Introduction to Digital Logic Missouri S&T University CPE 2210 Exam 1 Logistics

Size: px
Start display at page:

Download "Introduction to Digital Logic Missouri S&T University CPE 2210 Exam 1 Logistics"

Transcription

1 Introduction to Digital Logic Missouri S&T University CPE 2210 Exam 1 Logistics Egemen K. Çetinkaya Egemen K. Çetinkaya Department of Electrical & Computer Engineering Missouri University of Science and Technology cetinkayae@mst.edu 26 September 2016 rev Egemen K. Çetinkaya

2 Exam1 Logistics Overview Exam will be held on 28 September 2016 It will be in room ECE102 You are responsible from all material covered chapter readings from book lecture notes in-class discussions Cheating is prohibited! read course policies as a reminder Closed notes, books, no calculator Bring pencil and eraser 2

3 Exam1 Logistics Style Exam duration will be 50 minutes Exam will include different types of questions short answer long answer 3

4 Applications and History Binary logic is the basis for digital systems Early history goes to 1850s not much done till 1938 significant progress after World War II with invention of transistor last decade is head-spinning There are many application areas of digital systems very pervasive in our lives Analog signals are continuous signals Digital signals are discrete signals 4

5 Signals can be: analog: continuous digital: discrete Important terminology: bit, byte, nibble, LSB, MSB Number Systems Important number systems: decimal, binary, hex, octal Conversions will be needed throughout your careers: know by heart 5

6 Electric Circuits There are two types of digital circuits combinatorial circuits: no memory sequential circuits: memory Ohm s law: V=IR Switches are basic components of digital circuits Switches have two states: on and off Transistors are basic electric circuit component CMOS have NMOS and PMOS transistors together NMOS transistors conduct when gate is on PMOS transistors conduct when gate is off 6

7 Basic Logic Gates Logic gates building blocks of complex logic circuits Gate functions can be represented via: symbols truth tables equations timing diagrams transistor circuits Important three basic gates are: AND OR NOT 7

8 Boolean Algebra Understand the important Boolean algebra properties commutativity distributivity associativity identity complementery null elements idempotent law involution law DeMorgan s law absorption law 8

9 Boolean Representations Three Boolean representations: circuits equations truth tables Important terminology variables/literals product term/sum term/sum-of-products/product-of-sums normal term/minterm/maxterm canonical sum (sum-of-minterms) canonical product (product-of-maxterms) 9

10 Combinatorial Logic Circuit Design and Analysis Combinatorial logic circuit analysis truth table might be hard to construct for many inputs equations can be simplified via Boolean algebra circuits Combinatorial logic circuit design/synthesis capture behavior create equations simplify implement as a gate-based circuit 10

11 Logic Gates: NAND, NOR, XOR, XNOR Basic gates are: AND OR NOT More gates: NAND NOR XOR XNOR Universal gates: NAND & NOR 11

12 Real gates have delay Wires also have delay Practical Considerations Designer must consider critical path delay Attention to active-lows are required Simulations help analyze digital logic 12

13 Karnaugh Maps Karnaugh maps used to simplify truth tables Group together adjacent cells containing ones 1s grouping is done for a group of: 2 0, 2 1, 2 2 1s Every one must be in at least one group Each group should be as large as possible Fewest number of groups possible Overlapping of 1s is allowed Zeros are not allowed Diagonal groupings are not allowed For DC conditions; assign a 0 or a 1 and then simplify 13

14 Questions? 14

Number system: the system used to count discrete units is called number. Decimal system: the number system that contains 10 distinguished

Number system: the system used to count discrete units is called number. Decimal system: the number system that contains 10 distinguished Number system: the system used to count discrete units is called number system Decimal system: the number system that contains 10 distinguished symbols that is 0-9 or digits is called decimal system. As

More information

CHAPTER 3 BASIC & COMBINATIONAL LOGIC CIRCUIT

CHAPTER 3 BASIC & COMBINATIONAL LOGIC CIRCUIT CHAPTER 3 BASIC & COMBINATIONAL LOGIC CIRCUIT CHAPTER CONTENTS 3.1 Introduction to Basic Gates 3.2 Analysing A Combinational Logic Circuit 3.3 Design A Combinational Logic Circuit From Boolean Expression

More information

Asst. Prof. Thavatchai Tayjasanant, PhD. Power System Research Lab 12 th Floor, Building 4 Tel: (02)

Asst. Prof. Thavatchai Tayjasanant, PhD. Power System Research Lab 12 th Floor, Building 4 Tel: (02) 2145230 Aircraft Electricity and Electronics Asst. Prof. Thavatchai Tayjasanant, PhD Email: taytaycu@gmail.com aycu@g a co Power System Research Lab 12 th Floor, Building 4 Tel: (02) 218-6527 1 Chapter

More information

University of Technology

University of Technology University of Technology Lecturer: Dr. Sinan Majid Course Title: microprocessors 4 th year Lecture 7 & 8 NAND and XOR Implementations Combinational Design Procedure NAND-NAND & NOR-NOR Networks DeMorgan

