Enhancing Analog Signal Generation by Digital Channel Using Pulse-Width Modulation

Size: px
Start display at page:

Download "Enhancing Analog Signal Generation by Digital Channel Using Pulse-Width Modulation"

Transcription

1 Enhancing Analog Signal Generation by Digital Channel Using Pulse-Width Modulation Angelo Zucchetti Advantest Introduction Presented in this article is a technique for generating an analog signal using a digital pin driver. This technique is similar to the one presented in previous articles 1 where the delta sigma modulation approach based on pulse density modulation was introduced. The technique described in this article is based on Pulse-Width Modulation (PWM). This is widely used in many applications, like sensors and microcontrollers. The analog signal generation is obtained by modulating the duty-cycle of a digital pulse stream and filtering it with a suitable low-pass filter. In this technique sigma-delta noise-shaping is also applied, to shift the quantization noise outside the filter pass-band. With the PWM performance improvements have been obtained with respect to the previous methodology. The analog signal max amplitude is larger, linearity and signal-to-noise (SNR) performances are improved. The software support for Per Pin Signal generation based on PWM has been included in V93000 Smartest starting from release Overview of Pulse Width Modulation Pulse Width Modulation is based on modulating the duty cycle of a digital pulse. The analog signal-amplitude is mapped into the duty-cycle of a pulse by a defined transfer function. The easiest transfer function is just a linear function. In Figure 1 this mapping is shown for a Sine waveform of amplitude V pp and offset V cm. 1 DSP-Based Testing - Fundamentals 44: Analog Signal Generation by Digital Pin Driver I; DSP-Based Testing - Fundamentals 45: Analog Signal Generation by Digital Pin Driver II; 1/11

2 Figure 1: Pulse Width Modulation Amplitude to Duty-Cycle Mapping The parameter k is called the modulation depth and represents the percentage of the pulse period used for the modulation. It can also be seen as the ratio between the analog-signal amplitude and the pulse amplitude. As the figure shows an analog waveform F(t) with common mode V cm can be sampled at a given frequencyf s and mapped into a digital-pulse stream. The sampling frequency determines the period of the digital pulses T = 1/f s, while the time-duration of n-th pulse w n is given by: w n = T 2 [1 + 2k (F(t n) V cm ) V pp ] The pulse duration w n defines the position of the falling edge of the digital pulse, while the trailing edge is always placed at the beginning of the period. The edge placement can be done with a minimum resolution given by the driver hardware capabilities. For example, with the Advantest Pin Scale 1600 digital card a pulse period is generated by a series of bits at the maximum speed of the card, which is 1600 Gbps. This leads to a minimum edge placement resolution of 625 ps. However, a better resolution can be achieved using higher-speed digital cards such as the Pin Scale 9G which has a maximum speed of 8 Gbps, which leads to a resolution of 125 ps. The finite edge placement resolution leads to a quantization of the pulse duration w n. This quantization process is equivalent to an analog-to-digital conversion performed by and ADC with a number of bits given by: N bits = log 2 ( kt r ) where r is the edge-placement resolution. For example, sampling an analog waveform at the frequency of 200 ksps, with a modulation depth 0.8 and using a Pin Scale 1600 digital card gives a resolution of the equivalent ADC equal to 12.6 bits. An estimation of the noise generated by this quantization process can be evaluated using the definition of Effective Number of Bits: SNR = (6.02N bits )dB 2/11

3 which gives for the SNR a value around 77.6 db. Noise Shaping The quantization process related to the Pulse Width Modulation, leads to a flat noise floor (see Figure 3). As it has been described for the Pulse-Density Modulation, a noise shaping technique can be apply to lower the noise level for the lower frequency and push it out to the higher frequency, where it gets attenuated by the analog low-pass filter. For the noise shaping a multi-bit Delta-sigma modulator is used. In the block diagram of Figure 2 such a modulator is shown, where for simplicity a first order modulator is considered. Figure 2: Multi-bit delta-sigma modulation The sampled voltage Vin goes through a signal integrator and the integrated voltage V1 is quantized by a N-bit quantizer (Vout). The value is the output of the Pulse Width modulator and to an N-bit DAC. The DAC converts the quantized voltage into an analog voltage V2. For the next code generation the difference between a new Vin sample and V2 is calculated (delta) and fed into the integrator (sigma) to generate a new voltage V1 for the Quantizer. 3/11

4 Figure 3: 10 khz Sine wave spectrum with no sigma-delta modulation (gray),first order delta-sigma modulation (blue) and second order delta-sigma modulation(red). In Figure 3 the spectrum of a quantized 10 KHz sine wave sampled at 200 ksps is shown. The spectrum obtained without applying any modulation is compared with the noise-modulated spectrum obtained by running the first and second order delta-sigma modulator. As expected the noise floor is lowered by the noise-shaping, and the effect is more relevant if the modulator order is increased 2. For the PWM a higher order delta-sigma modulation is used, to increase considerably the signal to noise performance inside the pass-band of the low-pass filter. Carrier-Pulse Distortion After the noise-shaped quantization the calculated codes (Vout) are translated into pulses of different time-duration w n. Figure 4 shows an example of this stream where in the x-axis the cycle number if reported. Figure 4: PWM stream 2 DSP-Based Testing - Fundamentals 45: Analog Signal Generation by Digital Pin Driver II. 4/11

5 Figure 5: Pulse-stream Spectrum - no-filtering In Figure 5 the spectrum of the pulse stream captured before the analog filter is shown. This stream is designed to generate a 10 khz Sine analog waveform, with a sampling frequency of 150 ksps. The spectrum analyzer screenshot on the left size shows the spectrum of the pulse stream for a frequency up to 1 MHz. At 10 khz (marker position) the signal generated by the modulation can be seen. The peak in the middle of the spectrum located at 450 khz is the pulse-carrier frequency. For the analog signal generation the code frequency has been chosen to be 3 times the sampling frequency. This is done automatically by the per-pin signal generation software. Left and right of the carrier frequency at a distance of 10 khz from each other there are inter-modulation components. The screenshot on the right shows the spectrum of the same pulse-stream taken up to 2.5 MHz. In this screenshots the harmonics of the carrier-pulses surrounded by the corresponding intermodulation components can be seen. From the performance point of view, the carrier pulse fundamental frequency and harmonics do not pose any issue. This is due to the fact that these frequencies are multiple of the sampling frequency. The spectrum calculated from the captured samples is limited to the Nyquist frequency f s 2. The higher frequencies are folded back (aliased) inside the Nyquist interval. The frequencies which are multiple of f s gets folded into the DC component, which is not considered in the Signal-to-Noise measurements. Unfortunately this does not occur for the intermodulation components, which if not properly filtered, will be aliased into the low-frequency segment of the spectrum. For this reason it is important to design a filter which has enough attenuation for suppressing these components below the noise-floor. Usually high order Low-pass filters are designed, which allows for a proper attenuation on a wide frequency range. If the attenuation provided by the filter is not enough the data stream can be generated with a higher carrier frequency (always multiple of the sampling frequency) moving the intermodulation components to higher frequency, where the attenuation is larger. Low Pass Filter Reference Design A key element for the Per Pin Signal Generator performance is the low-pass filter. A non-properly designed filter can generate an unexpected large distortion in the output analog signal and can lead 5/11

