads (b) The emitter and base leads. (c) The emitter and collector leads. (d) The base

More information

Code No: Y0221/R07 Set No. 1 I B.Tech Supplementary Examinations, Apr/May 2013 BASIC ELECTRONIC DEVICES AND CIRCUITS (Electrical & Electronics Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE Questions

More information

Electrical, Electronic and Digital Principles (EEDP) Lecture 5. CE Amplifier, Coupling, and Multistage Amplifiers باسم ممدوح الحلوانى

Electrical, Electronic and Digital Principles (EEDP) Lecture 5. CE Amplifier, Coupling, and Multistage Amplifiers باسم ممدوح الحلوانى Electrical, Electronic and Digital Principles (EEDP) Lecture 5 CE Amplifier, Coupling, and Multistage Amplifiers د. باسم ممدوح الحلوانى Total Output Resistance The output resistance of any system is defined

More information

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 12, 2017

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 12, 2017 Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 12, 2017 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

More information

Designing an Audio Amplifier Using a Class B Push-Pull Output Stage

Designing an Audio Amplifier Using a Class B Push-Pull Output Stage Designing an Audio Amplifier Using a Class B Push-Pull Output Stage Angel Zhang Electrical Engineering The Cooper Union for the Advancement of Science and Art Manhattan, NY Jeffrey Shih Electrical Engineering

More information

Chapter 3: Bipolar Junction Transistors

Chapter 3: Bipolar Junction Transistors Chapter 3: Bipolar Junction Transistors Transistor Construction There are two types of transistors: pnp npn pnp The terminals are labeled: E - Emitter B - Base C - Collector npn 2 Transistor Operation

More information

Lecture (04) BJT Amplifiers 1

Lecture (04) BJT Amplifiers 1 Lecture (04) BJT Amplifiers 1 By: Dr. Ahmed ElShafee ١ The Linear Amplifier A linear amplifier provides amplification of a signal without any distortion so that the output signal A voltage divider biased

More information

Linear electronic. Lecture No. 1

Linear electronic. Lecture No. 1 1 Lecture No. 1 2 3 4 5 Lecture No. 2 6 7 8 9 10 11 Lecture No. 3 12 13 14 Lecture No. 4 Example: find Frequency response analysis for the circuit shown in figure below. Where R S =4kR B1 =8kR B2 =4k R

More information

ESE 372 / Spring 2011 / Lecture 19 Common Base Biased by current source

ESE 372 / Spring 2011 / Lecture 19 Common Base Biased by current source ESE 372 / Spring 2011 / Lecture 19 Common Base Biased by current source Output from Collector Start with bias DC analysis make sure BJT is in FA, then calculate small signal parameters for AC analysis.

More information

ECE 255, Discrete-Circuit Amplifiers

ECE 255, Discrete-Circuit Amplifiers ECE 255, Discrete-Circuit Amplifiers 20 March 2018 In this lecture, we will continue with the study of transistor amplifiers with the presence of biasing circuits and coupling capacitors in place. We will

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R059210404 Set No. 1 II B.Tech I Semester Supplimentary Examinations, February 2008 ELECTRONIC CIRCUIT ANALYSIS ( Common to Electronics & Communication Engineering and Electronics & Telematics)

More information

CIRCUIT DIAGRAM Half Wave Rectifier. Half Wave Rectifier with filter 2012/ODD/III/ECE/EC I/LM 1

CIRCUIT DIAGRAM Half Wave Rectifier. Half Wave Rectifier with filter 2012/ODD/III/ECE/EC I/LM 1 CIRCUIT DIAGRAM Half Wave Rectifier Half Wave Rectifier with filter 2012/ODD/III/ECE/EC I/LM 1 Ex.No. 1 Date: / /2012 Power supply circuit using Half Wave rectifiers AIM To Build and understand the operation

More information

BJT AC Analysis CHAPTER OBJECTIVES 5.1 INTRODUCTION 5.2 AMPLIFICATION IN THE AC DOMAIN

BJT AC Analysis CHAPTER OBJECTIVES 5.1 INTRODUCTION 5.2 AMPLIFICATION IN THE AC DOMAIN BJT AC Analysis 5 CHAPTER OBJECTIVES Become familiar with the, hybrid, and hybrid p models for the BJT transistor. Learn to use the equivalent model to find the important ac parameters for an amplifier.

