Low-IMD Two-Tone Signal Generation for ADC Testing

Size: px
Start display at page:

Download "Low-IMD Two-Tone Signal Generation for ADC Testing"

Transcription

1 18 th International Mixed-Signals, Sensors, and Systems Test Workshop May 15 Taipei, Taiwan Low-IMD Two-Tone Signal Generation for ADC Testing K. Kato, F. Abe, K. Wakabayashi, T. Yamada, H. Kobayashi, O. Kobayashi, K. Niitsu Gunma University Semiconductor Technology Academic Research Center

2 Presented by Fumitaka ABE ( 安部文隆 ) 2

3 Outline Research Background Conventional Method Proposed Method Experimental Results Extension to ΔΣDAC Conclusion 3/50

4 Outline Research Background Conventional Method Proposed Method Experimental Results Extension to ΔΣDAC Conclusion 4/50

5 Research Goal Low distortion two-tone signal generation for communication application ADC testing with low cost AWG by only changing DSP program Conventional Proposed AWG ADC AWG ADC DUT DSP program change DUT IMD3 IMD3 IMD3 IMD3 Low SFDR High SFDR 5/50

6 Two-Tone Generation with AWG AWG Communication application DSP DAC Y ADC DUT Nonlinearity Low quality test Large IMD3 Narrow band IMD3 IMD3 IMD3 IMD3 6/50

7 IMD3 is important for two tone signal! Nonlinear system Two-tone signal Analog Filter IMD3 IMD3 IMD3 Cannot remove with analog filter 7/50

8 Outline Research Background Conventional Method Proposed Method Experimental Results Extension to ΔΣDAC Conclusion 8/50

9 Conventional Method DSP CLK CLK DAC Analog output 9/50

10 DAC Nonlinearity & IMD3 DSP CLK CLK DAC Analog output IMD3 components appear IMD3 IMD3 around 10/50

11 Outline Research Background Conventional Method Proposed Method Experimental Results Extension to ΔΣDAC Conclusion 11/50

12 Four Proposed Techniques Phase Switching Frequency Switching Phase Frequency Switching Pre-Distortion 12/50

13 Four Proposed Techniques Phase Switching Frequency Switching Phase Frequency Switching Pre-Distortion 13/50

14 Phase Switching DSP CLK CLK DAC Analog output 14/50

15 Phase Switching Effects DSP CLK CLK DAC Analog output spurious appear Cancel around 15/50

16 Principle of Phase Switching : phase Fundamental : phase Im Re Inter-Modulation phase IMD3 Im : phase Phase difference by π Re Cancel phase 16/50

17 Four Proposed Techniques Phase Switching Frequency Switching Phase Frequency Switching Pre-Distortion 17/50

18 Frequency Switching DSP CLK CLK DAC Analog output 18/50

19 Frequency Switching Effects DSP CLK CLK DAC Analog output spurious appear Cancel around 19/50

20 Principle of Frequency Switching DAC around Spurious components In principle, IMD components do not appear 20/50

21 Four Proposed Techniques Phase Switching Frequency Switching Phase Frequency Switching Pre-Distortion 21/50

22 Phase Frequency Switching DSP CLK CLK DAC Analog output 22/50

23 Phase Frequency Switching Effects DSP CLK CLK DAC Analog output around around spurious Cancel appear 23/50

24 Principle of Phase Frequency Switching DAC Frequency Switching Interleave 4 signals spurious spurious around around Phase Switching 24/50

25 Four Proposed Techniques Phase Switching Frequency Switching Phase Frequency Switching Pre-Distortion 25/50

26 Pre-Distortion DSP CLK CLK DAC Test Signal Add HD3 components in Din. 26/50

27 Effect of Pre-Distortion DSP CLK CLK DAC Test Signal HD3 territory Spurious around HD5 territory HD7 territory HD9 territory Cancellation 27/50

28 Principle of Pre-Distortion DAC Pre-Distortion Components Fundamental & Spurious 28/50

29 Principle of Pre-Distortion DAC Pre-Distortion Components IMD3 Cancel Fundamental & Spurious 29/50

30 Principle of Pre-Distortion DAC Pre-Distortion Components Fundamental & Spurious IMD3 components disappear 30/50

31 Proposed Low IMD3 Two-tone Generation Change DSP program Nonlinearity DSP DAC CLK CLK No hardware change No need for calibration No need for DAC nonlinearity identification 31/50

32 Simulation Conditions Conventional Test Signal 4 Proposed Test Signal 14bit DAC FFT Sampling Points Two-tone Signal Amplitude (peak-to-peak) 32/50

33 Power [db] Conventional Phase Switching Phase, Frequency, Phase Freq. Switching Around fs/2 Spurious Frequency Switching Phase Frequency Switching Around fs/4 Spurious Normalize Frequency f/fs Around fs/2 Spurious Around fs/2 Spurious 33/50

34 Power [db] Conventional Pre-Distortion Pre- Distortion Normalize Frequency f/fs Conventional Pre- Distortion /50

35 Output Power Spectrum Comparison Disappear Appear Conventional Phase Switching Around Frequency Switching Around Phase & Freq. Switching Around Pre-Distortion Around 35/50

36 Outline Research Background Conventional Method Proposed Method Experimental Results Extension to ΔΣDAC Conclusion 36/50

37 Experimental Conditions AWG Spectrum analyzer Signal Agilent 33220A ADVANTEST R3267 Frequency characteristic Amplitude Resolution Maximum Sampling Rate 1μHz~6MHz 14bits 50MSa/s Frequency band 100Hz~8GHz RBW 10Hz~30MHz RBW : Resolution Band Width Test Signal Two-tone Signal Sampling rate Input Voltage Offset 200kHz, 220kHz 10MSa/s 0.8~2.0Vpp (0.2V steps) 0 37/50

38 Power [dbm] Power [dbm] Fundamental Experimental Results Pre-Distortion -0.60dB Input Voltage [Vpp] Phae, Phae Freq. Switching -1.24dB Conventional Frequency Switching Conventional Phase Switching IMD3 Frequency Switching Phase Frequency Switching Average : -11.9dB Input Voltage [Vpp] Pre-Distortion 38/50

