An ultra-low energy analog and RF circuit technology for emerging applications

Size: px
Start display at page:

Download "An ultra-low energy analog and RF circuit technology for emerging applications"

Transcription

1 超低エネルギーアナログ RF 回路技術と新規分野への展開 An ultra-low energy analog and RF circuit technology for emerging applications Akira Dept. of Physical Electronics Graduate School of Science and Engineering 2009/11/30

2 Lab. members 1 Professor: Akira Assoc. Prof.: Kenichi Okada (RF) Assist. Prof.: Masaya Miyahara (ADC/DAC) 2 technical staff, 3 secretaries Founded in doctor students (3 from corp.) 20 master students 6 undergraduate students some researchers from corp. 50 people 20 Japanese students and 20 foreign students

3 Focus of Laboratory 2 Ultra-high frequency Core circuit tech. RF-CMOS For mm-wave Ultra-fast ADC/DAC SDR Re-config. RF Applied LSIs and systems Transceiver for 60GHz several Gbps 64QAM 1Gbps Baseband Broadband CMOS-radios Particle detector for nuclear physics Ultra-low power Ultra-low Pd ADC/DAC Sensor capsule for health-care

4 SoCs for mm-wave systems 3 We now developing SoCs for mm-wave systems 1.Long range: 4km Fixed point :38GHz, Gbps with JRC and NEC 2.Short range: a few meter :60GHz, 3-10 Gbps with Sony Provided by Sony

5 Long range mm-wave: Fixed point 38GHz,1Gbps 4 System Campus mm wave network Equipment with plane Antenna Networks durability against rain

6 Developing 60GHz mm-wave circuits 5 We now developing 60GHz CMOS Transceiver.

7 6 An ultra-low energy analog and RF circuit technology for emerging applications

8 Flash ADC architecture Expecting highest speed Comparator determines the ADC performance 7 Low offset mismatch and noise are preferable Flash ADC Comparator Array 6b: 63 V q V 2 FS N V q =16mV, Mismatch <3mV Offset mismatch

9 Degradation of ENOB 8 Degradation of ENOB in flash ADC is basically determined by offset mismatch and thermal noise of comparators. For example; 6bit ADC, ENOB=5.7bit V q =16mV, V off <3mV 5.7bit ENOB 2 Voff V 1 2 log q 2 Vn Vq 3mV V V off n : : Distribution Distribution of offset of noise

10 FoM of Flash ADC 9 FoM of flash ADC is determined by energy consumption of unit comparator and the degradation of effective bit. Reduction of consumed energy and increase of ENOB are very important FoM P E N d c s ENOB E ENOB N ENOB c 2 f s 2 f s 2 f 2 E 2 c CV DD E c : Energy/Comparator E c is basically proportional to the capacitance

11 Tradeoff: mismatch and energy consumption 10 There is a serious tradeoff between mismatch of transistor and gate area. Larger transistor is required to reduce mismatch voltage and results in increase of gate area and consumed power. Offset mismatch (mv) mV 0 Mismatch compensation E c =50fJ Transistor size (um 2 ) オフセット消費電力 E c (fj) 1 V o ffset ( ) LW E C LW c E c Example 6bit ADC: V off <3mV E C <50fJ0.1um 2 V off =20mV Needs mismatch compensation 20mV 3mV c V 1 2 offset

12 Mismatch compensation of dynamic comparator 11 The mismatch can be compensated by capacitance and current. FN INP V i 2 V DD CLK FP INN I V i D I D 2 C CLK L Equivalent circuit of the first stage. V i g m V i I D V L C L V DD C L CLK V DD V L SN SP FP or FN t d CLK dt dv d i t t Delay time dt di d d d D di dv V V eff D i i t d VDDC 2I t t d d VDDC 2I D L g I m D C CL L D L t I I D d D V eff I g D m g I m D V gs di V D eff V V eff T I V V D eff eff V DD /2 t d t td time d V V eff i V i V eff C CL L I I D D

13 Digital calibration method 12 Resistor ladder type Capacitor array type Binary weighted capacitor array 2009/11/30 Y. Asada, Tokyo Tokyo TechTech.

14 Effect of analog mismatch compensation 13 We can reduce the mismatch voltage form 14mV to 1.7mV at sigma. Measured result V offset Voffset V offset M. Miyahara, Y. Asada, D. Paik, and A., "A Low- Noise Self-Calibrating Dynamic Comparator for High-Speed ADCs," A-SSCC, Nov

15 Match with noise simulation 14 The deduced equation has a good match with simulation. P (out=high) [%] Noise in comparator V 2 in ktv C δvin(σ) [mv] L V eff DD We deduced this noise equation Estimation(α=2) Estimation(α=1) Simulation ΔVin [mv] CL [ff]

16 Comparison of comparators 15 Double clock Single clock NMOS+PMOS Double gm NMOS Single gm FN INP CLK INN FP CLK SN SP CLK CLK Conventional Our proposed M. van Elzakker, Ed van Tujil, P. Geraedts, D. Schinkel, E. Klumperink, B.Nauta, A 1.9uW 4.4fJ/Conversion-step 10b 1MS/s Charge- Redistribution ADC, IEEE ISSCC 2008, Dig. of Tech. Papers, pp , Feb M. Miyahara, Y. Asada, D. Paik, and A., "A Low-Noise Self-Calibrating Dynamic Comparator for High-Speed ADCs," A-SSCC, Nov

17 Noise reduction of comparator 16 Proposed double-tail latch comparator can reduce noise down to 1/3. V DD = 1.0 V, Fc = 4 GHz, Transient-Noise simulations. (Offset calibration is not used.) P (out=high) [%] Proposed V n ( ) = 0.66 mv cm = 0.6 V Conventional V n ( ) = 2.1 mv Vn( ) [mv] M. Miyahara, Y. Asada, D. Paik, and A., "A Low-Noise Self-Calibrating Dynamic Comparator for High-Speed ADCs," A- SSCC, Nov / V in V offset [mv]

18 6bit, 7mW, 250fJ, 700MS/s Sub-ranging ADC 17 Compensation of offset variation with good efficiency A1. Double-tail latched comparator A2. Digital calibration by capacitance adjusting Reference voltage generation of sub-range B1. Capacitive DAC (C-DAC) B2. Gate-weighted interpolation Proposed circuits consume no static power. Y. Asada, K. Yoshihara,T. Urano, M. Miyahara and A., A 6bit, 7mW, 250fJ, 700MS/s Subranging ADC A-SSCC, pp , Nov GW interpolation DTL comparator PMOS varactor + CAL register Encode & Error Correction

19 Issue of reference voltage generation 18 IN T/H Coarse scale Fine scale Upper bit 7 7 Lower bit 7 Previous fine scale 7 15 Resistor ladder + SW MUX: Static power consumption in resistor ladder Trade-off between settling time and power consumption Many SW for fine reference t LATCH Coarse conversion t DAC t CLK Fine conversion Power consumption is inevitable with high speed operation.

