EE40 Lecture 35. Prof. Chang-Hasnain. 12/5/07 Reading: Ch 7, Supplementary Reader

Size: px
Start display at page:

Download "EE40 Lecture 35. Prof. Chang-Hasnain. 12/5/07 Reading: Ch 7, Supplementary Reader"

Transcription

1 EE4 Lecture 35 2/5/7 Reading: Ch 7, Supplementary Reader EE4 all 26 Slide Week 5 OUTLINE Need for Input Controlled Pull-Up CMOS Inverter nalysis CMOS Voltage Transfer Characteristic Combinatorial logic circuits Logic inary representations Combinatorial logic circuits Reading Chap Supplementary Notes Chapter 4 EE4 all 26 Slide 2

2 2 Digital Circuits Introduction nalog: signal amplitude is continuous with time. Digital: signal amplitude is represented by a restricted set of discrete numbers. inary: only two values are allowed to represent the signal: High or low (i.e. logic or ). Digital word: Each binary digit is called a bit series of bits form a word yte is a word consisting of 8-bits dvantages of digital signal Digital signal is more resilient to noise can more easily differentiate high () and low () Transmission Parallel transmission over a bus containing n wires. aster but short distance (internal to a computer or chip) Serial transmission (transmit bits sequentially) Longer distance EE4 all 26 Slide 3 nalog vs. Digital Signals Most (but not all) observables are analog think of analog vs. digital watches but the most convenient way to represent & transmit information electronically is to use digital signals think of telephony nalog-to-digital (/D) & digital-to-analog (D/) conversion is essential (and nothing new) think of a piano keyboard EE4 all 26 Slide 4

3 3 nalog Signal Example: Microphone Voltage V in microvolts Voltage with normal piano key stroke 5 microvolt 44 Hz signal t in milliseconds V in microvolts Voltage with soft pedal applied 25 microvolt 44 Hz signal t in milliseconds 5 microvolt 22 Hz signal V in microvolts t in milliseconds nalog signal representing piano key, below middle C (22 Hz) EE4 all 26 Slide 5 Digital Signal Representations inary numbers can be used to represent any quantity. We generally have to agree on some sort of code, and the dynamic range of the signal in order to know the form and the number of binary digits ( bits ) required. Example : Voltage signal with maximum value 2 Volts inary two () could represent a 2 Volt signal. To encode the signal to an accuracy of part in 64 (.5% precision), 6 binary digits ( bits ) are needed Example 2: Sine wave signal of known frequency and maximum amplitude 5 µv; µv resolution needed. EE4 all 26 Slide 6

4 4 Decimal Numbers: ase Digits:,, 2, 3, 4, 5, 6, 7, 8, 9 Example: 327 = (3x 3 ) + (2x 2 ) + (7x ) + (x ) This is a four-digit number. The left hand most number (3 in this example) is often referred as the most significant number and the right most the least significant number ( in this example). EE4 all 26 Slide 7 Numbers: positional notation Number ase symbols per digit: ase (Decimal):,, 2, 3, 4, 5, 6, 7, 8, 9 ase 2 (inary):, Number representation: d 3 d 3... d d is a 32 digit number value = d d d + d inary:, (In binary digits called bits ) = = = 26 Here 5 digit binary # turns into a 2 digit decimal # EE4 all 26 Slide 8

5 5 Hexadecimal Numbers: ase 6 Hexadecimal:,, 2, 3, 4, 5, 6, 7, 8, 9,,, C, D, E, Normal digits + 6 more from the alphabet Conversion: inary Hex hex digit represents 6 decimal values 4 binary digits represent 6 decimal values hex digit replaces 4 binary digits EE4 all 26 Slide 9 Digital Signal Representations inary numbers can be used to represent any quantity. We generally have to agree on some sort of code, and the dynamic range of the signal in order to know the form and the number of binary digits ( bits ) required. Example : Voltage signal with maximum value 2 V and minimum of V. inary two () could represent a 2 Volt signal. To encode the signal to an accuracy of part in 64 (.5% precision), 6 binary digits ( bits ) are needed Example 2: Sine wave signal of known frequency and maximum amplitude 5 µv; µv resolution needed. EE4 all 26 Slide

6 6 Resolution The size of the smallest element that can be separated from neighboring elements. The term is used to describe imaging systems, the frequency separation achieved by spectrometers, and so on. EE4 all 26 Slide Decimal-inary Conversion Decimal to inary Repeated Division y 2 Consider the number 267. Subtraction if you know your 2 N values by heart. inary to Decimal conversion 2 = x2 5 +x2 4 +x2 3 +x2 2 + x2 + x2 = = 49 = 4x + 9x EE4 all 26 Slide 2

7 7 Example 2 (continued) Possible digital representation for the sine wave signal: nalog representation: Digital representation: mplitude in µv inary number EE4 all 26 Slide 3 inary Representation N bit can represent 2 N values: typically from to 2 N - 3-bit word can represent 8 values: e.g.,, 2, 3, 4, 5, 6, 7 Conversion Integer to binary raction to binary (3.5 =. 2 and.392 =. 2 ) Octal and hexadecimal EE4 all 26 Slide 4

8 8 Logic gates Combine several logic variable inputs to produce a logic variable output Memory Memoryless: output at a given instant depends the input values of that instant. Momory: output depends on previous and present input values. EE4 all 26 Slide 5 oolean algebras lgebraic structures "capture the essence" of the logical operations ND, OR and NOT corresponding set for theoretic operations intersection, union and complement named after George oole, an English mathematician at University College Cork, who first defined them as part of a system of logic in the mid 9th century. oolean algebra was an attempt to use algebraic techniques to deal with expressions in the propositional calculus. Today, oolean algebras find many applications in electronic design. They were first applied to switching by Claude Shannon in the 2th century. EE4 all 26 Slide 6