39 SFDR [dbc] SFDR Improvement Conventional Phase Switching Frequency Switching Input Voltage [Vpp] Phase & Frequency Switching Pre-Distortion Phase Switching Frequency Switching Phase Frequency Switching Pre-Distortion db db db db 39/50

40 Phase Switching Power [dbm] Conventional Method Phase Switching Around Fundamental HD3_3f1,3f2 Sampling Frequency_fs Frequency [khz] 40/50

41 Frequency Switching Power [dbm] Conventional Method Frequency Switching Around Fundamental HD3_3f1,3f2 Sampling Frequency_fs Frequency [khz] 41/50

42 Phase Frequency Switching Power [dbm] Conventional Method Phase Frequency Switching Around Fundamental HD3_3f1,3f2 Sampling Frequency_fs Frequency [khz] 42/50

43 Pre-Distortion Pre-Distortion Components Power [dbm] Conventional Method Around Fundamental Pre-Distortion HD3_3f1,3f2 Frequency [khz] 43/50

44 Outline Research Background Conventional Method Proposed Method Experimental Results Extension to ΔΣDAC Conclusion 44/50

45 Proposed Techniques using ΔΣDAC DSP ΔΣDAC Digital ΔΣ Modulation Nonlinearity DAC Conventional and Proposed digital input signal 45/50

46 Power [db] Power [db] Power [db] Power [db] 0 Phase Switching using ΔΣDAC Conventional Enlarge Normalized Frequency f/ fs 0 Phase Switching Enlarge Normalized Frequency f/ fs Normalized Frequency f/ fs Normalized Frequency f/ fs 46/50

47 Power [db] Power [db] Power [db] Power [db] 0 Frequency Switching using ΔΣDAC Conventional Enlarge Normalized Frequency f/ fs 0 Frequency Switching Enlarge Normalized Frequency f/ fs Normalized Frequency f/ fs Normalized Frequency f/ fs 47/50

48 Power [db] Power [db] Power [db] Power [db] Phase Frequency Switching using ΔΣDAC 0 Conventional Enlarge Normalized Frequency f/ fs 0 Phase Frequency Switching Enlarge Normalized Frequency f/ fs Normalized Frequency f/ fs Normalized Frequency f/ fs 48/50

49 Power [db] Power [db] Power [db] Power [db] 0 Pre-Distortion using ΔΣDAC Conventional Enlarge Normalized Frequency f/ fs 0 Pre-Distortion Enlarge Normalized Frequency f/ fs Normalized Frequency f/ fs Normalized Frequency f/ fs 49/50

50 Outline Research Background Conventional Method Proposed Method Experimental Results Extension to ΔΣDAC Conclusion 50/50

51 Conclusion Low IMD3 signal generation with low-cost AWG Only program change, No hardware change No need for calibration No need for AWG nonlinearity identification 4 proposed techniques cancel IMD3 Applicable to Nyquist-rate DAC and ΔΣDAC Low cost testing of communication application ADCs can be realized 51/50

Two-Tone Signal Generation for Communication Application ADC Testing

Two-Tone Signal Generation for Communication Application ADC Testing The 21 st Asian Test Symposium 2012 Toki Messe Niigata Convention Center, Niigata, Japan 21/Nov./2012 Two-Tone Signal Generation for Communication Application ADC Testing K. Kato, F. Abe, K. Wakabayashi,

More information

Low-Distortion Signal Generation for ADC Testing

Low-Distortion Signal Generation for ADC Testing 214 IEEE International Test Conference Low-Distortion Signal Generation for ADC Testing Fumitaka Abe, Yutaro Kobayashi Kenji Sawada, Keisuke Kato Osamu Kobayashi, Haruo Kobayashi Gunma University STARC

More information

High-Frequency Low-Distortion Signal Generation Algorithm with AWG

High-Frequency Low-Distortion Signal Generation Algorithm with AWG High-Frequency Low-Distortion Signal Generation Algorithm with AWG Shohei Shibuya, Yutaro Kobayashi Haruo Kobayashi Gunma University 1/31 Research Objective 2/31 Objective Low-distortion sine wave generation

More information

Low-Distortion Sinewave Generation Method Using Arbitrary Waveform Generator

Low-Distortion Sinewave Generation Method Using Arbitrary Waveform Generator DOI 0.007/s0836-02-5293-4 Low-Distortion Sinewave Generation Method Using Arbitrary Waveform Generator Kazuyuki Wakabayashi Keisuke Kato Takafumi Yamada Osamu Kobayashi Haruo Kobayashi Fumitaka Abe Kiichi

More information

Maximizing GSPS ADC SFDR Performance: Sources of Spurs and Methods of Mitigation

Maximizing GSPS ADC SFDR Performance: Sources of Spurs and Methods of Mitigation Maximizing GSPS ADC SFDR Performance: Sources of Spurs and Methods of Mitigation Marjorie Plisch Applications Engineer, Signal Path Solutions November 2012 1 Outline Overview of the issue Sources of spurs

More information

Enhancing Analog Signal Generation by Digital Channel Using Pulse-Width Modulation

Enhancing Analog Signal Generation by Digital Channel Using Pulse-Width Modulation Enhancing Analog Signal Generation by Digital Channel Using Pulse-Width Modulation Angelo Zucchetti Advantest angelo.zucchetti@advantest.com Introduction Presented in this article is a technique for generating

More information

I-Q Signal Generation Techniques for Communication IC Testing and ATE Systems

I-Q Signal Generation Techniques for Communication IC Testing and ATE Systems 2016 IEEE International Test Conference I-Q Signal Generation Techniques for Communication IC Testing and ATE Systems M. Murakami, H. Kobayashi, S. N. B. Mohyar O. Kobayashi, T. Miki, J. Kojima Gunma University

More information

Digital Time-Interleaved ADC Mismatch Error Correction Embedded into High-Performance Digitizers

Digital Time-Interleaved ADC Mismatch Error Correction Embedded into High-Performance Digitizers Digital Time-Interleaved ADC Mismatch Error Correction Embedded into High-Performance Digitizers BY PER LÖWENBORG, PH.D., DOCENT 1 TIME-INTERLEAVED ANALOG-TO-DIGITAL CONVERTERS AND MISMATCH ERRORS Achievable