More information

Chapter 1: Digital logic

Chapter 1: Digital logic Chapter 1: Digital logic I. Overview In PHYS 252, you learned the essentials of circuit analysis, including the concepts of impedance, amplification, feedback and frequency analysis. Most of the circuits

More information

B.C.A 2017 DIGITAL ELECTRONICS BCA104T MODULE SPECIFICATION SHEET. Course Outline

B.C.A 2017 DIGITAL ELECTRONICS BCA104T MODULE SPECIFICATION SHEET. Course Outline Course Outline B.C.A 2017 DIGITAL ELECTRONICS BCA104T MODULE SPECIFICATION SHEET The purpose of the course is to teach principles of digital electronics. This course covers varieties of topics including

More information

Chapter 3 Digital Logic Structures

Chapter 3 Digital Logic Structures Chapter 3 Digital Logic Structures Transistor: Building Block of Computers Microprocessors contain millions of transistors Intel Pentium 4 (2): 48 million IBM PowerPC 75FX (22): 38 million IBM/Apple PowerPC

More information

Odd-Prime Number Detector The table of minterms is represented. Table 13.1

Odd-Prime Number Detector The table of minterms is represented. Table 13.1 Odd-Prime Number Detector The table of minterms is represented. Table 13.1 Minterm A B C D E 1 0 0 0 0 1 3 0 0 0 1 1 5 0 0 1 0 1 7 0 0 1 1 1 11 0 1 0 1 1 13 0 1 1 0 1 17 1 0 0 0 1 19 1 0 0 1 1 23 1 0 1

More information

Digital. Design. R. Ananda Natarajan B C D

Digital. Design. R. Ananda Natarajan B C D Digital E A B C D 0 1 2 3 4 5 6 Design 7 8 9 10 11 12 13 14 15 Y R. Ananda Natarajan Digital Design Digital Design R. ANANDA NATARAJAN Professor Department of Electronics and Instrumentation Engineering

More information

Introduction to Digital Logic Missouri S&T University CPE 2210 Electric Circuits

Introduction to Digital Logic Missouri S&T University CPE 2210 Electric Circuits Introduction to Digital Logic Missouri S&T University CPE 2210 Electric Circuits Egemen K. Çetinkaya Egemen K. Çetinkaya Department of Electrical & Computer Engineering Missouri University of Science and

More information

Name: Class: Date: 1. As more electronic systems have been designed using digital technology, devices have become smaller and less powerful.

Name: Class: Date: 1. As more electronic systems have been designed using digital technology, devices have become smaller and less powerful. Name: Class: Date: DE Midterm Review 2 True/False Indicate whether the statement is true or false. 1. As more electronic systems have been designed using digital technology, devices have become smaller

More information

Gates and Circuits 1

Gates and Circuits 1 1 Gates and Circuits Chapter Goals Identify the basic gates and describe the behavior of each Describe how gates are implemented using transistors Combine basic gates into circuits Describe the behavior

More information

Function Table of an Odd-Parity Generator Circuit

Function Table of an Odd-Parity Generator Circuit Implementation of an Odd-Parity Generator Circuit The first step in implementing any circuit is to represent its operation in terms of a Truth or Function table. The function table for an 8-bit data as

More information

Course Overview. Course Overview

Course Overview. Course Overview Course Overview Where does this course fit into the Electrical Engineering curriculum? Page 5 Course Overview Where does this course fit into the Computer Engineering curriculum? Page 6 3 Course Content

More information

Subject: Analog and Digital Electronics Code:15CS32

Subject: Analog and Digital Electronics Code:15CS32 Subject: Analog and Digital Electronics Code:15CS32 Syllabus: The Basic Gates : Review of Basic Logic gates, Positive and Negative Logic, Introduction to HDL. Combinational Logic Circuits:Sum-of-Products

More information

Digital Applications (CETT 1415) Credit: 4 semester credit hours (3 hours lecture, 4 hours lab) Prerequisite: CETT 1403 & CETT 1405

Digital Applications (CETT 1415) Credit: 4 semester credit hours (3 hours lecture, 4 hours lab) Prerequisite: CETT 1403 & CETT 1405 Digital Applications (CETT 1415) Credit: 4 semester credit hours (3 hours lecture, 4 hours lab) Prerequisite: CETT 1403 & CETT 1405 Course Description This course covers digital techniques and numbering

More information

Digital Logic Circuits

Digital Logic Circuits Digital Logic Circuits Let s look at the essential features of digital logic circuits, which are at the heart of digital computers. Learning Objectives Understand the concepts of analog and digital signals

More information

Digital Applications (CETT 1415) Credit: 4 semester credit hours (3 hours lecture, 4 hours lab) Prerequisite: CETT 1403 & CETT 1405

Digital Applications (CETT 1415) Credit: 4 semester credit hours (3 hours lecture, 4 hours lab) Prerequisite: CETT 1403 & CETT 1405 Digital Applications () Credit: 4 semester credit hours (3 hours lecture, 4 hours lab) Prerequisite: CETT 1403 & CETT 1405 Course Description This course covers digital techniques and numbering systems,

More information

Dr. Nicola Nicolici COE/EE2DI4 Midterm Test #1 Oct 18, 2006

Dr. Nicola Nicolici COE/EE2DI4 Midterm Test #1 Oct 18, 2006 COE/EE2DI4 Midterm Test #1 Fall 2006 Page 1 Dr. Nicola Nicolici COE/EE2DI4 Midterm Test #1 Oct 18, 2006 Instructions: This examination paper includes 10 pages and 20 multiple-choice questions starting

More information

Digital Electronic Concepts

Digital Electronic Concepts Western Technical College 10662137 Digital Electronic Concepts Course Outcome Summary Course Information Description Career Cluster Instructional Level Total Credits 4.00 Total Hours 108.00 This course

More information

1.) If a 3 input NOR gate has eight input possibilities, how many of those possibilities result in a HIGH output? (a.) 1 (b.) 2 (c.) 3 (d.) 7 (e.

