Microelectronics Circuit Analysis and Design

Size: px
Start display at page:

Download "Microelectronics Circuit Analysis and Design"

Transcription

1 Neamen Microelectronics Chapter 6-1 Microelectronics Circuit Analysis and Design Donald A. Neamen Chapter 6 Basic BJT Amplifiers

2 Neamen Microelectronics Chapter 6-2 In this chapter, we will: Understand the concept of an analog signal and the principle of a linear amplifier. Investigate how a transistor circuit can amplify a small, time-varying input signal. Discuss and compare the three basic transistor amplifier configurations. Analyze the common-emitter amplifier. Understand the ac load line & determine the maximum symmetrical swing of the output. Analyze the emitter-follower amplifier. Analyze the common-base amplifier. Analyze multitransistor or multistage amplifiers. Understand the concept of signal power gain in an amplifier circuit.

3 Common Emitter with Time-Varying Input Neamen Microelectronics Chapter 6-3

4 Neamen Microelectronics Chapter 6-4 I B Versus V BE Characteristic i B v be I BQ (1 ) VT I B i b

5 ac Equivalent Circuit for Common Emitter Neamen Microelectronics Chapter 6-5

6 Neamen Microelectronics Chapter 6-6 Small-Signal Hybrid p Model for npn BJT g r p g m m r p I V CQ T V I T CQ Phasor signals are shown in parentheses.

7 Small-Signal Equivalent Circuit Using Common-Emitter Current Gain Neamen Microelectronics Chapter 6-7

8 Neamen Microelectronics Chapter 6-8 Small-Signal Equivalent Circuit for npn Common Emitter circuit A v ( g m C )( r p r p B )

9 Neamen Microelectronics Chapter 6-9 Problem-Solving Technique: BJT AC Analysis 1. Analyze circuit with only dc sources to find Q point. 2. eplace each element in circuit with smallsignal model, including the hybrid p model for the transistor. 3. Analyze the small-signal equivalent circuit after setting dc source components to zero.

10 Neamen Microelectronics Chapter 6-10 Transformation of Elements Element DC Model AC Model esistor Capacitor Open C Inductor Short L Diode +V g, r f r d = V T /I D Independent Constant Voltage Source + V S - Short Independent Constant Current Source I S Open

11 Neamen Microelectronics Chapter 6-11 Hybrid p Model for npn with Early Effect r o V I A CQ

12 Hybrid p Model for pnp with Early Effect Neamen Microelectronics Chapter 6-12

13 Neamen Microelectronics Chapter 6-13

14 Neamen Microelectronics Chapter 6-14

15 Neamen Microelectronics Chapter 6-15

16 Neamen Microelectronics Chapter 6-16

17 Neamen Microelectronics Chapter 6-17

18 Neamen Microelectronics Chapter 6-18

19 Neamen Microelectronics Chapter 6-19

20 Neamen Microelectronics Chapter 6-20

21 Neamen Microelectronics Chapter 6-21

22 Neamen Microelectronics Chapter 6-22

23 Neamen Microelectronics Chapter 6-23

24 Neamen Microelectronics Chapter 6-24

25 Neamen Microelectronics Chapter 6-25

26 Neamen Microelectronics Chapter 6-26

27 Expanded Hybrid p Model for npn Neamen Microelectronics Chapter 6-27

28 Neamen Microelectronics Chapter 6-28 h-parameter Model for npn h h ie fe r b r p r h h re oe r r p 1 r 1 r o

29 T-Model of an npn BJT Neamen Microelectronics Chapter 6-29

30 Neamen Microelectronics Chapter Equivalent 2-port Networks Voltage Amplifier Current Amplifier

31 Neamen Microelectronics Chapter Equivalent 2-port Networks Transconductance Amplifier Transresistance Amplifier

32 Common Emitter with Voltage-Divider Bias and a Coupling Capacitor Neamen Microelectronics Chapter 6-32

33 Small-Signal Equivalent Circuit Coupling Capacitor Assumed a Short Neamen Microelectronics Chapter 6-33

34 npn Common Emitter with Emitter esistor Neamen Microelectronics Chapter 6-34

35 Neamen Microelectronics Chapter 6-35 Small-Signal Equivalent Circuit: Common Emitter with E ) ( ) (1 ) (1 2 1 S i i E C v ib i E ib r A r p p

36 E and Emitter Bypass Capacitor Neamen Microelectronics Chapter 6-36

37 Problem-Solving Technique: Maximum Symmetrical Swing 1. Write dc load line equation that relates I CQ and V CEQ. 2. Write ac load line equations that relates ic and vce 3. In general, i c = I CQ I C (min), where I C (min) is zero or other minimum collector current. 4. In general, v ce = V CEQ V CE (min), where V CE (min) is some specified minimum collector-emitter voltage. 5. Combine above 4 equations to find optimum I CQ and V CEQ. Neamen Microelectronics Chapter 6-37

38 Common-Collector or Emitter-Follower Amplifier Neamen Microelectronics Chapter 6-38

39 Neamen Microelectronics Chapter 6-39 Small-Signal Equivalent Circuit: Emitter Follower ) ( ) )( (1 ) )( (1 ) )( (1 2 1 S i i E o E o v ib i E o ib r r r A r r p p