More information

Linearity Enhancement Algorithms for I-Q Signal Generation

Linearity Enhancement Algorithms for I-Q Signal Generation B6-1 10:15-10:45 Nov. 6, 2015 (Fri) 1 /55 Invited paper Linearity Enhancement Algorithms for I-Q Signal Generation - DWA and Self-Calibration Techniques - M. Murakami H. Kobayashi S. N. B. Mohyar T. Miki

More information

Accurate Harmonics Measurement by Sampler Part 2

Accurate Harmonics Measurement by Sampler Part 2 Accurate Harmonics Measurement by Sampler Part 2 Akinori Maeda Verigy Japan akinori.maeda@verigy.com September 2011 Abstract of Part 1 The Total Harmonic Distortion (THD) is one of the major frequency

More information

Digital Signal Analysis

Digital Signal Analysis Digital Signal Analysis Objectives - Provide a digital modulation overview - Review common digital radio impairments Digital Modulation Overview Signal Characteristics to Modify Polar Display / IQ Relationship

More information

Analog-to-Digital Converter Survey & Analysis. Bob Walden. (310) Update: July 16,1999

Analog-to-Digital Converter Survey & Analysis. Bob Walden. (310) Update: July 16,1999 Analog-to-Digital Converter Survey & Analysis Update: July 16,1999 References: 1. R.H. Walden, Analog-to-digital converter survey and analysis, IEEE Journal on Selected Areas in Communications, vol. 17,

More information

ADC Linearity Test Signal Generation Algorithm

ADC Linearity Test Signal Generation Algorithm APCCAS Session : Accord Network Room Test Technology Ⅰ ID : 1569327697 ADC Linearity Test Signal Generation Algorithm S. Uemori, T. J. Yamaguchi, S. Ito, Y. Tan, H. Kobayashi, N. Takai Gunma University,

More information

Understanding RF and Microwave Analysis Basics

Understanding RF and Microwave Analysis Basics Understanding RF and Microwave Analysis Basics Kimberly Cassacia Product Line Brand Manager Keysight Technologies Agenda µw Analysis Basics Page 2 RF Signal Analyzer Overview & Basic Settings Overview

More information

Performance Improvement of Delta-Sigma ADC/DAC/TDC Using Digital Technique

Performance Improvement of Delta-Sigma ADC/DAC/TDC Using Digital Technique 群馬大学 小林研究室 S38-1 Data Converters 15:45-16:15 PM Nov. 2, 2018 (Fri) Performance mprovement of Delta-Sigma ADC/DAC/TDC Using Digital Technique Haruo Kobayashi J.-L. Wei, M. Murakami, J. Kojima, N. Kushita,

More information

Challenge for Analog Circuit Testing in Mixed-Signal SoC

Challenge for Analog Circuit Testing in Mixed-Signal SoC Dec. 16, 2016 Challenge for Analog Circuit Testing in Mixed-Signal SoC Haruo Kobayashi Professor, Gunma University koba@gunma-u.ac.jp Contents 1. Introduction 2. Review of Analog Circuit Testing in Mixed-Signal

More information

AN-928 APPLICATION NOTE

AN-928 APPLICATION NOTE APPLICATION NOTE One Technology Way P.O. Box 906 Norwood, MA 006-906, U.S.A. Tel: 78.39.4700 Fax: 78.46.33 www.analog.com Understanding High Speed DAC Testing and Evaluation by Justin Munson SCOPE This

More information

A 12 bit 125 MHz ADC USING DIRECT INTERPOLATION

A 12 bit 125 MHz ADC USING DIRECT INTERPOLATION A 12 bit 125 MHz ADC USING DIRECT INTERPOLATION Dr R Allan Belcher University of Wales Swansea and Signal Conversion Ltd, 8 Bishops Grove, Swansea SA2 8BE Phone +44 973 553435 Fax +44 870 164 0107 E-Mail:

More information

Reconfigurable 6 GHz Vector Signal Transceiver with I/Q Interface

Reconfigurable 6 GHz Vector Signal Transceiver with I/Q Interface SPECIFICATIONS PXIe-5645 Reconfigurable 6 GHz Vector Signal Transceiver with I/Q Interface Contents Definitions...2 Conditions... 3 Frequency...4 Frequency Settling Time... 4 Internal Frequency Reference...

More information

Measuring Non-linear Amplifiers

Measuring Non-linear Amplifiers Measuring Non-linear Amplifiers Transceiver Components & Measuring Techniques MM3 Jan Hvolgaard Mikkelsen Radio Frequency Integrated Systems and Circuits Division Aalborg University 27 Agenda Non-linear

More information

Techniques for Characterizing Spurious Signals

Techniques for Characterizing Spurious Signals Techniques for Characterizing Spurious Signals October 21, 2014 Riadh Said Product Manager Microwave and Communications Division Keysight Technologies Our Goals today Review the sweep time equation to

More information

Summary Last Lecture

Summary Last Lecture Interleaved ADCs EE47 Lecture 4 Oversampled ADCs Why oversampling? Pulse-count modulation Sigma-delta modulation 1-Bit quantization Quantization error (noise) spectrum SQNR analysis Limit cycle oscillations

More information

Outline. Background of Analog Functional Testing. Phase Delay in Multiplier/Accumulator (MAC)-based ORA

Outline. Background of Analog Functional Testing. Phase Delay in Multiplier/Accumulator (MAC)-based ORA Phase Delay Measurement and Calibration in Built-In Analog Functional Testing Jie Qin, Charles Stroud, and Foster Dai Dept. of Electrical & Computer Engineering Auburn University Outline Background of

More information

DAC Architecture Comparison for SFDR Improvement

DAC Architecture Comparison for SFDR Improvement DAC Architecture Comparison for SFDR Improvement ETT-14-53 Shaiful Nizam Mohyar*, H. Kobayashi, Gunma University, Japan Universiti Malaysia Perlis, Malaysia Gunma University, Japan Outline Introduction

More information

Hideo Okawara s Mixed Signal Lecture Series. DSP-Based Testing Fundamentals 6 Spectrum Analysis -- FFT

Hideo Okawara s Mixed Signal Lecture Series. DSP-Based Testing Fundamentals 6 Spectrum Analysis -- FFT Hideo Okawara s Mixed Signal Lecture Series DSP-Based Testing Fundamentals 6 Spectrum Analysis -- FFT Verigy Japan October 008 Preface to the Series ADC and DAC are the most typical mixed signal devices.