1.) If a 3 input NOR gate has eight input possibilities, how many of those possibilities result in a HIGH output? (a.) 1 (b.) 2 (c.) 3 (d.) 7 (e. Name: Multiple Choice 1.) If a 3 input NOR gate has eight input possibilities, how many of those possibilities result in a HIGH output? (a.) 1 (b.) 2 (c.) 3 (d.) 7 (e.) 8 2.) The output of an OR gate with

More information

Logic Circuit Design

Logic Circuit Design Logic Circuit Design we have studied Truth Tables Logic gates Logic algebra K-maps 1 All these are tools Tools Truth Tables Logic gates Logic algebra K-maps 2 All these are tools Tools Truth Tables Logic

More information

THE UNIVERSITY OF TRINIDAD & TOBAGO

THE UNIVERSITY OF TRINIDAD & TOBAGO THE UNIVERSITY OF TRINIDAD & TOBAGO FINAL ASSESSMENT/EXAMINATIONS APRIL/MAY 2014 Course Code and Title: Digital Electronics Programme: Communications Engineering Technology Diploma Date: 16 th April 2014

More information

Digital Logic Design ELCT 201

Digital Logic Design ELCT 201 Faculty of Information Engineering and Technology Dr. Haitham Omran and Dr. Wassim Alexan Digital Logic Design ELCT 201 Winter 2017 Midterm Exam Second Chance Please tick the box of your major: IET MET

More information

DEPARTMENT OF ELETRONICS AND COMMUNICATION ENGINEERING COURSE NOTES FACULTY NAME/DESIGNATION: SUGAPRIYAA.THA / LECTURER

DEPARTMENT OF ELETRONICS AND COMMUNICATION ENGINEERING COURSE NOTES FACULTY NAME/DESIGNATION: SUGAPRIYAA.THA / LECTURER DEPARTMENT OF ELETRONICS AND COMMUNICATION ENGINEERING COURSE NOTES SUBJECT: DIGITAL ELECTRONICS SUBJECT CODE: EC2203 FACULTY NAME/DESIGNATION: SUGAPRIYAA.THA / LECTURER CLASS: II YEAR ECE UNIT-I MINIMISATION

More information

ECE Digital Logic Lecture 2. Digital Design Circuit Types: Combinational vs. Sequential

ECE Digital Logic Lecture 2. Digital Design Circuit Types: Combinational vs. Sequential ECE 74 - Digital Logic Lecture Circuit Types: Combinational vs. equential Lecture Transistors, witches, CMO Basic Logic Gates Boolean Equations Truth Table: w/o time or previous values Circuit Components:

More information

Lecture 2: Digital Logic Basis

Lecture 2: Digital Logic Basis Lecture 2: Digital Logic Basis Xufeng Kou School of Information Science and Technology ShanghaiTech University 1 Outline Truth Table Basic Logic Operation and Gates Logic Circuits NOR Gates and NAND Gates

More information

Digital Electronics Course Objectives

Digital Electronics Course Objectives Digital Electronics Course Objectives In this course, we learning is reported using Standards Referenced Reporting (SRR). SRR seeks to provide students with grades that are consistent, are accurate, and

More information

JEFFERSON COLLEGE COURSE SYLLABUS ETC255 INTRODUCTION TO DIGITAL CIRCUITS. 6 Credit Hours. Prepared by: Dennis Eimer

JEFFERSON COLLEGE COURSE SYLLABUS ETC255 INTRODUCTION TO DIGITAL CIRCUITS. 6 Credit Hours. Prepared by: Dennis Eimer JEFFERSON COLLEGE COURSE SYLLABUS ETC255 INTRODUCTION TO DIGITAL CIRCUITS 6 Credit Hours Prepared by: Dennis Eimer Revised Date: August, 2007 By Dennis Eimer Division of Technology Dr. John Keck, Dean

More information

Lecture 7: Digital Logic

Lecture 7: Digital Logic Lecture 7: Digital Logic Last time we introduced the concept of digital electronics i.e., one identifies a range of voltages with the value, and another range with the value But we didn t specify these

More information

In this lecture: Lecture 8: ROM & Programmable Logic Devices

In this lecture: Lecture 8: ROM & Programmable Logic Devices In this lecture: Lecture 8: ROM Programmable Logic Devices Dr Pete Sedcole Department of EE Engineering Imperial College London http://caseeicacuk/~nps/ (Floyd, 3 5, 3) (Tocci 2, 24, 25, 27, 28, 3 34)

More information

2 Logic Gates THE INVERTER. A logic gate is an electronic circuit which makes logic decisions. It has one output and one or more inputs.