20 C-DAC 19 CAD can realize fast operation with low Pd 19 D<n>=1V REFP D<n>=0V REFN Advantage : Operating as S/H circuit No static power consumption ( 360W@1GHz ) Smaller C u realize faster settling time (t DAC = 3.4 r on C U < r ON = 1k, C U = 15fF)

21 Interpolation comparator 20 Interpolation can match upper and lower conversion ranges self-consistently. FADC composed of interpolation comparator Threshold voltage of i th comparator is the cross-point of V Pi, V Ni. V Pi, V Ni : interpolated signal of CDAC outputs. V Pi ( 8 iv ) iv ( 8 ), V iv iv 8 8 INPa INPb INNa INNb Ni V OUT V INPa i i V Ni V INNb V IN V Pi V INNa V INPb OUT V IN

22 Comparator Circuits 21 Comparator with offset CAL realizes small area and high accuracy. Offset CAL V dd CLK V outp W Pa W Pb W Nb W Na V outn V INP_a V INP_b V INN_b V INN_a Gate weighted interpolation

23 22 Chip photo & Layout 22 6 bit ADC has been realized in a 90 nm 10M1P CMOS technology with a chip area of 0.13mm 2

24 Performance Summary 23 World lowest FoM ADC!! Proposed circuits has realized the best power efficiency. [1] [2] [3] [4] [6] This Work Resolution(bit) fs(gs/s) SNDR(DC/Nyq.) 35/32 34/33 31/30 34/28 35/33 35/34 Pd (mw) Active area(mm VDD(V) / FoM(pJ) CMOS Tech.(nm Architecture Flash Flash Pipeline 2b-SAR Subrange Subrange [1] C-Y. Chen, VLSI Circuits [2] B-W. Chen, A-SSCC [3] F. C. Hsieh, A-SSCC [4] Z. Cao, ISSCC [6] Y. C. Lien, A-SSCC 2008.

25 Circuit technology for emerging applications 24 Micro medical systems Ultra-low power Capacitance to Digital converter Can be applied to micro-sensor networks Tire pressure sensor Nuclear particle detector Pixels has an A/D converter in each Can be applied to medical imaging devices Full digital DC/DC converter Low power and high speed and resolution ADC Every power supply systems On-chip power supply

26 Capsule to measure bladder pressure 25 Measure the bladder pressure and send the data in short range (15 cm) Due to battery life 4 days with total current of 100uA All analog and RF circuits consumes only 30uA

27 SAR Capacitance to Digital Converter 26 SAR ADC + Capacitive pressure sensor Low power Can compensate the offset capacitance Small area Insensitive to operating voltage Kota Tanaka, Yasuhide Kuramochi, Takashi Kurashina, Kenichi Okada, and Akira V cm V x A 0.026mm2 Capacitance-to-Digital Converter for Biotelemetry Applications Using a Charge Redistribution Technique ASSCC 2007 V y C s C R1 C C C C C RN C x V DD kv DD

28 Ultra-low power CDC 27 Improved Capacitance to Digital Converter b SAR like architecture 2. Self-clocking 3. Single to differential 30 times/sec Tuan Minh Vo,Yasuhide Kuramochi, Masaya Miyahara,Takashi Kurashina, and Akira A 10-bit, 290 fj/conv. Steps, 0.13mm22, Zero-Static Power, Self-Timed Capacitance to Digital Converter. SSDM 2009, OCT

29 Accuracy 28 Same accuracy as an impedance meter E E E-11 CDC からの出力コード CDC impedance analizer 9.80E E E E-12 測定器による計測結果容量値 [F] E E 入力圧力 [ kpa] 6.80E-12

30 New particle detector for nuclear physics 29 Developing new particle detector for nuclear physics QPIX A., Vu Minh Khoa, M. Miyahara, T. Kurashina, A. Sugiyama, K. Miuchi, and S. Tanaka, A new particle detector LSI Qpix: integrating high speed ADC for each pixel, The 1st international conference on Technology and Instrumentation in Particle Physics, March m 0.18um CMOS 100 m Further optimization m m

31 Basic functions of QPIX 30 A world first particle detector having an ADC in each pixels. Readout Pixels time Cathode E field TOT QPIX can measure the total charge Q, as well as TOF and TOT. Ionized electron Q track TOF MUX 6b10b in next step

32 Experimental setup and measured result 31 We could detect and measure the nuclear particles 16 pixels Trajectory of particle Measuring board

33 Low voltage LC VCO 32 Developed 0.2V LC VCO Class C with start-up circuit K. Okada, Y. Nomiyama, R. Murakami, and A., A 0.114mW Dual-Conduction Class-C CMOS VCO with 0.2V Power Supply, Dig. Symp. VLSI Circuits, pp , June, 2009.

34 Performance of 0.2V VCO 33 Low power of 110uW at 4.5GHz generation 0.2V FoM=187dBc/Hz

35 Development of full digital power supply 34 DC/DC converter uses analog control method. We have started to develop full digital power supply.

36 ADC and PWM for full digital power supply 35 We have started to develop ADC and PWM for the first step ADC: 12bit, 80MSps, 5mW has low power mode and high speed mode Out In 3) PWM 2) Digital Filter 1) ADC 09 年に開発開始 10 年に開発開始 09 年に開発開始

37 Micro-power systems: PVT issues in digital LSIs 36 Fluctuation of device parameter, stabilization of power supply voltage, and reduction of local heating become serious issues in digital LSIs. Courtesy Dr. Vivek De, Intel

38 Adaptive Power supply voltage 37 Sakiyama et al., Symp. On VLSI Circuits 97 Adaptive supply voltage control circuits 0.35umCMOS 2.2M Tr 20MIPS 12mW (1.2V, internal) Ieak current 500uA: active 1uA: standby

39 High efficiency and low noise embedded DC/DC 38 High efficiency of 94% and low noise of 15mVpp. S.Sakiyama et al., ISSCC99 High Noise Chip Inductor Conventional Improved Low Noise Choke Coil Low Noise Chip Inductor 300mV 15mV

Proposing. An Interpolated Pipeline ADC

Proposing. An Interpolated Pipeline ADC Proposing An Interpolated Pipeline ADC Akira Matsuzawa Tokyo Institute of Technology, Japan Matsuzawa & Okada Lab. Background 38GHz long range mm-wave system Role of long range mm-wave Current Optical

More information

A 6-bit Subranging ADC using Single CDAC Interpolation

A 6-bit Subranging ADC using Single CDAC Interpolation A 6-bit Subranging ADC using Single CDAC Interpolation Hyunui Lee, Masaya Miyahara, and Akira Matsuzawa Tokyo Institute of Technology, Japan Outline Background Interpolation techniques 6-bit, 500 MS/s

More information

Scalable and Synthesizable. Analog IPs

Scalable and Synthesizable. Analog IPs Scalable and Synthesizable Analog IPs Akira Matsuzawa Tokyo Institute of Technology Background and Motivation 1 Issues It becomes more difficult to obtain good analog IPs Insufficient design resources