More information

Understanding New Pulse-analysis Techniques

Understanding New Pulse-analysis Techniques Understanding New Pulse-analysis Techniques Giuseppe Savoia Keysight Technologies Aerospace Defense Symposium Agenda Concept for Radar/Pulse signal analysis AD Symposium Page 2 Vector signal analyzers

More information

AWG-GS bit 2.5GS/s Arbitrary Waveform Generator

AWG-GS bit 2.5GS/s Arbitrary Waveform Generator KEY FEATURES 2.5 GS/s Real Time Sample Rate 14-bit resolution 2 Channels Long Memory: 64 MS/Channel Direct DAC Out - DC Coupled: 1.6 Vpp Differential / 0.8 Vpp > 1GHz Bandwidth RF Amp Out AC coupled -10

More information

8 Hints for Better Spectrum Analysis. Application Note

8 Hints for Better Spectrum Analysis. Application Note 8 Hints for Better Spectrum Analysis Application Note 1286-1 The Spectrum Analyzer The spectrum analyzer, like an oscilloscope, is a basic tool used for observing signals. Where the oscilloscope provides

More information

Understanding AWG70000A Series Frequency Response and DAC Performance

Understanding AWG70000A Series Frequency Response and DAC Performance Understanding AWG70000A Series Frequency Response and DAC Performance Application Note What you will learn: You will gain an understanding of the AWG frequency response characteristics and time domain

More information

8 Hints for Better Spectrum Analysis. Application Note

8 Hints for Better Spectrum Analysis. Application Note 8 Hints for Better Spectrum Analysis Application Note 1286-1 The Spectrum Analyzer The spectrum analyzer, like an oscilloscope, is a basic tool used for observing signals. Where the oscilloscope provides

More information

LETTER Algorithms for Digital Correction of ADC Nonlinearity

LETTER Algorithms for Digital Correction of ADC Nonlinearity 504 LETTER Algorithms for Digital Correction of ADC Nonlinearity Haruo KOBAYASHI a), Regular Member, HiroshiYAGI, Takanori KOMURO, and Hiroshi SAKAYORI, Nonmembers SUMMARY This paper describes two digital

More information

APPLICATION NOTE 3942 Optimize the Buffer Amplifier/ADC Connection

APPLICATION NOTE 3942 Optimize the Buffer Amplifier/ADC Connection Maxim > Design Support > Technical Documents > Application Notes > Communications Circuits > APP 3942 Maxim > Design Support > Technical Documents > Application Notes > High-Speed Interconnect > APP 3942

More information

CLOUDSDR RFSPACE #CONNECTED SOFTWARE DEFINED RADIO. final design might vary without notice

CLOUDSDR RFSPACE #CONNECTED SOFTWARE DEFINED RADIO. final design might vary without notice CLOUDSDR #CONNECTED SOFTWARE DEFINED RADIO final design might vary without notice 1 - PRELIMINARY SPECIFICATIONS http://www.rfspace.com v0.1 RFSPACE CloudSDR CLOUDSDR INTRODUCTION The RFSPACE CloudSDR

More information

Digital Waveform Recorders

Digital Waveform Recorders Digital Waveform Recorders Error Models & Performance Measures Dan Knierim, Tektronix Fellow Experimental Set-up for high-speed phenomena Transducer(s) high-speed physical phenomenon under study physical

More information

Advances in RF and Microwave Measurement Technology

Advances in RF and Microwave Measurement Technology 1 Advances in RF and Microwave Measurement Technology Chi Xu Certified LabVIEW Architect Certified TestStand Architect New Demands in Modern RF and Microwave Test In semiconductor and wireless, technologies

More information

Hideo Okawara s. Mixed Signal Lecture Series

Hideo Okawara s. Mixed Signal Lecture Series Hideo Okawara s Mixed Signal Lecture Series DSP-Based Testing Fundamentals 3 DAC Output Waveform Verigy Japan July 2008 1/7 Preface to the Series ADC and DAC are the most typical mixed signal devices.

More information

01/26/2015 DIGITAL INTERLEAVED PWM FOR ENVELOPE TRACKING CONVERTERS. Pallab Midya, Ph.D.

01/26/2015 DIGITAL INTERLEAVED PWM FOR ENVELOPE TRACKING CONVERTERS. Pallab Midya, Ph.D. 1 DIGITAL INTERLEAVED PWM FOR ENVELOPE TRACKING CONVERTERS Pallab Midya, Ph.D. pallab.midya@adxesearch.com ABSTRACT The bandwidth of a switched power converter is limited by Nyquist sampling theory. Further,

More information

CLC Bit, 52 MSPS A/D Converter

CLC Bit, 52 MSPS A/D Converter 14-Bit, 52 MSPS A/D Converter General Description The is a monolithic 14-bit, 52 MSPS analog-to-digital converter. The ultra-wide dynamic range and high sample rate of the device make it an excellent choice

More information

DAC & ADC Testing Fundamental

DAC & ADC Testing Fundamental DAC & ADC Testing Fundamental Outline Specifications of DAC Specifications of ADC Test methodology Static specification Histogram method Transfer (and compare) method Dynamic specification FFT Polynomial

More information

A 4 GSample/s 8-bit ADC in. Ken Poulton, Robert Neff, Art Muto, Wei Liu, Andrew Burstein*, Mehrdad Heshami* Agilent Laboratories Palo Alto, California

A 4 GSample/s 8-bit ADC in. Ken Poulton, Robert Neff, Art Muto, Wei Liu, Andrew Burstein*, Mehrdad Heshami* Agilent Laboratories Palo Alto, California A 4 GSample/s 8-bit ADC in 0.35 µm CMOS Ken Poulton, Robert Neff, Art Muto, Wei Liu, Andrew Burstein*, Mehrdad Heshami* Agilent Laboratories Palo Alto, California 1 Outline Background Chip Architecture

More information

PXIe Contents CALIBRATION PROCEDURE. Reconfigurable 6 GHz RF Vector Signal Transceiver with 200 MHz Bandwidth

PXIe Contents CALIBRATION PROCEDURE. Reconfigurable 6 GHz RF Vector Signal Transceiver with 200 MHz Bandwidth IBRATION PROCEDURE PXIe-5646 Reconfigurable 6 GHz Vector Signal Transceiver with 200 MHz Bandwidth This document contains the verification and adjustment procedures for the PXIe-5646 vector signal transceiver.