6 to very poor performance. For this reason a set of pre-designed filters have been designed and measured. These filters are all available on a single daughter board, which can be used for performance evaluation and engineering prior to the production loadboard design. The Per Pin Signal Generator loadboard can be seen in Figure 6. Figure 6: Per Pin Signal Generator Reference Daughter Board Key features for a properly designed filter for the Per Pin Signal Generation should be: The pass-band should be flat, to minimize filter-induced distortion. The transition-band should be steep to assure attenuation shaped quantization noise which is increasing outside the filter Pass-Band. The stop-band should have a high attenuation factor over a long frequency range to attenuate quantization-noise and the intermodulation and spurious components. Figure 7: Ideal Low Pass Filter Per Pin Signal Generator Tool Starting with the V93000 SmarTest release a tool that automatically generates the Per Pin Signal Generator Setup has been developed. This tool can be started from the Signal Analyzer Tool 6/11

7 and provides an easy to use Graphical User Interface (GUI), as shown in Figure 8. Figure 8: Per Pin Signal Generator GUI The GUI is divided into 4 sections. In the first section the digital channel parameters can be defined. Here the user can specify if the output signal is single ended or differential. He can also specify the name of the used digital pins and the name of the port defined for these pins. The pins used for the per-pin signal generation, run with their own period, which is near to the maximum rate of the digital card. For this reason they need to be run in a separated port, to allow for setting an independent period for the other pins of the device. The second section is dedicated to the definition of the low-pass filter. The parameters here are the filter cut-off frequency, the order of the filter and the series resistance of the filter. In the third section the analog signal is defined. The user should specify the waveform shape. Sines, Ramp-up, Ramp-down and Triangular waveforms are supported. Once this is defined the relevant parameter for the waveform definition need to be given. For example, if a Sine waveform is chosen, the user has to define the signal frequency and the initial phase. In this section the signal max and min voltage also need to be specified. In this section a pre-waveform and post-waveform duration can be optionally given. The pre and post-waveform is particularly useful for the ramp generation. For this waveform shape, the pre and post waveform is generated just by looping the first and the last code of the ramp, respectively, for the specified amount of time. This can be used as an example for charging the filter before starting the ramp. Finally the fourth section is dedicated to the DUT relevant parameters. First the number of connected input and the DUT impedance can be specified. These two parameters, together with the low-pass filter series resistance, are used by the tool to calculate the digital channel levels needed 7/11

8 to generate the specified analog signal. The following parameters are the number of samples and the sampling frequency and the Noise-reduced bandwidth. The last parameter is set to the Nyquist frequency per default but a different value can be specified. This parameter is the relevant bandwidth considered for the SNR calculation. Details on the input parameters and the GUI operation can be found in the Technical Documentation Center 3. Once the parameters have been set the calculation is started by pressing the ok button. The calculation result is the output of the Signal Analyzer Tool as shown in Figure 9. The tool output the bit stream for the PPSG pins and the expected waveform. The download Action of the Signal Analyzer Tool can be used to download the bit-stream. In the console run-time errors and warnings from the stream generation are displayed. Figure 9:Signal Analyzer Tool: Per Pin Signal Generator Output The tool also generates a STIL file containing all the setup information. If the V93000 SmarTest Data Link Stilreader is installed on the workstation, the STIL file is compiled and a One Test-Suite Test Program is generated. Then the setups can be merged into the existing test program manually or by using the V93000 SmarTest Test Program Manager. Performance Example In this section some performance results produced by using the Pin Scale 1600 digital channels are shown. The first example is a 0 to 6 Volts voltage ramp (Figure 10). The ramp was generated by the PWM 3 Advantest Technical Documentation Center: V93000 Smartest Documentation: PPSG Operation (Topic ). 8/11

9 Per Pin Signal Generator. The sampling frequency for the generation was set to 200 ksps and the number of samples to The 1.3 khz low-pass filter of the PPSG reference loadboard was used. For the measurement the LF Digitizer of MB-AV8+ was used setting the sampling frequency at 200 ksps and the voltage offset at 3 Volts. The load impedance is 1 MOhm. Figure 10: 0 to 6V Voltage Ramp - Linearity In the first graph of Figure 10 the raw digitized ramp is shown. Below the DNL and INL in uv can be seen. The DNL is 84 uv while INL is 256 uv. This corresponds to a resolution larger than 14 bits. The second example is a 10 khz Sine wave of 6 Volts peak to peak generated at 150 ksps with 4096 samples (Figure 11). Here the 14 khz Active Low-pass filter of the PPSG reference loadboard has been used. For the measurement again the LF Digitizer of MB-AV8+ was used setting the sampling frequency at 200 ksps and the voltage offset at 3 Volts. The load impedance is 1 MOhm 9/11

10 Figure 11: Sine 10 khz 6V peak to peak From the measured data shown in Figure 11 the spectrum of the signal can be calculated. This shows a dynamic range of 88 dbc. The SNR is 90 db and THD is -88 dbc., which gives an equivalent resolution (ENOB) of 14 bits. The last example is a 1 MHz Sine wave of 3.3 Volts peak to peak generated at 10 Msps with 4096 samples (Figure 12). Here the 1.3 MHz Low-pass filter of the PPSG reference loadboard has been used. For the measurement the VHF Digitizer of MB-AV8+ was used setting the sampling frequency at 10 Msps and the voltage offset at 1.65 Volts. The load impedance is 10 kohm and the embedded analog 15 MHz anti-aliasing filter is used. Figure 12: Sine 1 MHz 3.3V peak-to-peak 10/11