More information

A Low-Noise Self-Calibrating Dynamic Comparator for High-Speed ADCs

A Low-Noise Self-Calibrating Dynamic Comparator for High-Speed ADCs 1 A Low-Noise Self-Calibrating Dynamic Comparator for High-Speed ADCs Masaya Miyahara, Yusuke Asada, Daehwa Paik and Akira Matsuzawa Tokyo Institute of Technology, Japan Outline 2 Motivation The Calibration

More information

A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC Using Dynamic Amplifiers

A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC Using Dynamic Amplifiers A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC Using Dynamic Amplifiers James Lin, Daehwa Paik, Seungjong Lee, Masaya Miyahara, and Akira Matsuzawa Tokyo Institute of Technology, Japan Matsuzawa & Okada

More information

A 12-bit Interpolated Pipeline ADC using Body Voltage Controlled Amplifier

A 12-bit Interpolated Pipeline ADC using Body Voltage Controlled Amplifier A 12-bit Interpolated Pipeline ADC using Body Voltage Controlled Amplifier Hyunui Lee, Masaya Miyahara, and Akira Matsuzawa Tokyo Institute of Technology, Japan Outline Background Body voltage controlled

More information

A 15.5 db, Wide Signal Swing, Dynamic Amplifier Using a Common- Mode Voltage Detection Technique

A 15.5 db, Wide Signal Swing, Dynamic Amplifier Using a Common- Mode Voltage Detection Technique A 15.5 db, Wide Signal Swing, Dynamic Amplifier Using a Common- Mode Voltage Detection Technique James Lin, Masaya Miyahara and Akira Matsuzawa Tokyo Institute of Technology, Japan Matsuzawa & Okada Laḃ

More information

A Low-Offset Latched Comparator Using Zero-Static Power Dynamic Offset Cancellation Technique

A Low-Offset Latched Comparator Using Zero-Static Power Dynamic Offset Cancellation Technique 1 A Low-Offset Latched Comparator Using Zero-Static Power Dynamic Offset Cancellation Technique Masaya Miyahara and Akira Matsuzawa Tokyo Institute of Technology, Japan 2 Outline Motivation Design Concept

More information

Qpix v.1: A High Speed 400-pixels Readout LSI with 10-bit 10MSps Pixel ADCs

Qpix v.1: A High Speed 400-pixels Readout LSI with 10-bit 10MSps Pixel ADCs Qpix v.1: A High Speed 400-pixels Readout LSI with 10-bit 10MSps Pixel ADCs Fei Li, Vu Minh Khoa, Masaya Miyahara and Akira Tokyo Institute of Technology, Japan on behalf of the QPIX Collaboration PIXEL2010

More information

A 35 fj 10b 160 MS/s Pipelined- SAR ADC with Decoupled Flip- Around MDAC and Self- Embedded Offset Cancellation

A 35 fj 10b 160 MS/s Pipelined- SAR ADC with Decoupled Flip- Around MDAC and Self- Embedded Offset Cancellation Y. Zu, C.- H. Chan, S.- W. Sin, S.- P. U, R.P. Martins, F. Maloberti: "A 35 fj 10b 160 MS/s Pipelined-SAR ADC with Decoupled Flip-Around MDAC and Self- Embedded Offset Cancellation"; IEEE Asian Solid-

More information

A 1.2V 8 BIT SAR ANALOG TO DIGITAL CONVERTER IN 90NM CMOS

A 1.2V 8 BIT SAR ANALOG TO DIGITAL CONVERTER IN 90NM CMOS A 1.2V 8 BIT SAR ANALOG TO DIGITAL CONVERTER IN 90NM CMOS Shruti Gatade 1, M. Nagabhushan 2, Manjunath.R 3 1,3 Student, Department of ECE, M S Ramaiah Institute of Technology, Bangalore (India) 2 Assistant

More information

Design Challenges of Analog-to-Digital Converters in Nanoscale CMOS

Design Challenges of Analog-to-Digital Converters in Nanoscale CMOS IEICE TRANS. ELECTRON., VOL.E90 C, NO.4 APRIL 2007 779 INVITED PAPER Special Section on Low-Power, High-Speed LSIs and Related Technologies Design Challenges of Analog-to-Digital Converters in Nanoscale

More information

A 9.35-ENOB, 14.8 fj/conv.-step Fully- Passive Noise-Shaping SAR ADC

A 9.35-ENOB, 14.8 fj/conv.-step Fully- Passive Noise-Shaping SAR ADC A 9.35-ENOB, 14.8 fj/conv.-step Fully- Passive Noise-Shaping SAR ADC Zhijie Chen, Masaya Miyahara, Akira Matsuzawa Tokyo Institute of Technology Symposia on VLSI Technology and Circuits Outline Background

More information

Figure 1 Typical block diagram of a high speed voltage comparator.

Figure 1 Typical block diagram of a high speed voltage comparator. IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 6, Issue 6, Ver. I (Nov. - Dec. 2016), PP 58-63 e-issn: 2319 4200, p-issn No. : 2319 4197 www.iosrjournals.org Design of Low Power Efficient

More information

A 12-bit 100kS/s SAR ADC for Biomedical Applications. Sung-Chan Rho 1 and Shin-Il Lim 2. Seoul, Korea. Abstract

A 12-bit 100kS/s SAR ADC for Biomedical Applications. Sung-Chan Rho 1 and Shin-Il Lim 2. Seoul, Korea. Abstract , pp.17-22 http://dx.doi.org/10.14257/ijunesst.2016.9.8.02 A 12-bit 100kS/s SAR ADC for Biomedical Applications Sung-Chan Rho 1 and Shin-Il Lim 2 1 Department of Electronics and Computer Engineering, Seokyeong

More information

A 2-bit/step SAR ADC structure with one radix-4 DAC

A 2-bit/step SAR ADC structure with one radix-4 DAC A 2-bit/step SAR ADC structure with one radix-4 DAC M. H. M. Larijani and M. B. Ghaznavi-Ghoushchi a) School of Engineering, Shahed University, Tehran, Iran a) ghaznavi@shahed.ac.ir Abstract: In this letter,

More information

Asynchronous SAR ADC: Past, Present and Beyond. Mike Shuo-Wei Chen University of Southern California MWSCAS 2014

Asynchronous SAR ADC: Past, Present and Beyond. Mike Shuo-Wei Chen University of Southern California MWSCAS 2014 Asynchronous SAR ADC: Past, Present and Beyond Mike Shuo-Wei Chen University of Southern California MWSCAS 2014 1 Roles of ADCs Responsibility of ADC is increasing more BW, more dynamic range Potentially