40 Neamen Microelectronics Chapter 6-40 Output esistance: Emitter Follower o rp 1 E r o

41 Common-Base Amplifier Neamen Microelectronics Chapter 6-41

42 Neamen Microelectronics Chapter 6-42 Small-Signal Equivalent Circuit: Common Base A A v i g g m m ( ( C C C L ) L )[ 1 r p E ]

43 Neamen Microelectronics Chapter 6-43 Input esistance: Common Base ie = r p /(1+)

44 Neamen Microelectronics Chapter 6-44 Output esistance: Common Base O = C

45 Common Emitter Cascade Amplifier Neamen Microelectronics Chapter 6-45

46 Small-Signal Equivalent Circuit: Cascade Amplifier Neamen Microelectronics Chapter 6-46

47 Neamen Microelectronics Chapter 6-47 Darlington Pair A i 1 2

48 Cascode Amplifier Neamen Microelectronics Chapter 6-48

49 Neamen Microelectronics Chapter 6-49 Small-Signal Equivalent Circuit: Cascode Amplifier A g v ( m1 C L )

Microelectronics Circuit Analysis and Design

Microelectronics Circuit Analysis and Design Neamen Microelectronics Chapter 4-1 Microelectronics Circuit Analysis and Design Donald A. Neamen Chapter 4 Basic FET Amplifiers Neamen Microelectronics Chapter 4-2 In this chapter, we will: Investigate

More information

BJT Amplifier. Superposition principle (linear amplifier)

BJT Amplifier. Superposition principle (linear amplifier) BJT Amplifier Two types analysis DC analysis Applied DC voltage source AC analysis Time varying signal source Superposition principle (linear amplifier) The response of a linear amplifier circuit excited

More information

Microelectronics Circuit Analysis and Design. Differential Amplifier Intro. Differential Amplifier Intro. 12/3/2013. In this chapter, we will:

Microelectronics Circuit Analysis and Design. Differential Amplifier Intro. Differential Amplifier Intro. 12/3/2013. In this chapter, we will: Microelectronics Circuit Analysis and Design Donald A. Neamen Chapter 11 Differential Amplifiers In this chapter, we will: Describe the characteristics and terminology of the ideal differential amplifier.

More information

Lecture #4 BJT AC Analysis

Lecture #4 BJT AC Analysis November 2014 Ahmad El-Banna Integrated Technical Education Cluster At AlAmeeria J-601-1448 Electronic Principals Lecture #4 BJT AC Analysis Instructor: Dr. Ahmad El-Banna Agenda BJT transistor Modeling

More information

Multistage Amplifiers

Multistage Amplifiers Multistage Amplifiers Single-stage transistor amplifiers are inadequate for meeting most design requirements for any of the four amplifier types (voltage, current, transconductance, and transresistance.)

More information

Electronic Devices. Floyd. Chapter 6. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd

Electronic Devices. Floyd. Chapter 6. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd Electronic Devices Ninth Edition Floyd Chapter 6 Agenda BJT AC Analysis Linear Amplifier AC Load Line Transistor AC Model Common Emitter Amplifier Common Collector Amplifier Common Base Amplifier Special

More information

Chapter 6. BJT Amplifiers

Chapter 6. BJT Amplifiers Basic Electronic Devices and Circuits EE 111 Electrical Engineering Majmaah University 2 nd Semester 1432/1433 H Chapter 6 BJT Amplifiers 1 Introduction The things you learned about biasing a transistor

More information

Improving Amplifier Voltage Gain

Improving Amplifier Voltage Gain 15.1 Multistage ac-coupled Amplifiers 1077 TABLE 15.3 Three-Stage Amplifier Summary HAND ANALYSIS SPICE RESULTS Voltage gain 998 1010 Input signal range 92.7 V Input resistance 1 M 1M Output resistance

More information

Microelectronics Circuit Analysis and Design. Interdigitated BJT: Top and Cross-Sectional Views. Power Amps 10/11/2013. In this chapter, we will:

Microelectronics Circuit Analysis and Design. Interdigitated BJT: Top and Cross-Sectional Views. Power Amps 10/11/2013. In this chapter, we will: Microelectronics Circuit Analysis and Design Donald A. Neamen Chapter 8 Output Stages and Power Amplifiers In this chapter, we will: Describe the characteristics of BJT and MOSFET power transistors Define

More information

Lecture 33: Context. Prof. J. S. Smith

Lecture 33: Context. Prof. J. S. Smith Lecture 33: Prof J. S. Smith Context We are continuing to review some of the building blocks for multi-stage amplifiers, including current sources and cascode connected devices, and we will also look at

More information

DC Coupling: General Trends

DC Coupling: General Trends DC Coupling: General Trends * Goal: want both input and output to be centered at halfway between the positive and negative supplies (or ground, for a single supply) -- in order to have maximum possible

More information

2. SINGLE STAGE BIPOLAR JUNCTION TRANSISTOR (BJT) AMPLIFIERS

2. SINGLE STAGE BIPOLAR JUNCTION TRANSISTOR (BJT) AMPLIFIERS 2. SINGLE STAGE BIPOLAR JUNCTION TRANSISTOR (BJT) AMPLIFIERS I. Objectives and Contents The goal of this experiment is to become familiar with BJT as an amplifier and to evaluate the basic configurations

More information

Bipolar junction transistors.