2 Logic Gates THE INVERTER. A logic gate is an electronic circuit which makes logic decisions. It has one output and one or more inputs. 2 Logic Gates A logic gate is an electronic circuit which makes logic decisions. It has one output and one or more inputs. THE INVERTER The inverter (NOT circuit) performs the operation called inversion

More information

Combinational Logic Design CH002

Combinational Logic Design CH002 Combinational Logic Design CH002 Figure 2.1 Circuit as a black box with inputs, outputs, and specifications Figure 2.2 Elements and nodes Figure 2.3 Combinational logic circuit Figure 2.4 Two OR implementations

More information

INTRODUCTION TO DIGITAL CONCEPT

INTRODUCTION TO DIGITAL CONCEPT COURSE / CODE DIGITAL SYSTEM FUNDAMENTALS (ECE 421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE 422) INTRODUCTION TO DIGITAL CONCEPT Digital and Analog Quantities Digital relates to data in the form of digits,

More information

EE40 Lecture 35. Prof. Chang-Hasnain. 12/5/07 Reading: Ch 7, Supplementary Reader

EE40 Lecture 35. Prof. Chang-Hasnain. 12/5/07 Reading: Ch 7, Supplementary Reader EE4 Lecture 35 2/5/7 Reading: Ch 7, Supplementary Reader EE4 all 26 Slide Week 5 OUTLINE Need for Input Controlled Pull-Up CMOS Inverter nalysis CMOS Voltage Transfer Characteristic Combinatorial logic

More information

2 Building Blocks. There is often the need to compare two binary values.

2 Building Blocks. There is often the need to compare two binary values. 2 Building Blocks 2.1 Comparators There is often the need to compare two binary values. This is done using a comparator. A comparator determines whether binary values A and B are: 1. A = B 2. A < B 3.

More information

CS302 Digital Logic Design Solved Objective Midterm Papers For Preparation of Midterm Exam

CS302 Digital Logic Design Solved Objective Midterm Papers For Preparation of Midterm Exam CS302 Digital Logic Design Solved Objective Midterm Papers For Preparation of Midterm Exam MIDTERM EXAMINATION 2011 (October-November) Q-21 Draw function table of a half adder circuit? (2) Answer: - Page

More information

Unit level 4 Credit value 15. Introduction. Learning Outcomes

Unit level 4 Credit value 15. Introduction. Learning Outcomes Unit 20: Unit code Digital Principles T/615/1494 Unit level 4 Credit value 15 Introduction While the broad field of electronics covers many aspects, it is digital electronics which now has the greatest

More information

Lecture 15 Analysis of Combinational Circuits

Lecture 15 Analysis of Combinational Circuits Lecture 15 Analysis of Combinational Circuits Designing Combinational Logic Circuits A logic circuit having 3 inputs, A, B, C will have its output HIGH only when a majority of the inputs are HIGH. Step

More information

Logic Design I (17.341) Fall Lecture Outline

Logic Design I (17.341) Fall Lecture Outline Logic Design I (17.341) Fall 2011 Lecture Outline Class # 07 October 31, 2011 / November 07, 2011 Dohn Bowden 1 Today s Lecture Administrative Main Logic Topic Homework 2 Course Admin 3 Administrative

More information

Lecture 02: Digital Logic Review

Lecture 02: Digital Logic Review CENG 3420 Lecture 02: Digital Logic Review Bei Yu byu@cse.cuhk.edu.hk CENG3420 L02 Digital Logic. 1 Spring 2017 Review: Major Components of a Computer CENG3420 L02 Digital Logic. 2 Spring 2017 Review:

More information

Logic diagram: a graphical representation of a circuit

Logic diagram: a graphical representation of a circuit LOGIC AND GATES Introduction to Logic (1) Logic diagram: a graphical representation of a circuit Each type of gate is represented by a specific graphical symbol Truth table: defines the function of a gate

More information

(CSC-3501) Lecture 6 (31 Jan 2008) Seung-Jong Park (Jay) CSC S.J. Park. Announcement

(CSC-3501) Lecture 6 (31 Jan 2008) Seung-Jong Park (Jay)   CSC S.J. Park. Announcement Seung-Jong Park (Jay) http://www.csc.lsu.edu/~sjpark Computer Architecture (CSC-3501) Lecture 6 (31 Jan 2008) 1 Announcement 2 1 Reminder A logic circuit is composed of: Inputs Outputs Functional specification

More information

UNIT-IV Combinational Logic

UNIT-IV Combinational Logic UNIT-IV Combinational Logic Introduction: The signals are usually represented by discrete bands of analog levels in digital electronic circuits or digital electronics instead of continuous ranges represented

More information

Chapter 3 Digital Logic Structures

Chapter 3 Digital Logic Structures Chapter 3 Digital Logic Structures Transistor: Building Block of Computers Microprocessors contain millions of transistors Intel Pentium 4 (2000): 48 million IBM PowerPC 750FX (2002): 38 million IBM/Apple