More information

A 42 fj 8-bit 1.0-GS/s folding and interpolating ADC with 1 GHz signal bandwidth

A 42 fj 8-bit 1.0-GS/s folding and interpolating ADC with 1 GHz signal bandwidth LETTER IEICE Electronics Express, Vol.11, No.2, 1 9 A 42 fj 8-bit 1.0-GS/s folding and interpolating ADC with 1 GHz signal bandwidth Mingshuo Wang a), Fan Ye, Wei Li, and Junyan Ren b) State Key Laboratory

More information

EFFICIENT LOW POWER DYNAMIC COMPARATOR FOR HIGH SPEED ADC s

EFFICIENT LOW POWER DYNAMIC COMPARATOR FOR HIGH SPEED ADC s EFFICIENT LOW POWER DYNAMIC COMPARATOR FOR HIGH SPEED ADC s B.Padmavathi, ME (VLSI Design), Anand Institute of Higher Technology, Chennai, India krishypadma@gmail.com Abstract In electronics, a comparator

More information

Design of Low Power High Speed Fully Dynamic CMOS Latched Comparator

Design of Low Power High Speed Fully Dynamic CMOS Latched Comparator International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 10, Issue 4 (April 2014), PP.01-06 Design of Low Power High Speed Fully Dynamic

More information

RECENTLY, low-voltage and low-power circuit design

RECENTLY, low-voltage and low-power circuit design IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 55, NO. 4, APRIL 2008 319 A Programmable 0.8-V 10-bit 60-MS/s 19.2-mW 0.13-m CMOS ADC Operating Down to 0.5 V Hee-Cheol Choi, Young-Ju

More information

Design of Dynamic Latched Comparator with Reduced Kickback Noise

Design of Dynamic Latched Comparator with Reduced Kickback Noise Volume 118 No. 17 2018, 289-298 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Design of Dynamic Latched Comparator with Reduced Kickback Noise N

More information

Design of Low-Offset Voltage Dynamic Latched Comparator

Design of Low-Offset Voltage Dynamic Latched Comparator Apr. 212, Vol. 2(4) pp: 585-59 Design of Low-Offset Voltage Dynamic Latched Comparator Mayank Nema, Rachna Thakur Assistant Professor, Department of ECE Sagar Institute of Science, Technology & Research,

More information

Analysis & Design of low Power Dynamic Latched Double-Tail Comparator

Analysis & Design of low Power Dynamic Latched Double-Tail Comparator IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 11 May 2016 ISSN (online): 2349-784X Analysis & Design of low Power Dynamic Latched Double-Tail Comparator Manish Kumar

More information

DESIGN AND IMPLEMENTATION OF A LOW VOLTAGE LOW POWER DOUBLE TAIL COMPARATOR

DESIGN AND IMPLEMENTATION OF A LOW VOLTAGE LOW POWER DOUBLE TAIL COMPARATOR DESIGN AND IMPLEMENTATION OF A LOW VOLTAGE LOW POWER DOUBLE TAIL COMPARATOR 1 C.Hamsaveni, 2 R.Ramya 1,2 PG Scholar, Department of ECE, Hindusthan Institute of Technology, Coimbatore(India) ABSTRACT Comparators

More information

Design of Low Voltage and High Speed Double-Tail Dynamic Comparator for Low Power Applications

Design of Low Voltage and High Speed Double-Tail Dynamic Comparator for Low Power Applications International Journal of Engineering Inventions e-issn: 2278-7461, p-issn: 2319-6491 Volume 3, Issue 11 (June 2014) PP: 1-7 Design of Low Voltage and High Speed Double-Tail Dynamic Comparator for Low Power

More information

International Journal of Modern Trends in Engineering and Research

International Journal of Modern Trends in Engineering and Research International Journal of Modern Trends in Engineering and Research www.ijmter.com e-issn No.:2349-9745, Date: 28-30 April, 2016 Temperaments in the Design of Low-voltage Low-power Double Tail Comparator

More information

A stability-improved single-opamp third-order ΣΔ modulator by using a fully-passive noise-shaping SAR ADC and passive adder

A stability-improved single-opamp third-order ΣΔ modulator by using a fully-passive noise-shaping SAR ADC and passive adder A stability-improved single-opamp third-order ΣΔ modulator by using a fully-passive noise-shaping SAR ADC and passive adder Zhijie Chen, Masaya Miyahara, and Akira Matsuzawa Tokyo Institute of Technology,

More information

Design of a Low Voltage low Power Double tail comparator in 180nm cmos Technology

Design of a Low Voltage low Power Double tail comparator in 180nm cmos Technology Research Paper American Journal of Engineering Research (AJER) e-issn : 2320-0847 p-issn : 2320-0936 Volume-3, Issue-9, pp-15-19 www.ajer.org Open Access Design of a Low Voltage low Power Double tail comparator

More information

A 0.7 V-to-1.0 V 10.1 dbm-to-13.2 dbm 60-GHz Power Amplifier Using Digitally- Assisted LDO Considering HCI Issues

A 0.7 V-to-1.0 V 10.1 dbm-to-13.2 dbm 60-GHz Power Amplifier Using Digitally- Assisted LDO Considering HCI Issues A 0.7 V-to-1.0 V 10.1 dbm-to-13.2 dbm 60-GHz Power Amplifier Using Digitally- Assisted LDO Considering HCI Issues Rui Wu, Yuuki Tsukui, Ryo Minami, Kenichi Okada, and Akira Matsuzawa Tokyo Institute of

More information

Comparison between Analog and Digital Current To PWM Converter for Optical Readout Systems

Comparison between Analog and Digital Current To PWM Converter for Optical Readout Systems Comparison between Analog and Digital Current To PWM Converter for Optical Readout Systems 1 Eun-Jung Yoon, 2 Kangyeob Park, 3* Won-Seok Oh 1, 2, 3 SoC Platform Research Center, Korea Electronics Technology

More information

DESIGN OF LOW POWER SAR ADC FOR ECG USING 45nm CMOS TECHNOLOGY

DESIGN OF LOW POWER SAR ADC FOR ECG USING 45nm CMOS TECHNOLOGY DESIGN OF LOW POWER SAR ADC FOR ECG USING 45nm CMOS TECHNOLOGY Silpa Kesav 1, K.S.Nayanathara 2 and B.K. Madhavi 3 1,2 (ECE, CVR College of Engineering, Hyderabad, India) 3 (ECE, Sridevi Women s Engineering

More information

A Dual-Step-Mixing ILFD using a Direct Injection Technique for High- Order Division Ratios in 60GHz Applications

A Dual-Step-Mixing ILFD using a Direct Injection Technique for High- Order Division Ratios in 60GHz Applications A Dual-Step-Mixing ILFD using a Direct Injection Technique for High- Order Division Ratios in 60GHz Applications Teerachot Siriburanon, Wei Deng, Ahmed Musa, Kenichi Okada, and Akira Matsuzawa Tokyo Institute

More information

DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY

DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY Neha Bakawale Departmentof Electronics & Instrumentation Engineering, Shri G. S. Institute of

More information

Multi-bit Sigma-Delta TDC Architecture for Digital Signal Timing Measurement

Multi-bit Sigma-Delta TDC Architecture for Digital Signal Timing Measurement IEEE International ixed-signals, Sensors, and Systems Test Workshop, Taipei, 22 ulti-bit Sigma-Delta TDC Architecture for Digital Signal Timing easurement S. emori,. Ishii, H. Kobayashi, O. Kobayashi T.