More information

Unit WorkBook 4 Level 4 ENG U19 Electrical and Electronic Principles LO4 Digital & Analogue Electronics 2018 Unicourse Ltd. All Rights Reserved.

Unit WorkBook 4 Level 4 ENG U19 Electrical and Electronic Principles LO4 Digital & Analogue Electronics 2018 Unicourse Ltd. All Rights Reserved. Pearson BTEC Levels 4 Higher Nationals in Engineering (RQF) Unit 19: Electrical and Electronic Principles Unit Workbook 4 in a series of 4 for this unit Learning Outcome 4 Digital & Analogue Electronics

More information

The Bipolar Junction Transistor- Small Signal Characteristics

The Bipolar Junction Transistor- Small Signal Characteristics The Bipolar Junction Transistor- Small Signal Characteristics Debapratim Ghosh deba21pratim@gmail.com Electronic Systems Group Department of Electrical Engineering Indian Institute of Technology Bombay

More information

Lab 2: Discrete BJT Op-Amps (Part I)

Lab 2: Discrete BJT Op-Amps (Part I) Lab 2: Discrete BJT Op-Amps (Part I) This is a three-week laboratory. You are required to write only one lab report for all parts of this experiment. 1.0. INTRODUCTION In this lab, we will introduce and

More information

Electronic Devices, 9th edition Thomas L. Floyd. Input signal. R 1 and R 2 are selected to establish V B. If the V CE

Electronic Devices, 9th edition Thomas L. Floyd. Input signal. R 1 and R 2 are selected to establish V B. If the V CE 3/9/011 lectronic Devices Ninth dition Floyd hapter 5: Transistor ias ircuits The D Operating Point ias establishes the operating point (Q-point) of a transistor amplifier; the ac signal (ma) moves above

More information

EXPERIMENT 10: SINGLE-TRANSISTOR AMPLIFIERS 11/11/10

EXPERIMENT 10: SINGLE-TRANSISTOR AMPLIFIERS 11/11/10 EXPERIMENT 10: SINGLE-TRANSISTOR AMPLIFIERS 11/11/10 In this experiment we will measure the characteristics of the standard common emitter amplifier. We will use the 2N3904 npn transistor. If you have

More information

Chapter 6: Transistors and Gain

Chapter 6: Transistors and Gain I. Introduction Chapter 6: Transistors and Gain This week we introduce the transistor. Transistors are three-terminal devices that can amplify a signal and increase the signal s power. The price is that

More information

A 3-STAGE 5W AUDIO AMPLIFIER

A 3-STAGE 5W AUDIO AMPLIFIER ECE 2201 PRELAB 7x BJT APPLICATIONS A 3-STAGE 5W AUDIO AMPLIFIER UTILIZING NEGATIVE FEEDBACK INTRODUCTION Figure P7-1 shows a simplified schematic of a 3-stage audio amplifier utilizing three BJT amplifier

More information

Experiment No. 9 DESIGN AND CHARACTERISTICS OF COMMON BASE AND COMMON COLLECTOR AMPLIFIERS

Experiment No. 9 DESIGN AND CHARACTERISTICS OF COMMON BASE AND COMMON COLLECTOR AMPLIFIERS Experiment No. 9 DESIGN AND CHARACTERISTICS OF COMMON BASE AND COMMON COLLECTOR AMPLIFIERS 1. Objective: The objective of this experiment is to explore the basic applications of the bipolar junction transistor

More information

Lecture (07) BJT Amplifiers 4 JFET (1)