More information

Unit 1 Foundations in Electronics - Lesson 1.1 Introduction to Electronics Standards Essential Question Enduring Understandings

Unit 1 Foundations in Electronics - Lesson 1.1 Introduction to Electronics Standards Essential Question Enduring Understandings Course: DIGITAL ELECTRONICS- PROJECT LEAD THE WAY (DE-PLTW) Year: 2017-2018 Teacher: Mr. Christopher Reynolds/ Mr. Kenneth Rice Unit 1 Foundations in Electronics - Lesson 1.1 Introduction to Electronics

More information

NUMBER SYSTEM AND CODES

NUMBER SYSTEM AND CODES NUMBER SYSTEM AND CODES INTRODUCTION:- The term digital refers to a process that is achieved by using discrete unit. In number system there are different symbols and each symbol has an absolute value and

More information

Introduction to Digital Logic Missouri S&T University CPE 2210 Adders

Introduction to Digital Logic Missouri S&T University CPE 2210 Adders Introduction to Digital Logic Missouri S&T University CPE 22 Egemen K. Çetinkaya Egemen K. Çetinkaya Department of Electrical & Computer Engineering Missouri University of Science and Technology cetinkayae@mst.edu

More information

Analysis procedure. To obtain the output Boolean functions from a logic diagram, proceed as follows:

Analysis procedure. To obtain the output Boolean functions from a logic diagram, proceed as follows: Combinational Logic Logic circuits for digital systems may be combinational or sequential. combinational circuit consists of input variables, logic gates, and output variables. 1 nalysis procedure To obtain

More information

Chapter 2 Introduction to Logic Circuits

Chapter 2 Introduction to Logic Circuits Chapter 2 Introduction to Logic Circuits Logic unctions and circuits Boolean algebra Snthesis o digital circuits Introduction to CAD tools Introduction to VHDL Logic unctions and Circuits and 2 are binar

More information

CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING UNIVERSITY OF WISCONSIN MADISON

CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING UNIVERSITY OF WISCONSIN MADISON CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING UNIVERSITY OF WISCONSIN MADISON Instructor: Andy Phelps TAs: Newsha Ardalani, Peter Ohmann, and Jai Menon Midterm Examination 2 In Class (50 minutes) Wednesday,

More information

EE 280 Introduction to Digital Logic Design

EE 280 Introduction to Digital Logic Design EE 280 Introduction to Digital Logic Design Lecture 1. Introduction EE280 Lecture 1 1-1 Instructors: EE 280 Introduction to Digital Logic Design Dr. Lukasz Kurgan (section A1) office: ECERF 6 th floor,

More information

EE292: Fundamentals of ECE

EE292: Fundamentals of ECE EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 21 121113 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Chapter 7 - Logic Circuits Binary Number Representation Binary Arithmetic

More information

Combinational Logic. Combinational Logic Design Process, Three State Buffers, Decoders, Multiplexers, Encoders, Demultiplexers, Other Considerations

Combinational Logic. Combinational Logic Design Process, Three State Buffers, Decoders, Multiplexers, Encoders, Demultiplexers, Other Considerations Combinational Logic Combinational Logic Design Process, Three State Buffers, Decoders, Multiplexers, Encoders, Demultiplexers, Other Considerations Copyright (c) 2012 Sean Key Combinational Logic Design

More information

Combinational Logic Circuits. Combinational Logic

Combinational Logic Circuits. Combinational Logic Combinational Logic Circuits The outputs of Combinational Logic Circuits are only determined by the logical function of their current input state, logic 0 or logic 1, at any given instant in time. The

More information

Digital Electronics. A. I can list five basic safety rules for electronics. B. I can properly display large and small numbers in proper notation,

Digital Electronics. A. I can list five basic safety rules for electronics. B. I can properly display large and small numbers in proper notation, St. Michael Albertville High School Teacher: Scott Danielson September 2016 Content Skills Learning Targets Standards Assessment Resources & Technology CEQ: WHAT MAKES DIGITAL ELECTRONICS SO IMPORTANT

More information

CS302 - Digital Logic Design Glossary By

CS302 - Digital Logic Design Glossary By CS302 - Digital Logic Design Glossary By ABEL : Advanced Boolean Expression Language; a software compiler language for SPLD programming; a type of hardware description language (HDL) Adder : A digital

More information

Syllabus: Digital Electronics (DE) (Project Lead The Way)

Syllabus: Digital Electronics (DE) (Project Lead The Way) Course Overview: Digital electronics and micro computers. This is a course in applied logic that encompasses the application of electronic circuits and devices. Computer simulation software is used to

More information

Digital Circuits Introduction

Digital Circuits Introduction Lecture #6 OUTLINE Logic inary representations Combinatorial logic circuits Chap 7-7.5 Reading EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu Digital Circuits Introduction nalog: signal amplitude

More information

SE311: Design of Digital Systems Lecture 1: Introduction to Digital Systems

SE311: Design of Digital Systems Lecture 1: Introduction to Digital Systems SE311: Design of Digital Systems Lecture 1: Introduction to Digital Systems Dr. Samir Al-Amer (Term 041) SE311_Lec1 (c) 2004 AL-AMER ١ Design of Digital Systems Grading policy Course Outlines Introduction