Bipolar junction transistors. Bipolar junction transistors. Third Semester Course code : 15EECC202 Analog electronic circuits (AEC) Team: Dr. Nalini C Iyer, R.V. Hangal, Sujata N, Prashant A, Sneha Meti AEC Team, Faculty, School of

More information

PartIIILectures. Multistage Amplifiers

PartIIILectures. Multistage Amplifiers University of missan Electronic II, Second year 2015-2016 PartIIILectures Assistant Lecture: 1 Multistage and Compound Amplifiers Basic Definitions: 1- Gain of Multistage Amplifier: Fig.(1-1) A general

More information

Bipolar Junction Transistors

Bipolar Junction Transistors Bipolar Junction Transistors Invented in 1948 at Bell Telephone laboratories Bipolar junction transistor (BJT) - one of the major three terminal devices Three terminal devices more useful than two terminal

More information

Course Roadmap Rectification Bipolar Junction Transistor

Course Roadmap Rectification Bipolar Junction Transistor Course oadmap ectification Bipolar Junction Transistor Acnowledgements: Neamen, Donald: Microelectronics Circuit Analysis and Design, 3 rd Edition 6.101 Spring 2017 Lecture 3 1 6.101 Spring 2017 Lecture

More information

EXPERIMENT #3 TRANSISTOR BIASING

EXPERIMENT #3 TRANSISTOR BIASING EXPERIMENT #3 TRANSISTOR BIASING Bias (operating point) for a transistor is established by specifying the quiescent (D.C., no signal) values of collector-emitter voltage V CEQ and collector current I CQ.

More information

Homework Assignment 12

Homework Assignment 12 Homework Assignment 12 Question 1 Shown the is Bode plot of the magnitude of the gain transfer function of a constant GBP amplifier. By how much will the amplifier delay a sine wave with the following

More information

Electronic Circuits - Tutorial 07 BJT transistor 1

Electronic Circuits - Tutorial 07 BJT transistor 1 Electronic Circuits - Tutorial 07 BJT transistor 1-1 / 20 - T & F # Question 1 A bipolar junction transistor has three terminals. T 2 For operation in the linear or active region, the base-emitter junction

More information

Exercises 6.1, 6.2, 6.3 (page 315 on 7 th edition textbook)

Exercises 6.1, 6.2, 6.3 (page 315 on 7 th edition textbook) Exercises 6.1, 6.2, 6.3 (page 315 on 7 th edition textbook) Recapitulation and Equivalent Circuit Models Previous slides present first order BJT model. Assumes npn transistor in active mode. Basic relationship

More information

Reading. Lecture 33: Context. Lecture Outline. Chapter 9, multi-stage amplifiers. Prof. J. S. Smith

Reading. Lecture 33: Context. Lecture Outline. Chapter 9, multi-stage amplifiers. Prof. J. S. Smith eading Lecture 33: Chapter 9, multi-stage amplifiers Prof J. S. Smith Context Lecture Outline We are continuing to review some of the building blocks for multi-stage amplifiers, including current sources

More information

ECE 334: Electronic Circuits Lecture 2: BJT Large Signal Model

ECE 334: Electronic Circuits Lecture 2: BJT Large Signal Model Faculty of Engineering ECE 334: Electronic Circuits Lecture 2: BJT Large Signal Model Agenda I & V Notations BJT Devices & Symbols BJT Large Signal Model 2 I, V Notations (1) It is critical to understand

More information

Electronic Circuits EE359A

Electronic Circuits EE359A Electronic Circuits EE359A Bruce McNair B206 bmcnair@stevens.edu 201-216-5549 Lecture 4 0 Bipolar Junction Transistors (BJT) Small Signal Analysis Graphical Analysis / Biasing Amplifier, Switch and Logic

More information

Chapter 15 Goals. ac-coupled Amplifiers Example of a Three-Stage Amplifier

Chapter 15 Goals. ac-coupled Amplifiers Example of a Three-Stage Amplifier Chapter 15 Goals ac-coupled multistage amplifiers including voltage gain, input and output resistances, and small-signal limitations. dc-coupled multistage amplifiers. Darlington configuration and cascode

More information

5.25Chapter V Problem Set

5.25Chapter V Problem Set 5.25Chapter V Problem Set P5.1 Analyze the circuits in Fig. P5.1 and determine the base, collector, and emitter currents of the BJTs as well as the voltages at the base, collector, and emitter terminals.

More information

CMOS Cascode Transconductance Amplifier

CMOS Cascode Transconductance Amplifier CMOS Cascode Transconductance Amplifier Basic topology. 5 V I SUP v s V G2 M 2 iout C L v OUT Device Data V Tn = 1 V V Tp = 1 V µ n C ox = 50 µa/v 2 µ p C ox = 25 µa/v 2 λ n = 0.05 V 1 λ p = 0.02 V 1 @

More information

Module-1 BJT AC Analysis: The re Transistor Model. Common-Base Configuration

Module-1 BJT AC Analysis: The re Transistor Model. Common-Base Configuration Module-1 BJT AC Analysis: BJT AC Analysis: BJT AC Analysis: BJT Transistor Modeling, The re transistor model, Common emitter fixed bias, Voltage divider bias, Emitter follower configuration. Darlington