More information

RTH GHz Bandwidth High Linearity Track-and-Hold REV-DATE PA FILE DS_0162PA2-3215

RTH GHz Bandwidth High Linearity Track-and-Hold REV-DATE PA FILE DS_0162PA2-3215 RTH090 25 GHz Bandwidth High Linearity Track-and-Hold REV-DATE PA2-3215 FILE DS RTH090 25 GHz Bandwidth High Linearity Track-and-Hold Features 25 GHz Input Bandwidth Better than -40dBc THD Over the Total

More information

Linearity Improvement Algorithms of Multi-bit ΔΣ DA Converter Combination of Unit Cell Re-ordering and DWA

Linearity Improvement Algorithms of Multi-bit ΔΣ DA Converter Combination of Unit Cell Re-ordering and DWA Linearity Improvement Algorithms of Multi-bit ΔΣ DA Converter Combination of Unit Cell Re-ordering and DWA Nene Kushita a, Jun-ya Kojima b, Masahiro Murakami c and Haruo Kobayashi d Division of Electronics

More information

Workshop ESSCIRC. Low-Power Data Acquisition System For Very Small Signals At Low Frequencies With12-Bit- SAR-ADC. 17. September 2010.

Workshop ESSCIRC. Low-Power Data Acquisition System For Very Small Signals At Low Frequencies With12-Bit- SAR-ADC. 17. September 2010. Workshop ESSCIRC Low-Power Data Acquisition System For Very Small Signals At Low Frequencies With12-Bit- SAR-ADC 17. September 2010 Christof Dohmen Outline System Overview Analog-Front-End Chopper-Amplifier

More information

Keysight Technologies Optimizing RF and Microwave Spectrum Analyzer Dynamic Range. Application Note

Keysight Technologies Optimizing RF and Microwave Spectrum Analyzer Dynamic Range. Application Note Keysight Technologies Optimizing RF and Microwave Spectrum Analyzer Dynamic Range Application Note 02 Keysight Optimizing RF and Microwave Spectrum Analyzer Dynamic Range Application Note 1. Introduction

More information

ADC1006S055/ General description. 2. Features. 3. Applications. Single 10 bits ADC, up to 55 MHz or 70 MHz

ADC1006S055/ General description. 2. Features. 3. Applications. Single 10 bits ADC, up to 55 MHz or 70 MHz Rev. 03 2 July 2012 Product data sheet 1. General description The are a family of Bipolar CMOS (BiCMOS) 10-bit Analog-to-Digital Converters (ADC) optimized for a wide range of applications such as cellular

More information

A 12-bit Interpolated Pipeline ADC using Body Voltage Controlled Amplifier

A 12-bit Interpolated Pipeline ADC using Body Voltage Controlled Amplifier A 12-bit Interpolated Pipeline ADC using Body Voltage Controlled Amplifier Hyunui Lee, Masaya Miyahara, and Akira Matsuzawa Tokyo Institute of Technology, Japan Outline Background Body voltage controlled

More information

The Case for Oversampling

The Case for Oversampling EE47 Lecture 4 Oversampled ADCs Why oversampling? Pulse-count modulation Sigma-delta modulation 1-Bit quantization Quantization error (noise) spectrum SQNR analysis Limit cycle oscillations nd order ΣΔ

More information

Noise Power Ratio for the GSPS

Noise Power Ratio for the GSPS Noise Power Ratio for the GSPS ADC Marjorie Plisch 1 Noise Power Ratio (NPR) Overview Concept History Definition Method of Measurement Notch Considerations Theoretical Values RMS Noise Loading Level 2

More information

ADVANCED WAVEFORM GENERATION TECHNIQUES FOR ATE

ADVANCED WAVEFORM GENERATION TECHNIQUES FOR ATE ADVANCED WAVEFORM GENERATION TECHNIQUES FOR ATE Christopher D. Ziomek Emily S. Jones ZTEC Instruments, Inc. 7715 Tiburon Street NE Albuquerque, NM 87109 Abstract Comprehensive waveform generation is an

More information

R&S FSWP Phase Noise Analyzer Specifications

R&S FSWP Phase Noise Analyzer Specifications R&S FSWP Phase Noise Analyzer Specifications Data Sheet Version 06.00 CONTENTS Definitions... 4 Specifications... 5 Frequency... 5 Phase noise measurements... 5 Phase noise sensitivity with R&S FSWP-B61

More information

Digital Calibration for Current-Steering DAC Linearity Enhancement

Digital Calibration for Current-Steering DAC Linearity Enhancement Digital Calibration for Current-Steering DAC Linearity Enhancement Faculty of Science and Technology, Division of Electronics & Informatics Gunma University Shaiful Nizam Mohyar, Haruo Kobayashi Gunma

More information

The Fundamentals of Mixed Signal Testing

The Fundamentals of Mixed Signal Testing The Fundamentals of Mixed Signal Testing Course Information The Fundamentals of Mixed Signal Testing course is designed to provide the foundation of knowledge that is required for testing modern mixed

More information

2.5GS/s Pipelined ADC with Background. Linearity Correction

2.5GS/s Pipelined ADC with Background. Linearity Correction A14b25GS/s8-Way-Interleaved 2.5GS/s Pipelined ADC with Background Calibration and Digital it Dynamic Linearity Correction B. Setterberg 1, K. Poulton 1, S. Ray 1, D.J. Huber 1, V. Abramzon 1, G. Steinbach

More information

l To emphasize the measurement issues l To develop in-depth understanding of noise n timing noise, phase noise in RF systems! n noise in converters!

l To emphasize the measurement issues l To develop in-depth understanding of noise n timing noise, phase noise in RF systems! n noise in converters! Purpose! Measurement Methods and Applications to High-Performance Timing Test! Mani Soma! Univ of Washington, Seattle! l To emphasize the measurement issues critical in high-frequency test! l To develop

