Supporting Information

Size: px
Start display at page:

Download "Supporting Information"

Transcription

1 Supporting Information Fabrication and Transfer of Flexible Few-Layers MoS 2 Thin Film Transistors to any arbitrary substrate Giovanni A. Salvatore 1, *, Niko Münzenrieder 1, Clément Barraud 2, Luisa Petti 1, Christoph Zysset 1, Lars Büthe 1, Klaus Ensslin 2 and Gerhard Tröster 1 1 Electronics Laboratory, ETZ Gloriastrasse 35, Swiss Federal Institute of Technology, Zürich, 8092, Switzerland 2 Nanophysics Laboratory, HPF Schafmattstrasse 16, Swiss Federal Institute of Technology, Zürich, 8093, Switzerland. *giovanni.salvatore@ife.ee.ethz.ch

2 Transfer technique Figure S1: PMMA membrane transferred on a 50µm thick polymide foil (in orange). Usually no winkles are visible between the membrane and the substrate, moreover the annealing step at 70 C for 10minutes improves the adhesion and evaporates the remaining water. Mobility extraction The mobility extraction is performed through the I D / g m method 2. 5x10-4 4x10-4 I D /g 1/2 m 3x10-4 2x10-4 µ=19 cm 2 /Vs 1x Gate-Source Voltage, V GS Figure S2: Mobility extraction through the Ghibaudo s method.

3 Source-Drain contacts Source and drain are formed by 100nm Au layer. Drain current Vs Drain voltage for low values shows a linear behavior as already reported Drain Current, I D (µa/µm) 0.0 V GS =-2V,-1V,0V,1V,2V Drain-Source Voltage, V DS Figure S3: I D -V D for low voltage values. The curves refer to V GS from -2V to 2V with a 1V step.

4 Transconductance, g DS and intrinsic gain g m /g DS Transistor transconductance, g m = I D / V GS, and output resistance, 1/g DS == I D / V DS, are two important parameter to evaluate the device performance. Here we plotted such parameters as function of the gate voltage. The plot refers to the device of Figure /g DS = R OUT (MΩ) g m /g DS Gate-Source Voltage, V GS Transconductance, g m (µs) Gate-Source Voltage, V GS 4 Figure S4: transconductance and output resistance of the device in Figure 3. The inset shows the intrinsic gain defined as g m /g DS. The calculation has been done for the saturation regime. Interface residuals and interface charges density extraction The authors didn t perform any measurements in vacuum but they do not expect a much different behavior. Annealing step could be beneficial and some experiments are ongoing. From the subthreshold swing value and through simple assumptions and calculation, interface charge can be calculated.

5 In fact, the subthreshold swing can be written as: 3, (1) This model is usually adopted for Silicon on Insulator 3 thin film transistor which is indeed similar to our structure. Assuming an ideal interface (C IT =0) and a perfect gate-channel coupling (C S /C OX 0), which is the case in ultra-thin body transistors, the subthreshold swing reach the ideal value of 60mV/dec. Assuming such values as reference the term C IT /C OX can be calculated from equation (1). Our 250mV/dec implies a C IT /C OX of about 3 and hence a C IT of 10.2 * 10-7 F/cm 2 (in the case of 25nm of Al 2 O 3 with a dielectric constant of 9.5). This can give a D IT (density of charge=d IT =Q IT /q) of 6.4*10 12 /cm 2 assuming a 1V subthreshol region. CMOS transistors could have D IT as low as /cm 2. The same result can be achieved by multiplying the difference of the threshold voltage by the oxide capacitance ( V TH *C OX ).

6 Bending tests Measurements under bent conditions are performed by bending the devices around a metallic rod with 10 and 5mm radii. A custom built bending machine has been used for the bending cycles. The device are bent down to 10mm radii during the cycling. a b Figure S5: (a) Devices bent around a metallic rod used for the measurement. The TFTs are contacted directly with probe tips. The devices are bent in such a way the strain is parallel to the channel of the TFTs. (b) Custom built machine to perform multiple and consecutive bending cycles.

7 Output characteristics for bending test a Drain Current, I D (µa/µm) flat 10mm bending radius 5mm bending radius Drain-Source Voltage, V DS b Drain Current, I D (µa/µm) flat after 10 bending cycles Drain-Source Voltage, V DS Figure S6: (a) Output characteristics of a device (same TFT than in figure 3 and 4) when bent to 5 and 10mm. (b) Device output characteristic after 10 consecutive bending cycles at 10mm as minimum bending radius. References 1. Radisavljevic B.; Radenovic A.; Brivio J.; Giacometti V.; Kis A. Single-Layer MoS2 Transistors Nature Nanotech. 2011, 6, Ghibaudo, G. New Method for the Extraction of MOSFET Parameters Electron. Lett. 1988, 24, Colinge, J.-P. Subthreshold Slope of Thin-Film SOI MOSFET's Elec. Dev. Lett., IEEE 1986, 7, Van Overstraeten, R. J.; Declerck, G. J.; Muls, P. A. Theory of the MOS Transistor in Weak Inversion-New Method to Determine the Number of Surface States Trans. Elec. Dev., IEEE 1975, 22,

Semiconductor Physics and Devices

Semiconductor Physics and Devices Metal-Semiconductor and Semiconductor Heterojunctions The Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) is one of two major types of transistors. The MOSFET is used in digital circuit, because