11 With this example the limit of the PWM modulation is reached. The tool allows generating setups for signals of up to 50 MHz, but above 1 MHz the PWM it is not used anymore. The generated setup is just a clock pattern with a frequency defined by the signal frequency. The result shows a SFDR of about 60 dbc. The calculated SNR is 61 db, and the THD is -59 dbc. The equivalent resolution (ENOB) for this setup is 9 bits. Summary and conclusion This article is a novel technique for an analog signal generation by a digital pin driver is introduced. The principle of the Pulse width modulation and multi bit delta-sigma modulation are presented. The performance requirement for the analog low-pass filter has been discussed. The software support of this feature introduced with V93000 SmarTest has been described and some examples are given to shown the performance of this technique. This technique is being applied in testing the analog block of low-cost devices, where the infrastructure-cost reduction lead by the replacement of a costly analog board with a digital channel is important. 11/11

The Fundamentals of Mixed Signal Testing

The Fundamentals of Mixed Signal Testing The Fundamentals of Mixed Signal Testing Course Information The Fundamentals of Mixed Signal Testing course is designed to provide the foundation of knowledge that is required for testing modern mixed

More information

Technical Specifications Revision 1.20

Technical Specifications Revision 1.20 Verigy V93000 SOC MB Verigy AV8 V93000 SOC Analog MB AV8 Card Analog Card Technical s Revision 1.20 Verigy Ltd. Restricted Table of Contents MB AV8 Overview... 3 Software environment... 3 Scope of specifications...

More information

ADC and DAC Standards Update

ADC and DAC Standards Update ADC and DAC Standards Update Revised ADC Standard 2010 New terminology to conform to Std-1057 SNHR became SNR SNR became SINAD Added more detailed test-setup descriptions Added more appendices Reorganized

More information

Testing A/D Converters A Practical Approach

Testing A/D Converters A Practical Approach Testing A/D Converters A Practical Approach Mixed Signal The seminar entitled Testing Analog-to-Digital Converters A Practical Approach is a one-day information intensive course, designed to address the

More information

MSP430 Teaching Materials

MSP430 Teaching Materials MSP430 Teaching Materials Chapter 9 Data Acquisition A/D Conversion Introduction Texas Instruments t Incorporated University of Beira Interior (PT) Pedro Dinis Gaspar, António Espírito Santo, Bruno Ribeiro,

More information

Fundamentals of Data Converters. DAVID KRESS Director of Technical Marketing

Fundamentals of Data Converters. DAVID KRESS Director of Technical Marketing Fundamentals of Data Converters DAVID KRESS Director of Technical Marketing 9/14/2016 Analog to Electronic Signal Processing Sensor (INPUT) Amp Converter Digital Processor Actuator (OUTPUT) Amp Converter

More information

AD9772A - Functional Block Diagram

AD9772A - Functional Block Diagram F FEATURES single 3.0 V to 3.6 V supply 14-Bit DAC Resolution 160 MPS Input Data Rate 67.5 MHz Reconstruction Passband @ 160 MPS 74 dbc FDR @ 25 MHz 2 Interpolation Filter with High- or Low-Pass Response

More information

Accurate Harmonics Measurement by Sampler Part 2

Accurate Harmonics Measurement by Sampler Part 2 Accurate Harmonics Measurement by Sampler Part 2 Akinori Maeda Verigy Japan akinori.maeda@verigy.com September 2011 Abstract of Part 1 The Total Harmonic Distortion (THD) is one of the major frequency

More information

The need for Data Converters

The need for Data Converters The need for Data Converters ANALOG SIGNAL (Speech, Images, Sensors, Radar, etc.) PRE-PROCESSING (Filtering and analog to digital conversion) DIGITAL PROCESSOR (Microprocessor) POST-PROCESSING (Digital

More information

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics Politecnico di Torino Electronic Eng. Master Degree Analog and Telecommunication Electronics D6 - High speed A/D converters» Spectral performance analysis» Undersampling techniques» Sampling jitter» Interleaving

More information

Models 296 and 295 combine sophisticated

Models 296 and 295 combine sophisticated Established 1981 Advanced Test Equipment Rentals www.atecorp.com 800-404-ATEC (2832) Models 296 and 295 50 MS/s Synthesized Multichannel Arbitrary Waveform Generators Up to 4 Independent Channels 10 Standard

More information

Reconfigurable 6 GHz Vector Signal Transceiver with I/Q Interface

Reconfigurable 6 GHz Vector Signal Transceiver with I/Q Interface SPECIFICATIONS PXIe-5645 Reconfigurable 6 GHz Vector Signal Transceiver with I/Q Interface Contents Definitions...2 Conditions... 3 Frequency...4 Frequency Settling Time... 4 Internal Frequency Reference...

More information

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT BIT, 250KSPS ADC

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT BIT, 250KSPS ADC DESCRIPTION QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 1255 LTC1605CG/LTC1606CG The LTC1606 is a 250Ksps ADC that draws only 75mW from a single +5V Supply, while the LTC1605 is a 100Ksps ADC that draws

More information

New Features of IEEE Std Digitizing Waveform Recorders

New Features of IEEE Std Digitizing Waveform Recorders New Features of IEEE Std 1057-2007 Digitizing Waveform Recorders William B. Boyer 1, Thomas E. Linnenbrink 2, Jerome Blair 3, 1 Chair, Subcommittee on Digital Waveform Recorders Sandia National Laboratories

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering And Computer Sciences MULTIFREQUENCY CELL IMPEDENCE MEASUREMENT

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering And Computer Sciences MULTIFREQUENCY CELL IMPEDENCE MEASUREMENT UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering And Computer Sciences MULTIFREQUENCY CELL IMPEDENCE MEASUREMENT EE247 Term Project Eddie Ng Mounir Bohsali Professor

More information

ADC Resolution: Myth and Reality

ADC Resolution: Myth and Reality ADC Resolution: Myth and Reality Mitch Ferguson, Applications Engineering Manager Class ID: CC19I Renesas Electronics America Inc. Mr. Mitch Ferguson Applications Engineering Manager Specializes support

More information

APPLICATION NOTE 3942 Optimize the Buffer Amplifier/ADC Connection

APPLICATION NOTE 3942 Optimize the Buffer Amplifier/ADC Connection Maxim > Design Support > Technical Documents > Application Notes > Communications Circuits > APP 3942 Maxim > Design Support > Technical Documents > Application Notes > High-Speed Interconnect > APP 3942

More information

Analog-to-Digital Converter Survey & Analysis. Bob Walden. (310) Update: July 16,1999

Analog-to-Digital Converter Survey & Analysis. Bob Walden. (310) Update: July 16,1999 Analog-to-Digital Converter Survey & Analysis Update: July 16,1999 References: 1. R.H. Walden, Analog-to-digital converter survey and analysis, IEEE Journal on Selected Areas in Communications, vol. 17,