More information

Analog Electronics (Course Code: EE314) Lecture 9 10: BJT Small Signal, Biasing, Amplifiers

Analog Electronics (Course Code: EE314) Lecture 9 10: BJT Small Signal, Biasing, Amplifiers Indian Institute of Technology Jodhpur, Year 08 Analog Electronics (ourse ode: EE34) Lecture 9 0: BJT Small Signal, Biasing, Amplifiers ourse Instructor: Shree Prakash Tiwari Email: sptiwari@iitj.ac.in

More information

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road QUESTION BANK

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road QUESTION BANK SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK Subject with Code : Electronic Circuit Analysis (16EC407) Year & Sem: II-B.Tech & II-Sem

More information

BJT Circuits (MCQs of Moderate Complexity)

BJT Circuits (MCQs of Moderate Complexity) BJT Circuits (MCQs of Moderate Complexity) 1. The current ib through base of a silicon npn transistor is 1+0.1 cos (1000πt) ma. At 300K, the rπ in the small signal model of the transistor is i b B C r

More information

Small signal ac equivalent circuit of BJT

Small signal ac equivalent circuit of BJT UNIT-2 Part A 1. What is an ac load line? [N/D 16] A dc load line gives the relationship between the q-point and the transistor characteristics. When capacitors are included in a CE transistor circuit,

More information

Code: 9A Answer any FIVE questions All questions carry equal marks *****

Code: 9A Answer any FIVE questions All questions carry equal marks ***** II B. Tech II Semester (R09) Regular & Supplementary Examinations, April/May 2012 ELECTRONIC CIRCUIT ANALYSIS (Common to EIE, E. Con. E & ECE) Time: 3 hours Max Marks: 70 Answer any FIVE questions All

More information

Small Signal Amplifiers - BJT. Definitions Small Signal Amplifiers Dimensioning of capacitors

Small Signal Amplifiers - BJT. Definitions Small Signal Amplifiers Dimensioning of capacitors Small Signal mplifiers BJT Defitions Small Signal mplifiers Dimensiong of capacitors 1 Defitions (1) Small signal condition When the put signal (v and, i ) is small so that output signal (v out and, i

More information

The shape of the waveform will be the same, but its level is shifted either upward or downward. The values of the resistor R and capacitor C affect

The shape of the waveform will be the same, but its level is shifted either upward or downward. The values of the resistor R and capacitor C affect Diode as Clamper A clamping circuit is used to place either the positive or negative peak of a signal at a desired level. The dc component is simply added or subtracted to/from the input signal. The clamper

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R059210404 Set No. 1 II B.Tech I Semester Supplimentary Examinations, February 2008 ELECTRONIC CIRCUIT ANALYSIS ( Common to Electronics & Communication Engineering and Electronics & Telematics)

More information

SKP Engineering College

SKP Engineering College SKP Engineering College Tiruvannamalai 606611 A Course Material on Electronic Circuits I By M.Jerin Jose Assistant Professor Electronics and Communication Engineering Department Electronics and Communication

More information

Lecture (06) BJT Amplifiers 3

Lecture (06) BJT Amplifiers 3 Lecture (06) BJT Amplifiers 3 By: Dr. Ahmed ElShafee 1 Current Gain 2 Power Gain The overall power gain is the product of the overall voltage gain (Av ) and the overall current gain (Ai). 3 THE COMMON

More information

BJT Amplifiers: Overview

BJT Amplifiers: Overview Indian Institute of Technology Jodhpur, Year 07 Analog lectronics (ourse ode: 34) Lecture 9 0: BJT Biasing, Amplifiers ourse Instructor: Shree Prakash Tiwari mail: sptiwari@iitj.ac.in Webpage: http://home.iitj.ac.in/~sptiwari/

More information

Electronic Circuits for Mechatronics ELCT 609 Lecture 5: BJT Voltage Amplifiers

Electronic Circuits for Mechatronics ELCT 609 Lecture 5: BJT Voltage Amplifiers Electronic Circuits for Mechatronics ELCT 609 Lecture 5: BJT Voltage Amplifiers Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 BJT Modes of Operation Electrical Equations of BJT 2 BJT

More information

The Miller Approximation. CE Frequency Response. The exact analysis is worked out on pp of H&S.

The Miller Approximation. CE Frequency Response. The exact analysis is worked out on pp of H&S. CE Frequency Response The exact analysis is worked out on pp. 639-64 of H&S. The Miller Approximation Therefore, we consider the effect of C µ on the input node only V ---------- out V s = r g π m ------------------

More information

ESE319 Introduction to Microelectronics High Frequency BJT Model & Cascode BJT Amplifier

ESE319 Introduction to Microelectronics High Frequency BJT Model & Cascode BJT Amplifier High Frequency BJT Model & Cascode BJT Amplifier 1 Gain of 10 Amplifier Non-ideal Transistor C in R 1 V CC R 2 v s Gain starts dropping at > 1MHz. Why! Because of internal transistor capacitances that

More information

Pg: 1 VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 Department of Electronics & Communication Engineering Regulation: 2013 Acadamic Year : 2015 2016 EC6304 Electronic Circuits I Question