More information

Transparent p-type SnO Nanowires with Unprecedented Hole Mobility among Oxide Semiconductors

Transparent p-type SnO Nanowires with Unprecedented Hole Mobility among Oxide Semiconductors Supplementary Information Transparent p-type SnO Nanowires with Unprecedented Hole Mobility among Oxide Semiconductors J. A. Caraveo-Frescas and H. N. Alshareef* Materials Science and Engineering, King

More information

Supporting Information

Supporting Information Copyright WILEY VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2011. Supporting Information for Small, DOI: 10.1002/smll.201101677 Contact Resistance and Megahertz Operation of Aggressively Scaled

More information

Experiment 3. 3 MOSFET Drain Current Modeling. 3.1 Summary. 3.2 Theory. ELEC 3908 Experiment 3 Student#:

Experiment 3. 3 MOSFET Drain Current Modeling. 3.1 Summary. 3.2 Theory. ELEC 3908 Experiment 3 Student#: Experiment 3 3 MOSFET Drain Current Modeling 3.1 Summary In this experiment I D vs. V DS and I D vs. V GS characteristics are measured for a silicon MOSFET, and are used to determine the parameters necessary

More information

Three Terminal Devices

Three Terminal Devices Three Terminal Devices - field effect transistor (FET) - bipolar junction transistor (BJT) - foundation on which modern electronics is built - active devices - devices described completely by considering

More information

CHAPTER 3 TWO DIMENSIONAL ANALYTICAL MODELING FOR THRESHOLD VOLTAGE

CHAPTER 3 TWO DIMENSIONAL ANALYTICAL MODELING FOR THRESHOLD VOLTAGE 49 CHAPTER 3 TWO DIMENSIONAL ANALYTICAL MODELING FOR THRESHOLD VOLTAGE 3.1 INTRODUCTION A qualitative notion of threshold voltage V th is the gate-source voltage at which an inversion channel forms, which

More information

NAME: Last First Signature

NAME: Last First Signature UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE 130: IC Devices Spring 2003 FINAL EXAMINATION NAME: Last First Signature STUDENT

More information

MOSFET & IC Basics - GATE Problems (Part - I)

MOSFET & IC Basics - GATE Problems (Part - I) MOSFET & IC Basics - GATE Problems (Part - I) 1. Channel current is reduced on application of a more positive voltage to the GATE of the depletion mode n channel MOSFET. (True/False) [GATE 1994: 1 Mark]

More information

EXPERIMENT # 1: REVERSE ENGINEERING OF INTEGRATED CIRCUITS Week of 1/17/05

EXPERIMENT # 1: REVERSE ENGINEERING OF INTEGRATED CIRCUITS Week of 1/17/05 EXPERIMENT # 1: REVERSE ENGINEERING OF INTEGRATED CIRCUITS Week of 1/17/5 Experiment #1: Reading: Reverse engineering of integrated circuits Jaeger 9.2: MOS transistor layout and design rules HP4145 basics:

More information

IMPROVED CURRENT MIRROR OUTPUT PERFORMANCE BY USING GRADED-CHANNEL SOI NMOSFETS

IMPROVED CURRENT MIRROR OUTPUT PERFORMANCE BY USING GRADED-CHANNEL SOI NMOSFETS IMPROVED CURRENT MIRROR OUTPUT PERFORMANCE BY USING GRADED-CHANNEL SOI NMOSFETS Marcelo Antonio Pavanello *, João Antonio Martino and Denis Flandre 1 Laboratório de Sistemas Integráveis Escola Politécnica

More information

Reliability of deep submicron MOSFETs

Reliability of deep submicron MOSFETs Invited paper Reliability of deep submicron MOSFETs Francis Balestra Abstract In this work, a review of the reliability of n- and p-channel Si and SOI MOSFETs as a function of gate length and temperature

More information

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism;

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism; Chapter 3 Field-Effect Transistors (FETs) 3.1 Introduction Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism; The concept has been known

More information

Sub-Threshold Region Behavior of Long Channel MOSFET

Sub-Threshold Region Behavior of Long Channel MOSFET Sub-threshold Region - So far, we have discussed the MOSFET behavior in linear region and saturation region - Sub-threshold region is refer to region where Vt is less than Vt - Sub-threshold region reflects

More information

problem grade total

problem grade total Fall 2005 6.012 Microelectronic Devices and Circuits Prof. J. A. del Alamo Name: Recitation: November 16, 2005 Quiz #2 problem grade 1 2 3 4 total General guidelines (please read carefully before starting):

More information

Parameter Extraction and Analysis of Pentacene Thin Film Transistor with Different Insulators

Parameter Extraction and Analysis of Pentacene Thin Film Transistor with Different Insulators Parameter Extraction and Analysis of Pentacene Thin Film Transistor with Different Insulators Poornima Mittal 1, 4, Anuradha Yadav 2, Y. S. Negi 3, R. K. Singh 4 and Nishant Tripathi 2 1 Graphic Era University

More information

EFFECT OF THRESHOLD VOLTAGE AND CHANNEL LENGTH ON DRAIN CURRENT OF SILICON N-MOSFET

EFFECT OF THRESHOLD VOLTAGE AND CHANNEL LENGTH ON DRAIN CURRENT OF SILICON N-MOSFET EFFECT OF THRESHOLD VOLTAGE AND CHANNEL LENGTH ON DRAIN CURRENT OF SILICON N-MOSFET A.S.M. Bakibillah Nazibur Rahman Dept. of Electrical & Electronic Engineering, American International University Bangladesh