9 9 oolean algebras The operators of oolean algebra may be represented in various ways. Often they are simply written as ND, OR and NOT. In describing circuits, NND (NOT ND), NOR (NOT OR) and XOR (exclusive OR) may also be used. Mathematicians often use + for OR and for ND (since in some ways those operations are analogous to addition and multiplication in other algebraic structures) and represent NOT by a line drawn above the expression being negated. EE4 all 26 Slide 7 oolean lgebra NOT operation (inverter) i = ND operation + = i = i = i = i = i OR operation ( i) ic = i( ic) + = + = + = + = + ( + ) + C = + ( + C) EE4 all 26 Slide 8

10 Graphic Representation i = + = ull square = complete set = Yellow part = NOT() = White circle = EE4 all 26 Slide 9 Graphic Representation +! = + = ( + ) i( + ) = i + + Exclusive OR=yellow and blue part intersection/overlap part =exactly when only one of the input is true EE4 all 26 Slide 2

11 oolean lgebra Distributive Property i( + C) = i + ic ( + ) ic = ( + ) i( + C) De Morgan s laws + = i i = + n excellent web site to visit EE4 all 26 Slide 2 Examples = C + C + (C+D) (D+E) = C (+D+E) + D E EE4 all 26 Slide 22

12 2 Logic unctions, Symbols, & Notation TRUTH NME SYMOL NOTTION TLE NOT = OR = + ND = EE4 all 26 Slide 23 Logic unctions, Symbols, & Notation 2 NOR = + NND = XOR (exclusive OR) = + EE4 all 26 Slide 24

13 3 Circuit Realization! = + = ( + ) i( + ) = i + +! EE4 all 26 Slide 25 Logic unctions, Symbols, & Notation TRUTH NME SYMOL NOTTION TLE NOT = OR = + ND = EE4 all 26 Slide 26

14 4 Logic unctions, Symbols, & Notation 2 NOR = + NND = XOR (exclusive OR) = + EE4 all 26 Slide 27 an in/an out Complex digital operations are formed with a variety of gates interconnected to yield the desired logic function. Sometimes a number of inputs are connected to one gate input and output of a gate may be connected to a number of gates. an-in: the maximum number of logic gates that can be connected at the input of a gate without altering its performance. an-out: the maximum number of logic gates that can be connected to the output of a gate without altering its performance. Typical fan-in and fan-out numbers are 3. EE4 all 26 Slide 28

15 5 Inverter = NOT Gate V in V out Ideal Transfer Characteristics V out V/2 V V in EE4 all 26 Slide 29 Terminology for a Logic Circuit V IN I OUT V DD R PULL UP Output Pull-Down (NMOS) V OUT V DD = Power supply voltage (D is from Drain) we do not draw the symbol. Pull-Up Network = Set of devices used to carry current from the power supply to the output node to charge the output node to the power supply voltage. Pull-Down Network = Set of devices used to carry current from the output node to ground to discharge the output node to ground. I OUT = Current for the device under study. V TD = Threshold Voltage value of V IN at which the Pull-Down (NMOS transistor) begins to conduct. V OUT-ST-D = Value of V OUT beyond which the current I OUT-D saturates at the (drain) current saturation value I OUT-ST-D. EE4 all 26 Slide 3

16 6 Pull-Up and Pull-Down V DD = Power supply voltage (D is from Drain) we do not draw the symbol. PMOS or Resistor NMOS or Resistor Pull-up current V logic state of Pull-down current V logic state of Non-zero V DD Some value Non-zero Some value GND EE4 all 26 Slide 3

Digital Circuits Introduction

Digital Circuits Introduction Lecture #6 OUTLINE Logic inary representations Combinatorial logic circuits Chap 7-7.5 Reading EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu Digital Circuits Introduction nalog: signal amplitude

More information

EE100Su08 Lecture #16 (August 1 st 2008)

EE100Su08 Lecture #16 (August 1 st 2008) EESu8 Lecture #6 (ugust st 28) OUTLINE Project next week: Pick up kits in your first lab section, work on the project in your first lab section, at home etc. and wrap up in the second lab section. USE

More information

Lecture #1. Course Overview

Lecture #1. Course Overview Lecture #1 OUTLINE Course overview Introduction: integrated circuits Analog vs. digital signals Lecture 1, Slide 1 Course Overview EECS 40: One of five EECS core courses (with 20, 61A, 61B, and 61C) introduces

More information

Electrical Engineering 40 Introduction to Microelectronic Circuits

Electrical Engineering 40 Introduction to Microelectronic Circuits Electrical Engineering 40 Introduction to Microelectronic Circuits Instructor: Prof. Andy Neureuther EECS Department University of California, Berkeley Lecture 1, Slide 1 Introduction Instructor: Prof.

More information

EE292: Fundamentals of ECE

EE292: Fundamentals of ECE EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 21 121113 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Chapter 7 - Logic Circuits Binary Number Representation Binary Arithmetic

More information

EECS 42 Introduction to Electronics for Computer Science

EECS 42 Introduction to Electronics for Computer Science EECS 42 Introduction to Electronics for Computer Science Andrew R. Neureuther MW 3-4, 10 Evans Plus Discussion Section http://inst.eecs.berkeley.edu/~ee42/ Welcome Back to Campus I hope EECS 42 captures

More information

Asst. Prof. Thavatchai Tayjasanant, PhD. Power System Research Lab 12 th Floor, Building 4 Tel: (02)

Asst. Prof. Thavatchai Tayjasanant, PhD. Power System Research Lab 12 th Floor, Building 4 Tel: (02) 2145230 Aircraft Electricity and Electronics Asst. Prof. Thavatchai Tayjasanant, PhD Email: taytaycu@gmail.com aycu@g a co Power System Research Lab 12 th Floor, Building 4 Tel: (02) 218-6527 1 Chapter