More information

Gates and and Circuits

Gates and and Circuits Chapter 4 Gates and Circuits Chapter Goals Identify the basic gates and describe the behavior of each Describe how gates are implemented using transistors Combine basic gates into circuits Describe the

More information

Module 4: Design and Analysis of Combinational Circuits 1. Module-4. Design and Analysis of Combinational Circuits

Module 4: Design and Analysis of Combinational Circuits 1. Module-4. Design and Analysis of Combinational Circuits 1 Module-4 Design and Analysis of Combinational Circuits 4.1 Motivation: This topic develops the fundamental understanding and design of adder, substractor, code converter multiplexer, demultiplexer etc

More information

LOGIC GATES AND LOGIC CIRCUITS A logic gate is an elementary building block of a Digital Circuit. Most logic gates have two inputs and one output.

LOGIC GATES AND LOGIC CIRCUITS A logic gate is an elementary building block of a Digital Circuit. Most logic gates have two inputs and one output. LOGIC GATES AND LOGIC CIRCUITS A logic gate is an elementary building block of a Digital Circuit. Most logic gates have two inputs and one output. At any given moment, every terminal is in one of the two

More information

QUIZ. What do these bits represent?

QUIZ. What do these bits represent? QUIZ What do these bits represent? 1001 0110 1 QUIZ What do these bits represent? Unsigned integer: 1101 1110 Signed integer (2 s complement): Fraction: IBM 437 character: Latin-1 character: Huffman-compressed

More information

Course Outline Cover Page

Course Outline Cover Page College of Micronesia FSM P.O. Box 159 Kolonia, Pohnpei Course Outline Cover Page Digital Electronics I VEE 135 Course Title Department and Number Course Description: This course provides the students

More information

EMT1250 LABORATORY EXPERIMENT. EXPERIMENT # 4: Combinational Logic Circuits. Name: Date:

EMT1250 LABORATORY EXPERIMENT. EXPERIMENT # 4: Combinational Logic Circuits. Name: Date: EXPERIMENT # 4: Combinational Logic Circuits Name: Date: Equipment/Parts Needed: 5V DC Power Supply Digital Trainer (Logic Probe) Breadboard DIP Switch 7400 NAND gate 7402 NOR gate 7404 Inverter 7408 AND

More information

EECS-140/141 Introduction to Digital Logic Design Lecture 4:Simplification in Logic Synthesis

EECS-140/141 Introduction to Digital Logic Design Lecture 4:Simplification in Logic Synthesis EECS-140/141 Introduction to Digital Logic Design Lecture 4:Simplification in Logic Synthesis I. REVIEW AND INTRODUCTION I.A General Synthesis Procedure I.A.1 Express Function as: I.A.1.a Define variables

More information

DIGITAL ELECTRONICS QUESTION BANK

DIGITAL ELECTRONICS QUESTION BANK DIGITAL ELECTRONICS QUESTION BANK Section A: 1. Which of the following are analog quantities, and which are digital? (a) Number of atoms in a simple of material (b) Altitude of an aircraft (c) Pressure

More information

Combinational Logic. Rab Nawaz Khan Jadoon DCS. Lecturer COMSATS Lahore Pakistan. Department of Computer Science

Combinational Logic. Rab Nawaz Khan Jadoon DCS. Lecturer COMSATS Lahore Pakistan. Department of Computer Science Combinational Logic Rab Nawaz Khan Jadoon DCS COMSATS Institute of Information Technology Lecturer COMSATS Lahore Pakistan Digital Logic and Computer Design 2 Combinational logic A combinational circuit

More information

Introduction to Computer Engineering EECS 203 dickrp/eecs203/ Grading scheme. Review.

Introduction to Computer Engineering EECS 203  dickrp/eecs203/ Grading scheme. Review. Introduction to Computer Engineering EECS 203 http://ziyang.eecs.northwestern.edu/ dickrp/eecs203/ Grading scheme Instructor: Robert Dick Office: 77 Tech Email: dickrp@northwestern.edu Phone: 847 467 2298

More information

Unit 3. Logic Design

Unit 3. Logic Design EE 2: Digital Logic Circuit Design Dr Radwan E Abdel-Aal, COE Logic and Computer Design Fundamentals Unit 3 Chapter Combinational 3 Combinational Logic Logic Design - Introduction to Analysis & Design

More information

Binary Addition. Boolean Algebra & Logic Gates. Recap from Monday. CSC 103 September 12, Binary numbers ( 1.1.1) How Computers Work

Binary Addition. Boolean Algebra & Logic Gates. Recap from Monday. CSC 103 September 12, Binary numbers ( 1.1.1) How Computers Work Binary Addition How Computers Work High level conceptual questions Boolean Algebra & Logic Gates CSC 103 September 12, 2007 What Are Computers? What do computers do? How do they do it? How do they affect

More information

UNIT-2: BOOLEAN EXPRESSIONS AND COMBINATIONAL LOGIC CIRCUITS

UNIT-2: BOOLEAN EXPRESSIONS AND COMBINATIONAL LOGIC CIRCUITS UNIT-2: BOOLEAN EXPRESSIONS AND COMBINATIONAL LOGIC CIRCUITS STRUCTURE 2. Objectives 2. Introduction 2.2 Simplification of Boolean Expressions 2.2. Sum of Products 2.2.2 Product of Sums 2.2.3 Canonical