More information

A SWITCHED-CAPACITOR POWER AMPLIFIER FOR EER/POLAR TRANSMITTERS

A SWITCHED-CAPACITOR POWER AMPLIFIER FOR EER/POLAR TRANSMITTERS A SWITCHED-CAPACITOR POWER AMPLIFIER FOR EER/POLAR TRANSMITTERS Sang-Min Yoo, Jeffrey Walling, Eum Chan Woo, David Allstot University of Washington, Seattle, WA Submission Highlight A fully-integrated

More information

A 60GHz CMOS Power Amplifier Using Varactor Cross-Coupling Neutralization with Adaptive Bias

A 60GHz CMOS Power Amplifier Using Varactor Cross-Coupling Neutralization with Adaptive Bias A 6GHz CMOS Power Amplifier Using Varactor Cross-Coupling Neutralization with Adaptive Bias Ryo Minami,Kota Matsushita, Hiroki Asada, Kenichi Okada,and Akira Tokyo Institute of Technology, Japan Outline

More information

A Successive Approximation ADC based on a new Segmented DAC

A Successive Approximation ADC based on a new Segmented DAC A Successive Approximation ADC based on a new Segmented DAC segmented current-mode DAC successive approximation ADC bi-direction segmented current-mode DAC DAC INL 0.47 LSB DNL 0.154 LSB DAC 3V 8 2MS/s

More information

12-Bit 1-channel 4 MSPS ADC

12-Bit 1-channel 4 MSPS ADC SPECIFICATION 1 FEATURES 12-Bit 1-channel 4 MSPS ADC TSMC CMOS 65 nm Resolution 12 bit Single power supplies for digital and analog parts (2.5 V) Sampling rate up to 4 MSPS Standby mode (current consumption

More information

A 20GHz Class-C VCO Using Noise Sensitivity Mitigation Technique

A 20GHz Class-C VCO Using Noise Sensitivity Mitigation Technique Matsuzawa Lab. Matsuzawa & Okada Lab. Tokyo Institute of Technology A 20GHz Class-C VCO Using Noise Sensitivity Mitigation Technique Kento Kimura, Kenichi Okada and Akira Matsuzawa (WE2C-2) Matsuzawa &

More information

Design of Pipeline Analog to Digital Converter

Design of Pipeline Analog to Digital Converter Design of Pipeline Analog to Digital Converter Vivek Tripathi, Chandrajit Debnath, Rakesh Malik STMicroelectronics The pipeline analog-to-digital converter (ADC) architecture is the most popular topology

More information

An Optimized DAC Timing Strategy in SAR ADC with Considering the Overshoot Effect

An Optimized DAC Timing Strategy in SAR ADC with Considering the Overshoot Effect Journal of Electrical and Electronic Engineering 2015; 3(2): 19-24 Published online March 31, 2015 (http://www.sciencepublishinggroup.com/j/jeee) doi: 10.11648/j.jeee.20150302.12 ISSN: 2329-1613 (Print);

More information

HeungJun Jeon & Yong-Bin Kim

HeungJun Jeon & Yong-Bin Kim A novel low-power, low-offset, and highspeed CMOS dynamic latched comparator HeungJun Jeon & Yong-Bin Kim Analog Integrated Circuits and Signal Processing An International Journal ISSN 0925-1030 DOI 10.1007/

More information

AN ENERGY EFFICIENT TRANSMITTER FOR WIRELESS MEDICAL APPLICATION

AN ENERGY EFFICIENT TRANSMITTER FOR WIRELESS MEDICAL APPLICATION International Journal of Electronics, Communication and Instrumentation Engineering Research and Development (IJECIERD) ISSN 2249-684X Vol. 3, Issue 1, Mar 2013, 117-126 TJPRC Pvt. Ltd. AN ENERGY EFFICIENT

More information

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5 ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5 20.5 A 2.4GHz CMOS Transceiver and Baseband Processor Chipset for 802.11b Wireless LAN Application George Chien, Weishi Feng, Yungping

More information

A 4 GSample/s 8-bit ADC in. Ken Poulton, Robert Neff, Art Muto, Wei Liu, Andrew Burstein*, Mehrdad Heshami* Agilent Laboratories Palo Alto, California

A 4 GSample/s 8-bit ADC in. Ken Poulton, Robert Neff, Art Muto, Wei Liu, Andrew Burstein*, Mehrdad Heshami* Agilent Laboratories Palo Alto, California A 4 GSample/s 8-bit ADC in 0.35 µm CMOS Ken Poulton, Robert Neff, Art Muto, Wei Liu, Andrew Burstein*, Mehrdad Heshami* Agilent Laboratories Palo Alto, California 1 Outline Background Chip Architecture

More information

Mixed signal systems and integrated circuits

Mixed signal systems and integrated circuits 005 10/13 Mixed signal systems and integrated circuits Akira Matsuzawa Tokyo Institute of Technology 005/10/13 Mixed Signal ADC Matsuzawa 1 005/10/13 Mixed Signal ADC 3. ADC Dynamic performances in ADC

More information

Design and simulation of low-power ADC using double-tail comparator

Design and simulation of low-power ADC using double-tail comparator Design and simulation of low-power ADC using double-tail comparator Mr. P. G. Konde 1, Miss. R. N. Mandavgane 2, Mr. A. P. Bagade 3 1 MTech IVth sem, VLSI, BDCE sevagram, Maharashtra, pranitkonde007@gmail.com

More information

A fps CMOS Ion-Image Sensor with Suppressed Fixed-Pattern-Noise for Accurate High-throughput DNA Sequencing

A fps CMOS Ion-Image Sensor with Suppressed Fixed-Pattern-Noise for Accurate High-throughput DNA Sequencing A 64 64 1200fps CMOS Ion-Image Sensor with Suppressed Fixed-Pattern-Noise for Accurate High-throughput DNA Sequencing Xiwei Huang, Fei Wang, Jing Guo, Mei Yan, Hao Yu*, and Kiat Seng Yeo School of Electrical

More information

Design of 8 bit Analog to Digital Converter (ADC) in 45 nm CMOS Technology

Design of 8 bit Analog to Digital Converter (ADC) in 45 nm CMOS Technology Design of 8 bit Analog to Digital Converter (ADC) in 45 nm CMOS Technology Prof. Prashant Avhad 1, Harshit Baranwal 2, Jadhav Abhijeet Kaluram 3 and Vivek Kushwaha 4 Assistant Professor, Dept. of E&TC