More information

PHY405F 2009 EXPERIMENT 6 SIMPLE TRANSISTOR CIRCUITS

PHY405F 2009 EXPERIMENT 6 SIMPLE TRANSISTOR CIRCUITS PHY405F 2009 EXPERIMENT 6 SIMPLE TRANSISTOR CIRCUITS Due Date (NOTE CHANGE): Thursday, Nov 12 th @ 5 pm; Late penalty in effect! Most active electronic devices are based on the transistor as the fundamental

More information

EE105 Fall 2015 Microelectronic Devices and Circuits

EE105 Fall 2015 Microelectronic Devices and Circuits EE105 Fall 2015 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 11-1 Transistor Operating Mode in Amplifiers Transistors are biased in flat part of

More information

Microelectronics Circuit Analysis and Design

Microelectronics Circuit Analysis and Design Microelectronics Circuit Analysis and Design Donald A. Neamen Chapter 3 The Field Effect Transistor Neamen Microelectronics, 4e Chapter 3-1 In this chapter, we will: Study and understand the operation

More information

DC Bias. Graphical Analysis. Script

DC Bias. Graphical Analysis. Script Course: B.Sc. Applied Physical Science (Computer Science) Year & Sem.: Ist Year, Sem - IInd Subject: Electronics Paper No.: V Paper Title: Analog Circuits Lecture No.: 3 Lecture Title: Analog Circuits

More information

Early Effect & BJT Biasing

Early Effect & BJT Biasing Early Effect & BJT Biasing Early Effect DC BJT Behavior DC Biasing the BJT 1 ESE319 Introduction to Microelectronics Early Effect Saturation region Forward-Active region 4 3 Ideal NPN BJT Transfer V Characteristic

More information

BJT AC Analysis CHAPTER OBJECTIVES 5.1 INTRODUCTION 5.2 AMPLIFICATION IN THE AC DOMAIN

BJT AC Analysis CHAPTER OBJECTIVES 5.1 INTRODUCTION 5.2 AMPLIFICATION IN THE AC DOMAIN BJT AC Analysis 5 CHAPTER OBJECTIVES Become familiar with the, hybrid, and hybrid p models for the BJT transistor. Learn to use the equivalent model to find the important ac parameters for an amplifier.

More information

Chapter Three " BJT Small-Signal Analysis "

Chapter Three  BJT Small-Signal Analysis Chapter Three " BJT Small-Signal Analysis " We now begin to examine the small-signal ac response of the BJT amplifier by reviewing the models most frequently used to represent the transistor in the sinusoidal

More information

The Bipolar Junction Transistor- Small Signal Characteristics

The Bipolar Junction Transistor- Small Signal Characteristics The Bipolar Junction Transistor- Small Signal Characteristics Debapratim Ghosh deba21pratim@gmail.com Electronic Systems Group Department of Electrical Engineering Indian Institute of Technology Bombay

More information

II/IV B. TECH. DEGREE EXAMINATIONS, NOVEMBER Second Semester EC/EE ELECTRONIC CIRCUIT ANALYSIS. Time : Three Hours Max.

II/IV B. TECH. DEGREE EXAMINATIONS, NOVEMBER Second Semester EC/EE ELECTRONIC CIRCUIT ANALYSIS. Time : Three Hours Max. Total No. of Questions : 9] [Total No. of Pages : 02 B.Tech. II/ IV YEAR DEGREE EXAMINATION, APRIL/MAY - 2014 (Second Semester) EC/EE/EI Electronic Circuit Analysis Time : 03 Hours Maximum Marks : 70 Q1)

More information

EC1203: ELECTRONICS CIRCUITS-I UNIT-I TRANSISTOR BIASING PART-A

EC1203: ELECTRONICS CIRCUITS-I UNIT-I TRANSISTOR BIASING PART-A SHRI ANGALAMMAN COLLEGE OF ENGG & TECH., TRICHY 621105 (Approved by AICTE, New Delhi and Affiliated to Anna University Chennai/Trichy) ( ISO 9001:2008 Certified Institution) DEPARTMENT OF ELECTRONICS &

More information

Current Supply Topology. CMOS Cascode Transconductance Amplifier. Basic topology. p-channel cascode current supply is an obvious solution

Current Supply Topology. CMOS Cascode Transconductance Amplifier. Basic topology. p-channel cascode current supply is an obvious solution CMOS Cascode Transconductance Amplifier Basic topology. Current Supply Topology p-channel cascode current supply is an obvious solution Current supply must have a very high source resistance r oc since

More information

COE/EE152: Basic Electronics. Lecture 5. Andrew Selasi Agbemenu. Outline

COE/EE152: Basic Electronics. Lecture 5. Andrew Selasi Agbemenu. Outline COE/EE152: Basic Electronics Lecture 5 Andrew Selasi Agbemenu 1 Outline Physical Structure of BJT Two Diode Analogy Modes of Operation Forward Active Mode of BJTs BJT Configurations Early Effect Large

More information

Microelectronic Circuits

Microelectronic Circuits SECOND EDITION ISHBWHBI \ ' -' Microelectronic Circuits Adel S. Sedra University of Toronto Kenneth С Smith University of Toronto HOLT, RINEHART AND WINSTON HOLT, RINEHART AND WINSTON, INC. New York Chicago

More information

EEE118: Electronic Devices and Circuits

EEE118: Electronic Devices and Circuits EEE118: Electronic Devices and Circuits Lecture XIV James E Green Department of Electronic Engineering University of Sheffield j.e.green@sheffield.ac.uk Review Review Considered several transistor switching