More information

MOSFET short channel effects

MOSFET short channel effects MOSFET short channel effects overview Five different short channel effects can be distinguished: velocity saturation drain induced barrier lowering (DIBL) impact ionization surface scattering hot electrons

More information

FUNDAMENTALS OF MODERN VLSI DEVICES

FUNDAMENTALS OF MODERN VLSI DEVICES 19-13- FUNDAMENTALS OF MODERN VLSI DEVICES YUAN TAUR TAK H. MING CAMBRIDGE UNIVERSITY PRESS Physical Constants and Unit Conversions List of Symbols Preface page xi xiii xxi 1 INTRODUCTION I 1.1 Evolution

More information

EE105 Fall 2015 Microelectronic Devices and Circuits: MOSFET Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH)

EE105 Fall 2015 Microelectronic Devices and Circuits: MOSFET Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH) EE105 Fall 2015 Microelectronic Devices and Circuits: MOSFET Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 7-1 Simplest Model of MOSFET (from EE16B) 7-2 CMOS Inverter 7-3 CMOS NAND

More information

Future MOSFET Devices using high-k (TiO 2 ) dielectric

Future MOSFET Devices using high-k (TiO 2 ) dielectric Future MOSFET Devices using high-k (TiO 2 ) dielectric Prerna Guru Jambheshwar University, G.J.U.S. & T., Hisar, Haryana, India, prernaa.29@gmail.com Abstract: In this paper, an 80nm NMOS with high-k (TiO

More information

Department of Electrical Engineering IIT Madras

Department of Electrical Engineering IIT Madras Department of Electrical Engineering IIT Madras Sample Questions on Semiconductor Devices EE3 applicants who are interested to pursue their research in microelectronics devices area (fabrication and/or

More information

MOS Capacitance and Introduction to MOSFETs

MOS Capacitance and Introduction to MOSFETs ECE-305: Fall 2016 MOS Capacitance and Introduction to MOSFETs Professor Peter Bermel Electrical and Computer Engineering Purdue University, West Lafayette, IN USA pbermel@purdue.edu 11/4/2016 Pierret,

More information

Sub-30 nm InAs Quantum-Well MOSFETs with Self-Aligned Metal Contacts and Sub-1 nm EOT HfO 2 Insulator

Sub-30 nm InAs Quantum-Well MOSFETs with Self-Aligned Metal Contacts and Sub-1 nm EOT HfO 2 Insulator Sub-30 nm InAs Quantum-Well MOSFETs with Self-Aligned Metal Contacts and Sub-1 nm EOT HfO 2 Insulator Jianqiang Lin, Dimitri A. Antoniadis, and Jesús A. del Alamo Microsystems Technology Laboratories,

More information

Characterization of SOI MOSFETs by means of charge-pumping

Characterization of SOI MOSFETs by means of charge-pumping Paper Characterization of SOI MOSFETs by means of charge-pumping Grzegorz Głuszko, Sławomir Szostak, Heinrich Gottlob, Max Lemme, and Lidia Łukasiak Abstract This paper presents the results of charge-pumping

More information

Introduction to VLSI ASIC Design and Technology

Introduction to VLSI ASIC Design and Technology Introduction to VLSI ASIC Design and Technology Paulo Moreira CERN - Geneva, Switzerland Paulo Moreira Introduction 1 Outline Introduction Is there a limit? Transistors CMOS building blocks Parasitics

More information

EEC 118 Spring 2010 Lab #1: NMOS and PMOS Transistor Parameters

EEC 118 Spring 2010 Lab #1: NMOS and PMOS Transistor Parameters EEC 118 Spring 2010 Lab #1: NMOS and PMOS Transistor Parameters Dept. of Electrical and Computer Engineering University of California, Davis March 18, 2010 Reading: Rabaey Chapter 3 [1]. Reference: Kang

More information

Week 9a OUTLINE. MOSFET I D vs. V GS characteristic Circuit models for the MOSFET. Reading. resistive switch model small-signal model

Week 9a OUTLINE. MOSFET I D vs. V GS characteristic Circuit models for the MOSFET. Reading. resistive switch model small-signal model Week 9a OUTLINE MOSFET I vs. V GS characteristic Circuit models for the MOSFET resistive switch model small-signal model Reading Rabaey et al.: Chapter 3.3.2 Hambley: Chapter 12 (through 12.5); Section

More information

Organic Electronics. Information: Information: 0331a/ 0442/

Organic Electronics. Information: Information:  0331a/ 0442/ Organic Electronics (Course Number 300442 ) Spring 2006 Organic Field Effect Transistors Instructor: Dr. Dietmar Knipp Information: Information: http://www.faculty.iubremen.de/course/c30 http://www.faculty.iubremen.de/course/c30

More information

ECE 340 Lecture 40 : MOSFET I

ECE 340 Lecture 40 : MOSFET I ECE 340 Lecture 40 : MOSFET I Class Outline: MOS Capacitance-Voltage Analysis MOSFET - Output Characteristics MOSFET - Transfer Characteristics Things you should know when you leave Key Questions How do

More information

Introduction to Electronic Devices

Introduction to Electronic Devices Introduction to Electronic Devices (Course Number 300331) Fall 2006 Field Effect Transistors (FETs) Dr. Dietmar Knipp Assistant Professor of Electrical Engineering Information: http://www.faculty.iubremen.de/dknipp/