More information

Issues and Challenges of Analog Circuit Testing in Mixed-Signal SOC

Issues and Challenges of Analog Circuit Testing in Mixed-Signal SOC VDEC D2T Symposium Dec. 11 2009 Issues and Challenges of Analog Circuit Testing in Mixed-Signal SOC Haruo Kobayashi Gunma University k_haruo@el.gunma-u.ac.jp 1 Contents 1. Introduction 2. Review of Analog

More information

DAC1627D Demo boards Quick Start v2

DAC1627D Demo boards Quick Start v2 DAC1627D Demo boards Quick Start v2 1 DAC1627D demoboard+ CGAP2 Board presentation CGAP2 board: Storage and Generation of complex patterns up to 32M (I,Q)- words DAC1627D board 2 DAC1627D demoboard+ CGAP2

More information

Architectures and circuits for timeinterleaved. Sandeep Gupta Teranetics, Santa Clara, CA

Architectures and circuits for timeinterleaved. Sandeep Gupta Teranetics, Santa Clara, CA Architectures and circuits for timeinterleaved ADC s Sandeep Gupta Teranetics, Santa Clara, CA Outline Introduction to time-interleaved architectures. Conventional Sampling architectures and their application

More information

Acquisition Time: Refer to Figure 1 when comparing SAR, Pipeline, and Delta-Sigma converter acquisition time. Signal Noise. Data Out Pipeline ADC

Acquisition Time: Refer to Figure 1 when comparing SAR, Pipeline, and Delta-Sigma converter acquisition time. Signal Noise. Data Out Pipeline ADC Application Report SBAA147A August 2006 Revised January 2008 A Glossary of Analog-to-Digital Specifications and Performance Characteristics Bonnie Baker... Data Acquisition Products ABSTRACT This glossary

More information

Summary Last Lecture

Summary Last Lecture EE47 Lecture 5 Pipelined ADCs (continued) How many bits per stage? Algorithmic ADCs utilizing pipeline structure Advanced background calibration techniques Oversampled ADCs Why oversampling? Pulse-count

More information

Audio Engineering Society. Convention Paper. Presented at the 122nd Convention 2007 May 5 8 Vienna, Austria

Audio Engineering Society. Convention Paper. Presented at the 122nd Convention 2007 May 5 8 Vienna, Austria Audio Engineering Society Convention Paper Presented at the 122nd Convention 2007 May 5 8 Vienna, Austria The papers at this Convention have been selected on the basis of a submitted abstract and extended

More information

Advances in RF and Microwave Measurement Technology

Advances in RF and Microwave Measurement Technology 1 Advances in RF and Microwave Measurement Technology Rejwan Ali Marketing Engineer NI Africa and Oceania New Demands in Modern RF and Microwave Test In semiconductor and wireless, technologies such as

More information

Agilent 81180A Arbitrary Waveform Generator

Agilent 81180A Arbitrary Waveform Generator Agilent 81180A Arbitrary Waveform Generator Data Sheet 1.0 Set up complex real-world signals with up to 4.2-GSa/s arbitrary waveforms and 12-bit vertical resolution 81180A at a glance 10-MS/s to 4.2-GSa/s

More information

USB Dynamic Signal Acquisition

USB Dynamic Signal Acquisition NI USB-9233 24-bit resolution 102 db dynamic range 50 ks/s max rate per channel 4 simultaneous analog inputs ±5 V input range AC coupled with IEPE power Hi-Speed USB 2.0 Recommended Software LabVIEW LabVIEW

More information

MP GHz RF RECORDER & PLAYER. Product Brochure

MP GHz RF RECORDER & PLAYER. Product Brochure Product Brochure Features 1. Adjustable instantaneous bandwidth 1 MHz to 100 MHz 2. Frequency coverage from 300 KHz to 6.0 GHz 3. 250 MSPS ADC sampling rate 4. 16-Bit ADC/DAC resolution, 96 db dynamic

More information

On-Chip Automatic Analog Functional Testing and Measurements

On-Chip Automatic Analog Functional Testing and Measurements On-Chip Automatic Analog Functional Testing and Measurements Chuck Stroud, Foster Dai, and Dayu Yang Electrical & Computer Engineering Auburn University from presentation to Select Universities Technology,

More information

NI 5781R Baseband Transceiver for NI FlexRIO

NI 5781R Baseband Transceiver for NI FlexRIO Technical Sales (866) 531-6285 orders@ni.com Ordering Information Detailed Specifications Pinouts/Front Panel Connections For user manuals and dimensional drawings, visit the product page resources tab

More information

Proposal for Transmitter Electrical Specifications

Proposal for Transmitter Electrical Specifications Proposal for Transmitter Electrical Specifications IEEE P803.2an Task Force Vancouver, January 05 Chris Pagnanelli, Solarflare Communications Jose Tellado, Teranetics Albert Vareljian, KeyEye Communications

More information

Why/When I need a Spectrum Analyzer. Jan 12, 2017

Why/When I need a Spectrum Analyzer. Jan 12, 2017 Why/When I need a Jan 12, 2017 Common Questions What s the difference of Oscilloscope and Spectrum Analysis Almost all Oscilloscope has FFT for a spectrum view, why I need a spectrum analyzer? When shall

More information

ADC1206S040/055/ General description. 2. Features. 3. Applications. Single 12 bits ADC, up to 40 MHz, 55 MHz or 70 MHz

ADC1206S040/055/ General description. 2. Features. 3. Applications. Single 12 bits ADC, up to 40 MHz, 55 MHz or 70 MHz Rev. 03 2 July 2012 Product data sheet 1. General description The are a family of BiCMOS 12-bit Analog-to-Digital Converters (ADC) optimized for a wide range of applications such as cellular infrastructures,

More information

SHF Communication Technologies AG

SHF Communication Technologies AG SHF Communication Technologies AG Wilhelm-von-Siemens-Str. 23D 12277 Berlin Germany Phone +49 30 772051-0 Fax +49 30 7531078 E-Mail: sales@shf.de Web: http://www.shf.de Datasheet SHF 78120 D Synthesized

More information

Network, Spectrum, and Impedance Evaluation of Electronic Circuits and Components