More information

Chapter # 1: Introduction

Chapter # 1: Introduction Chapter # : Randy H. Katz University of California, erkeley May 993 ฉ R.H. Katz Transparency No. - The Elements of Modern Design Representations, Circuit Technologies, Rapid Prototyping ehaviors locks

More information

DIGITAL ELECTRONICS: LOGIC AND CLOCKS

DIGITAL ELECTRONICS: LOGIC AND CLOCKS DIGITL ELECTRONICS: LOGIC ND CLOCKS L 9 INTRO: INTRODUCTION TO DISCRETE DIGITL LOGIC, MEMORY, ND CLOCKS GOLS In this experiment, we will learn about the most basic elements of digital electronics, from

More information

Chapter 1: Digital logic

Chapter 1: Digital logic Chapter 1: Digital logic I. Overview In PHYS 252, you learned the essentials of circuit analysis, including the concepts of impedance, amplification, feedback and frequency analysis. Most of the circuits

More information

Lecture 02: Digital Logic Review

Lecture 02: Digital Logic Review CENG 3420 Lecture 02: Digital Logic Review Bei Yu byu@cse.cuhk.edu.hk CENG3420 L02 Digital Logic. 1 Spring 2017 Review: Major Components of a Computer CENG3420 L02 Digital Logic. 2 Spring 2017 Review:

More information

Introduction. Reading: Chapter 1. Courtesy of Dr. Dansereau, Dr. Brown, Dr. Vranesic, Dr. Harris, and Dr. Choi.

Introduction. Reading: Chapter 1. Courtesy of Dr. Dansereau, Dr. Brown, Dr. Vranesic, Dr. Harris, and Dr. Choi. Introduction Reading: Chapter 1 Courtesy of Dr. Dansereau, Dr. Brown, Dr. Vranesic, Dr. Harris, and Dr. Choi http://csce.uark.edu +1 (479) 575-6043 yrpeng@uark.edu Why study logic design? Obvious reasons

More information

Introduction to Digital Logic Missouri S&T University CPE 2210 Exam 1 Logistics

Introduction to Digital Logic Missouri S&T University CPE 2210 Exam 1 Logistics Introduction to Digital Logic Missouri S&T University CPE 2210 Exam 1 Logistics Egemen K. Çetinkaya Egemen K. Çetinkaya Department of Electrical & Computer Engineering Missouri University of Science and

More information

I. Digital Integrated Circuits - Logic Concepts

I. Digital Integrated Circuits - Logic Concepts I. Digital Integrated Circuits - Logic Concepts. Logic Fundamentals: binary mathematics: only operate on and (oolean algebra) simplest function -- inversion = symbol for the inverter INPUT OUTPUT EECS

More information

Digital Logic Circuits

Digital Logic Circuits Digital Logic Circuits Let s look at the essential features of digital logic circuits, which are at the heart of digital computers. Learning Objectives Understand the concepts of analog and digital signals

More information

Lecture 2: Digital Logic Basis

Lecture 2: Digital Logic Basis Lecture 2: Digital Logic Basis Xufeng Kou School of Information Science and Technology ShanghaiTech University 1 Outline Truth Table Basic Logic Operation and Gates Logic Circuits NOR Gates and NAND Gates

More information

Logic Symbols with Truth Tables INVERTER A B NAND A B C NOR C A B A B C XNOR A B C A B Digital Logic 1

Logic Symbols with Truth Tables INVERTER A B NAND A B C NOR C A B A B C XNOR A B C A B Digital Logic 1 Slide Logic Symbols with Truth Tables UFFER INVERTER ND NND OR NOR XOR XNOR 6.7 Digital Logic Digital logic can be described in terms of standard logic symbols and their corresponding truth tables. The

More information

Digital Applications (CETT 1415) Credit: 4 semester credit hours (3 hours lecture, 4 hours lab) Prerequisite: CETT 1403 & CETT 1405

Digital Applications (CETT 1415) Credit: 4 semester credit hours (3 hours lecture, 4 hours lab) Prerequisite: CETT 1403 & CETT 1405 Digital Applications () Credit: 4 semester credit hours (3 hours lecture, 4 hours lab) Prerequisite: CETT 1403 & CETT 1405 Course Description This course covers digital techniques and numbering systems,

More information

Chapter 8. Chapter 9. Chapter 6. Chapter 10. Chapter 11. Chapter 7

Chapter 8. Chapter 9. Chapter 6. Chapter 10. Chapter 11. Chapter 7 5.5 Series and Parallel Combinations of 246 Complex Impedances 5.6 Steady-State AC Node-Voltage 247 Analysis 5.7 AC Power Calculations 256 5.8 Using Power Triangles 258 5.9 Power-Factor Correction 261

More information

Gates and Circuits 1

Gates and Circuits 1 1 Gates and Circuits Chapter Goals Identify the basic gates and describe the behavior of each Describe how gates are implemented using transistors Combine basic gates into circuits Describe the behavior

More information

Digital Integrated CircuitDesign

Digital Integrated CircuitDesign Digital Integrated CircuitDesign Lecture 11 BiCMOS PMOS rray Q1 NMOS rray Y NMOS rray Q2 dib brishamifar EE Department IUST Contents Introduction BiCMOS Devices BiCMOS Inverters BiCMOS Gates BiCMOS Drivers

More information

Propagation Delay, Circuit Timing & Adder Design. ECE 152A Winter 2012

Propagation Delay, Circuit Timing & Adder Design. ECE 152A Winter 2012 Propagation Delay, Circuit Timing & Adder Design ECE 152A Winter 2012 Reading Assignment Brown and Vranesic 2 Introduction to Logic Circuits 2.9 Introduction to CAD Tools 2.9.1 Design Entry 2.9.2 Synthesis