More information

EEE225: Analogue and Digital Electronics

EEE225: Analogue and Digital Electronics EEE225: Analogue and Digital Electronics Lecture I James E. Green Department of Electronic Engineering University of Sheffield j.e.green@sheffield.ac.uk Introduction This Lecture 1 Introduction Aims &

More information

ECE 310 Microelectronics Circuits

ECE 310 Microelectronics Circuits ECE 310 Microelectronics Circuits Bipolar Transistors Dr. Vishal Saxena (vishalsaxena@boisetstate.edu) Jan 20, 2014 Vishal Saxena 1 Bipolar Transistor n the chapter, we will study the physics of bipolar

More information

Push-Pull Amplifiers

Push-Pull Amplifiers NDSU PushPull Amplifiers ECE 321 JSG Background: PushPull Amplifiers The amplifiers we have been looking at are termed CassA amplifiers. They bias the transistor in the active region, and vary the operating

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMUS) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMUS) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMUS) Dundigal, Hyderabad - 00 0 ELECTRONICS AND COMMUNICATION ENGINEERING ASSIGNMENT Name : ELECTRONIC CIRCUIT ANALYSIS Code : A0 Class : II - B. Tech nd semester

More information

Electronic Devices. Floyd. Chapter 7. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd

Electronic Devices. Floyd. Chapter 7. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd Electronic Devices Ninth Edition Floyd Chapter 7 Power Amplifiers A power amplifier is a large signal amplifier that produces a replica of the input signal on its output. In the case shown here, the output

More information

Index. Small-Signal Models, 14 saturation current, 3, 5 Transistor Cutoff Frequency, 18 transconductance, 16, 22 transit time, 10

Index. Small-Signal Models, 14 saturation current, 3, 5 Transistor Cutoff Frequency, 18 transconductance, 16, 22 transit time, 10 Index A absolute value, 308 additional pole, 271 analog multiplier, 190 B BiCMOS,107 Bode plot, 266 base-emitter voltage, 16, 50 base-emitter voltages, 296 bias current, 111, 124, 133, 137, 166, 185 bipolar

More information

Communication Microelectronics (W17)

Communication Microelectronics (W17) Communication Microelectronics (W17) Lecture 4: Bipolar Junction Transistor Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 Bipolar Junction Transistor (BJT) Physical Structure and I-V

More information

Two stage Cascade BJT Amplifier

Two stage Cascade BJT Amplifier Two stage Cascade BJT Amplifier N K Kaphungkui Assistant professor, Electronics & Communication Department, Dibrugarh University, Assam, India ---------------------------------------------------------------------***---------------------------------------------------------------------

More information

EXPERIMENT 12: SIMULATION STUDY OF DIFFERENT BIASING CIRCUITS USING NPN BJT

EXPERIMENT 12: SIMULATION STUDY OF DIFFERENT BIASING CIRCUITS USING NPN BJT EXPERIMENT 12: SIMULATION STUDY OF DIFFERENT BIASING CIRCUITS USING NPN BJT AIM: 1) To study different BJT DC biasing circuits 2) To design voltage divider bias circuit using NPN BJT SOFTWARE TOOL: PC

More information

Electronic Circuits. Power Amplifiers. Manar Mohaisen Office: F208 Department of EECE

Electronic Circuits. Power Amplifiers. Manar Mohaisen Office: F208   Department of EECE Electronic Circuits Power Amplifiers Manar Mohaisen Office: F208 Email: manar.subhi@kut.ac.kr Department of EECE Review of the Precedent Lecture Explain the Amplifier Operation Explain the BJT AC Models

More information

I C I E =I B = I C 1 V BE 0.7 V

I C I E =I B = I C 1 V BE 0.7 V Guide to NPN Amplifier Analysis Jason Woytowich 1. Transistor characteristics A BJT has three operating modes cutoff, active, and saturation. For applications, like amplifiers, where linear characteristics

More information

Transistors and Applications

Transistors and Applications Chapter 17 Transistors and Applications DC Operation of Bipolar Junction Transistors (BJTs) The bipolar junction transistor (BJT) is constructed with three doped semiconductor regions separated by two

More information

SYLLABUS OSMANIA UNIVERSITY (HYDERABAD)

SYLLABUS OSMANIA UNIVERSITY (HYDERABAD) UNIT - 1 i SYLLABUS OSMANIA UNIVERSITY (HYDERABAD) JUNCTION DIODE Different Types of PN Junction Formation Techniques, PN Junction Characteristics, Biasing, Band Diagrams and Current Flow, Diode Current

More information

Gechstudentszone.wordpress.com

Gechstudentszone.wordpress.com UNIT 4: Small Signal Analysis of Amplifiers 4.1 Basic FET Amplifiers In the last chapter, we described the operation of the FET, in particular the MOSFET, and analyzed and designed the dc response of circuits

More information

Transistor Biasing and Operational amplifier fundamentals. OP-amp Fundamentals and its DC characteristics. BJT biasing schemes

Transistor Biasing and Operational amplifier fundamentals. OP-amp Fundamentals and its DC characteristics. BJT biasing schemes Lab 1 Transistor Biasing and Operational amplifier fundamentals Experiment 1.1 Experiment 1.2 BJT biasing OP-amp Fundamentals and its DC characteristics BJT biasing schemes 1.1 Objective 1. To sketch potential