Lecture (07) BJT Amplifiers 4 JFET (1) Lecture (07) BJT Amplifiers 4 JFET (1) By: r. Ahmed Elhafee 1 Capacitively Coupled Multistage Amplifier we will use the two stage capacitively coupled amplifier in Figure The output of the first stage

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers November 23, 2017 1 Pre-lab Calculations 1) Calculate the gain for all four circuits in Fig. 3. 2 Introduction Operational Amplifiers? They should call them fun amplifiers. Because,

More information

University of North Carolina, Charlotte Department of Electrical and Computer Engineering ECGR 3157 EE Design II Fall 2009

University of North Carolina, Charlotte Department of Electrical and Computer Engineering ECGR 3157 EE Design II Fall 2009 University of North Carolina, Charlotte Department of Electrical and Computer Engineering ECGR 3157 EE Design II Fall 2009 Lab 1 Power Amplifier Circuits Issued August 25, 2009 Due: September 11, 2009

More information

Chapter 3-2 Semiconductor devices Transistors and Amplifiers-BJT Department of Mechanical Engineering

Chapter 3-2 Semiconductor devices Transistors and Amplifiers-BJT Department of Mechanical Engineering MEMS1082 Chapter 3-2 Semiconductor devices Transistors and Amplifiers-BJT Bipolar Transistor Construction npn BJT Transistor Structure npn BJT I = I + E C I B V V BE CE = V = V B C V V E E Base-to-emitter

More information

BJT Amplifier. Superposition principle (linear amplifier)

BJT Amplifier. Superposition principle (linear amplifier) BJT Amplifier Two types analysis DC analysis Applied DC voltage source AC analysis Time varying signal source Superposition principle (linear amplifier) The response of a linear amplifier circuit excited

More information

Well we know that the battery Vcc must be 9V, so that is taken care of.

Well we know that the battery Vcc must be 9V, so that is taken care of. HW 4 For the following problems assume a 9Volt battery available. 1. (50 points, BJT CE design) a) Design a common emitter amplifier using a 2N3904 transistor for a voltage gain of Av=-10 with the collector

More information

15EEE282 Electronic Circuits and Simulation Lab - I Lab # 6

15EEE282 Electronic Circuits and Simulation Lab - I Lab # 6 Exp. No #6 FREQUENCY RESPONSE OF COMMON EMITTER AMPLIFIER OBJECTIVE The purpose of the experiment is to design a common emitter amplifier. To analyze and plot the frequency response of the amplifier with

More information

Electronic PRINCIPLES

Electronic PRINCIPLES MALVINO & BATES Electronic PRINCIPLES SEVENTH EDITION Chapter 9 AC Models Topics covered in Chapter 9 Base-biased amplifier Emitter-biased amplifier Small-signal operation AC beta AC resistance of the

More information

EXPT NO: 1.A. COMMON EMITTER AMPLIFIER (Software) PRELAB:

EXPT NO: 1.A. COMMON EMITTER AMPLIFIER (Software) PRELAB: EXPT NO: 1.A COMMON EMITTER AMPLIFIER (Software) PRELAB: 1. Study the operation and working principle of CE amplifier. 2. Identify all the formulae you will need in this Lab. 3. Study the procedure of

More information

The Miller Approximation. CE Frequency Response. The exact analysis is worked out on pp of H&S.

The Miller Approximation. CE Frequency Response. The exact analysis is worked out on pp of H&S. CE Frequency Response The exact analysis is worked out on pp. 639-64 of H&S. The Miller Approximation Therefore, we consider the effect of C µ on the input node only V ---------- out V s = r g π m ------------------

More information

EC1203: ELECTRONICS CIRCUITS-I UNIT-I TRANSISTOR BIASING PART-A

EC1203: ELECTRONICS CIRCUITS-I UNIT-I TRANSISTOR BIASING PART-A SHRI ANGALAMMAN COLLEGE OF ENGG & TECH., TRICHY 621105 (Approved by AICTE, New Delhi and Affiliated to Anna University Chennai/Trichy) ( ISO 9001:2008 Certified Institution) DEPARTMENT OF ELECTRONICS &