More information

ANALYTICAL MODELING AND CHARACTERIZATION OF CYLINDRICAL GATE ALL AROUND MOSFET

ANALYTICAL MODELING AND CHARACTERIZATION OF CYLINDRICAL GATE ALL AROUND MOSFET ANALYTICAL MODELING AND CHARACTERIZATION OF CYLINDRICAL GATE ALL AROUND MOSFET Shailly Garg 1, Prashant Mani Yadav 2 1 Student, SRM University 2 Assistant Professor, Department of Electronics and Communication,

More information

EFFECT OF STRUCTURAL AND DOPING PARAMETER VARIATIONS ON NQS DELAY, INTRINSIC GAIN AND NF IN JUNCTIONLESS FETS

EFFECT OF STRUCTURAL AND DOPING PARAMETER VARIATIONS ON NQS DELAY, INTRINSIC GAIN AND NF IN JUNCTIONLESS FETS EFFECT OF STRUCTURAL AND DOPING PARAMETER VARIATIONS ON NQS DELAY, INTRINSIC GAIN AND NF IN JUNCTIONLESS FETS B. Lakshmi 1 and R. Srinivasan 2 1 School of Electronics Engineering, VIT University, Chennai,

More information

Depletion-mode operation ( 공핍형 ): Using an input gate voltage to effectively decrease the channel size of an FET

Depletion-mode operation ( 공핍형 ): Using an input gate voltage to effectively decrease the channel size of an FET Ch. 13 MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor : I D D-mode E-mode V g The gate oxide is made of dielectric SiO 2 with e = 3.9 Depletion-mode operation ( 공핍형 ): Using an input gate voltage

More information

Fabrication and Characterization of Pseudo-MOSFETs

Fabrication and Characterization of Pseudo-MOSFETs Fabrication and Characterization of Pseudo-MOSFETs March 19, 2014 Contents 1 Introduction 2 2 The pseudo-mosfet 3 3 Device Fabrication 5 4 Electrical Measurement and Characterization 7 5 Writing your Report

More information

INTRODUCTION: Basic operating principle of a MOSFET:

INTRODUCTION: Basic operating principle of a MOSFET: INTRODUCTION: Along with the Junction Field Effect Transistor (JFET), there is another type of Field Effect Transistor available whose Gate input is electrically insulated from the main current carrying

More information

Charge-Based Continuous Equations for the Transconductance and Output Conductance of Graded-Channel SOI MOSFET s

Charge-Based Continuous Equations for the Transconductance and Output Conductance of Graded-Channel SOI MOSFET s Charge-Based Continuous Equations for the Transconductance and Output Conductance of Graded-Channel SOI MOSFET s Michelly de Souza 1 and Marcelo Antonio Pavanello 1,2 1 Laboratório de Sistemas Integráveis,

More information

3-D Modelling of the Novel Nanoscale Screen-Grid Field Effect Transistor (SGFET)

3-D Modelling of the Novel Nanoscale Screen-Grid Field Effect Transistor (SGFET) 3-D Modelling of the Novel Nanoscale Screen-Grid Field Effect Transistor (SGFET) Pei W. Ding, Kristel Fobelets Department of Electrical Engineering, Imperial College London, U.K. J. E. Velazquez-Perez

More information

Design cycle for MEMS

Design cycle for MEMS Design cycle for MEMS Design cycle for ICs IC Process Selection nmos CMOS BiCMOS ECL for logic for I/O and driver circuit for critical high speed parts of the system The Real Estate of a Wafer MOS Transistor

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 11/6/2007 MOSFETs Lecture 6 BJTs- Lecture 1 Reading Assignment: Chapter 10 More Scalable Device Structures Vertical Scaling is important. For example,

More information

Lecture 4. MOS transistor theory

Lecture 4. MOS transistor theory Lecture 4 MOS transistor theory 1.7 Introduction: A MOS transistor is a majority-carrier device, in which the current in a conducting channel between the source and the drain is modulated by a voltage

More information

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 3, 2010

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 3, 2010 Low Power CMOS Inverter design at different Technologies Vijay Kumar Sharma 1, Surender Soni 2 1 Department of Electronics & Communication, College of Engineering, Teerthanker Mahaveer University, Moradabad

More information

ECSE 6300 IC Fabrication Laboratory Lecture 10 Device Characterization. Die Image

ECSE 6300 IC Fabrication Laboratory Lecture 10 Device Characterization. Die Image ECSE 6300 IC Fabrication Laboratory Lecture 10 Device Characterization Prof. Bldg. CII, Rooms 6229 Rensselaer Polytechnic Institute Troy, NY 12180 Tel. (518)276-2909 e-mails: luj@rpi.edu http://www.ecse.rpi.edu/courses/s18/ecse

More information

Performance Evaluation of MISISFET- TCAD Simulation

Performance Evaluation of MISISFET- TCAD Simulation Performance Evaluation of MISISFET- TCAD Simulation Tarun Chaudhary Gargi Khanna Rajeevan Chandel ABSTRACT A novel device n-misisfet with a dielectric stack instead of the single insulator of n-mosfet

More information

Chapter 4. CMOS Cascode Amplifiers. 4.1 Introduction. 4.2 CMOS Cascode Amplifiers