More information

Summary Last Lecture

Summary Last Lecture Interleaved ADCs EE47 Lecture 4 Oversampled ADCs Why oversampling? Pulse-count modulation Sigma-delta modulation 1-Bit quantization Quantization error (noise) spectrum SQNR analysis Limit cycle oscillations

More information

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics Politecnico di Torino Electronic Eng. Master Degree Analog and Telecommunication Electronics D1 - A/D/A conversion systems» Sampling, spectrum aliasing» Quantization error» SNRq vs signal type and level»

More information

The Case for Oversampling

The Case for Oversampling EE47 Lecture 4 Oversampled ADCs Why oversampling? Pulse-count modulation Sigma-delta modulation 1-Bit quantization Quantization error (noise) spectrum SQNR analysis Limit cycle oscillations nd order ΣΔ

More information

Hideo Okawara s Mixed Signal Lecture Series. DSP-Based Testing Fundamentals 6 Spectrum Analysis -- FFT

Hideo Okawara s Mixed Signal Lecture Series. DSP-Based Testing Fundamentals 6 Spectrum Analysis -- FFT Hideo Okawara s Mixed Signal Lecture Series DSP-Based Testing Fundamentals 6 Spectrum Analysis -- FFT Verigy Japan October 008 Preface to the Series ADC and DAC are the most typical mixed signal devices.

More information

1. R-2R ladder Digital-Analog Converters (DAC). Connect the DAC boards (2 channels) and Nexys 4 board according to Fig. 1.

1. R-2R ladder Digital-Analog Converters (DAC). Connect the DAC boards (2 channels) and Nexys 4 board according to Fig. 1. Analog-Digital and Digital-Analog Converters Digital Electronics Labolatory Ernest Jamro, Maciej Wielgosz, Piotr Rzeszut Dep. of Electronics, AGH-UST, Kraków Poland, 2015-01-10 1. R-2R ladder Digital-Analog

More information

Chapter 2: Digitization of Sound

Chapter 2: Digitization of Sound Chapter 2: Digitization of Sound Acoustics pressure waves are converted to electrical signals by use of a microphone. The output signal from the microphone is an analog signal, i.e., a continuous-valued

More information

Telecommunication Electronics

Telecommunication Electronics Politecnico di Torino ICT School Telecommunication Electronics C5 - Special A/D converters» Logarithmic conversion» Approximation, A and µ laws» Differential converters» Oversampling, noise shaping Logarithmic

More information

ENGINEERING FOR RURAL DEVELOPMENT Jelgava, EDUCATION METHODS OF ANALOGUE TO DIGITAL CONVERTERS TESTING AT FE CULS

ENGINEERING FOR RURAL DEVELOPMENT Jelgava, EDUCATION METHODS OF ANALOGUE TO DIGITAL CONVERTERS TESTING AT FE CULS EDUCATION METHODS OF ANALOGUE TO DIGITAL CONVERTERS TESTING AT FE CULS Jakub Svatos, Milan Kriz Czech University of Life Sciences Prague jsvatos@tf.czu.cz, krizm@tf.czu.cz Abstract. Education methods for

More information

Analog Arts SF990 SF880 SF830 Product Specifications

Analog Arts SF990 SF880 SF830 Product Specifications 1 www.analogarts.com Analog Arts SF990 SF880 SF830 Product Specifications Analog Arts reserves the right to change, modify, add or delete portions of any one of its specifications at any time, without

More information

ADCS7476/ADCS7477/ADCS7478 1MSPS, 12-/10-/8-Bit A/D Converters in 6-Lead SOT-23

ADCS7476/ADCS7477/ADCS7478 1MSPS, 12-/10-/8-Bit A/D Converters in 6-Lead SOT-23 ADCS7476/ADCS7477/ADCS7478 1MSPS, 12-/10-/8-Bit A/D Converters in 6-Lead SOT-23 General Description The ADCS7476, ADCS7477, and ADCS7478 are low power, monolithic CMOS 12-, 10- and 8-bit analog-to-digital

More information

ADQ214. Datasheet. Features. Introduction. Applications. Software support. ADQ Development Kit. Ordering information

ADQ214. Datasheet. Features. Introduction. Applications. Software support. ADQ Development Kit. Ordering information ADQ214 is a dual channel high speed digitizer. The ADQ214 has outstanding dynamic performance from a combination of high bandwidth and high dynamic range, which enables demanding measurements such as RF/IF

More information

Digital Time-Interleaved ADC Mismatch Error Correction Embedded into High-Performance Digitizers

Digital Time-Interleaved ADC Mismatch Error Correction Embedded into High-Performance Digitizers Digital Time-Interleaved ADC Mismatch Error Correction Embedded into High-Performance Digitizers BY PER LÖWENBORG, PH.D., DOCENT 1 TIME-INTERLEAVED ANALOG-TO-DIGITAL CONVERTERS AND MISMATCH ERRORS Achievable

More information

Analog Arts SL987 SL957 SL937 SL917 Product Specifications [1]

Analog Arts SL987 SL957 SL937 SL917 Product Specifications [1] www.analogarts.com Analog Arts SL987 SL957 SL937 SL917 Product Specifications [1] 1. These models include: an oscilloscope, a spectrum analyzer, a data recorder, a frequency & phase meter, an arbitrary

More information

Analog Arts SF900 SF650 SF610 Product Specifications

Analog Arts SF900 SF650 SF610 Product Specifications www.analogarts.com Analog Arts SF900 SF650 SF610 Product Specifications Analog Arts reserves the right to change, modify, add or delete portions of any one of its specifications at any time, without prior

More information

National Instruments Flex II ADC Technology The Flexible Resolution Technology inside the NI PXI-5922 Digitizer

National Instruments Flex II ADC Technology The Flexible Resolution Technology inside the NI PXI-5922 Digitizer National Instruments Flex II ADC Technology The Flexible Resolution Technology inside the NI PXI-5922 Digitizer Kaustubh Wagle and Niels Knudsen National Instruments, Austin, TX Abstract Single-bit delta-sigma

More information

Analog Arts SG985 SG884 SG834 SG814 Product Specifications [1]

Analog Arts SG985 SG884 SG834 SG814 Product Specifications [1] www.analogarts.com Analog Arts SG985 SG884 SG834 SG814 Product Specifications [1] 1. These models include: an oscilloscope, a spectrum analyzer, a data recorder, a frequency & phase meter, and an arbitrary

More information

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics Politecnico di Torino - ICT School Analog and Telecommunication Electronics D5 - Special A/D converters» Differential converters» Oversampling, noise shaping» Logarithmic conversion» Approximation, A and

More information

SC5306B 1 MHz to 3.9 GHz RF Downconverter Core Module. Datasheet SignalCore, Inc.