More information

Electronic Circuits - Tutorial 07 BJT transistor 1

Electronic Circuits - Tutorial 07 BJT transistor 1 Electronic Circuits - Tutorial 07 BJT transistor 1-1 / 20 - T & F # Question 1 A bipolar junction transistor has three terminals. T 2 For operation in the linear or active region, the base-emitter junction

More information

PHYS225 Lecture 6. Electronic Circuits

PHYS225 Lecture 6. Electronic Circuits PHYS225 Lecture 6 Electronic Circuits Transistors History Basic physics of operation Ebers-Moll model Small signal equivalent Last lecture Introduction to Transistors A transistor is a device with three

More information

Electronics I ELEC 311/1 BB. Final August 14, hours 6

Electronics I ELEC 311/1 BB. Final August 14, hours 6 Course Number Section Electronics I ELEC 311/1 BB Examination Date Time # of pages Final August 14, 2009 3 hours 6 Instructor(s) Dr.R. Raut M aterials allowed: No Yes X (Please specify) Calculators allowed:

More information

UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A

UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A 1. Why do we choose Q point at the center of the load line? 2. Name the two techniques used in the stability of the q point.explain. 3. Give the expression

More information

Small signal Amplifier stages. Figure 5.2 Classification of power amplifiers

Small signal Amplifier stages. Figure 5.2 Classification of power amplifiers 5.1 Introduction When the power requirement to drive the load is in terms of several Watts rather than mili-watts the power amplifiers are used. Power amplifiers form the last stage of multistage amplifiers.

More information

ESE319 Introduction to Microelectronics High Frequency BJT Model & Cascode BJT Amplifier

ESE319 Introduction to Microelectronics High Frequency BJT Model & Cascode BJT Amplifier High Frequency BJT Model & Cascode BJT Amplifier 1 Gain of 10 Amplifier Non-ideal Transistor C in R 1 V CC R 2 v s Gain starts dropping at > 1MHz. Why! Because of internal transistor capacitances that

More information

CHAPTER 3 THE BIPOLAR JUNCTION TRANSISTOR (BJT)

CHAPTER 3 THE BIPOLAR JUNCTION TRANSISTOR (BJT) HAPT 3 TH IPOLA JUNTION TANSISTO (JT) 1 In this chapter, we will: JT Discuss the physical structure and operation of the bipolar junction transistor. Understand the dc analysis of bipolar transistor circuits.

More information

EE 482 Electronics II

EE 482 Electronics II EE 482 Electronics II Lab #4: BJT Differential Pair with Resistive Load Overview The objectives of this lab are (1) to design and analyze the performance of a differential amplifier, and (2) to measure

More information

Lab 2: Common Emitter Design: Part 2

Lab 2: Common Emitter Design: Part 2 Lab 2: Common Emitter Design: Part 2 ELE 344 University of Rhode Island, Kingston, RI 02881-0805, U.S.A. 1 Linearity in High Gain Amplifiers The common emitter amplifier, shown in figure 1, will provide

More information

UNIVERSITY PART-A ANSWERS Unit-1 1. What is an amplifier? An amplifier is a device which produces a large electrical output of similar characteristics to that of the input parameters. 2. What are transistors?

More information

Experiment 8 Frequency Response

Experiment 8 Frequency Response Experiment 8 Frequency Response W.T. Yeung, R.A. Cortina, and R.T. Howe UC Berkeley EE 105 Spring 2005 1.0 Objective This lab will introduce the student to frequency response of circuits. The student will

More information

Paper-1 (Circuit Analysis) UNIT-I

Paper-1 (Circuit Analysis) UNIT-I Paper-1 (Circuit Analysis) UNIT-I AC Fundamentals & Kirchhoff s Current and Voltage Laws 1. Explain how a sinusoidal signal can be generated and give the significance of each term in the equation? 2. Define