More information

Propagation Delay, Circuit Timing & Adder Design

Propagation Delay, Circuit Timing & Adder Design Propagation Delay, Circuit Timing & Adder Design ECE 152A Winter 2012 Reading Assignment Brown and Vranesic 2 Introduction to Logic Circuits 2.9 Introduction to CAD Tools 2.9.1 Design Entry 2.9.2 Synthesis

More information

Unit level 4 Credit value 15. Introduction. Learning Outcomes

Unit level 4 Credit value 15. Introduction. Learning Outcomes Unit 20: Unit code Digital Principles T/615/1494 Unit level 4 Credit value 15 Introduction While the broad field of electronics covers many aspects, it is digital electronics which now has the greatest

More information

ECE380 Digital Logic. Logic values as voltage levels

ECE380 Digital Logic. Logic values as voltage levels ECE380 Digital Logic Implementation Technology: NMOS and PMOS Transistors, CMOS logic gates Dr. D. J. Jackson Lecture 13-1 Logic values as voltage levels V ss is the minimum voltage that can exist in the

More information

In this lecture: Lecture 8: ROM & Programmable Logic Devices

In this lecture: Lecture 8: ROM & Programmable Logic Devices In this lecture: Lecture 8: ROM Programmable Logic Devices Dr Pete Sedcole Department of EE Engineering Imperial College London http://caseeicacuk/~nps/ (Floyd, 3 5, 3) (Tocci 2, 24, 25, 27, 28, 3 34)

More information

Introduction to Computer Engineering EECS 203 dickrp/eecs203/ Grading scheme. Review.

Introduction to Computer Engineering EECS 203  dickrp/eecs203/ Grading scheme. Review. Introduction to Computer Engineering EECS 203 http://ziyang.eecs.northwestern.edu/ dickrp/eecs203/ Grading scheme Instructor: Robert Dick Office: 77 Tech Email: dickrp@northwestern.edu Phone: 847 467 2298

More information

Objective Questions. (a) Light (b) Temperature (c) Sound (d) all of these

Objective Questions. (a) Light (b) Temperature (c) Sound (d) all of these Objective Questions Module 1: Introduction 1. Which of the following is an analog quantity? (a) Light (b) Temperature (c) Sound (d) all of these 2. Which of the following is a digital quantity? (a) Electrical

More information

EE 330 Lecture 5. Basic Logic Circuits Complete Logic Family Other Logic Styles. complex logic gates

EE 330 Lecture 5. Basic Logic Circuits Complete Logic Family Other Logic Styles. complex logic gates EE 330 Lecture 5 asic Logic Circuits Complete Logic Family Other Logic Styles complex logic gates Review from Last Time The key patents that revolutionized the electronics field: Jack Kilby (34 years old

More information

INTRODUCTION TO DIGITAL CONCEPT

INTRODUCTION TO DIGITAL CONCEPT COURSE / CODE DIGITAL SYSTEM FUNDAMENTALS (ECE 421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE 422) INTRODUCTION TO DIGITAL CONCEPT Digital and Analog Quantities Digital relates to data in the form of digits,

More information

COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design

COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design PH-315 COMINATIONAL and SEUENTIAL LOGIC CIRCUITS Hardware implementation and software design A La Rosa I PURPOSE: To familiarize with combinational and sequential logic circuits Combinational circuits

More information

EE 330 Lecture 5. Basic Logic Circuits Complete Logic Family Other Logic Styles. Improved Device Models. complex logic gates pass transistor logic

EE 330 Lecture 5. Basic Logic Circuits Complete Logic Family Other Logic Styles. Improved Device Models. complex logic gates pass transistor logic EE 330 Lecture 5 asic Logic Circuits Complete Logic Family Other Logic Styles complex logic gates pass transistor logic Improved Device Models Review from Last Time The key patents that revolutionized

More information

Combinational Circuits: Multiplexers, Decoders, Programmable Logic Devices

Combinational Circuits: Multiplexers, Decoders, Programmable Logic Devices Combinational Circuits: Multiplexers, Decoders, Programmable Logic Devices Lecture 5 Doru Todinca Textbook This chapter is based on the book [RothKinney]: Charles H. Roth, Larry L. Kinney, Fundamentals

More information

Logic diagram: a graphical representation of a circuit

Logic diagram: a graphical representation of a circuit LOGIC AND GATES Introduction to Logic (1) Logic diagram: a graphical representation of a circuit Each type of gate is represented by a specific graphical symbol Truth table: defines the function of a gate

More information

Chapter 4 Logic Functions and Gates

Chapter 4 Logic Functions and Gates Chapter 4 Logic Functions and Gates CHPTER OJECTIVES Upon successful completion of this chapter, you will be able to: Describe the basic logic functions: ND, OR, and NOT. Draw simple switch circuits to

More information

Lecture # 16 Logic with a State Dependent Device. Logic Gates How are they built in practice?