Network, Spectrum, and Impedance Evaluation of Electronic Circuits and Components H Network, Spectrum, and Impedance Evaluation of Electronic Circuits and Components Application Note 1308-1 HP 4395A/HP 4396B Network/Spectrum/Impedance Analyzer 1 Introduction With the current trends

More information

Keysight M3302A PXIe Arbitrary Waveform Generator and Digitizer with Optional Real-Time Sequencing and FPGA Programming

Keysight M3302A PXIe Arbitrary Waveform Generator and Digitizer with Optional Real-Time Sequencing and FPGA Programming Keysight M3302A PXIe Arbitrary Waveform Generator and Digitizer with Optional Real-Time Sequencing and FPGA Programming 500 MSa/s, 16 Bits, 2 Channel Arbitrary Waveform Generator 500 MSa/s, 14 Bits, 2

More information

Two- Path Band- Pass Σ- Δ Modulator with 40- MHz IF 72- db DR at 1- MHz Bandwidth Consuming 16 mw

Two- Path Band- Pass Σ- Δ Modulator with 40- MHz IF 72- db DR at 1- MHz Bandwidth Consuming 16 mw I. Galdi, E. Bonizzoni, F. Maloberti, G. Manganaro, P. Malcovati: "Two-Path Band- Pass Σ-Δ Modulator with 40-MHz IF 72-dB DR at 1-MHz Bandwidth Consuming 16 mw"; 33rd European Solid State Circuits Conf.,

More information

EE247 Lecture 14. To avoid having EE247 & EE 142 or EE290C midterms on the same day, EE247 midterm moved from Oct. 20 th to Thurs. Oct.

EE247 Lecture 14. To avoid having EE247 & EE 142 or EE290C midterms on the same day, EE247 midterm moved from Oct. 20 th to Thurs. Oct. Administrative issues EE247 Lecture 14 To avoid having EE247 & EE 142 or EE29C midterms on the same day, EE247 midterm moved from Oct. 2 th to Thurs. Oct. 27 th Homework # 4 due on Thurs. Oct. 2 th H.K.

More information

SHF Communication Technologies AG

SHF Communication Technologies AG SHF Communication Technologies AG Wilhelm-von-Siemens-Str. 23D 12277 Berlin Germany Phone +49 30 772051-0 Fax +49 30 7531078 E-Mail: sales@shf.de Web: http://www.shf.de Datasheet SHF 78210 B Synthesized

More information

TESTING METHODS AND ERROR BUDGET ANALYSIS OF A SOFTWARE DEFINED RADIO By Richard Overdorf

TESTING METHODS AND ERROR BUDGET ANALYSIS OF A SOFTWARE DEFINED RADIO By Richard Overdorf TESTING METHODS AND ERROR BUDGET ANALYSIS OF A SOFTWARE DEFINED RADIO By Richard Overdorf SDR Considerations Data rates Voice Image Data Streaming Video Environment Distance Terrain High traffic/low traffic

More information

Data Converters. Specifications for Data Converters. Overview. Testing and characterization. Conditions of operation

Data Converters. Specifications for Data Converters. Overview. Testing and characterization. Conditions of operation Data Converters Overview Specifications for Data Converters Pietro Andreani Dept. of Electrical and Information Technology Lund University, Sweden Conditions of operation Type of converter Converter specifications

More information

M8131A 16/32 GSa/s Digitizer

M8131A 16/32 GSa/s Digitizer M8131A 16/32 GSa/s Digitizer Preliminary Data Sheet, Version 0.6, April 10 th, 2019 Find us at www.keysight.com Page 1 M8131A at a glance Key features 10 bit ADC 1, 2 or 4 channels, 6.5 GHz bandwidth (16

More information

Tiny, 2.1mm x 1.6mm, 3Msps, Low-Power, Serial 12-Bit ADC

Tiny, 2.1mm x 1.6mm, 3Msps, Low-Power, Serial 12-Bit ADC EVALUATION KIT AVAILABLE MAX1118 General Description The MAX1118 is a tiny (2.1mm x 1.6mm), 12-bit, compact, high-speed, low-power, successive approximation analog-to-digital converter (ADC). This high-performance

More information

Advanced RF Measurements You Didn t Know Your Oscilloscope Could Make. Brad Frieden Philip Gresock

Advanced RF Measurements You Didn t Know Your Oscilloscope Could Make. Brad Frieden Philip Gresock Advanced RF Measurements You Didn t Know Your Oscilloscope Could Make Brad Frieden Philip Gresock Agenda RF measurement challenges Oscilloscope platform overview Typical RF characteristics Bandwidth vs.

More information

Note Using the PXIe-5785 in a manner not described in this document might impair the protection the PXIe-5785 provides.

Note Using the PXIe-5785 in a manner not described in this document might impair the protection the PXIe-5785 provides. SPECIFICATIONS PXIe-5785 PXI FlexRIO IF Transceiver This document lists the specifications for the PXIe-5785. Specifications are subject to change without notice. For the most recent device specifications,

More information

LNS ultra low phase noise Synthesizer 8 MHz to 18 GHz

LNS ultra low phase noise Synthesizer 8 MHz to 18 GHz LNS ultra low phase noise Synthesizer 8 MHz to 18 GHz Datasheet The LNS is an easy to use 18 GHz synthesizer that exhibits outstanding phase noise and jitter performance in a 3U rack mountable chassis.