SC5306B 1 MHz to 3.9 GHz RF Downconverter Core Module. Datasheet SignalCore, Inc. SC5306B 1 MHz to 3.9 GHz RF Downconverter Core Module Datasheet 2015 SignalCore, Inc. support@signalcore.com SC5306B S PECIFICATIONS Definition of Terms The following terms are used throughout this datasheet

More information

Data Conversion Techniques (DAT115)

Data Conversion Techniques (DAT115) Data Conversion Techniques (DAT115) Hand in Report Second Order Sigma Delta Modulator with Interleaving Scheme Group 14N Remzi Yagiz Mungan, Christoffer Holmström [ 1 20 ] Contents 1. Task Description...

More information

Lecture #6: Analog-to-Digital Converter

Lecture #6: Analog-to-Digital Converter Lecture #6: Analog-to-Digital Converter All electrical signals in the real world are analog, and their waveforms are continuous in time. Since most signal processing is done digitally in discrete time,

More information

ANALOG CIRCUITS AND SIGNAL PROCESSING

ANALOG CIRCUITS AND SIGNAL PROCESSING ANALOG CIRCUITS AND SIGNAL PROCESSING Series Editors Mohammed Ismail, The Ohio State University Mohamad Sawan, École Polytechnique de Montréal For further volumes: http://www.springer.com/series/7381 Yongjian

More information

Data Converters. Specifications for Data Converters. Overview. Testing and characterization. Conditions of operation

Data Converters. Specifications for Data Converters. Overview. Testing and characterization. Conditions of operation Data Converters Overview Specifications for Data Converters Pietro Andreani Dept. of Electrical and Information Technology Lund University, Sweden Conditions of operation Type of converter Converter specifications

More information

Low-IMD Two-Tone Signal Generation for ADC Testing

Low-IMD Two-Tone Signal Generation for ADC Testing 18 th International Mixed-Signals, Sensors, and Systems Test Workshop May 15 2012 @ Taipei, Taiwan Low-IMD Two-Tone Signal Generation for ADC Testing K. Kato, F. Abe, K. Wakabayashi, T. Yamada, H. Kobayashi,

More information

UCE-DSO212 DIGITAL OSCILLOSCOPE USER MANUAL. UCORE ELECTRONICS

UCE-DSO212 DIGITAL OSCILLOSCOPE USER MANUAL. UCORE ELECTRONICS UCE-DSO212 DIGITAL OSCILLOSCOPE USER MANUAL UCORE ELECTRONICS www.ucore-electronics.com 2017 Contents 1. Introduction... 2 2. Turn on or turn off... 3 3. Oscilloscope Mode... 4 3.1. Display Description...

More information

ANALOGUE AND DIGITAL COMMUNICATION

ANALOGUE AND DIGITAL COMMUNICATION ANALOGUE AND DIGITAL COMMUNICATION Syed M. Zafi S. Shah Umair M. Qureshi Lecture xxx: Analogue to Digital Conversion Topics Pulse Modulation Systems Advantages & Disadvantages Pulse Code Modulation Pulse

More information

Choosing the Best ADC Architecture for Your Application Part 3:

Choosing the Best ADC Architecture for Your Application Part 3: Choosing the Best ADC Architecture for Your Application Part 3: Hello, my name is Luis Chioye, I am an Applications Engineer with the Texas Instruments Precision Data Converters team. And I am Ryan Callaway,

More information

Tiny, 2.1mm x 1.6mm, 3Msps, Low-Power, Serial 12-Bit ADC

Tiny, 2.1mm x 1.6mm, 3Msps, Low-Power, Serial 12-Bit ADC EVALUATION KIT AVAILABLE MAX1118 General Description The MAX1118 is a tiny (2.1mm x 1.6mm), 12-bit, compact, high-speed, low-power, successive approximation analog-to-digital converter (ADC). This high-performance

More information

Analog Arts AG900 AG885 AG875 AG815 Product Specifications

Analog Arts AG900 AG885 AG875 AG815 Product Specifications www.analogarts.com Analog Arts AG900 AG885 AG875 AG815 Product Specifications Arbitrary Waveform Generator General ( Typical ) Specifications AG900 AG885 AG875 AG815 Arbitrary waveform length 2 to 64K

More information

FUNDAMENTALS OF ANALOG TO DIGITAL CONVERTERS: PART I.1

FUNDAMENTALS OF ANALOG TO DIGITAL CONVERTERS: PART I.1 FUNDAMENTALS OF ANALOG TO DIGITAL CONVERTERS: PART I.1 Many of these slides were provided by Dr. Sebastian Hoyos January 2019 Texas A&M University 1 Spring, 2019 Outline Fundamentals of Analog-to-Digital

More information

EE247 Lecture 14. To avoid having EE247 & EE 142 or EE290C midterms on the same day, EE247 midterm moved from Oct. 20 th to Thurs. Oct.

EE247 Lecture 14. To avoid having EE247 & EE 142 or EE290C midterms on the same day, EE247 midterm moved from Oct. 20 th to Thurs. Oct. Administrative issues EE247 Lecture 14 To avoid having EE247 & EE 142 or EE29C midterms on the same day, EE247 midterm moved from Oct. 2 th to Thurs. Oct. 27 th Homework # 4 due on Thurs. Oct. 2 th H.K.

More information

SPT BIT, 30 MSPS, TTL, A/D CONVERTER

SPT BIT, 30 MSPS, TTL, A/D CONVERTER 12-BIT, MSPS, TTL, A/D CONVERTER FEATURES Monolithic 12-Bit MSPS Converter 6 db SNR @ 3.58 MHz Input On-Chip Track/Hold Bipolar ±2.0 V Analog Input Low Power (1.1 W Typical) 5 pf Input Capacitance TTL

More information

Using High Speed Differential Amplifiers to Drive Analog to Digital Converters

Using High Speed Differential Amplifiers to Drive Analog to Digital Converters Using High Speed Differential Amplifiers to Drive Analog to Digital Converters Selecting The Best Differential Amplifier To Drive An Analog To Digital Converter The right high speed differential amplifier

More information

A 4 GSample/s 8-bit ADC in. Ken Poulton, Robert Neff, Art Muto, Wei Liu, Andrew Burstein*, Mehrdad Heshami* Agilent Laboratories Palo Alto, California

A 4 GSample/s 8-bit ADC in. Ken Poulton, Robert Neff, Art Muto, Wei Liu, Andrew Burstein*, Mehrdad Heshami* Agilent Laboratories Palo Alto, California A 4 GSample/s 8-bit ADC in 0.35 µm CMOS Ken Poulton, Robert Neff, Art Muto, Wei Liu, Andrew Burstein*, Mehrdad Heshami* Agilent Laboratories Palo Alto, California 1 Outline Background Chip Architecture