More information

DESIGN OF A 500MHZ, 4-BIT LOW POWER ADC FOR UWB APPLICATION

DESIGN OF A 500MHZ, 4-BIT LOW POWER ADC FOR UWB APPLICATION DESIGN OF A 500MHZ, 4-BIT LOW POWER ADC FOR UWB APPLICATION SANTOSH KUMAR PATNAIK 1, DR. SWAPNA BANERJEE 2 1,2 E & ECE Department, Indian Institute of Technology, Kharagpur, Kharagpur, India Abstract-This

More information

Digital-Centric RF CMOS Technologies

Digital-Centric RF CMOS Technologies 1720 IEICE TRANS. ELECTRON., VOL.E91 C, NO.11 NOVEMBER 2008 INVITED PAPER Special Section on Microwave and Millimeter-wave Technologies Digital-Centric RF CMOS Technologies Akira MATSUZAWA a), Member SUMMARY

More information

CMOS Analog to Digital Converters : State-of-the-Art and Perspectives in Digital Communications ADC

CMOS Analog to Digital Converters : State-of-the-Art and Perspectives in Digital Communications ADC CMOS Analog to Digital Converters : State-of-the-Art and Perspectives in Digital Communications ADC Hussein Fakhoury and Hervé Petit C²S Research Group Presentation Outline Introduction Basic concepts

More information

High Data Rate 60 GHz CMOS Transceiver Design

High Data Rate 60 GHz CMOS Transceiver Design High Data Rate 6 GHz CMOS Transceiver Design Akira Matsuzawa Department of Physical Electronics Graduate School of Science and Electronics Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8552,

More information

Technology Trend of Ultra-High Data Rate Wireless CMOS Transceivers

Technology Trend of Ultra-High Data Rate Wireless CMOS Transceivers 2017.07.03 Technology Trend of Ultra-High Data Rate Wireless CMOS Transceivers Akira Matsuzawa and Kenichi Okada Tokyo Institute of Technology Contents 1 Demand for high speed data transfer Developed high

More information

CHAPTER 3 DESIGN OF PIPELINED ADC USING SCS-CDS AND OP-AMP SHARING TECHNIQUE

CHAPTER 3 DESIGN OF PIPELINED ADC USING SCS-CDS AND OP-AMP SHARING TECHNIQUE CHAPTER 3 DESIGN OF PIPELINED ADC USING SCS-CDS AND OP-AMP SHARING TECHNIQUE 3.1 INTRODUCTION An ADC is a device which converts a continuous quantity into discrete digital signal. Among its types, pipelined

More information

Hot Topics and Cool Ideas in Scaled CMOS Analog Design

Hot Topics and Cool Ideas in Scaled CMOS Analog Design Engineering Insights 2006 Hot Topics and Cool Ideas in Scaled CMOS Analog Design C. Patrick Yue ECE, UCSB October 27, 2006 Slide 1 Our Research Focus High-speed analog and RF circuits Device modeling,

More information

2008 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS

2008 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS 2008 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS November 30 - December 3, 2008 Venetian Macao Resort-Hotel Macao, China IEEE Catalog Number: CFP08APC-USB ISBN: 978-1-4244-2342-2 Library of Congress:

More information

Low Power Design of Successive Approximation Registers

Low Power Design of Successive Approximation Registers Low Power Design of Successive Approximation Registers Rabeeh Majidi ECE Department, Worcester Polytechnic Institute, Worcester MA USA rabeehm@ece.wpi.edu Abstract: This paper presents low power design

More information

A 4b/cycle Flash-assisted SAR ADC with Comparator Speed-boosting Technique

A 4b/cycle Flash-assisted SAR ADC with Comparator Speed-boosting Technique JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.18, NO.2, APRIL, 2018 ISSN(Print) 1598-1657 https://doi.org/10.5573/jsts.2018.18.2.281 ISSN(Online) 2233-4866 A 4b/cycle Flash-assisted SAR ADC with

More information

Another way to implement a folding ADC

Another way to implement a folding ADC Another way to implement a folding ADC J. Van Valburg and R. van de Plassche, An 8-b 650 MHz Folding ADC, IEEE JSSC, vol 27, #12, pp. 1662-6, Dec 1992 Coupled Differential Pair J. Van Valburg and R. van

More information

Analysis of New Dynamic Comparator for ADC Circuit

Analysis of New Dynamic Comparator for ADC Circuit RESEARCH ARTICLE OPEN ACCESS Analysis of New Dynamic Comparator for ADC Circuit B. Shiva Kumar *, Fazal Noorbasha**, K. Vinay Kumar ***, N. V. Siva Rama Krishna. T**** * (Student of VLSI Systems Research

More information

A 1-GHz, 7-mW, 8-Bit Subranging ADC without Resistor Ladder Using Built-In Threshold Calibration

A 1-GHz, 7-mW, 8-Bit Subranging ADC without Resistor Ladder Using Built-In Threshold Calibration Circuits and Systems, 2014, 5, 76-88 Published Online April 2014 in SciRes. http://www.scirp.org/journal/cs http://dx.doi.org/10.4236/cs.2014.54010 A 1-GHz, 7-mW, 8-Bit Subranging ADC without Resistor

More information

ALTHOUGH zero-if and low-if architectures have been

ALTHOUGH zero-if and low-if architectures have been IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 40, NO. 6, JUNE 2005 1249 A 110-MHz 84-dB CMOS Programmable Gain Amplifier With Integrated RSSI Function Chun-Pang Wu and Hen-Wai Tsao Abstract This paper describes

More information

A Low Phase Noise LC VCO for 6GHz

A Low Phase Noise LC VCO for 6GHz A Low Phase Noise LC VCO for 6GHz Mostafa Yargholi 1, Abbas Nasri 2 Department of Electrical Engineering, University of Zanjan, Zanjan, Iran 1 yargholi@znu.ac.ir, 2 abbas.nasri@znu.ac.ir, Abstract: This

More information

Design and Performance Analysis of a Double-Tail Comparator for Low-Power Applications

Design and Performance Analysis of a Double-Tail Comparator for Low-Power Applications Design and Performance Analysis of a Double-Tail Comparator for Low-Power Applications Megha Gupta M.Tech. VLSI, Suresh Gyan Vihar University Jaipur Email: megha.gupta0704@gmail.com Abstract A comparator

More information

AN ABSTRACT OF THE DISSERTATION OF

AN ABSTRACT OF THE DISSERTATION OF AN ABSTRACT OF THE DISSERTATION OF Jiaming Lin for the degree of Doctor of Philosophy in Electrical and Computer Engineering presented on July 8, 2013. Title: Design Techniques for Low Power High Speed

More information

An Ultra Low Power Successive Approximation ADC for Wireless Sensor Network

An Ultra Low Power Successive Approximation ADC for Wireless Sensor Network Internatıonal Journal of Natural and Engineering Sciences 7 (2): 38-42, 213 ISSN: 137-1149, E-ISSN: 2146-86, www.nobel.gen.tr An Ultra Low Power Successive Approximation ADC for Wireless Sensor Network