More information

ECE 410: VLSI Design Course Lecture Notes (Uyemura textbook)

ECE 410: VLSI Design Course Lecture Notes (Uyemura textbook) ECE 410: VLSI Design Course Lecture Notes (Uyemura tetbook) Professor Fathi Salem Michigan State University We will be updating the notes this Semester. Lecture Notes Page 2.1 Electronics Revolution Age

More information

Paper No. Name of the Paper Theory marks Practical marks Periods per week Semester-I I Semiconductor

Paper No. Name of the Paper Theory marks Practical marks Periods per week Semester-I I Semiconductor Swami Ramanand Teerth Marathwada University, Nanded B. Sc. First Year Electronics Syllabus Semester system (To be implemented from Academic Year 2009-10) Name of the Theory marks Practical marks Periods

More information

Chapter 8. Chapter 9. Chapter 6. Chapter 10. Chapter 11. Chapter 7

Chapter 8. Chapter 9. Chapter 6. Chapter 10. Chapter 11. Chapter 7 5.5 Series and Parallel Combinations of 246 Complex Impedances 5.6 Steady-State AC Node-Voltage 247 Analysis 5.7 AC Power Calculations 256 5.8 Using Power Triangles 258 5.9 Power-Factor Correction 261

More information

ELECTRONIC CIRCUITS. Time: Three Hours Maximum Marks: 100

ELECTRONIC CIRCUITS. Time: Three Hours Maximum Marks: 100 EC 40 MODEL TEST PAPER - 1 ELECTRONIC CIRCUITS Time: Three Hours Maximum Marks: 100 Answer five questions, taking ANY TWO from Group A, any two from Group B and all from Group C. All parts of a question

More information

Encoders. Lecture 23 5

Encoders. Lecture 23 5 -A decoder with enable input can function as a demultiplexer a circuit that receives information from a single line and directs it to one of 2 n possible output lines. The selection of a specific output

More information

Multiple Category Scope and Sequence: Scope and Sequence Report For Course Standards and Objectives, Content, Skills, Vocabulary

Multiple Category Scope and Sequence: Scope and Sequence Report For Course Standards and Objectives, Content, Skills, Vocabulary Multiple Category Scope and Sequence: Scope and Sequence Report For Course Standards and Objectives, Content, Skills, Vocabulary Wednesday, August 20, 2014, 1:16PM Unit Course Standards and Objectives

More information

DAV Institute of Engineering & Technology Department of ECE. Course Outcomes

DAV Institute of Engineering & Technology Department of ECE. Course Outcomes DAV Institute of Engineering & Technology Department of ECE Course Outcomes Upon successful completion of this course, the student will intend to apply the various outcome as:: BTEC-301, Analog Devices

More information

Combinational logic. ! Regular logic: multiplexers, decoders, LUTs and FPGAs. ! Switches, basic logic and truth tables, logic functions

Combinational logic. ! Regular logic: multiplexers, decoders, LUTs and FPGAs. ! Switches, basic logic and truth tables, logic functions Combinational logic! Switches, basic logic and truth tables, logic functions! Algebraic expressions to gates! Mapping to different gates! Discrete logic gate components (used in labs and 2)! Canonical

More information

DIGITAL LOGIC DESIGN (ELE 241)

DIGITAL LOGIC DESIGN (ELE 241) DIGITAL LOGIC DESIGN (ELE 241) Lecture # 01 & 02 Ali Mustafa Instructor Introduction Ali Mustafa BSC Computer Engineering (Comsats Pakistan) MS Mobile Communication (University of Bradford England) Worked

More information

Introduction (concepts and definitions)

Introduction (concepts and definitions) Objectives: Introduction (digital system design concepts and definitions). Advantages and drawbacks of digital techniques compared with analog. Digital Abstraction. Synchronous and Asynchronous Systems.

More information

Electronics. Digital Electronics

Electronics. Digital Electronics Electronics Digital Electronics Introduction Unlike a linear, or analogue circuit which contains signals that are constantly changing from one value to another, such as amplitude or frequency, digital

More information

Department of Electronics and Communication Engineering

Department of Electronics and Communication Engineering Department of Electronics and Communication Engineering Sub Code/Name: BEC3L2- DIGITAL ELECTRONICS LAB Name Reg No Branch Year & Semester : : : : LIST OF EXPERIMENTS Sl No Experiments Page No Study of

More information

Electronic Components And Circuit Analysis

Electronic Components And Circuit Analysis Theory /Practical Theory Semester /Annual Semester Semester No. I II Swami Ramanand Teerth Marathwada University, Nanded Syllabus B. Sc. First Year ELECTRONICS Semester System (MCQ Pattern) (To Be Implemented

More information

*************************************************************************

************************************************************************* for EE 151 Circuits I, EE 153 Circuits II, EE 121 Introduction to Electronic Devices, and CpE 111 Introduction to Computer Engineering. Missouri University of Science and Technology Introduction The required