More information

3. DAC Architectures and CMOS Circuits

3. DAC Architectures and CMOS Circuits 1/30 3. DAC Architectures and CMOS Circuits Francesc Serra Graells francesc.serra.graells@uab.cat Departament de Microelectrònica i Sistemes Electrònics Universitat Autònoma de Barcelona paco.serra@imb-cnm.csic.es

More information

Cleverscope Model CS320A - CS328A Data Sheet

Cleverscope Model CS320A - CS328A Data Sheet Cleverscope Model CS320A - CS328A Data Sheet Summary Cleverscope Model CS320A or CS328A is a USB or Ethernet connected, PC hosted oscilloscope and spectrum analyser. It s easy to use Windows program integrates

More information

DATASHEET HI5805. Features. Applications. Ordering Information. Pinout. 12-Bit, 5MSPS A/D Converter. FN3984 Rev 7.00 Page 1 of 12.

DATASHEET HI5805. Features. Applications. Ordering Information. Pinout. 12-Bit, 5MSPS A/D Converter. FN3984 Rev 7.00 Page 1 of 12. 12-Bit, 5MSPS A/D Converter NOT RECOMMENDED FOR NEW DESIGNS NO RECOMMENDED REPLACEMENT contact our Technical Support Center at 1-888-INTERSIL or www.intersil.com/tsc DATASHEET FN3984 Rev 7.00 The HI5805

More information

Maxim > Design Support > Technical Documents > Tutorials > A/D and D/A Conversion/Sampling Circuits > APP 748

Maxim > Design Support > Technical Documents > Tutorials > A/D and D/A Conversion/Sampling Circuits > APP 748 Maxim > Design Support > Technical Documents > Tutorials > A/D and D/A Conversion/Sampling Circuits > APP 748 Keywords: ADC, INL, DNL, root-sum-square, DC performance, static performance, AC performance,

More information

DAC & ADC Testing Fundamental

DAC & ADC Testing Fundamental DAC & ADC Testing Fundamental Outline Specifications of DAC Specifications of ADC Test methodology Static specification Histogram method Transfer (and compare) method Dynamic specification FFT Polynomial

More information

DG5000 Series Specifications

DG5000 Series Specifications DG5000 Series Specifications All the specifications can be guaranteed if the following two conditions are met unless where noted. The generator is within the calibration period and has performed self-calibration.

More information

Lab.3. Tutorial : (draft) Introduction to CODECs

Lab.3. Tutorial : (draft) Introduction to CODECs Lab.3. Tutorial : (draft) Introduction to CODECs Fig. Basic digital signal processing system Definition A codec is a device or computer program capable of encoding or decoding a digital data stream or

More information

Lecture 9, ANIK. Data converters 1

Lecture 9, ANIK. Data converters 1 Lecture 9, ANIK Data converters 1 What did we do last time? Noise and distortion Understanding the simplest circuit noise Understanding some of the sources of distortion 502 of 530 What will we do today?

More information

AD Bit, 20/40/65 MSPS 3 V Low Power A/D Converter. Preliminary Technical Data

AD Bit, 20/40/65 MSPS 3 V Low Power A/D Converter. Preliminary Technical Data FEATURES Ultra Low Power 90mW @ 0MSPS; 135mW @ 40MSPS; 190mW @ 65MSPS SNR = 66.5 dbc (to Nyquist); SFDR = 8 dbc @.4MHz Analog Input ENOB = 10.5 bits DNL=± 0.5 LSB Differential Input with 500MHz Full Power

More information

400ksps/300ksps, Single-Supply, Low-Power, Serial 12-Bit ADCs with Internal Reference

400ksps/300ksps, Single-Supply, Low-Power, Serial 12-Bit ADCs with Internal Reference 19-1687; Rev 2; 12/10 EVALUATION KIT AVAILABLE General Description The 12-bit analog-to-digital converters (ADCs) combine a high-bandwidth track/hold (T/H), a serial interface with high conversion speed,

More information

24-Bit, 312 ksps, 109 db Sigma-Delta ADC with On-Chip Buffers and Serial Interface AD7764

24-Bit, 312 ksps, 109 db Sigma-Delta ADC with On-Chip Buffers and Serial Interface AD7764 24-Bit, 312 ksps, 19 db Sigma-Delta ADC with On-Chip Buffers and Serial Interface AD7764 FEATURES High performance 24-bit - ADC 115 db dynamic range at 78 khz output data rate 19 db dynamic range at 312

More information

Maximizing GSPS ADC SFDR Performance: Sources of Spurs and Methods of Mitigation

Maximizing GSPS ADC SFDR Performance: Sources of Spurs and Methods of Mitigation Maximizing GSPS ADC SFDR Performance: Sources of Spurs and Methods of Mitigation Marjorie Plisch Applications Engineer, Signal Path Solutions November 2012 1 Outline Overview of the issue Sources of spurs

More information

Working with ADCs, OAs and the MSP430

Working with ADCs, OAs and the MSP430 Working with ADCs, OAs and the MSP430 Bonnie Baker HPA Senior Applications Engineer Texas Instruments 2006 Texas Instruments Inc, Slide 1 Agenda An Overview of the MSP430 Data Acquisition System SAR Converters

More information

Fundamentals of Arbitrary. Waveform Generation

Fundamentals of Arbitrary. Waveform Generation Fundamentals of Arbitrary Waveform Generation History Applications Key Specifications Optimization Signal fidelity and dynamic range Embedding and de-embedding Waveform generation and automation software

More information

Workshop ESSCIRC. Low-Power Data Acquisition System For Very Small Signals At Low Frequencies With12-Bit- SAR-ADC. 17. September 2010.