Lecture # 16 Logic with a State Dependent Device. Logic Gates How are they built in practice? EECS 42 Introduction to Digital Electronics Andrew R. Neureuther These viewgraphs will be handed out in class 1/21/ Lecture # 16 Logic with a State Dependent Device S&O pp. 9-9, 4-6 (read for graphs and

More information

Satish Chandra, Assistant Professor, P P N College, Kanpur 1

Satish Chandra, Assistant Professor, P P N College, Kanpur 1 8/7/4 LOGIC GTES CE NPN Transistor Circuit COMINTIONL LOGIC Satish Chandra ssistant Professor Department of Physics P PN College, Kanpur www.satish4.weebly.com circuit with an output signal that is logical

More information

Combinational Logic Gates in CMOS

Combinational Logic Gates in CMOS Combinational Logic Gates in CMOS References: dapted from: Digital Integrated Circuits: Design Perspective, J. Rabaey UC Principles of CMOS VLSI Design: Systems Perspective, 2nd Ed., N. H. E. Weste and

More information

EE 42/100 Lecture 23: CMOS Transistors and Logic Gates. Rev A 4/15/2012 (10:39 AM) Prof. Ali M. Niknejad

EE 42/100 Lecture 23: CMOS Transistors and Logic Gates. Rev A 4/15/2012 (10:39 AM) Prof. Ali M. Niknejad A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 23 p. 1/16 EE 42/100 Lecture 23: CMOS Transistors and Logic Gates ELECTRONICS Rev A 4/15/2012 (10:39 AM) Prof. Ali M. Niknejad University

More information

ECE Digital Logic Lecture 2. Digital Design Circuit Types: Combinational vs. Sequential

ECE Digital Logic Lecture 2. Digital Design Circuit Types: Combinational vs. Sequential ECE 74 - Digital Logic Lecture Circuit Types: Combinational vs. equential Lecture Transistors, witches, CMO Basic Logic Gates Boolean Equations Truth Table: w/o time or previous values Circuit Components:

More information

Digital Applications (CETT 1415) Credit: 4 semester credit hours (3 hours lecture, 4 hours lab) Prerequisite: CETT 1403 & CETT 1405

Digital Applications (CETT 1415) Credit: 4 semester credit hours (3 hours lecture, 4 hours lab) Prerequisite: CETT 1403 & CETT 1405 Digital Applications (CETT 1415) Credit: 4 semester credit hours (3 hours lecture, 4 hours lab) Prerequisite: CETT 1403 & CETT 1405 Course Description This course covers digital techniques and numbering

More information

Combinational Circuits DC-IV (Part I) Notes

Combinational Circuits DC-IV (Part I) Notes Combinational Circuits DC-IV (Part I) Notes Digital Circuits have been classified as: (a) Combinational Circuits: In these circuits output at any instant of time depends on inputs present at that instant

More information

In this lecture: Lecture 3: Basic Logic Gates & Boolean Expressions

In this lecture: Lecture 3: Basic Logic Gates & Boolean Expressions In this lecture: Lecture 3: Basic Logic Gates & Boolean Expressions Dr Pete Sedcole Department of E&E Engineering Imperial College London http://cas.ee.ic.ac.uk/~nps/ (Floyd 3.1 3.6, 4.1) (Tocci 3.1 3.9)

More information

CMOS Inverter & Ring Oscillator

CMOS Inverter & Ring Oscillator CMOS Inverter & Ring Oscillator Theory: In this Lab we will implement a CMOS inverter and then use it as a building block for a Ring Oscillator. MOSfets (Metal Oxide Semiconductor Field Effect Transistors)

More information

UNIT III. Designing Combinatorial Circuits. Adders

UNIT III. Designing Combinatorial Circuits. Adders UNIT III Designing Combinatorial Circuits The design of a combinational circuit starts from the verbal outline of the problem and ends with a logic circuit diagram or a set of Boolean functions from which

More information

Electronics. Digital Electronics

Electronics. Digital Electronics Electronics Digital Electronics Introduction Unlike a linear, or analogue circuit which contains signals that are constantly changing from one value to another, such as amplitude or frequency, digital

More information

Computer Hardware Engineering (IS1200) Computer Organization and Components (IS1500) Fall 2017 Lecture 7: Combinational Logic

Computer Hardware Engineering (IS1200) Computer Organization and Components (IS1500) Fall 2017 Lecture 7: Combinational Logic Computer Hardware ngineering (I2) Computer Organization and Components (I5) Fall 27 Lecture 7: Combinational Logic Optional for I2, compulsory for I5 Fredrik Lundevall lides by David roman and Fredrik

More information

Designing Information Devices and Systems II Fall 2017 Note 1

Designing Information Devices and Systems II Fall 2017 Note 1 EECS 16B Designing Information Devices and Systems II Fall 2017 Note 1 1 Digital Information Processing Electrical circuits manipulate voltages (V ) and currents (I) in order to: 1. Process information

More information

ECE/CoE 0132: FETs and Gates

ECE/CoE 0132: FETs and Gates ECE/CoE 0132: FETs and Gates Kartik Mohanram September 6, 2017 1 Physical properties of gates Over the next 2 lectures, we will discuss some of the physical characteristics of integrated circuits. We will

More information

Name: Class: Date: 1. As more electronic systems have been designed using digital technology, devices have become smaller and less powerful.

Name: Class: Date: 1. As more electronic systems have been designed using digital technology, devices have become smaller and less powerful. Name: Class: Date: DE Midterm Review 2 True/False Indicate whether the statement is true or false. 1. As more electronic systems have been designed using digital technology, devices have become smaller

More information

Digital Fundamentals

Digital Fundamentals Digital Fundamentals Tenth Edition Floyd Chapter 3 28 Pearson Education 29 Pearson Education, Upper Saddle River, NJ 7458. ll Rights Reserved The Inverter The inverter performs the oolean NOT operation.