More information

Formal Foundation of Digital Design

Formal Foundation of Digital Design Chapter 2: Switching Algebra and Logic Circuits 78 22 Digital Logic Design @ Department of Computer Engineering KKU. Formal Foundation of Digital Design In 854 George Boole published An investigation into

More information

A HIGH SPEED & LOW POWER 16T 1-BIT FULL ADDER CIRCUIT DESIGN BY USING MTCMOS TECHNIQUE IN 45nm TECHNOLOGY

A HIGH SPEED & LOW POWER 16T 1-BIT FULL ADDER CIRCUIT DESIGN BY USING MTCMOS TECHNIQUE IN 45nm TECHNOLOGY A HIGH SPEED & LOW POWER 16T 1-BIT FULL ADDER CIRCUIT DESIGN BY USING MTCMOS TECHNIQUE IN 45nm TECHNOLOGY Jasbir kaur 1, Neeraj Singla 2 1 Assistant Professor, 2 PG Scholar Electronics and Communication

More information

Place answers on the supplied BUBBLE SHEET only nothing written here will be graded.

Place answers on the supplied BUBBLE SHEET only nothing written here will be graded. ECE 270 Learning Outcome 1-1 - Practice Exam B OUTCOME #1: an ability to analyze and design CMOS logic gates. Multiple Choice select the single most appropriate response for each question. Note that none

More information

EECS 150 Homework 4 Solutions Fall 2008

EECS 150 Homework 4 Solutions Fall 2008 Problem 1: You have a 100 MHz clock, and need to generate 3 separate clocks at different frequencies: 20 MHz, 1kHz, and 1Hz. How many flip flops do you need to implement each clock if you use: a) a ring

More information

CELIA SCHAHCZENSKI. FE Exam Review Computers Oct. 18, 2018

CELIA SCHAHCZENSKI. FE Exam Review Computers Oct. 18, 2018 CELIA SCHAHCZENSKI FE Exam Review Computers Oct. 18, 2018 TOPICS Data Storage (2 problems) Data transmission (1 problem) Pseudo code (2 problems) Spreadsheets (3 problems) Logic Circuits (2 problems) Flowcharts

More information

The book has excellent descrip/ons of this topic. Please read the book before watching this lecture. The reading assignment is on the website.

The book has excellent descrip/ons of this topic. Please read the book before watching this lecture. The reading assignment is on the website. 5//22 Digital Logic Design Introduc/on to Computer Architecture David Black- Schaffer Contents 2 Combina3onal logic Gates Logic Truth tables Truth tables Gates (Karnaugh maps) Common components: Mul/plexors,

More information

De Morgan s second theorem: The complement of a product is equal to the sum of the complements.

De Morgan s second theorem: The complement of a product is equal to the sum of the complements. Q. What is Gate? State and prove De Morgan s theorems. nswer: digital circuit having one or more input signals but only one output signal is called a gate. De Morgan s first theorem: The complement of

More information

EE100Su08 Lecture #16 (August 1 st 2008)

EE100Su08 Lecture #16 (August 1 st 2008) EESu8 Lecture #6 (ugust st 28) OUTLINE Project next week: Pick up kits in your first lab section, work on the project in your first lab section, at home etc. and wrap up in the second lab section. USE

More information

Lecture 3: Logic circuit. Combinational circuit and sequential circuit

Lecture 3: Logic circuit. Combinational circuit and sequential circuit Lecture 3: Logic circuit Combinational circuit and sequential circuit TRAN THI HONG HONG@IS.NAIST.JP Content Lecture : Computer organization and performance evaluation metrics Lecture 2: Processor architecture

More information

Subtractor Logic Schematic

Subtractor Logic Schematic Function Of Xor Gate In Parallel Adder Subtractor Logic Schematic metic functions, including half adder, half subtractor, full adder, independent logic gates to form desired circuits based on dif- by integrating

More information

Introduction to CMOS VLSI Design (E158) Lecture 5: Logic

Introduction to CMOS VLSI Design (E158) Lecture 5: Logic Harris Introduction to CMOS VLSI Design (E158) Lecture 5: Logic David Harris Harvey Mudd College David_Harris@hmc.edu Based on EE271 developed by Mark Horowitz, Stanford University MAH E158 Lecture 5 1

More information

Larger 5 & 6variable Karnaugh maps

Larger 5 & 6variable Karnaugh maps Larger 5 & 6variable Karnaugh maps Larger Karnaugh maps reduce larger logic designs. How large is large enough? That depends on the number of inputs, fan-ins, to the logic circuit under consideration.

More information

Index. Cadden, W. J., 128 Caelingeart, P., 55, 57 Caldwell. S. H Absorption laws, 20, 29 Adjacency. diagram, 182. SIVE -NOR expressions, 53

Index. Cadden, W. J., 128 Caelingeart, P., 55, 57 Caldwell. S. H Absorption laws, 20, 29 Adjacency. diagram, 182. SIVE -NOR expressions, 53 Index Absorption laws, 20, 29 Adjacency column, 292 diagram, 182 map, 186, 293 output, 292 row, 292 Adjacent term, 81 Adjustable logic network, 65 Akers, S. B., Jr., 57 Algebraic determination of minimal

More information