More information

UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A

UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A UNIT I BIASING OF DISCRETE BJT AND MOSFET PART A 1. Why do we choose Q point at the center of the load line? 2. Name the two techniques used in the stability of the q point.explain. 3. Give the expression

More information

Lecture 24: Bipolar Junction Transistors (1) Bipolar Junction Structure, Operating Regions, Biasing

Lecture 24: Bipolar Junction Transistors (1) Bipolar Junction Structure, Operating Regions, Biasing Lecture 24: Bipolar Junction Transistors (1) Bipolar Junction Structure, Operating Regions, Biasing BJT Structure the BJT is formed by doping three semiconductor regions (emitter, base, and collector)

More information

Analog Integrated Circuit Configurations

Analog Integrated Circuit Configurations Analog Integrated Circuit Configurations Basic stages: differential pairs, current biasing, mirrors, etc. Approximate analysis for initial design MOSFET and Bipolar circuits Basic Current Bias Sources

More information

Chapter 11 Output Stages

Chapter 11 Output Stages 1 Chapter 11 Output Stages Learning Objectives 2 1) The classification of amplifier output stages 2) Analysis and design of a variety of output-stage types 3) Overview of power amplifiers Introduction

More information

Microelectronic Devices and Circuits- EECS105 Final Exam

Microelectronic Devices and Circuits- EECS105 Final Exam EECS105 1 of 13 Fall 2000 Microelectronic Devices and Circuits- EECS105 Final Exam Wednesday, December 13, 2000 Costas J. Spanos University of California at Berkeley College of Engineering Department of

More information

b b Fig. 1 Transistor symbols

b b Fig. 1 Transistor symbols TRANSISTORS Transistors have three terminals which are referred to as emitter (e), base (b) and collector (c). Fig 1 shows the symbols used for the two types of transistors in common use. c c b b e e npn

More information

Experiment No. 9 DESIGN AND CHARACTERISTICS OF COMMON BASE AND COMMON COLLECTOR AMPLIFIERS

Experiment No. 9 DESIGN AND CHARACTERISTICS OF COMMON BASE AND COMMON COLLECTOR AMPLIFIERS Experiment No. 9 DESIGN AND CHARACTERISTICS OF COMMON BASE AND COMMON COLLECTOR AMPLIFIERS 1. Objective: The objective of this experiment is to explore the basic applications of the bipolar junction transistor

More information

D.C Biasing using a Single Power Supply

D.C Biasing using a Single Power Supply 4/6/0 D Biasing using a Single Power Supply /6 D. Biasing using a Single Power Supply The general form of a single-supply BJT amplifier biasing circuit is: - - Generally, we have three goals in designing

More information

Physics of Bipolar Transistor

Physics of Bipolar Transistor Physics of Bipolar Transistor Motivations - In many electronic applications, amplifier is the most fundamental building block. Ex Audio amplifier: amplifies electric signal to drive a speaker RF Power

More information

Electronic Troubleshooting

Electronic Troubleshooting Electronic Troubleshooting Chapter 3 Bipolar Transistors Most devices still require some individual (discrete) transistors Used to customize operations Interface to external devices Understanding their

More information

Chapter 3-2 Semiconductor devices Transistors and Amplifiers-BJT Department of Mechanical Engineering

Chapter 3-2 Semiconductor devices Transistors and Amplifiers-BJT Department of Mechanical Engineering MEMS1082 Chapter 3-2 Semiconductor devices Transistors and Amplifiers-BJT Bipolar Transistor Construction npn BJT Transistor Structure npn BJT I = I + E C I B V V BE CE = V = V B C V V E E Base-to-emitter

More information

Current Mirrors. Basic BJT Current Mirror. Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror.

Current Mirrors. Basic BJT Current Mirror. Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror. Current Mirrors Basic BJT Current Mirror Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror. For its analysis, we assume identical transistors and neglect

More information

Bipolar Junction Transistors (BJTs)

Bipolar Junction Transistors (BJTs) C H A P T E R 6 Bipolar Junction Transistors (BJTs) Figure 6.1 A simplified structure of the npn transistor and pnp transistor. Table 6.1: BJT modes of Operation Mode Cutoff Active Saturation EBJ Reverse

More information

EE105 Fall 2015 Microelectronic Devices and Circuits. Basic Single-Transistor Amplifier Configurations

EE105 Fall 2015 Microelectronic Devices and Circuits. Basic Single-Transistor Amplifier Configurations EE05 Fall 205 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH 2- MOSFET Basic Single-Transistor Amplifier Configurations BJT 2-2 Two-Port Model of Amplifiers

More information

Structure of Actual Transistors

Structure of Actual Transistors 4.1.3. Structure of Actual Transistors Figure 4.7 shows a more realistic BJT cross-section Collector virtually surrounds entire emitter region This makes it difficult for electrons injected into base to

More information

By: Dr. Ahmed ElShafee

By: Dr. Ahmed ElShafee Lecture (04) Transistor Bias Circuit 3 BJT Amplifiers 1 By: Dr. Ahmed ElShafee ١ Emitter Feedback Bias If an emitter resistor is added to the base bias circuit in Figure, the result is emitter feedback