Chapter 4. CMOS Cascode Amplifiers. 4.1 Introduction. 4.2 CMOS Cascode Amplifiers Chapter 4 CMOS Cascode Amplifiers 4.1 Introduction A single stage CMOS amplifier cannot give desired dc voltage gain, output resistance and transconductance. The voltage gain can be made to attain higher

More information

A new Hetero-material Stepped Gate (HSG) SOI LDMOS for RF Power Amplifier Applications

A new Hetero-material Stepped Gate (HSG) SOI LDMOS for RF Power Amplifier Applications A new Hetero-material Stepped Gate (HSG) SOI LDMOS for RF Power Amplifier Applications Radhakrishnan Sithanandam and M. Jagadesh Kumar, Senior Member, IEEE Department of Electrical Engineering Indian Institute

More information

M. Jagadesh Kumar and G. Venkateshwar Reddy Department of Electrical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi , India

M. Jagadesh Kumar and G. Venkateshwar Reddy Department of Electrical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi , India M. Jagadesh Kumar and G. V. Reddy, "Diminished Short Channel Effects in Nanoscale Double- Gate Silicon-on-Insulator Metal Oxide Field Effect Transistors due to Induced Back-Gate Step Potential," Japanese

More information

Supplementary Figure 1 Schematic illustration of fabrication procedure of MoS2/h- BN/graphene heterostructures. a, c d Supplementary Figure 2

Supplementary Figure 1 Schematic illustration of fabrication procedure of MoS2/h- BN/graphene heterostructures. a, c d Supplementary Figure 2 Supplementary Figure 1 Schematic illustration of fabrication procedure of MoS 2 /hon a 300- BN/graphene heterostructures. a, CVD-grown b, Graphene was patterned into graphene strips by oxygen monolayer

More information

Influence of Fin Shape and Temperature on Conventional and Strained MuGFETs Analog Parameters

Influence of Fin Shape and Temperature on Conventional and Strained MuGFETs Analog Parameters 02 (49)-AF:Modelo-AF 8/20/11 6:25 AM Page 94 Influence of Fin Shape and Temperature on Conventional and Strained MuGFETs Analog Parameters Rudolf Theoderich Bühler 1, Renato Giacomini 1,2 and João Antonio

More information

An Analytical model of the Bulk-DTMOS transistor

An Analytical model of the Bulk-DTMOS transistor Journal of Electron Devices, Vol. 8, 2010, pp. 329-338 JED [ISSN: 1682-3427 ] Journal of Electron Devices www.jeldev.org An Analytical model of the Bulk-DTMOS transistor Vandana Niranjan Indira Gandhi

More information

Analysis And Parameter Extraction of Organic Transistor At PTAA With Different Organic Materials

Analysis And Parameter Extraction of Organic Transistor At PTAA With Different Organic Materials Analysis And Parameter Extraction of Organic Transistor At PTAA With Different Organic Materials Anuradha Yadav, Savita Yadav, Sanjay Singh, Nishant Tripathi Abstract The Organic thin film transistor has

More information

Flexible IGZO TFTs deposited on PET substrates using magnetron radio frequency co-sputtering system

Flexible IGZO TFTs deposited on PET substrates using magnetron radio frequency co-sputtering system The 2012 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM 12) Seoul, Korea, August 26-30, 2012 Flexible IGZO TFTs deposited on PET substrates using magnetron radio frequency

More information

Parameter Optimization Of GAA Nano Wire FET Using Taguchi Method

Parameter Optimization Of GAA Nano Wire FET Using Taguchi Method Parameter Optimization Of GAA Nano Wire FET Using Taguchi Method S.P. Venu Madhava Rao E.V.L.N Rangacharyulu K.Lal Kishore Professor, SNIST Professor, PSMCET Registrar, JNTUH Abstract As the process technology

More information

Alternative Channel Materials for MOSFET Scaling Below 10nm

Alternative Channel Materials for MOSFET Scaling Below 10nm Alternative Channel Materials for MOSFET Scaling Below 10nm Doug Barlage Electrical Requirements of Channel Mark Johnson Challenges With Material Synthesis Introduction Outline Challenges with scaling

More information

Analog Performance of Scaled Bulk and SOI MOSFETs

Analog Performance of Scaled Bulk and SOI MOSFETs Analog Performance of Scaled and SOI MOSFETs Sushant S. Suryagandh, Mayank Garg, M. Gupta, Jason C.S. Woo Department. of Electrical Engineering University of California, Los Angeles CA 99, USA. woo@icsl.ucla.edu

More information

Lecture-45. MOS Field-Effect-Transistors Threshold voltage

Lecture-45. MOS Field-Effect-Transistors Threshold voltage Lecture-45 MOS Field-Effect-Transistors 7.4. Threshold voltage In this section we summarize the calculation of the threshold voltage and discuss the dependence of the threshold voltage on the bias applied

More information

A Novel Technique for Suppression of Corner Effect in Square Gate All Around Mosfet

A Novel Technique for Suppression of Corner Effect in Square Gate All Around Mosfet Electrical and Electronic Engineering 01, (5): 336-341 DOI: 10.593/j.eee.01005.14 A Novel Technique for Suppression of Corner Effect in Square Gate All Around Mosfet Santanu Sharma *, Kabita Chaudhury

More information

Session 10: Solid State Physics MOSFET

Session 10: Solid State Physics MOSFET Session 10: Solid State Physics MOSFET 1 Outline A B C D E F G H I J 2 MOSCap MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor: Al (metal) SiO2 (oxide) High k ~0.1 ~5 A SiO2 A n+ n+ p-type Si (bulk)