More information

A Low Power Small Area Multi-bit Quantizer with A Capacitor String in Sigma-Delta Modulator

A Low Power Small Area Multi-bit Quantizer with A Capacitor String in Sigma-Delta Modulator A Low Power Small Area Multi-bit uantizer with A Capacitor String in Sigma-Delta Modulator Xuia Wang, Jian Xu, and Xiaobo Wu Abstract An ultra-low power area-efficient fully differential multi-bit quantizer

More information

CMOS ADC & DAC Principles

CMOS ADC & DAC Principles CMOS ADC & DAC Principles Willy Sansen KULeuven, ESAT-MICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 10-05 201 Table of contents Definitions Digital-to-analog converters Resistive Capacitive

More information

Mixed-Signal-Electronics

Mixed-Signal-Electronics 1 Mixed-Signal-Electronics PD Dr.-Ing. Stephan Henzler 2 Chapter 6 Nyquist Rate Analog-to-Digital Converters 3 Pipelined ADC 2 4 High-Speed ADC: Pipeline Processing Stephan Henzler Advanced Integrated

More information

A simple 3.8mW, 300MHz, 4-bit flash analog-to-digital converter

A simple 3.8mW, 300MHz, 4-bit flash analog-to-digital converter A simple 3.8mW, 300MHz, 4bit flash analogtodigital converter Laurent de Lamarre a, MarieMinerve Louërat a and Andreas Kaiser b a LIP6 UPMC Paris 6, 2 rue Cuvier, 75005 Paris, France; b IEMNISEN UMR CNRS

More information

A Two- Bit- per- Cycle Successive- Approximation ADC with Background Offset Calibration

A Two- Bit- per- Cycle Successive- Approximation ADC with Background Offset Calibration M. Casubolo, M. Grassi, A. Lombardi, F. Maloberti, P. Malcovati: "A Two-Bit-per- Cycle Successive-Approximation ADC with Background Calibration"; 15th IEEE Int. Conf. on Electronics, Circuits and Systems,

More information

Implementation of High Speed Low Power Split-SAR ADCS Using V cm and Capacitor Based Switching

Implementation of High Speed Low Power Split-SAR ADCS Using V cm and Capacitor Based Switching Implementation of High Speed Low Power Split-SAR ADCS Using V cm and Capacitor Based Switching M. Ranjithkumar [1], M.Bhuvaneswaran [2], T.Kowsalya [3] PG Scholar, ME-VLSI DESIGN, Muthayammal Engineering

More information

UCB Picocube A modular approach to miniature wireless 1 cm μw P avg

UCB Picocube A modular approach to miniature wireless 1 cm μw P avg switch/power board Magnetic shaker uc board radio board sensor board UCB Picocube A modular approach to miniature wireless 1 cm 3 6-10 μw P avg Energy-scavenged pressure, temp and acceleration (3D) sensor

More information

Due to the absence of internal nodes, inverter-based Gm-C filters [1,2] allow achieving bandwidths beyond what is possible

Due to the absence of internal nodes, inverter-based Gm-C filters [1,2] allow achieving bandwidths beyond what is possible A Forward-Body-Bias Tuned 450MHz Gm-C 3 rd -Order Low-Pass Filter in 28nm UTBB FD-SOI with >1dBVp IIP3 over a 0.7-to-1V Supply Joeri Lechevallier 1,2, Remko Struiksma 1, Hani Sherry 2, Andreia Cathelin

More information

Integrated Microsystems Laboratory. Franco Maloberti

Integrated Microsystems Laboratory. Franco Maloberti University of Pavia Integrated Microsystems Laboratory Power Efficient Data Convertes Franco Maloberti franco.maloberti@unipv.it OUTLINE Introduction Managing the noise power budget Challenges of State-of-the-art

More information

A Low-Jitter Phase-Locked Loop Based on a Charge Pump Using a Current-Bypass Technique

A Low-Jitter Phase-Locked Loop Based on a Charge Pump Using a Current-Bypass Technique JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.14, NO.3, JUNE, 2014 http://dx.doi.org/10.5573/jsts.2014.14.3.331 A Low-Jitter Phase-Locked Loop Based on a Charge Pump Using a Current-Bypass Technique

More information

Passive Device Characterization for 60-GHz CMOS Power Amplifiers

Passive Device Characterization for 60-GHz CMOS Power Amplifiers Passive Device Characterization for 60-GHz CMOS Power Amplifiers Kenichi Okada, Kota Matsushita, Naoki Takayama, Shogo Ito, Ning Li, and Akira Tokyo Institute of Technology, Japan 2009/4/20 Motivation

More information

UPCOMING low energy radios in the ISM (industrial,

UPCOMING low energy radios in the ISM (industrial, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 46, NO. 7, JULY 2011 1585 A26 W 8 bit 10 MS/s Asynchronous SAR ADC for Low Energy Radios Pieter J. A. Harpe, Cui Zhou, Yu Bi, Student Member, IEEE, Nick P. van

More information

A 400 MHz 4.5 nw 63.8 dbm Sensitivity Wake-up Receiver Employing an Active Pseudo-Balun Envelope Detector

A 400 MHz 4.5 nw 63.8 dbm Sensitivity Wake-up Receiver Employing an Active Pseudo-Balun Envelope Detector A 400 MHz 4.5 nw 63.8 dbm Sensitivity Wake-up Receiver Employing an Active Pseudo-Balun Envelope Detector Po-Han Peter Wang, Haowei Jiang, Li Gao, Pinar Sen, Young-Han Kim, Gabriel M. Rebeiz, Patrick P.

More information

Digital-Centric RF-CMOS technology

Digital-Centric RF-CMOS technology 1 Digital-Centric RF-CMOS technology Akira Department of Physical Electronics Tokyo Institute of Technology Contents 2 Digital-centric CMOS tuner technology Conventional AM/FM tuner Analog-centric CMOS

More information

Administrative. No office hour on Thurs. this week Instead, office hour 3 to 4pm on Wed.

Administrative. No office hour on Thurs. this week Instead, office hour 3 to 4pm on Wed. Administrative No office hour on Thurs. this week Instead, office hour 3 to 4pm on Wed. EECS 247 Lecture 2 Nyquist Rate ADC: Architecture & Design 27 H.K. Page EE247 Lecture 2 ADC Converters Sampling (continued)

More information

Low-Power RF Integrated Circuit Design Techniques for Short-Range Wireless Connectivity

Low-Power RF Integrated Circuit Design Techniques for Short-Range Wireless Connectivity Low-Power RF Integrated Circuit Design Techniques for Short-Range Wireless Connectivity Marvin Onabajo Assistant Professor Analog and Mixed-Signal Integrated Circuits (AMSIC) Research Laboratory Dept.