More information

Digital Fundamentals 8/29/2016. Summary. Summary. Floyd. Chapter 3 A X. The Inverter

Digital Fundamentals 8/29/2016. Summary. Summary. Floyd. Chapter 3 A X. The Inverter Digital Fundamentals Tenth Edition Floyd Chapter 3 The Inverter The inverter performs the oolean NOT operation. When the input is LOW, the output is HIGH; when the input is HIGH, the output is LOW. Input

More information

INF4420 Switched capacitor circuits Outline

INF4420 Switched capacitor circuits Outline INF4420 Switched capacitor circuits Spring 2012 1 / 54 Outline Switched capacitor introduction MOSFET as an analog switch z-transform Switched capacitor integrators 2 / 54 Introduction Discrete time analog

More information

Lecture 2. Digital Basics

Lecture 2. Digital Basics Lecture Digital Basics Peter Cheung Department of Electrical & Electronic Engineering Imperial College London URL: www.ee.ic.ac.uk/pcheung/teaching/de1_ee/ E-mail: p.cheung@imperial.ac.uk Lecture Slide

More information

Gates and and Circuits

Gates and and Circuits Chapter 4 Gates and Circuits Chapter Goals Identify the basic gates and describe the behavior of each Describe how gates are implemented using transistors Combine basic gates into circuits Describe the

More information

A-data new-a. Data here. B-data new-b. Digital Circuits V CC. ECGR2181 Chapter 3 Notes 3-1. Logic System Design I

A-data new-a. Data here. B-data new-b. Digital Circuits V CC. ECGR2181 Chapter 3 Notes 3-1. Logic System Design I Data here -data new- -data new- Digital Circuits V CC ECGR28 Chapter 3 Notes S ogic System Design I 3- What is a digital system? It is a organized collecti of digital elements which is designed to perform

More information

Analysis procedure. To obtain the output Boolean functions from a logic diagram, proceed as follows:

Analysis procedure. To obtain the output Boolean functions from a logic diagram, proceed as follows: Combinational Logic Logic circuits for digital systems may be combinational or sequential. combinational circuit consists of input variables, logic gates, and output variables. 1 nalysis procedure To obtain

More information

ECE 334: Electronic Circuits Lecture 10: Digital CMOS Circuits

ECE 334: Electronic Circuits Lecture 10: Digital CMOS Circuits Faculty of Engineering ECE 334: Electronic Circuits Lecture 10: Digital CMOS Circuits CMOS Technology Complementary MOS, or CMOS, needs both PMOS and NMOS FET devices for their logic gates to be realized

More information

DIGITAL CIRCUITS AND SYSTEMS ASSIGNMENTS 1 SOLUTIONS

DIGITAL CIRCUITS AND SYSTEMS ASSIGNMENTS 1 SOLUTIONS DIGITAL CIRCUITS AND SYSTEMS ASSIGNMENTS 1 SOLUTIONS 1. Analog signal varies continuously between two amplitudes over the given interval of time. Between these limits of amplitude and time, the signal

More information

ELEC 350L Electronics I Laboratory Fall 2012

ELEC 350L Electronics I Laboratory Fall 2012 ELEC 350L Electronics I Laboratory Fall 2012 Lab #9: NMOS and CMOS Inverter Circuits Introduction The inverter, or NOT gate, is the fundamental building block of most digital devices. The circuits used

More information

Number system: the system used to count discrete units is called number. Decimal system: the number system that contains 10 distinguished

Number system: the system used to count discrete units is called number. Decimal system: the number system that contains 10 distinguished Number system: the system used to count discrete units is called number system Decimal system: the number system that contains 10 distinguished symbols that is 0-9 or digits is called decimal system. As

More information

Digital Fundamentals

Digital Fundamentals 07/ago/2017 Digital Fundamentals ELEVENTH EDITION CHPTER 1 Introductory Concepts Digital electronics uses circuits that have two states, which are represented by two different voltage levels called HIGH

More information

COMBINATIONAL CIRCUIT

COMBINATIONAL CIRCUIT Combinational circuit is a circuit in which we combine the different gates in the circuit, for example encoder, decoder, multiplexer and demultiplexer. Some of the characteristics of combinational circuits

More information

INF4420. Switched capacitor circuits. Spring Jørgen Andreas Michaelsen

INF4420. Switched capacitor circuits. Spring Jørgen Andreas Michaelsen INF4420 Switched capacitor circuits Spring 2012 Jørgen Andreas Michaelsen (jorgenam@ifi.uio.no) Outline Switched capacitor introduction MOSFET as an analog switch z-transform Switched capacitor integrators

More information

CHAPTER 2 - DIGITAL DATA REPRESENTATION AND NUMBERING SYSTEMS

CHAPTER 2 - DIGITAL DATA REPRESENTATION AND NUMBERING SYSTEMS CHAPTER 2 - DIGITAL DATA REPRESENTATION AND NUMBERING SYSTEMS INTRODUCTION Digital computers use sequences of binary digits (bits) to represent numbers, letters, special symbols, music, pictures, and videos.

More information

CS302 - Digital Logic Design Glossary By

CS302 - Digital Logic Design Glossary By CS302 - Digital Logic Design Glossary By ABEL : Advanced Boolean Expression Language; a software compiler language for SPLD programming; a type of hardware description language (HDL) Adder : A digital

More information

Course Outline Cover Page

Course Outline Cover Page College of Micronesia FSM P.O. Box 159 Kolonia, Pohnpei Course Outline Cover Page Digital Electronics I VEE 135 Course Title Department and Number Course Description: This course provides the students

More information

EE 280 Introduction to Digital Logic Design

EE 280 Introduction to Digital Logic Design EE 280 Introduction to Digital Logic Design Lecture 1. Introduction EE280 Lecture 1 1-1 Instructors: EE 280 Introduction to Digital Logic Design Dr. Lukasz Kurgan (section A1) office: ECERF 6 th floor,

More information

De Morgan s second theorem: The complement of a product is equal to the sum of the complements.