More information

... Second Semester

... Second Semester كنا نظنك اي عيل تركتنا... لكن طيفك مل يزل يغشانا مثل الندى يسقي النبات بقطره... قد ابت ليال يف ادلىج عطشاان ما زلت أذكر حني أدخل معمال... متسك هجازا للقياس تحاكه... فأ راك جتلس هادئا حيرانا تكتب وترمس

More information

Electronic Circuits ELCT604 (Spring 2018) Lecture 2 BJT Amplifiers

Electronic Circuits ELCT604 (Spring 2018) Lecture 2 BJT Amplifiers Electronic Circuits ELCT604 (Spring 2018) Lecture 2 BJT Amplifiers Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 Analog Voltage Amplifiers Circuit Design and Configurations 2 Objective

More information

The George Washington University School of Engineering and Applied Science Department of Electrical and Computer Engineering ECE 20 - LAB

The George Washington University School of Engineering and Applied Science Department of Electrical and Computer Engineering ECE 20 - LAB The George Washington University School of Engineering and Applied Science Department of Electrical and Computer Engineering ECE 20 - LAB Experiment # 6 (Part I) Bipolar Junction Transistors Common Emitter

More information

Chapter 3 Bipolar Junction Transistors (BJT)

Chapter 3 Bipolar Junction Transistors (BJT) Chapter 3 Bipolar Junction Transistors (BJT) Transistors In analog circuits, transistors are used in amplifiers and linear regulated power supplies. In digital circuits they function as electrical switches,

More information

EBERS Moll Model. Presented by K.Pandiaraj Assistant Professor ECE Department Kalasalingam University

EBERS Moll Model. Presented by K.Pandiaraj Assistant Professor ECE Department Kalasalingam University EBERS Moll Model Presented by K.Pandiaraj Assistant Professor ECE Department Kalasalingam University BJT Device Models The primary function of a model is to predict the behaviour of a device in particular

More information

C H A P T E R 6 Bipolar Junction Transistors (BJTs)

C H A P T E R 6 Bipolar Junction Transistors (BJTs) C H A P T E R 6 Bipolar Junction Transistors (BJTs) Figure 6.1 A simplified structure of the npn transistor and pnp transistor. Table 6.1: BJT modes of Operation Mode EBJ CBJ Cutoff Reverse Reverse Active

More information

SAMPLE FINAL EXAMINATION FALL TERM

SAMPLE FINAL EXAMINATION FALL TERM ENGINEERING SCIENCES 154 ELECTRONIC DEVICES AND CIRCUITS SAMPLE FINAL EXAMINATION FALL TERM 2001-2002 NAME Some Possible Solutions a. Please answer all of the questions in the spaces provided. If you need

More information

Lecture 01 Operational Amplifiers Op-Amps Introduction

Lecture 01 Operational Amplifiers Op-Amps Introduction Lecture 01 Operational Amplifiers Op-Amps Introduction Chapter 9 Ideal Operational Amplifiers and Op-Amp Circuits Donald A. Neamen (2009). Microelectronics: Circuit Analysis and Design, 4th Edition, Mc-Graw-Hill

More information

Chapter 5 Bipolar Amplifiers. EE105 - Spring 2007 Microelectronic Devices and Circuits. Bipolar Amplifiers. Voltage Amplifier

Chapter 5 Bipolar Amplifiers. EE105 - Spring 2007 Microelectronic Devices and Circuits. Bipolar Amplifiers. Voltage Amplifier EE05 - Spring 2007 Microelectronic Deices and ircuits hapter 5 Bipolar mplifiers 5. General onsiderations 5.2 Operating Point nalysis and Design 5.3 Bipolar mplifier Topologies 5.4 Summary and dditional

More information

Microelectronic Circuits. Feedback Amplifiers. Slide 1. Lecture on Microelectronics Circuits. BITS Pilani, Dubai Campus. Dr. Vilas

Microelectronic Circuits. Feedback Amplifiers. Slide 1. Lecture on Microelectronics Circuits. BITS Pilani, Dubai Campus. Dr. Vilas Microelectronic Circuits Feedback mplifiers Slide 1 General Structure of Feedback Comparison Circuit / Mixer x o = x i ; x f = b x o ; x i = x s - x f ; f = (x o /x s ) = / (1+b). lso, x f = bx s / (1+b)

More information

F7 Transistor Amplifiers

F7 Transistor Amplifiers Lars Ohlsson 2018-09-25 F7 Transistor Amplifiers Outline Transfer characteristics Small signal operation and models Basic configurations Common source (CS) CS/CE w/ source/ emitter degeneration resistance

More information

Electron Devices and Circuits

Electron Devices and Circuits Electron Devices and Circuits (EC 8353) Prepared by Mr.R.Suresh, AP/EEE Ms.S.KARKUZHALI,A.P/EEE BJT small signal model Analysis of CE, CB, CC amplifiers- Gain and frequency response MOSFET small signal

More information

Lecture (06) BJT Amplifiers 3

Lecture (06) BJT Amplifiers 3 Lecture (06) BJT Amplifiers 3 By: Dr. Ahmed ElShafee ١ THE COMMON COLLECTOR AMPLIFIER An emitter follower circuit with voltage divider bias is shown in Figure, the input signal is capacitively coupled

More information