Workshop ESSCIRC. Low-Power Data Acquisition System For Very Small Signals At Low Frequencies With12-Bit- SAR-ADC. 17. September 2010. Workshop ESSCIRC Low-Power Data Acquisition System For Very Small Signals At Low Frequencies With12-Bit- SAR-ADC 17. September 2010 Christof Dohmen Outline System Overview Analog-Front-End Chopper-Amplifier

More information

Acquisition Time: Refer to Figure 1 when comparing SAR, Pipeline, and Delta-Sigma converter acquisition time. Signal Noise. Data Out Pipeline ADC

Acquisition Time: Refer to Figure 1 when comparing SAR, Pipeline, and Delta-Sigma converter acquisition time. Signal Noise. Data Out Pipeline ADC Application Report SBAA147A August 2006 Revised January 2008 A Glossary of Analog-to-Digital Specifications and Performance Characteristics Bonnie Baker... Data Acquisition Products ABSTRACT This glossary

More information

1.5 Giga Hertz Ultra High Speed ADC Testing on ATE

1.5 Giga Hertz Ultra High Speed ADC Testing on ATE 1.5 Giga Hertz Ultra High Speed ADC Testing on ATE Jin-Soo Ko Teradyn Inc. 1 6 Contents Giga Hertz ADC Overview Challenges to ATE Systems Tiger Mixed Signal Instruments Introduction Device Test Requirements

More information

ELG3336 Design of Mechatronics System

ELG3336 Design of Mechatronics System ELG3336 Design of Mechatronics System Elements of a Data Acquisition System 2 Analog Signal Data Acquisition Hardware Your Signal Data Acquisition DAQ Device System Computer Cable Terminal Block Data Acquisition

More information

SC5407A/SC5408A 100 khz to 6 GHz RF Upconverter. Datasheet. Rev SignalCore, Inc.

SC5407A/SC5408A 100 khz to 6 GHz RF Upconverter. Datasheet. Rev SignalCore, Inc. SC5407A/SC5408A 100 khz to 6 GHz RF Upconverter Datasheet Rev 1.2 2017 SignalCore, Inc. support@signalcore.com P R O D U C T S P E C I F I C A T I O N S Definition of Terms The following terms are used

More information

Digital Design Laboratory Lecture 7. A/D and D/A

Digital Design Laboratory Lecture 7. A/D and D/A ECE 280 / CSE 280 Digital Design Laboratory Lecture 7 A/D and D/A Analog/Digital Conversion A/D conversion is the process of sampling a continuous signal Two significant implications 1. The information

More information

DATASHEET HI1175. Features. Ordering Information. Applications. Pinout. 8-Bit, 20MSPS, Flash A/D Converter. FN3577 Rev 8.

DATASHEET HI1175. Features. Ordering Information. Applications. Pinout. 8-Bit, 20MSPS, Flash A/D Converter. FN3577 Rev 8. 8-Bit, 2MSPS, Flash A/D Converter Pb-Free and RoHS Compliant DATASHEET FN377 Rev 8. The HI117 is an 8-bit, analog-to-digital converter built in a 1.4 m CMOS process. The low power, low differential gain

More information

NI Contents CALIBRATION PROCEDURE

NI Contents CALIBRATION PROCEDURE CALIBRATION PROCEDURE NI 5450 Contents This document describes processes to calibrate the National Instruments PXIe-5450 (NI 5450) differential I/Q signal generator. This document provides performance

More information

G5100A: 50 MHz Arbitrary Function Generator

G5100A: 50 MHz Arbitrary Function Generator G5100A: 50 MHz Arbitrary Function Generator Key Features 50 MHz Sine Wave 25 MHz Square Wave Pulse, Ramp, Triangle, Noise, and DC waveforms AM, FM, PM, FSK, and PWM modulation types Linear & logarithmic

More information

TUTORIAL 283 INL/DNL Measurements for High-Speed Analog-to- Digital Converters (ADCs)

TUTORIAL 283 INL/DNL Measurements for High-Speed Analog-to- Digital Converters (ADCs) Maxim > Design Support > Technical Documents > Tutorials > A/D and D/A Conversion/Sampling Circuits > APP 283 Maxim > Design Support > Technical Documents > Tutorials > High-Speed Signal Processing > APP

More information

Multiple Reference Clock Generator

Multiple Reference Clock Generator A White Paper Presented by IPextreme Multiple Reference Clock Generator Digitial IP for Clock Synthesis August 2007 IPextreme, Inc. This paper explains the concept behind the Multiple Reference Clock Generator

More information

GFT bit High Speed Digitizer

GFT bit High Speed Digitizer FEATURES Up to 4 analog channels in only 1U space Up to 2GS/s sampling rate per channel 14 bits vertical resolution DC coupled with up to 1GHz bandwidth Programmable DC offset Internal and external clock

More information

Designing a Premium Audio System. Gregg Scott Senior Applications Engineer Mid Power Audio Amplifiers

Designing a Premium Audio System. Gregg Scott Senior Applications Engineer Mid Power Audio Amplifiers Designing a Premium Audio System Gregg Scott Senior Applications Engineer Mid Power Audio Amplifiers 1 Gregg Scott Senior Applications Engineer, MPAA Career California Polytechnic State University, San

More information

High Speed ADC Analog Input Interface Considerations by the Applications Engineering Group Analog Devices, Inc.

High Speed ADC Analog Input Interface Considerations by the Applications Engineering Group Analog Devices, Inc. High Speed ADC Analog Input Interface Considerations by the Applications Engineering Group Analog Devices, Inc. IN THIS NOTEBOOK Since designing a system that uses a high speed analog-todigital converter

More information

Design Implementation Description for the Digital Frequency Oscillator

Design Implementation Description for the Digital Frequency Oscillator Appendix A Design Implementation Description for the Frequency Oscillator A.1 Input Front End The input data front end accepts either analog single ended or differential inputs (figure A-1). The input

More information

Digital Waveform Recorders

Digital Waveform Recorders Digital Waveform Recorders Error Models & Performance Measures Dan Knierim, Tektronix Fellow Experimental Set-up for high-speed phenomena Transducer(s) high-speed physical phenomenon under study physical

More information

Digital AudioAmplifiers: Methods for High-Fidelity Fully Digital Class D Systems

Digital AudioAmplifiers: Methods for High-Fidelity Fully Digital Class D Systems Digital AudioAmplifiers: Methods for High-Fidelity Fully Digital Class D Systems P. T. Krein, Director Grainger Center for Electric Machinery and Electromechanics Dept. of Electrical and Computer Engineering

More information

Tiny 12-Bit ADC Delivers 2.2Msps Through 3-Wire Serial Interface by Joe Sousa Introduction

Tiny 12-Bit ADC Delivers 2.2Msps Through 3-Wire Serial Interface by Joe Sousa Introduction DESIGN FETURES Tiny -Bit DC Delivers.Msps Through -Wire Serial Interface by Joe Sousa Introduction LTC Serial interfaces occupy little routing space, but usually limit the speed of an DC. The LTC has a

More information

Environmental ADC Interface P Team Members

Environmental ADC Interface P Team Members Environmental ADC Interface P14346 Team Members Caleb Stephens- Electrical Engineer Kevin Oswald- Electrical Engineer Ory Maimon- Electrical Engineer Edward Wlodarczyk- Electrical Engineer Marissa Fox-