More information

Frequency Response of Common Emitter Amplifier

Frequency Response of Common Emitter Amplifier Başkent University Department of Electrical and Electronics Engineering EEM 311 Electronics II Experiment 6 Frequency Response of Common Emitter Amplifier Aim: The aim of this experiment is to study the

More information

Bipolar Junction Transistors

Bipolar Junction Transistors Bipolar Junction Transistors Invented in 1948 at Bell Telephone laboratories Bipolar junction transistor (BJT) - one of the major three terminal devices Three terminal devices more useful than two terminal

More information

Linear IC s and applications

Linear IC s and applications Questions and Solutions PART-A Unit-1 INTRODUCTION TO OP-AMPS 1. Explain data acquisition system Jan13 DATA ACQUISITION SYSYTEM BLOCK DIAGRAM: Input stage Intermediate stage Level shifting stage Output

More information

Experiment #7: Designing and Measuring a Common-Emitter Amplifier

Experiment #7: Designing and Measuring a Common-Emitter Amplifier SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2115: ENGINEERING ELECTRONICS LABORATORY Experiment #7: Designing and Measuring a Common-Emitter Amplifier

More information

EE 332 Design Project

EE 332 Design Project EE 332 Design Project Variable Gain Audio Amplifier TA: Pohan Yang Students in the team: George Jenkins Mohamed Logman Dale Jackson Ben Alsin Instructor s Comments: Lab Grade: Introduction The goal of

More information

Transistor Biasing. DC Biasing of BJT. Transistor Biasing. Transistor Biasing 11/23/2018

Transistor Biasing. DC Biasing of BJT. Transistor Biasing. Transistor Biasing 11/23/2018 Transistor Biasing DC Biasing of BJT Satish Chandra Assistant Professor Department of Physics P P N College, Kanpur www.satish0402.weebly.com A transistors steady state of operation depends a great deal

More information

Transistors and Applications

Transistors and Applications Chapter 17 Transistors and Applications DC Operation of Bipolar Junction Transistors (BJTs) The bipolar junction transistor (BJT) is constructed with three doped semiconductor regions separated by two

More information

EEE225: Analogue and Digital Electronics

EEE225: Analogue and Digital Electronics EEE225: Analogue and Digital Electronics Lecture II James E. Green Department of Electronic Engineering University of Sheffield j.e.green@sheffield.ac.uk This Lecture 1 One Transistor Circuits Continued...

More information

10. SINGLE-SUPPLY PUSH-PULL AMPLIFIER

10. SINGLE-SUPPLY PUSH-PULL AMPLIFIER 0. SNGE-SUY USH-U AMFE The push-pull amplifier circuit as discussed in section-9 requires a dual power supply. t can be tailored to operate on a single supply as illustrated in Figure 0.. n this case the

More information

Başkent University Department of Electrical and Electronics Engineering EEM 214 Electronics I Experiment 9

Başkent University Department of Electrical and Electronics Engineering EEM 214 Electronics I Experiment 9 Başkent University Department of Electrical and Electronics Engineering EEM 214 Electronics I Experiment 9 COMMON-COLLECTOR (EMITTER FOLLOWER) AMPLIFIER Aim: 1. To measure the open-circuit voltage gain,

More information

EE 3111 Lab 7.1. BJT Amplifiers

EE 3111 Lab 7.1. BJT Amplifiers EE 3111 Lab 7.1 BJT Amplifiers BJT Amplifier Device/circuit that alters the amplitude of a signal, while keeping input waveform shape BJT amplifiers run the BJT in active mode. Forward current gain is

More information

Code: 9A Answer any FIVE questions All questions carry equal marks *****

Code: 9A Answer any FIVE questions All questions carry equal marks ***** II B. Tech II Semester (R09) Regular & Supplementary Examinations, April/May 2012 ELECTRONIC CIRCUIT ANALYSIS (Common to EIE, E. Con. E & ECE) Time: 3 hours Max Marks: 70 Answer any FIVE questions All