De Morgan s second theorem: The complement of a product is equal to the sum of the complements. Q. What is Gate? State and prove De Morgan s theorems. nswer: digital circuit having one or more input signals but only one output signal is called a gate. De Morgan s first theorem: The complement of

More information

Digital Fundamentals 9/4/2017. Summary. Summary. Floyd. Chapter 3. The Inverter

Digital Fundamentals 9/4/2017. Summary. Summary. Floyd. Chapter 3. The Inverter Digital Fundamentals Tenth Edition Floyd Chapter 3 29 Pearson Education, Upper 28 Pearson Saddle River, Education NJ 7458. ll Rights Reserved The Inverter The inverter performs the oolean NOT operation.

More information

Approximate Hybrid Equivalent Circuits. Again, the impedance looking into the output terminals is infinite so that. conductance is zero.

Approximate Hybrid Equivalent Circuits. Again, the impedance looking into the output terminals is infinite so that. conductance is zero. Again, the impedance looking into the output terminals is infinite so that conductance is zero. Hence, the four h-parameters of an ideal transistor connected in CE transistor are The hybrid equivalent

More information

ANALOGUE AND DIGITAL ELECTRONICS STUDENT S WORKBOOK U3: DIGITAL ELECTRONICS

ANALOGUE AND DIGITAL ELECTRONICS STUDENT S WORKBOOK U3: DIGITAL ELECTRONICS NLOGUE ND DIGITL ELECTRONICS STUDENT S WORKBOOK U3: DIGITL ELECTRONICS Joaquim Crisol Llicència D, Generalitat de Catalunya NILE Norwich, pril of 211 Table of contents Table of contents 3 DIGITL ELECTRONICS....

More information

First Optional Homework Problem Set for Engineering 1630, Fall 2014

First Optional Homework Problem Set for Engineering 1630, Fall 2014 First Optional Homework Problem Set for Engineering 1630, Fall 014 1. Using a K-map, minimize the expression: OUT CD CD CD CD CD CD How many non-essential primes are there in the K-map? How many included

More information

INF4420. Outline. Switched capacitor circuits. Switched capacitor introduction. MOSFET as an analog switch 1 / 26 2 / 26.

INF4420. Outline. Switched capacitor circuits. Switched capacitor introduction. MOSFET as an analog switch 1 / 26 2 / 26. INF4420 Switched capacitor circuits Spring 2012 Jørgen Andreas Michaelsen (jorgenam@ifi.uil.no) 1 / 26 Outline Switched capacitor introduction MOSFET as an analog switch 2 / 26 Introduction Discrete time

More information

Computer Organization and Components

Computer Organization and Components Computer Organization and Components I5, fall 25 Lecture 7: Combinational Logic ssociate Professor, KTH Royal Institute of Technology ssistant Research ngineer, University of California, erkeley lides

More information

Digital Microelectronic Circuits ( ) CMOS Digital Logic. Lecture 6: Presented by: Adam Teman

Digital Microelectronic Circuits ( ) CMOS Digital Logic. Lecture 6: Presented by: Adam Teman Digital Microelectronic Circuits (361-1-3021 ) Presented by: Adam Teman Lecture 6: CMOS Digital Logic 1 Last Lectures The CMOS Inverter CMOS Capacitance Driving a Load 2 This Lecture Now that we know all

More information

Lecture 11 Circuits numériques (I) L'inverseur

Lecture 11 Circuits numériques (I) L'inverseur Lecture 11 Circuits numériques (I) L'inverseur Outline Introduction to digital circuits The inverter NMOS inverter with resistor pull-up 6.12 Spring 24 Lecture 11 1 1. Introduction to digital circuits:

More information

Lecture 12 - Digital Circuits (I) The inverter. October 20, 2005

Lecture 12 - Digital Circuits (I) The inverter. October 20, 2005 6.12 - Microelectronic Devices and Circuits - Fall 25 Lecture 12-1 Lecture 12 - Digital Circuits (I) The inverter October 2, 25 Contents: 1. Introduction to digital electronics: the inverter 2. NMOS inverter

More information

Abu Dhabi Men s College, Electronics Department. Logic Families

Abu Dhabi Men s College, Electronics Department. Logic Families bu Dhabi Men s College, Electronics Department Logic Families There are several different families of logic gates. Each family has its capabilities and limitations, its advantages and disadvantages. The

More information

Fan in: The number of inputs of a logic gate can handle.

Fan in: The number of inputs of a logic gate can handle. Subject Code: 17333 Model Answer Page 1/ 29 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model

More information

ELEC 2210 EXPERIMENT 12 NMOS Logic

ELEC 2210 EXPERIMENT 12 NMOS Logic ELEC 2210 EXPERIMENT 12 NMOS Logic Objectives: The experiments in this laboratory exercise will provide an introduction to NMOS logic. You will use the Bit Bucket breadboarding system to build and test

More information

PREVIEW COPY. Digital Logic Systems. Table of Contents. Digital Logic Fundamentals...3. Logic Building Blocks Medium- and Large-Scale ICs...

PREVIEW COPY. Digital Logic Systems. Table of Contents. Digital Logic Fundamentals...3. Logic Building Blocks Medium- and Large-Scale ICs... Digital Logic Systems Table of Contents Lesson One Lesson Two Lesson Three Digital Logic Fundamentals...3 Logic uilding locks...9 Medium- and Large-Scale ICs...35 Lesson Four Functional Logic Systems...5

More information

Chapter # 1: Introduction

Chapter # 1: Introduction Chapter # : Introduction Contemporary Logic Design Randy H. Katz University of California, erkeley May 994 No. - The Process Of Design Design Implementation Debug Design Initial concept: what is the function

More information

Combinational Logic Circuits. Combinational Logic

Combinational Logic Circuits. Combinational Logic Combinational Logic Circuits The outputs of Combinational Logic Circuits are only determined by the logical function of their current input state, logic 0 or logic 1, at any given instant in time. The