More information

Gigahertz Ambipolar Frequency Multiplier Based on Cvd Graphene

Gigahertz Ambipolar Frequency Multiplier Based on Cvd Graphene Gigahertz Ambipolar Frequency Multiplier Based on Cvd Graphene The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published

More information

Fin-Shaped Field Effect Transistor (FinFET) Min Ku Kim 03/07/2018

Fin-Shaped Field Effect Transistor (FinFET) Min Ku Kim 03/07/2018 Fin-Shaped Field Effect Transistor (FinFET) Min Ku Kim 03/07/2018 ECE 658 Sp 2018 Semiconductor Materials and Device Characterizations OUTLINE Background FinFET Future Roadmap Keeping up w/ Moore s Law

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits MOSFETs Sections of Chapter 3 &4 A. Kruger MOSFETs, Page-1 Basic Structure of MOS Capacitor Sect. 3.1 Width = 1 10-6 m or less Thickness = 50 10-9 m or less ` MOS Metal-Oxide-Semiconductor

More information

III-V CMOS: Quo Vadis?

III-V CMOS: Quo Vadis? III-V CMOS: Quo Vadis? J. A. del Alamo, X. Cai, W. Lu, A. Vardi, and X. Zhao Microsystems Technology Laboratories Massachusetts Institute of Technology Compound Semiconductor Week 2018 Cambridge, MA, May

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fundamentals 4.4. Field Effect Transistor (MOSFET) ENS 463 Lecture Course by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 4N101b 1 Field-effect transistor (FET)

More information

New Pixel Circuits for Driving Organic Light Emitting Diodes Using Low-Temperature Polycrystalline Silicon Thin Film Transistors

New Pixel Circuits for Driving Organic Light Emitting Diodes Using Low-Temperature Polycrystalline Silicon Thin Film Transistors Chapter 4 New Pixel Circuits for Driving Organic Light Emitting Diodes Using Low-Temperature Polycrystalline Silicon Thin Film Transistors ---------------------------------------------------------------------------------------------------------------

More information

Introduction to MOSFET MOSFET (Metal Oxide Semiconductor Field Effect Transistor)

Introduction to MOSFET MOSFET (Metal Oxide Semiconductor Field Effect Transistor) Microelectronic Circuits Introduction to MOSFET MOSFET (Metal Oxide Semiconductor Field Effect Transistor) Slide 1 MOSFET Construction MOSFET (Metal Oxide Semiconductor Field Effect Transistor) Slide 2

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 11/01/2007 MOSFETs Lecture 5 Announcements HW7 set is due now HW8 is assigned, but will not be collected/graded. MOSFET Technology Scaling Technology

More information

4.1 Device Structure and Physical Operation

4.1 Device Structure and Physical Operation 10/12/2004 4_1 Device Structure and Physical Operation blank.doc 1/2 4.1 Device Structure and Physical Operation Reading Assignment: pp. 235-248 Chapter 4 covers Field Effect Transistors ( ) Specifically,

More information

Design of Gate-All-Around Tunnel FET for RF Performance

Design of Gate-All-Around Tunnel FET for RF Performance Drain Current (µa/µm) International Journal of Computer Applications (97 8887) International Conference on Innovations In Intelligent Instrumentation, Optimization And Signal Processing ICIIIOSP-213 Design

More information

Digital Electronics. By: FARHAD FARADJI, Ph.D. Assistant Professor, Electrical and Computer Engineering, K. N. Toosi University of Technology

Digital Electronics. By: FARHAD FARADJI, Ph.D. Assistant Professor, Electrical and Computer Engineering, K. N. Toosi University of Technology K. N. Toosi University of Technology Chapter 7. Field-Effect Transistors By: FARHAD FARADJI, Ph.D. Assistant Professor, Electrical and Computer Engineering, K. N. Toosi University of Technology http://wp.kntu.ac.ir/faradji/digitalelectronics.htm

More information

Transistor Characterization

Transistor Characterization 1 Transistor Characterization Figure 1.1: ADS Schematic of Transistor Characterization Circuit 1.1 Question 1 The bias voltage, width, and length of a single NMOS transistor (pictured in Figure 1.1) were

More information

Record I on (0.50 ma/μm at V DD = 0.5 V and I off = 100 na/μm) 25 nm-gate-length ZrO 2 /InAs/InAlAs MOSFETs

Record I on (0.50 ma/μm at V DD = 0.5 V and I off = 100 na/μm) 25 nm-gate-length ZrO 2 /InAs/InAlAs MOSFETs Record I on (0.50 ma/μm at V DD = 0.5 V and I off = 100 na/μm) 25 nm-gate-length ZrO 2 /InAs/InAlAs MOSFETs Sanghoon Lee 1*, V. Chobpattana 2,C.-Y. Huang 1, B. J. Thibeault 1, W. Mitchell 1, S. Stemmer

More information

Effect of Channel Doping Concentration on the Impact ionization of n- Channel Fully Depleted SOI MOSFET

Effect of Channel Doping Concentration on the Impact ionization of n- Channel Fully Depleted SOI MOSFET International Journal of Engineering Works Kambohwell Publisher Enterprises Vol. 2, Issue 2, PP. 18-22, Feb. 2015 www.kwpublisher.com Effect of Channel Doping Concentration on the Impact ionization of