More information

Design of Analog Integrated Systems (ECE 615) Outline

Design of Analog Integrated Systems (ECE 615) Outline Design of Analog Integrated Systems (ECE 615) Lecture 9 SAR and Cyclic (Algorithmic) Analog-to-Digital Converters Ayman H. Ismail Integrated Circuits Laboratory Ain Shams University Cairo, Egypt ayman.hassan@eng.asu.edu.eg

More information

A Novel Approach of Low Power Low Voltage Dynamic Comparator Design for Biomedical Application

A Novel Approach of Low Power Low Voltage Dynamic Comparator Design for Biomedical Application A Novel Approach of Low Power Low Voltage Dynamic Design for Biomedical Application 1 Nitesh Kumar, 2 Debasish Halder, 3 Mohan Kumar 1,2,3 M.Tech in VLSI Design 1,2,3 School of VLSI Design and Embedded

More information

IMPLEMENTING THE 10-BIT, 50MS/SEC PIPELINED ADC

IMPLEMENTING THE 10-BIT, 50MS/SEC PIPELINED ADC 98 CHAPTER 5 IMPLEMENTING THE 0-BIT, 50MS/SEC PIPELINED ADC 99 5.0 INTRODUCTION This chapter is devoted to describe the implementation of a 0-bit, 50MS/sec pipelined ADC with different stage resolutions

More information

Acronyms. ADC analog-to-digital converter. BEOL back-end-of-line

Acronyms. ADC analog-to-digital converter. BEOL back-end-of-line Acronyms ADC analog-to-digital converter BEOL back-end-of-line CDF cumulative distribution function CMOS complementary metal-oxide-semiconductor CPU central processing unit CR charge-redistribution CS

More information

Low-Power VLSI. Seong-Ook Jung VLSI SYSTEM LAB, YONSEI University School of Electrical & Electronic Engineering

Low-Power VLSI. Seong-Ook Jung VLSI SYSTEM LAB, YONSEI University School of Electrical & Electronic Engineering Low-Power VLSI Seong-Ook Jung 2013. 5. 27. sjung@yonsei.ac.kr VLSI SYSTEM LAB, YONSEI University School of Electrical & Electronic Engineering Contents 1. Introduction 2. Power classification & Power performance

More information

ANALYSIS AND DESIGN OF A LOW POWER ADC

ANALYSIS AND DESIGN OF A LOW POWER ADC ANALYSIS AND DESIGN OF A LOW POWER ADC MSC. THESIS - VINCENT PETERS - JULY 2012 Supervisors: prof. dr. ir. B. Nauta dr. ing. E.A.M. Klumperink ir. H. Kundur-Subramaniyan dr. ir. A.B.J. Kokkeler Report:

More information

Performance Improvement of Low Power Double Tail Comparator in UDSM CMOS Technology

Performance Improvement of Low Power Double Tail Comparator in UDSM CMOS Technology Performance Improvement of Low Power Double Tail Comparator in UDSM CMOS Technology N.Bhuvaneswari, 2 V.Gowrishankar, 3 Dr.K.Venkatachalam 1 PG Scholar, Department of ECE, Velalar College of, Erode, Tamilnadu

More information

SiNANO-NEREID Workshop:

SiNANO-NEREID Workshop: SiNANO-NEREID Workshop: Towards a new NanoElectronics Roadmap for Europe Leuven, September 11 th, 2017 WP3/Task 3.2 Connectivity RF and mmw Design Outline Connectivity, what connectivity? High data rates

More information

A 60GHz Sub-Sampling PLL Using A Dual-Step-Mixing ILFD

A 60GHz Sub-Sampling PLL Using A Dual-Step-Mixing ILFD A 60GHz Sub-Sampling PLL Using A Dual-Step-Mixing ILFD Teerachot Siriburanon, Tomohiro Ueno, Kento Kimura, Satoshi Kondo, Wei Deng, Kenichi Okada, and Akira Matsuzawa Tokyo Institute of Technology, Japan

More information

Power Efficient Digital LDO Regulator with Transient Response Boost Technique K.K.Sree Janani 1, M.Balasubramani 2

Power Efficient Digital LDO Regulator with Transient Response Boost Technique K.K.Sree Janani 1, M.Balasubramani 2 Power Efficient Digital LDO Regulator with Transient Response Boost Technique K.K.Sree Janani 1, M.Balasubramani 2 1 PG student, Department of ECE, Vivekanandha College of Engineering for Women. 2 Assistant

More information

A REVIEW ON 4 BIT FLASH ANALOG TO DIGITAL CONVERTOR

A REVIEW ON 4 BIT FLASH ANALOG TO DIGITAL CONVERTOR RESEARCH ARTICLE OPEN ACCESS A REVIEW ON 4 BIT FLASH ANALOG TO DIGITAL CONVERTOR Vijay V. Chakole 1, Prof. S. R. Vaidya 2, Prof. M. N. Thakre 3 1 MTech Scholar, S. D. College of Engineering, Selukate,

More information

A 2-in-1 Temperature and Humidity Sensor Achieving 62 fj K 2 and 0.83 pj (%RH) 2

A 2-in-1 Temperature and Humidity Sensor Achieving 62 fj K 2 and 0.83 pj (%RH) 2 Session 22 Sensors and Integration A 2-in-1 Temperature and Humidity Sensor Achieving 62 fj K 2 and 0.83 pj (%RH) 2 Haowei Jiang, Chih-Cheng Huang, Matthew Chan, and Drew A. Hall University of California,

More information

High-Performance Analog and RF Circuit Simulation using the Analog FastSPICE Platform at Columbia University. Columbia University

High-Performance Analog and RF Circuit Simulation using the Analog FastSPICE Platform at Columbia University. Columbia University High-Performance Analog and RF Circuit Simulation using the Analog FastSPICE Platform at Columbia University By: K. Tripurari, C. W. Hsu, J. Kuppambatti, B. Vigraham, P.R. Kinget Columbia University For

More information

Bootstrapped ring oscillator with feedforward inputs for ultra-low-voltage application

Bootstrapped ring oscillator with feedforward inputs for ultra-low-voltage application This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. IEICE Electronics Express, Vol.* No.*,*-* Bootstrapped ring oscillator with feedforward

More information

Design of 1.8V, 72MS/s 12 Bit Pipeline ADC in 0.18µm Technology

Design of 1.8V, 72MS/s 12 Bit Pipeline ADC in 0.18µm Technology Design of 1.8V, 72MS/s 12 Bit Pipeline ADC in 0.18µm Technology Ravi Kumar 1, Seema Kanathe 2 ¹PG Scholar, Department of Electronics and Communication, Suresh GyanVihar University, Jaipur, India ²Assistant

More information

Analysis and Design of High Speed Low Power Comparator in ADC

Analysis and Design of High Speed Low Power Comparator in ADC Analysis and Design of High Speed Low Power Comparator in ADC 1 Abhishek Rai, 2 B Ananda Venkatesan 1 M.Tech Scholar, 2 Assistant professor Dept. of ECE, SRM University, Chennai 1 Abhishekfan1791@gmail.com,

More information