More information

R a) Draw and explain VI characteristics of Si & Ge diode. (8M) b) Explain the operation of SCR & its characteristics (8M)

R a) Draw and explain VI characteristics of Si & Ge diode. (8M) b) Explain the operation of SCR & its characteristics (8M) SET - 1 1. a) Define i) transient capacitance ii) Diffusion capacitance (4M) b) Explain Fermi level in intrinsic and extrinsic semiconductor (4M) c) Derive the expression for ripple factor of Half wave

More information

Chapter 11 Output Stages

Chapter 11 Output Stages 1 Chapter 11 Output Stages Learning Objectives 2 1) The classification of amplifier output stages 2) Analysis and design of a variety of output-stage types 3) Overview of power amplifiers Introduction

More information

GOVERNMENT OF KARNATAKA KARNATAKA STATE PRE-UNIVERSITY EDUCATION EXAMINATION BOARD II YEAR PUC EXAMINATION JULY-2012 SCHEME OF VALUATION

GOVERNMENT OF KARNATAKA KARNATAKA STATE PRE-UNIVERSITY EDUCATION EXAMINATION BOARD II YEAR PUC EXAMINATION JULY-2012 SCHEME OF VALUATION GOVERNMENT OF KARNATAKA KARNATAKA STATE PRE-UNIVERSITY EDUCATION EXAMINATION BOARD II YEAR PUC EXAMINATION JULY-0 SCHEME OF VALUATION Subject Code: 40 Subject: PART - A 0. Which region of the transistor

More information

Prelab 10: Differential Amplifiers

Prelab 10: Differential Amplifiers Name: Lab Section: Prelab 10: Differential Amplifiers For this lab, assume all NPN transistors are identical 2N3904 BJTs and all PNP transistors are identical 2N3906 BJTs. Component I S (A) V A (V) 2N3904

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R05010204 Set No. 1 I B.Tech Supplimentary Examinations, Aug/Sep 2007 ELECTRONIC DEVICES AND CIRCUITS ( Common to Electrical & Electronic Engineering, Electronics & Communication Engineering,

More information

SAMPLE FINAL EXAMINATION FALL TERM

SAMPLE FINAL EXAMINATION FALL TERM ENGINEERING SCIENCES 154 ELECTRONIC DEVICES AND CIRCUITS SAMPLE FINAL EXAMINATION FALL TERM 2001-2002 NAME Some Possible Solutions a. Please answer all of the questions in the spaces provided. If you need

More information

Small signal ac equivalent circuit of BJT

Small signal ac equivalent circuit of BJT UNIT-2 Part A 1. What is an ac load line? [N/D 16] A dc load line gives the relationship between the q-point and the transistor characteristics. When capacitors are included in a CE transistor circuit,

More information

Unit/Standard Number. LEA Task # Alignment

Unit/Standard Number. LEA Task # Alignment 1 Secondary Competency Task List 100 SAFETY 101 Demonstrate an understanding of State and School safety regulations. 102 Practice safety techniques for electronics work. 103 Demonstrate an understanding

More information

BJT Characteristics & Common Emitter Transistor Amplifier

BJT Characteristics & Common Emitter Transistor Amplifier LAB #07 Objectives 1. To graph the collector characteristics of a transistor. 2. To measure AC and DC voltages in a common-emitter amplifier. Theory BJT A bipolar (junction) transistor (BJT) is a three-terminal

More information

LABORATORY MODULE. Analog Electronics. Semester 2 (2005/2006)

LABORATORY MODULE. Analog Electronics. Semester 2 (2005/2006) LABORATORY MODULE ENT 162 Analog Electronics Semester 2 (2005/2006) EXPERIMENT 5 : The Class A Common-Emitter Power Amplifier Name Matrix No. : : PUSAT PENGAJIAN KEJURUTERAAN MEKATRONIK KOLEJ UNIVERSITI

More information