More information

Developing a Generic Software-Defined Radar Transmitter using GNU Radio

Developing a Generic Software-Defined Radar Transmitter using GNU Radio Developing a Generic Software-Defined Radar Transmitter using GNU Radio A thesis submitted in partial fulfilment of the requirements for the degree of Master of Sciences (Defence Signal Information Processing)

More information

The counterpart to a DAC is the ADC, which is generally a more complicated circuit. One of the most popular ADC circuit is the successive

The counterpart to a DAC is the ADC, which is generally a more complicated circuit. One of the most popular ADC circuit is the successive 1 The counterpart to a DAC is the ADC, which is generally a more complicated circuit. One of the most popular ADC circuit is the successive approximation converter. 2 3 The idea of sampling is fully covered

More information

Glossary of VCO terms

Glossary of VCO terms Glossary of VCO terms VOLTAGE CONTROLLED OSCILLATOR (VCO): This is an oscillator designed so the output frequency can be changed by applying a voltage to its control port or tuning port. FREQUENCY TUNING

More information

Improving Amplitude Accuracy with Next-Generation Signal Generators

Improving Amplitude Accuracy with Next-Generation Signal Generators Improving Amplitude Accuracy with Next-Generation Signal Generators Generate True Performance Signal generators offer precise and highly stable test signals for a variety of components and systems test

More information

Rigol DG1022A Function / Arbitrary Waveform Generator

Rigol DG1022A Function / Arbitrary Waveform Generator Rigol DG1022A Function / Arbitrary Waveform Generator The Rigol DG1000 series Dual-Channel Function/Arbitrary Waveform Generator adopts DDS (Direct Digital Synthesis) technology to provide stable, high-precision,

More information

System on a Chip. Prof. Dr. Michael Kraft

System on a Chip. Prof. Dr. Michael Kraft System on a Chip Prof. Dr. Michael Kraft Lecture 5: Data Conversion ADC Background/Theory Examples Background Physical systems are typically analogue To apply digital signal processing, the analogue signal

More information

Sigma-Delta ADC Tutorial and Latest Development in 90 nm CMOS for SoC

Sigma-Delta ADC Tutorial and Latest Development in 90 nm CMOS for SoC Sigma-Delta ADC Tutorial and Latest Development in 90 nm CMOS for SoC Jinseok Koh Wireless Analog Technology Center Texas Instruments Inc. Dallas, TX Outline Fundamentals for ADCs Over-sampling and Noise

More information

WaveStation Function/Arbitrary Waveform Generators

WaveStation Function/Arbitrary Waveform Generators WaveStation Function/Arbitrary Waveform Generators Key Features High performance with 14-bit, 125 MS/s and 16 kpts 2 channels on all models Large 3.5 color display for easy waveform preview Over 40 built-in

More information

EE 421L Digital Electronics Laboratory. Laboratory Exercise #9 ADC and DAC

EE 421L Digital Electronics Laboratory. Laboratory Exercise #9 ADC and DAC EE 421L Digital Electronics Laboratory Laboratory Exercise #9 ADC and DAC Department of Electrical and Computer Engineering University of Nevada, at Las Vegas Objective: The purpose of this laboratory

More information

WaveStation Function/Arbitrary Waveform Generators

WaveStation Function/Arbitrary Waveform Generators WaveStation Function/Arbitrary Waveform Generators Key Features High performance with 14-bit, 125 MS/s and 16 kpts 2 channels on all models Large 3.5 color display for easy waveform preview Over 40 built-in

More information

DATA INTEGRATION MULTICARRIER REFLECTOMETRY SENSORS

DATA INTEGRATION MULTICARRIER REFLECTOMETRY SENSORS Report for ECE 4910 Senior Project Design DATA INTEGRATION IN MULTICARRIER REFLECTOMETRY SENSORS Prepared by Afshin Edrissi Date: Apr 7, 2006 1-1 ABSTRACT Afshin Edrissi (Cynthia Furse), Department of

More information

Low-Cost Power Sources Meet Advanced ADC and VCO Characterization Requirements

Low-Cost Power Sources Meet Advanced ADC and VCO Characterization Requirements Low-Cost Power Sources Meet Advanced ADC and VCO Characterization Requirements Our thanks to Agilent Technologies for allowing us to reprint this article. Introduction Finding a cost-effective power source

More information

Dual Channel Function/Arbitrary Waveform Generators 4050B Series

Dual Channel Function/Arbitrary Waveform Generators 4050B Series Data Sheet Dual Channel Function/Arbitrary Waveform Generators The Dual Channel Function/ Arbitrary Waveform Generators are capable of generating stable and precise sine, square, triangle, pulse, and arbitrary

More information

8-Channel, 1 MSPS, 8-/10-/12-Bit ADCs with Sequencer in 20-Lead TSSOP AD7908/AD7918/AD7928

8-Channel, 1 MSPS, 8-/10-/12-Bit ADCs with Sequencer in 20-Lead TSSOP AD7908/AD7918/AD7928 8-Channel, MSPS, 8-/0-/2-Bit ADCs with Sequencer in 20-Lead TSSOP AD7908/AD798/AD7928 FEATURES Fast throughput rate: MSPS Specified for AVDD of 2.7 V to 5.25 V Low power 6.0 mw max at MSPS with 3 V supply

More information

LIMITATIONS IN MAKING AUDIO BANDWIDTH MEASUREMENTS IN THE PRESENCE OF SIGNIFICANT OUT-OF-BAND NOISE

LIMITATIONS IN MAKING AUDIO BANDWIDTH MEASUREMENTS IN THE PRESENCE OF SIGNIFICANT OUT-OF-BAND NOISE LIMITATIONS IN MAKING AUDIO BANDWIDTH MEASUREMENTS IN THE PRESENCE OF SIGNIFICANT OUT-OF-BAND NOISE Bruce E. Hofer AUDIO PRECISION, INC. August 2005 Introduction There once was a time (before the 1980s)

More information

8-Channel, 1 MSPS, 8-/10-/12-Bit ADCs with Sequencer in 20-Lead TSSOP AD7908/AD7918/AD7928

8-Channel, 1 MSPS, 8-/10-/12-Bit ADCs with Sequencer in 20-Lead TSSOP AD7908/AD7918/AD7928 8-Channel, 1 MSPS, 8-/10-/12-Bit ADCs with Sequencer in 20-Lead TSSOP AD7908/AD7918/AD7928 FEATURES Fast throughput rate: 1 MSPS Specified for AVDD of 2.7 V to 5.25 V Low power 6.0 mw max at 1 MSPS with

More information