More information

EE 330 Laboratory 7 MOSFET Device Experimental Characterization and Basic Applications Spring 2017

EE 330 Laboratory 7 MOSFET Device Experimental Characterization and Basic Applications Spring 2017 EE 330 Laboratory 7 MOSFET Device Experimental Characterization and Basic Applications Spring 2017 Objective: The objective of this laboratory experiment is to become more familiar with the operation of

More information

Low Power Realization of Subthreshold Digital Logic Circuits using Body Bias Technique

Low Power Realization of Subthreshold Digital Logic Circuits using Body Bias Technique Indian Journal of Science and Technology, Vol 9(5), DOI: 1017485/ijst/2016/v9i5/87178, Februaru 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Low Power Realization of Subthreshold Digital Logic

More information

Digital Electronics. Assign 1 and 0 to a range of voltage (or current), with a separation that minimizes a transition region. Positive Logic.

Digital Electronics. Assign 1 and 0 to a range of voltage (or current), with a separation that minimizes a transition region. Positive Logic. Digital Electronics Assign 1 and 0 to a range of voltage (or current), with a separation that minimizes a transition region Positive Logic Logic 1 Negative Logic Logic 0 Voltage Transition Region Transition

More information

High mobility 4H-SiC MOSFET using a combination of counter-doping and interface trap passivation

High mobility 4H-SiC MOSFET using a combination of counter-doping and interface trap passivation 1 SiC MOS Workshop August 14 th 2014, University of Maryland High mobility 4H-SiC MOSFET using a combination of counter-doping and interface trap passivation Aaron Modic 1, A. Ahyi 1, G. Liu 2, Y. Xu 2,P.

More information

Field Effect Transistors (FET s) University of Connecticut 136

Field Effect Transistors (FET s) University of Connecticut 136 Field Effect Transistors (FET s) University of Connecticut 136 Field Effect Transistors (FET s) FET s are classified three ways: by conduction type n-channel - conduction by electrons p-channel - conduction

More information

Today's Goals. Finish MOS transistor Finish NMOS logic Start CMOS logic

Today's Goals. Finish MOS transistor Finish NMOS logic Start CMOS logic Bi Today's Goals Finish MOS transistor Finish Start Bi MOS Capacitor Equations Threshold voltage Gate capacitance V T = ms Q i C i Q II C i Q d C i 2 F n-channel - - p-channel ± ± + + - - Contributions

More information

Lecture 33 - The Short Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 30, 2007

Lecture 33 - The Short Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 30, 2007 6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 33-1 Lecture 33 - The Short Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 30, 2007 Contents: 1. MOSFET scaling

More information

DIGITAL VLSI LAB ASSIGNMENT 1

DIGITAL VLSI LAB ASSIGNMENT 1 DIGITAL VLSI LAB ASSIGNMENT 1 Problem 1: NMOS and PMOS plots using Cadence. In this exercise, you are required to generate both NMOS and PMOS I-V device characteristics (I/P and O/P) using Cadence (Use

More information

Atomic-layer deposition of ultrathin gate dielectrics and Si new functional devices

Atomic-layer deposition of ultrathin gate dielectrics and Si new functional devices Atomic-layer deposition of ultrathin gate dielectrics and Si new functional devices Anri Nakajima Research Center for Nanodevices and Systems, Hiroshima University 1-4-2 Kagamiyama, Higashi-Hiroshima,

More information

UNIT-VI FIELD EFFECT TRANSISTOR. 1. Explain about the Field Effect Transistor and also mention types of FET s.

UNIT-VI FIELD EFFECT TRANSISTOR. 1. Explain about the Field Effect Transistor and also mention types of FET s. UNIT-I FIELD EFFECT TRANSISTOR 1. Explain about the Field Effect Transistor and also mention types of FET s. The Field Effect Transistor, or simply FET however, uses the voltage that is applied to their

More information

Fabrication and Characterization of Pseudo-MOSFETs

Fabrication and Characterization of Pseudo-MOSFETs Fabrication and Characterization of Pseudo-MOSFETs Joachim Knoch February 8, 2010 Contents 1 Introduction 2 2 The pseudo-mosfet 3 3 Device Fabrication 5 4 Electrical Measurement and Characterization 8

More information

UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences.

UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences. UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences Discussion #9 EE 05 Spring 2008 Prof. u MOSFETs The standard MOSFET structure is shown

More information

Body-Biased Complementary Logic Implemented Using AlN Piezoelectric MEMS Switches

Body-Biased Complementary Logic Implemented Using AlN Piezoelectric MEMS Switches University of Pennsylvania From the SelectedWorks of Nipun Sinha 29 Body-Biased Complementary Logic Implemented Using AlN Piezoelectric MEMS Switches Nipun Sinha, University of Pennsylvania Timothy S.