More information

Keysight M3300A PXIe Arbitrary Waveform Generator and Digitizer with Optional Real-Time Sequencing and FPGA Programming

Keysight M3300A PXIe Arbitrary Waveform Generator and Digitizer with Optional Real-Time Sequencing and FPGA Programming Keysight M3300A PXIe Arbitrary Waveform Generator and Digitizer with Optional Real-Time Sequencing and FPGA Programming 500 MSa/s, 16 Bits, 2/4 Channel AWG 100 MSa/s, 14 Bits, 4/8 Channel Digitizer Data

More information

Low-Power Pipelined ADC Design for Wireless LANs

Low-Power Pipelined ADC Design for Wireless LANs Low-Power Pipelined ADC Design for Wireless LANs J. Arias, D. Bisbal, J. San Pablo, L. Quintanilla, L. Enriquez, J. Vicente, J. Barbolla Dept. de Electricidad y Electrónica, E.T.S.I. de Telecomunicación,

More information

A new method of spur reduction in phase truncation for DDS

A new method of spur reduction in phase truncation for DDS A new method of spur reduction in phase truncation for DDS Zhou Jianming a) School of Information Science and Technology, Beijing Institute of Technology, Beijing, 100081, China a) zhoujm@bit.edu.cn Abstract:

More information

HR001118S0020 Millimeter-Wave Digital Arrays (MIDAS) Frequently Asked Questions (FAQ) March 12, 2018

HR001118S0020 Millimeter-Wave Digital Arrays (MIDAS) Frequently Asked Questions (FAQ) March 12, 2018 HR001118S0020 Millimeter-Wave Digital Arrays (MIDAS) Frequently Asked Questions (FAQ) March 12, 2018 Q1: Will there be multiple awards? A1: Yes, multiple awards are expected (page 4 of BAA). Q2: Will there

More information

Measuring 3rd order Intercept Point (IP3 / TOI) of an amplifier

Measuring 3rd order Intercept Point (IP3 / TOI) of an amplifier Measuring 3rd order Intercept Point (IP3 / TOI) of an amplifier Why measuring IP3 / TOI? IP3 is an important parameter for nonlinear systems like mixers or amplifiers which helps to verify the quality

More information

8 GHz Bandwidth Low Noise 1 GS/s Dual Track-and-Hold

8 GHz Bandwidth Low Noise 1 GS/s Dual Track-and-Hold RTH030 8 GHz Bandwidth Low Noise 1 GS/s Dual Track-and-Hold Features 8 GHz Input Bandwidth (0.25 Vpp V IN Differential) 100-1000 MHz Sampling Rate (TH1) 10-1000 MHz Output Data Rate (TH2) -74 db Hold Mode

More information

Agilent Combining Network and Spectrum Analysis and IBASIC to Improve Device Characterization and Test Time

Agilent Combining Network and Spectrum Analysis and IBASIC to Improve Device Characterization and Test Time Agilent Combining Network and Spectrum Analysis and IBASIC to Improve Device Characterization and Test Time Application Note 1288-1 Using the 4396B to analyze linear and non-linear components - a 900 MHz

More information

INF4420. ΔΣ data converters. Jørgen Andreas Michaelsen Spring 2012

INF4420. ΔΣ data converters. Jørgen Andreas Michaelsen Spring 2012 INF4420 ΔΣ data converters Spring 2012 Jørgen Andreas Michaelsen (jorgenam@ifi.uio.no) Outline Oversampling Noise shaping Circuit design issues Higher order noise shaping Introduction So far we have considered

More information

Dual 10-Bit, 40Msps, 3V, Low-Power ADC with Internal Reference and Parallel Outputs

Dual 10-Bit, 40Msps, 3V, Low-Power ADC with Internal Reference and Parallel Outputs 19-2173; Rev 1; 7/6 Dual 1-Bit, 4Msps, 3, Low-Power ADC with General Description The is a 3, dual 1-bit analog-to-digital converter (ADC) featuring fully differential wideband trackand-hold (T/H) inputs,

More information

ANALOG CIRCUITS AND SIGNAL PROCESSING

ANALOG CIRCUITS AND SIGNAL PROCESSING ANALOG CIRCUITS AND SIGNAL PROCESSING Series Editors Mohammed Ismail, The Ohio State University Mohamad Sawan, École Polytechnique de Montréal For further volumes: http://www.springer.com/series/7381 Yongjian

More information

Dual 10-Bit, 20Msps, 3V, Low-Power ADC with Internal Reference and Multiplexed Parallel Outputs

Dual 10-Bit, 20Msps, 3V, Low-Power ADC with Internal Reference and Multiplexed Parallel Outputs 19-2175; Rev 3; 5/11 Dual 1-Bit, 2Msps, 3V, Low-Power ADC with General Description The is a 3V, dual 1-bit analog-to-digital converter (ADC) featuring fully-differential wideband trackand-hold (T/H) inputs,

More information

Equalization of Multiple Interleaved Analog-to-Digital Converters (ADC s)

Equalization of Multiple Interleaved Analog-to-Digital Converters (ADC s) Equalization of Multiple Interleaved Analog-to-Digital Converters (ADC s) By: Semen Volfbeyn Anatoli Stein 1 Introduction Multiple interleaved Analog-to-Digital Converters (ADC s) are widely used to increase

More information

Rohde & Schwarz EMI/EMC debugging with modern oscilloscope. Ing. Leonardo Nanetti Rohde&Schwarz

Rohde & Schwarz EMI/EMC debugging with modern oscilloscope. Ing. Leonardo Nanetti Rohde&Schwarz Rohde & Schwarz EMI/EMC debugging with modern oscilloscope Ing. Leonardo Nanetti Rohde&Schwarz EMI debugging Agenda l The basics l l l l The idea of EMI debugging How is it done? Application example What

More information

Analog Input Performance of VPX3-530

Analog Input Performance of VPX3-530 TECHNOLOGY WHITE PAPER Analog Input Performance of VPX3-530 DEFENSE SOLUTIONS Table of Contents Introduction 1 Analog Input Architecture 2 AC Coupling to ADCs 2 ADC Modes 2 Dual Edge Sample Modes 3 Non-DES

More information

RF Locking of Femtosecond Lasers

RF Locking of Femtosecond Lasers RF Locking of Femtosecond Lasers Josef Frisch, Karl Gumerlock, Justin May, Steve Smith SLAC Work supported by DOE contract DE-AC02-76SF00515 1 Overview FEIS 2013 talk discussed general laser locking concepts

More information

Integration of Measurement Equipment in a Matlab Environment for the Example of Radar Chirps

Integration of Measurement Equipment in a Matlab Environment for the Example of Radar Chirps Integration of Measurement Equipment in a Matlab Environment for the Example of Radar Chirps Špiro Moškov RF and Wireless Application Engineer Agilent Technologies Page 1 Agenda Signal creation and instrument

More information

Keysight Technologies

Keysight Technologies Keysight Technologies Generating Signals Basic CW signal Block diagram Applications Analog Modulation Types of analog modulation Block diagram Applications Digital Modulation Overview of IQ modulation

More information