More information

VLSI Logic Structures

VLSI Logic Structures VLSI Logic Structures Ratioed Logic Pass-Transistor Logic Dynamic CMOS Domino Logic Zipper CMOS Spring 25 John. Chandy inary Multiplication + x Multiplicand Multiplier Partial products Result Spring 25

More information

1. The decimal number 62 is represented in hexadecimal (base 16) and binary (base 2) respectively as

1. The decimal number 62 is represented in hexadecimal (base 16) and binary (base 2) respectively as BioE 1310 - Review 5 - Digital 1/16/2017 Instructions: On the Answer Sheet, enter your 2-digit ID number (with a leading 0 if needed) in the boxes of the ID section. Fill in the corresponding numbered

More information

Hello, and welcome to the TI Precision Labs video series discussing comparator applications. The comparator s job is to compare two analog input

Hello, and welcome to the TI Precision Labs video series discussing comparator applications. The comparator s job is to compare two analog input Hello, and welcome to the TI Precision Labs video series discussing comparator applications. The comparator s job is to compare two analog input signals and produce a digital or logic level output based

More information

DIGITAL ELECTRONICS QUESTION BANK

DIGITAL ELECTRONICS QUESTION BANK DIGITAL ELECTRONICS QUESTION BANK Section A: 1. Which of the following are analog quantities, and which are digital? (a) Number of atoms in a simple of material (b) Altitude of an aircraft (c) Pressure

More information

Multiple Category Scope and Sequence: Scope and Sequence Report For Course Standards and Objectives, Content, Skills, Vocabulary

Multiple Category Scope and Sequence: Scope and Sequence Report For Course Standards and Objectives, Content, Skills, Vocabulary Multiple Category Scope and Sequence: Scope and Sequence Report For Course Standards and Objectives, Content, Skills, Vocabulary Wednesday, August 20, 2014, 1:16PM Unit Course Standards and Objectives

More information

Chapter 4: The Building Blocks: Binary Numbers, Boolean Logic, and Gates

Chapter 4: The Building Blocks: Binary Numbers, Boolean Logic, and Gates Chapter 4: The Building Blocks: Binary Numbers, Boolean Logic, and Gates Objectives In this chapter, you will learn about The binary numbering system Boolean logic and gates Building computer circuits

More information

Lecture 11 Digital Circuits (I) THE INVERTER

Lecture 11 Digital Circuits (I) THE INVERTER Lecture 11 Digital Circuits (I) THE INVERTER Outline Introduction to digital circuits The inverter NMOS inverter with resistor pull-up Reading Assignment: Howe and Sodini; Chapter 5, Sections 5.1-5.3 6.12

More information

16 Multiplexers and De-multiplexers using gates and ICs. (74150, 74154)

16 Multiplexers and De-multiplexers using gates and ICs. (74150, 74154) 16 Multiplexers and De-multiplexers using gates and ICs. (74150, 74154) Aim: To design multiplexers and De-multiplexers using gates and ICs. (74150, 74154) Components required: Digital IC Trainer kit,

More information

University of Pittsburgh

University of Pittsburgh University of Pittsburgh Experiment #7 Lab Report Analog-Digital Applications Submission Date: 08/01/2018 Instructors: Dr. Ahmed Dallal Shangqian Gao Submitted By: Nick Haver & Alex Williams Station #2

More information

Reading. Lecture 17: MOS transistors digital. Context. Digital techniques:

Reading. Lecture 17: MOS transistors digital. Context. Digital techniques: Reading Lecture 17: MOS transistors digital Today we are going to look at the analog characteristics of simple digital devices, 5. 5.4 And following the midterm, we will cover PN diodes again in forward

More information

EE241 - Spring 2002 Advanced Digital Integrated Circuits

EE241 - Spring 2002 Advanced Digital Integrated Circuits EE241 - Spring 2002 dvanced Digital Integrated Circuits Lecture 7 MOS Logic Styles nnouncements Homework #1 due 2/19 1 Reading Chapter 7 in the text by K. ernstein ackground material from Rabaey References»

More information

EXPERIMENT 5 Basic Digital Logic Circuits

EXPERIMENT 5 Basic Digital Logic Circuits ELEC 2010 Laborator Manual Eperiment 5 PRELAB Page 1 of 8 EXPERIMENT 5 Basic Digital Logic Circuits Introduction The eperiments in this laborator eercise will provide an introduction to digital electronic

More information

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo Digital Integrated Circuits Designing Combinational Logic Circuits Fuyuzhuo Introduction Digital IC Combinational vs. Sequential Logic In Combinational Logic Circuit Out In Combinational Logic Circuit

More information

EXPERIMENT #5 COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design

EXPERIMENT #5 COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design PH-315 La Rosa EXPERIMENT #5 COMINTIONL and SEUENTIL LOGIC CIRCUITS Hardware implementation and software design I PURPOSE: To familiarize with combinational and sequential logic circuits Combinational

More information

Lab Report: Digital Logic

Lab Report: Digital Logic Lab Report: Digital Logic Introduction The aim of the Digital Logic Lab was to construct a simple 4-bit Arithmetic Logic Unit (ALU) in order to demonstrate methods of using Boolean Algebra to manipulate

More information

A-data new-a. Data here. B-data new-b. Digital Circuits V CC. ECGR2181 Chapter 3 Notes 3-1. Logic System Design I

A-data new-a. Data here. B-data new-b. Digital Circuits V CC. ECGR2181 Chapter 3 Notes 3-1. Logic System Design I Data here -data new- -data new- Digital Circuits V CC ECGR28 Chapter 3 Notes S ogic System Design I 3- What is a digital system? It is a organized collecti of digital elements which is designed to perform

More information