More information

University of Pittsburgh

University of Pittsburgh University of Pittsburgh Experiment #4 Lab Report MOSFET Amplifiers and Current Mirrors Submission Date: 07/03/2018 Instructors: Dr. Ahmed Dallal Shangqian Gao Submitted By: Nick Haver & Alex Williams

More information

High Performance Visible-Blind Ultraviolet Photodetector Based on

High Performance Visible-Blind Ultraviolet Photodetector Based on Supplementary Information High Performance Visible-Blind Ultraviolet Photodetector Based on IGZO TFT Coupled with p-n Heterojunction Jingjing Yu a,b, Kashif Javaid b,c, Lingyan Liang b,*, Weihua Wu a,b,

More information

Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs)

Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) Device Structure N-Channel MOSFET Providing electrons Pulling electrons (makes current flow) + + + Apply positive voltage to gate: Drives away

More information

Design & Performance Analysis of DG-MOSFET for Reduction of Short Channel Effect over Bulk MOSFET at 20nm

Design & Performance Analysis of DG-MOSFET for Reduction of Short Channel Effect over Bulk MOSFET at 20nm RESEARCH ARTICLE OPEN ACCESS Design & Performance Analysis of DG- for Reduction of Short Channel Effect over Bulk at 20nm Ankita Wagadre*, Shashank Mane** *(Research scholar, Department of Electronics

More information

Wu Lu Department of Electrical and Computer Engineering and Microelectronics Laboratory, University of Illinois, Urbana, Illinois 61801

Wu Lu Department of Electrical and Computer Engineering and Microelectronics Laboratory, University of Illinois, Urbana, Illinois 61801 Comparative study of self-aligned and nonself-aligned SiGe p-metal oxide semiconductor modulation-doped field effect transistors with nanometer gate lengths Wu Lu Department of Electrical and Computer

More information

Prof. Paolo Colantonio a.a

Prof. Paolo Colantonio a.a Prof. Paolo Colantonio a.a. 20 2 Field effect transistors (FETs) are probably the simplest form of transistor, widely used in both analogue and digital applications They are characterised by a very high

More information

Lecture #29. Moore s Law

Lecture #29. Moore s Law Lecture #29 ANNOUNCEMENTS HW#15 will be for extra credit Quiz #6 (Thursday 5/8) will include MOSFET C-V No late Projects will be accepted after Thursday 5/8 The last Coffee Hour will be held this Thursday

More information

DEVICE AND TECHNOLOGY SIMULATION OF IGBT ON SOI STRUCTURE

DEVICE AND TECHNOLOGY SIMULATION OF IGBT ON SOI STRUCTURE Materials Physics and Mechanics 20 (2014) 111-117 Received: April 29, 2014 DEVICE AND TECHNOLOGY SIMULATION OF IGBT ON SOI STRUCTURE I. Lovshenko, V. Stempitsky *, Tran Tuan Trung Belarusian State University

More information

LECTURE 09 LARGE SIGNAL MOSFET MODEL

LECTURE 09 LARGE SIGNAL MOSFET MODEL Lecture 9 Large Signal MOSFET Model (5/14/18) Page 9-1 LECTURE 9 LARGE SIGNAL MOSFET MODEL LECTURE ORGANIZATION Outline Introduction to modeling Operation of the MOS transistor Simple large signal model

More information

Abhinav Kranti, Rashmi, S Haldar 1 & R S Gupta

Abhinav Kranti, Rashmi, S Haldar 1 & R S Gupta Indian Journal of Pure & Applied Physics Vol. 4, March 004, pp 11-0 Modelling of threshold voltage adjustment in fully depleted double gate (DG) SOI MOSFETs in volume inversion to quantify requirements

More information

FIELD EFFECT TRANSISTOR (FET) 1. JUNCTION FIELD EFFECT TRANSISTOR (JFET)

FIELD EFFECT TRANSISTOR (FET) 1. JUNCTION FIELD EFFECT TRANSISTOR (JFET) FIELD EFFECT TRANSISTOR (FET) The field-effect transistor (FET) is a three-terminal device used for a variety of applications that match, to a large extent, those of the BJT transistor. Although there

More information

6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers

6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers 6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers Michael Perrott Massachusetts Institute of Technology Copyright 2003 by Michael H. Perrott Broadband Communication

More information

A NON LINEAR FIT BASED METHOD TO SEPARATE EXTRACTION OF SERIES RESISTANCE AND MOBILITY ATTENUATION PARAMETER IN ULTRA-THIN OXIDE MOSFET

A NON LINEAR FIT BASED METHOD TO SEPARATE EXTRACTION OF SERIES RESISTANCE AND MOBILITY ATTENUATION PARAMETER IN ULTRA-THIN OXIDE MOSFET Journal of Electron Devices, Vol. 21, 2015, pp. 1806-1810 JED [ISSN: 1682-3427 ] A NON LINEAR FIT BASED METHOD TO SEPARATE EXTRACTION OF SERIES RESISTANCE AND MOBILITY ATTENUATION PARAMETER IN ULTRA-THIN

More information

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha ECE520 VLSI Design Lecture 2: Basic MOS Physics Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Wednesday 2:00-3:00PM or by appointment E-mail: pzarkesh@unm.edu Slide: 1 Review of Last Lecture Semiconductor

More information

MEASUREMENT AND INSTRUMENTATION STUDY NOTES UNIT-I

MEASUREMENT AND INSTRUMENTATION STUDY NOTES UNIT-I MEASUREMENT AND INSTRUMENTATION STUDY NOTES The MOSFET The MOSFET Metal Oxide FET UNIT-I As well as the Junction Field Effect Transistor (JFET), there is another type of Field Effect Transistor available

More information

MOS Field Effect Transistors

MOS Field Effect Transistors MOS Field Effect Transistors A gate contact gate interconnect n polysilicon gate source contacts W active area (thin oxide area) polysilicon gate contact metal interconnect drain contacts A bulk contact

More information